3GPP TSG-CN1 Meeting #32
Tdoc N1-031578

Bangkok, Thailand, 27-31 October 2003

Source:
Nokia

Title:
SigComp Message Multiplexing
Document for:
Discussion

Agenda Item:
7.4

Specifications affected: 24.229
WI / Topic:

IMS

Summary

This contribution describes the problem of multiplexing compressed and uncompressed messages on the same TCP connection. It wraps up the IETF opinion and solution and analyzes the 3GPP case that brings in additional problems because of IPSec.

A. Introduction

According to 24.229 both UE and the P-CSCF shall support SigComp (RFC3320) and “Compressing the Session Initiation Protocol” (RFC3486) procedures. SigComp and SIP use the same port number to save the port space, which could be done so, because the messages are distinguishable based on their first byte. SigComp messages start with a “11111xxx” byte, while SIP (as a text-based protocol) has the MSB always set to 0.

To find the end of the messages the protocols use different delimiting mechanisms. Over UDP there is no problem, because the end of the packet shows the end of the message as well. Over TCP the SigComp messages end with 0xFFFF, which cannot appear inside SigComp messages, whilst SIP uses the Content-Length header to find the end of the message.

Whether to allow compressed and uncompressed messages in the same TCP stream (referred to as message multiplexing) raised discussions in IETF when creating RFC3486, since there was no text about it in the SigComp RFC.

Argumets against were mostly theoritical, namely not to disturb the layering model and not to bind SIP and SigComp too tightly.

A possible implementation was described as:

· Transport looks at the first byte of the message, and cheks whether it starts with 11111.

· If yes, the stream is passed to SigComp that reads it till 0xFFFF and returns

· If no, the stream is passed to SIP that reads it as long as indicated in Content-Length

· Rinse, Repeat

Of course if the Content-Length is improperly filled, missing or SigComp messages contain additional 0xFFFF or do not end with 0xFFFF, it might happen that a parser receives messages that are erroneous, partial or belong to the other protocol. In that case the next message or all messages inside that stream could be lost. But similar problems also arise in a stream containing SIP or SigComp messages only.

Conclusion was that although it is possible to solve, they didn’t really see any real need for that functionality.

Reflecting that RFC3486 says: “If a SIP client sends a compressed request and the client transaction times out without having received any response, the client SHOULD retry the same request without using compression. If the compressed request was sent over a TCP connection, the client SHOULD close that connection and open a new one to send the uncompressed request. Otherwise the server would not be able to detect the beginning of the new message.”

B. Discussion

Q1: Why do we need session multiplexing?

Although in the general case the message flow contains either compressed or uncompressed messages there are several possible cases where they have to interleave:

1. Fallback: If compressed messages get no response, the endpoint may try to send it uncompressed. Unfortunately SigComp base protocol has no means to carry error indications (NACK could later solve that).

2. Large messages: Due to SigComp limitations, the OUTPUT instruction stops after 64Kbytes of data. SIP messages larger than 64K must be sent uncomperssed.

3. RFC3486: If the UE has no comp=sigcomp URI to the P-CSCF, it would probably send the initial messages uncompressed and later messages compressed. Also, the UE or P-CSCF may choose to include or not to include comp=sigcomp in SIP headers anytime, which controls whether later messages will be sent compressed or uncompressed.

Q2: Why can’t we just close the TCP connection and open a new one, as RFC3486 says?

In the IPSec security association, both client and server ports are fixed, so the only way we could open a new TCP connection is to use exactly the same 5 selectors (source IP, source port, destination IP, destination port, protocol), as the previous one.

According to TCP: "Another effect of this 2MSL wait is that while the TCP connection is in the 2MSL wait, the socket pair defining the connection (client IP address, client port number, server IP address, server port number) cannot be reused. That connection can only be reused when the 2MSl wait is over."

MSL is the maximum segment lifetime, which is by RFC recommendation 2 minutes, but many implementations use 30 seconds. Effectively, it means that the connection cannot be reused for 1-4 minutes after closure.

Moreover, if one of the parallel sessions use compression and the other one does not, continous re-opening of the TCP connection brings in unnecessary handshakes and delays.

C. Recommendations

Remove RFC3486 from Release 5: Since both UE and P-CSCF shall support SigComp there is no real need for a discovery mechanism in Release 5. Multiplexing could be explicitely allowed in a note. The only functionality lost would be to express willingness to receive compressed messages. On the other hand endpoints could freely decide when to send compressed messages.

The discussions is expected to re-open in IETF, so it is likely that in Release 6 timeframe there will be a solution in IETF as well.

PAGE
1

