3GPP TSG CN WG1 Meeting #18 / SIP
Tdoc N1-011003

Dresden, Germany, 10th - 12th July 2001

Source:
Ericsson

Title:
Addressing B2BUA in a SIP Network

Agenda item:
8.1

Document for:
DISCUSSION

1 Abstract

This contribution addresses the question on whether the S-CSCF needs to behave as a back-to-back user agent (B2BUA). This contribution describes the needs on the B2BUA at the S-CSCF if it were to be a RFC2543 compliant UAS. It is shown that this would result in breakdown in SIP network transparency, thereby violating RFC2543.

2 Introduction

During the joint CN1/SA2 ad-hoc held 3-5 April at Sophia Antipolis, Lucent proposed in Tdoc N1-010533 that the S-CSCF may need to initiate disconnection of the call when it receives the 200OK from the callee when the S-CSCF has lost connection with the prepaid service network. The S-CSCF acted as a UAC and responded to the 200OK and initiated a BYE towards the caller, thus acting as a B2BUA and disconnecting the call.

The purpose of this contribution is to analyse the responsibilities of the endpoints and non-endpoints in a SIP network in such a scenario and thereby derive the required behaviour of the B2BUA.

The following companion contributions address other network-based services that may be provided without a B2BUA:

· N1-011004 “network controlled session disconnection”

· N1-011005 “network controlled session set-up, modification”

· N1-011006 “network controlled addition/removal of legs”

· N1-010937 “network initiated UE authentication without use of B2BUA”

3 Discussion

3.1 End-to-end behavior in SIP

The following are points for discussion that lay the background for B2BUA behaviour described in Sec. 3.2:

1. SIP is designed to be a messaging protocol that allows a UE in a network to find another UE and establish direct connection with it.

2. Unlike in the circuit switched world, there is no guarantee that messaging across all SIP transactions for the same call will follow the same path in the network e.g. the ACK that follows a 200 OK for an INVITE can follow a path different than that for the INVITE. Therefore, the only constants in the SIP signalling path across all transactions for a session are the actual endpoints or UEs, unless, optionally, the S-CSCF uses the Record-Route mechanism to stay in the signalling path.

3. Once a session has been established between two endpoints, the SIP model assumes that further direct manipulation of the session can only be initiated by these end points. The only indirect mechanism, that may be used by a non-endpoint (i.e. third_party), to trigger the endpoint into direct manipulation of the session is the SIP extension: REFER.

4. The SIP model assumes end-to-end transparency in the network. This allows for development of SIP extensions and semantics that need to be understood by the UAC and UAS, not necessarily by the network.

3.2 Back 2 Back user agents

This section describes the needs on the UAS part of the B2BUA as described in RFC2543-bis-02. It shows that the B2BUA can result in a breakdown in the network transparency described in the previous section.

Any B2BUA is in violation of RFC2543 if it is does not conform to the MUST outlined below. If the needs outlined below are met the description of the reason for violation/loss of network transparency is in italics.

1. A B2BUA has to act as both a user agent client (initiate messages) and user agent server (respond to messages)

2. As a user agent server, the B2BUA has to analyse the Require general-header field in all received messages to determine the options that the client has mandated that the server should support for the message to be processed properly. If the B2BUA does not understand the option, it MUST respond by returning status code 420 (Bad Extension) and list those options it does not support in the Unsupported header [see RFC2543, sections 6.36 below]. Therefore, the B2BUA could reject messages that use SIP extensions understood by the UEs, but not by the B2BUA
6.36 Require

The Require general-header field is used by clients to tell user agent servers about options that the client expects the server to support in order to properly process the request. If a server does not understand the option, it MUST respond by returning status code 420 (Bad Extension) and list those options it does not understand in the Unsupported header. ……

3. As a user agent server, the B2BUA has to respond with a 501 (Not Implemented) when it receives a method that it does not support [see RFC2543, section 7.5.2 below]. This kills innovation in the UE s’ as it prevents session set-up in the network between two UE s’ that have a mutually acceptable new method that is unsupported at the B2BUA. .
7.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies forward all requests regardless of method.)

4. As a server, the B2BUA has to parse the message body. If the B2BUA is not capable of decoding the body of the message, or does not recognise the content-coding values, or finds other faults in it, it MUST send a 415 (Unsupported Media) response listing the list of acceptable encodings in the Accept-Encoding header, or a 400 (Bad Request) [see RFC2543, sections 6.16, 6.17, 6.19 in Appendix below]. Therefore, the B2BUA could reject messages that use encoding in the message body understood by the UEs, but not by the B2BUA
5. The UE can never determine the capabilities of the B2BUA, as the UE is not supposed to be capable of addressing any SIP node directly, other than the visited proxy. This is a Catch-22 as the UE can never get an ‘advanced’ message past the B2BUA at the S-CSCF, proactively, unless it knows its capabilities. (See (2) above)
4 Conclusion

For future proof networks that are limited only by the intelligence of the terminals, it was shown that network transparency is required in the SIP network.

It was shown that use of a B2BUA will result in breakdown of network transparency making the SIP network non-compliant with RFC2543.

Therefore, a method needs to be determined by which the network can control the endpoints without using a B2BUA.

5 Appendix

Relevant sections RFC2543 bis-02

6.16 Content-Disposition

Content-Disposition = ”Content-Disposition” ”:”

disposition-type *(”;” disposition-param)

disposition-type = ”render” j ”session” j ”icon” j ”alert”

j disp-extension-token

disposition-param = ”handling” ”=” (”optional” j ”required” j other-handling)

j generic-param other-handling = token

disp-extension-token = token

The Content-Disposition header field describes how the message body or, in the case of multipart

messages, a message body part is to be interpreted by the UAC or UAS. The SIP header extends the MIME Content-Type (RFC 1806 [33]).

The value “session” indicates that the body part describes a session, for either calls or early (pre-call)

media. The value “render” indicates that the body part should be displayed or otherwise rendered to the user. For backward-compatibility, if the Content-Disposition header is not missing, bodies of Content-Type application/sdp imply the disposition “session”, while other content types imply “render”.

The disposition type “icon” indicates that the body part contains an image suitable as an iconic repre-sentation of the caller or callee. The value “alert” indicates that the body part contains information, such as an audio clip, that should be rendered instead of ring tone. The handling parameter, handling-parm, describes how the UAS should react if it receives a message body whose content type or disposition type it does not understand. If the parameter has the value “op-tional”, the UAS MUST ignore the message body; if it has the value “required”, the UAS MUST return 415 (Unsupported Media Type). If the handling parameter is missing, the value “required” is to be assumed. If this header field is missing, the MIME type determines the default content disposition. If there is none, “render” is assumed.

6.17 Content-Encoding

Content-Encoding = (”Content-Encoding” j ”e”) ”:”1#content-coding

The Content-Encoding entity-header field is used as a modifier to the “media-type”. When present,

its value indicates what additional content codings have been applied to the entity-body, and thus what

decoding mechanisms MUST be applied in order to obtain the media-type referenced by the Content-Type header field. Content-Encoding is primarily used to allow a body to be compressed without losing the identity of its underlying media type.

If multiple encodings have been applied to an entity, the content codings MUST be listed in the order in

which they were applied.

All content-coding values are case-insensitive. The Internet Assigned Numbers Authority (IANA) acts

as a registry for content-coding value tokens. See [H3.5] for a definition of the syntax for content-coding.

Clients MAY apply content encodings to the body in requests. If the server is not capable of decoding

the body, or does not recognize any of the content-coding values, it MUST send a 415 “Unsupported Media Type” response, listing acceptable encodings in the Accept-Encoding header. A server MAY apply content encodings to the bodies in responses. The server MUST only use encodings listed in the Accept-Encoding header in the request.

6.19 Content-Length

The Content-Length entity-header field indicates the size of the message-body, in decimal number of octets, sent to the recipient.

Content-Length = (”Content-Length” j ”l”)”:”1*DIGIT

An example is Content-Length: 3495

Applications SHOULD use this field to indicate the size of the message-body to be transferred, regardless of the media type of the entity. (The size of the message-body does not include the CRLF separating headers

and body.) Any Content-Length greater than or equal to zero is a valid value. If no body is present in a message, then the Content-Length header field MUST be set to zero. If a server receives a datagram request without Content-Length,itMUST assume that the request encompasses the remainder of the packet. If a server receives a datagram request with a Content-Length, but the value differs from the size of the body sent in the request, the server SHOULD return a 400 (Bad Request) response.

If a response does not contain a Content-Length, the client assumes that it encompasses the remainder of the datagram packet or the data until the stream connection is closed, as applicable. Section 8 describes how to determine the length of the message body.

The ability to omit Content-Length simplifies the creation of cgi-like scripts that dynamically generate re-sponses.

