3GPP TSG-CN Meeting #25 8th – 10th September 2004. Palm Springs, USA.

Source:	TSG CN WG 1
Title:	TS 24.234v2.0.0 – 3GPP system to Wireless Local Area Network (WLAN) interworking; User Equipment (UE) to network protocols; Stage 3
Agenda item:	9.17
Document for:	Approval

Presentation of Technical Report to TSG				
Presentation to:	TSG CN Meeting #25			
Document for presentation:	TS 24.234, Version 2.0.0			
Presented for:	Approval			

Abstract of document:

TS 24.234 specifies the network selection, including Authentication and Access Authorization procedures used for the interworking of the 3GPP System and WLANs. In addition to these, it also specifies the Tunnel management procedures used for establishing an end-to-end tunnel from the WLAN UE to the 3GPP network via the Wu reference point.

TS 23.234 is applicable to the WLAN User Equipment (UE) and the network. In this technical specification the network includes the WLAN and 3GPP network.

Tunnel management signalling is carried between WLAN-UE and WLAN by WLAN Access Technology specific protocols, however this signalling is transparent to the WLAN.

Details of the security framework for the end-to-end tunnel establishment are covered in 3GPP TS 33.234. The transport of the Tunnel management signalling between WLAN and 3GPP network; and within the 3GPP network (i.e. PDG, 3GPP AAA server and WAG) are covered in 3GPP TS 29.234.

Changes since last presentation to TSG:

Change requests agreed by CN1#35 introduced:

- Addition of tunnel establishment procedures to 24.234
- Addition of tunnel disconnection procedures to 24.234
- Removal of misc. Editors Notes
- Editorial corrections to the scope of 24.234
- Removal of redundant information on Decorated NAI
- Minor Changes to Network Selection Procedures
- Clarification to the keys during re-authentication procedure

Outstanding Issues:

- o None in scenario2, still for scenario 3
- o Error case handling (CN1)
- Subsequent tunnel set-up (CN1)
- o Timers (CN1)
- Use and definition of alternative NAI (SA2, CN1, CN4)
- PDG re-direction procedure

Contentious Issues: None.

3GPP TS 24.234 V2.0.0 (2004-09)

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Core Network; 3GPP System to Wireless Local Area Network (WLAN) interworking; User Equipment (UE) to network protocols; Stage 3 (Release 6)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPPTM system should be obtained via the 3GPP Organizational Partners' Publications Offices. Keywords 3GPP, IP, Network, USIM

2

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, ATIS, CWTS, ETSI, TTA, TTC). All rights reserved.

Contents

Forew	vord	5
1	Scope	6
2	References	6
3	Definitions, symbols and abbreviations	7
3.1	Definitions	7
3.2	Symbols	8
3.3	Abbreviations	8
4	General	
4.1	3GPP WLAN Interworking System	
4.2	WLAN UE Identities	
4.2.1	General	
4.2.2	Username	
4.2.3	Root NAI	
4.2.4	Decorated NAI	9
5	UE to WLAN protocols	9
5.1	WLAN protocols	
5.1.1	Scanning procedures	
5.1.1.1		
5.1.1.2	• • • • • • • • • • • • • • • • • • • •	
5.2	Network selection procedures	
5.2.1	General	
5.2.2	Network Selection	
5.2.2.1		
5.2.2.2		
5.2.2.2		
5.2.2.2		
5.2.2.3		
5.2.2.3 5.2.2.3	F	
5.2.2.3		
5.2.2.3		
5.2.2.3		
5.2.2.4		
5.2.2.4	*	
5.3	List of forbidden PLMNs for WLAN access	
6	UE to 3GPP Network protocols	14
6.1	UE to 3GPP AAA Server protocols	
6.1.1	WLAN Access Authentication and Authorization protocols	
6.1.1.1		
6.1.1.2	2 UE procedures	
6.1.1.2	2.1 Identity management	15
6.1.1.2	2.2 User Identity Privacy	
6.1.1.2	2.3 EAP AKA based Authentication	
6.1.1.2		
6.1.1.3	1	
6.1.1.3		
6.1.1.3		
6.1.1.3		
6.1.1.3		
6.1.1.3		
6.1.1.3	3.6 WLAN Access Authorization	
7	Parameters coding	
7.1	General	19

7.2	Pseudonym	
7.3	Forbidden PLMNs for WLAN access	
7.4	User Controlled PLMN Selector for WLAN access	
7.5	Operator Controlled PLMN Selector for WLAN access	
7.6	Operator Preferred WSID list	
7.7	Supported PLMNs list for WLAN access	
7.8	Re-authentication identity	
8	Tunnel management procedures	
8.1	General	
8.2	Tunnel establishment procedures	
8.2.1	UE procedures	
8.2.1.1	General	
8.2.1.2	Selection of remote tunnel endpoint	
8.2.1.3	UE initiated tunnel establishment	
8.2.1.4	Subsequent tunnel establishment	
8.2.1.5	6 Redirection	
8.2.2	PDG procedures	
8.2.2.1	General	
8.2.2.2	UE initiated tunnel establishment	
8.2.2.3	~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
8.2.2.4	Redirection	
8.3	Tunnel disconnection procedures	
8.3.1	UE procedures	
8.3.1.1	PDG Initiated Tunnel Disconnection Procedures	
8.3.2	PDG procedures	
8.3.2.2	UE Initiated Tunnel Disconnection Procedures	
8.4	Timers and counters for tunnel management	
8.5	Cause codes for tunnel management	
Anney	x A (informative): Change history	

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the network selection, including Authentication and Access Authorization procedures used for the interworking of the 3GPP System and WLANs. In addition to these, the present document also specifies the Tunnel management procedures used for establishing an end-to-end tunnel from the WLAN UE to the 3GPP network via the Wu reference point.

The present document is applicable to the WLAN User Equipment (UE) and the network. In this technical specification the network includes the WLAN and 3GPP network.

Tunnel management signalling is carried between WLAN-UE and WLAN by WLAN Access Technology specific protocols, however this signalling is transparent to the WLAN.

Details of the security framework for the end-to-end tunnel establishment are covered in 3GPP TS 33.234 [5]. The transport of the Tunnel management signalling between WLAN and 3GPP network; and within the 3GPP network (i.e. PDG, 3GPP AAA server and WAG) are covered in 3GPP TS 29.234 [3].

Editor's note: For tunnel management the work division in 3GPP groups is as follows. SA3 takes care of security considerations related to the tunnel establishment. CN1 takes care of tunnel management issues related. CN4 takes care of internal signalling (e.g. for re-direction, 3GPP AAA Server - PDG functionality).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
- [1] 3GPP TS 23.122: "Non-Access-Stratum functions related to Mobile Station (MS) in idle mode".
- [1A] 3GPP TS 23.003: "Numbering, addressing and identification".
- [2] 3GPP TS 23.234: "3GPP system to Wireless Local Area Network (WLAN) interworking; System description".
- [3] 3GPP TS 29.234: "3GPP system to Wireless Local Area Network (WLAN) interworking; Stage 3".
- [4] Void
- [5] 3GPP TS 33.234: "3G security; Wireless Local Area Network (WLAN) interworking security".
- [6] IETF RFC 2284 (March 1998): "PPP Extensible Authentication Protocol (EAP)".
- [7] IETF RFC 1035 (November 1987): "Domain names implementation and specification".
- [8] IETF RFC 2486 (January 1999): "The Network Access Identifier".
- [9] draft-arkko-pppext-eap-aka-12 (April 2004): "EAP AKA Authentication".
- [10] draft-haverinen-pppext-eap-sim-13 (April 2004): "Extensible Authentication Protocol Method for GSM Subscriber Identity Modules (EAP-SIM)".

- [11] IEEE Std 802.11 (1999): "Standard for Information Technology Telecommunications and information exchange between systems - Local and Metropolitan Area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications".
- [12] draft-adrangi-eap-network-discovery-and-selection-01 (March 2004): "Network Discovery and Selection within the EAP Framework".
- [13] 3GPP TS 31.102: "Characteristics of the USIM application".
- [14] draft-ietf-ipsec-ikev2-13.txt, March 2004: "Internet Key Exchange (IKEv2) Protocol".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

active scanning: capability of a WLAN UE to actively solicit support for a specific WSID by for probing it

associated WSID: WSID that the WLAN UE uses for association with a WLAN AP

available WSID: WSID that the WLAN UE has found after scanning

EAP AKA: EAP mechanism for authentication and session key distribution using the UMTS AKA authentication mechanism (see draft-arkko-pppext-eap-aka [9])

EAP SIM: EAP mechanism for authentication and session key distribution using the GSM Subscriber Identity Module (SIM) (see draft-haverinen-pppext-eap-sim [10])

passive scanning: capability of a WLAN UE to look for the support for a specific WSID by listening to the WSIDs broadcast in the beacon signal

PLMN selection: procedure for the selection of a PLMN, via a WLAN, either manually or automatically

selected WSID: this is the WSID that has been selected according to clause 5.2.2.1, either manually or automatically

selected PLMN: this is the PLMN that has been selected according to clause 5.2.3.3, either manually or automatically

supported PLMN: a PLMN of a roaming partner (i.e. to which the WLAN operator has a direct roaming relationship)

switch on: action of activating a WLAN UE client

switch off: action of deactivating a WLAN UE client

WLAN specific identifier (WSID): identifier for the WLAN For WLANs compliant with IEEE 802.11 [11] this is the SSID.

For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.234 [2] apply.

3GPP - WLAN Interworking (WLAN-3GPP IW) 3GPP AAA server 3GPP AAA proxy Interworking WLAN W-APN WLAN UE WLAN Roaming

For the purposes of the present document, the following terms and definitions given in draft-adrangi-eap-networkdiscovery-and-selection [12] apply.

Decorated NAI Root NAI

3.2 Symbols

For the purposes of the present document, the following symbols apply:

WaReference point between a WLAN and a 3GPP AAA Server/Proxy (control signalling)WdReference point between a 3GPP AAA Server and 3GPP AAA Proxy (control signalling)WuReference point between a WLAN UE and a Packet Data Gateway

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ΑΑΑ	Authentication Authorization and Accounting
1 11 11 1	Authentication, Authorization and Accounting
AKA	Authentication and Key Agreement
APN	Access Point Name
DNS	Domain Name System
EAP	Extensible Authentication Protocol
I-WLAN	Interworking - WLAN
NAI	Network Access Identifier
PDG	Packet Data Gateway
SSID	Service Set ID
W-APN	WLAN - APN
WLAN	Wireless Local Area Network
WSID	WLAN Specific Identifier

4 General

Editor's Note: Provides general overview of WLAN-3GPP IW system.

4.1 3GPP WLAN Interworking System

The 3GPP AAA server is located in the home network and it is responsible for access control. In a non-roaming scenario, the 3GPP AAA server interfaces a WLAN directly via the Wa reference point. In a roaming scenario, the 3GPP AAA server interfaces a 3GPP AAA proxy in another 3GPP network via the Wd reference point, and the 3GPP AAA proxy further communicates with the WLAN via the Wa reference point. The 3GPP AAA proxy transparently relays access control (authentication and access authorization) signalling to the home 3GPP AAA server. Within the scope of the present document, the Wa and Wd reference point are therefore identical.

The Wa and Wd reference points are defined in 3GPP TS 23.234 [2]. The WLAN-UE is equipped with an UICC (or SIM card) in order to access the WLAN interworking service.

The 3GPP AAA server procedures covered in the present document are:

- Authentication of the 3GPP subscriber based on the SIM/USIM credentials; and
- Access authorization of the 3GPP subscriber based on the WLAN access authorization information retrieved from HLR/HSS.

Editor's note: Figures 1 and 2 in Annex B show the Network Selection model applicable to the present document.

Other functionalities of the 3GPP AAA server are covered in 3GPP TS 29.234 [3].

4.2 WLAN UE Identities

4.2.1 General

WLAN UEs use Network Access Identifier (NAI) as identification towards the 3GPP WLAN AAA server. The NAI is structured according to RFC 2486 [8].

The NAI realm shall be in the form of a domain name as specified in RFC 1035 [7], the NAI username shall comply with draft-arkko-pppext-eap-aka [9] and draft-haverinen-pppext-eap-sim [10].

4.2.2 Username

The rules for the use of NAI username in the WLAN UE and for the generation and delivery of NAI username in 3GPP AAA server are defined in clause 6.1. The format of NAI username is defined in 3GPP TS 23.003 [1A].

4.2.3 Root NAI

This is the NAI format when the WLAN UE authenticates directly to HPLMN (see draft-adrangi-eap-network-discovery-and-selection [12] and 3GPP TS 23.234 [2]). Root NAI format is specified in 3GPP TS 23.003 [1A]. The usage of Root NAI is specified in clause 5.2.2.

4.2.4 Decorated NAI

This is the NAI format when the WLAN authenticates to HPLMN via VPLMN (see draft-adrangi-eap-network-discovery-and-selection-00 [12]). Decorated NAI format is specified in 3GPP TS 23.003 [1A]. The usage of Decorated NAI is specified in clause 5.2.2.

5 UE to WLAN protocols

5.1 WLAN protocols

5.1.1 Scanning procedures

5.1.1.1 Case of IEEE 802.11 WLANs

In the case of IEEE 802.11 [11] WLANs, the WLAN network name is provided in the SSID information element.

The WLAN UE becomes aware of the supported WSIDs by the WLAN by performing scanning procedures as specified in IEEE 802.11-1999 [11].

There are two types of scanning procedures specified in IEEE 802.11-1999 [11]:

- i) Passive scanning.
- ii) Active scanning.

The WLAN UE shall support passive scanning according to IEEE 802.11-1999 [11]. If active scanning is supported then, the WLAN UE should use active scanning according to IEEE 802.11-1999 [11].

In order to assist PLMN selection procedure, the WLAN UE creates a list of AvailableWSIDs. The list of Available WSIDs consists of all WSIDs found in passive scanning and all WSIDs received in probe response messages.

5.1.1.2 Case of other WLANs

Other WLANs, such as HiperLAN or Bluetooth, are not described in this TS but not excluded.

5.2 Network selection procedures

5.2.1 General

In 3GPP WLAN interworking Network selection consists of two procedures: the I-WLAN selection procedure, the network selection procedure. These procedures are applicable to initial network selection at WLAN UE switch on and following recovery from lack of WLAN radio coverage.

Two network selection modes are defined, automatic and manual. The support of additional network selection modes is implementation dependent.

In order to ensure that the result of Network Selection is the association with an I-WLAN that has direct connection to HPLMN, both procedures are linked to each other as specified in this clause.

For automatic selection procedures defined in clause 5.2.2.3.3 the WLAN UE shall use a WSID that has a direct connection to HPLMN. This is done by associating and performing EAP based network discovery with the Available WSIDs until a WSID that has a direct connection to the HPLMN has been found. If a WSID that has direct connection to HPLMN is not found, then the WLAN UE attempts to select a WSID that has connection to one of the PLMNs in the Preferred PLMNs lists. The order that the WLAN UE follows for association with the Available WSIDs is determined by the "Preferred WSIDs list", if available.

For manual network selection procedures defined in clause 5.2.2.3.4 the WLAN UE produces a list of available PLMNs. This is done by associating and performing EAP based network discovery with the available WLANs until every available WLAN has been associated with and EAP network discovery has been performed.

Network selection procedure is completely independent of the result of the PLMN selection under other radio access technologies that are specified in 3GPP TS 23.122 [3]. The signal quality shall not be used as a parameter for network selection.

WLAN technologies other than those compliant with IEEE 802.11 1999 [11], such as HiperLAN or Bluetooth, are not described specifically in this version of the present document. However, they are not excluded.

5.2.2 Network Selection

5.2.2.1 General

The WLAN UE identifies itself to the WLAN by inserting its NAI in EAP-Response/Identity message. In the case when the WLAN cannot derive the 3GPP AAA Server where to route the WLAN UE's EAP authentication signalling to, it is said that the WLAN has no direct roaming relationship with the user's home network.

The WLAN uses realm part of NAI to route EAP authentication signalling to the Home 3GPP AAA server of the subscriber with whom the WLAN UE performs authentication. This procedure is out of the scope of the present document.

Upon reception of the first EAP-Request/Identity message, the WLAN UE shall respond with an EAP-Response/Identity message. The identity included in this first EAP-Response/Identity message shall include an indication of the subscriber's HPLMN and may include (implementation option) an indication on a preferred VPLMN. Therefore the WLAN UE has two options on the choice of the identity to include in the first EAP-Response/Identity message:

- Root NAI: This identity may be included e.g. when the WLAN UE intends to trigger the Network Discovery procedure or when the WLAN UE is aware that the WLAN has direct connection to HPLMN.
- Decorated NAI: This identity may be included either when the WLAN UE is aware that the associated WSID does not provide direct connection to HPLMN and it has information from previous authentications about the VPLMNs supported by this WSID or when a user during the manual selection procedure selects a different PLMN other than HPLMN.

5.2.2.2 Network Advertisement

5.2.2.2.1 General

If the WLAN is unable to route the WLAN UE's EAP authentication signalling to the 3GPP AAA Server based on the NAI sent in the initial EAP-Response/Identity message and if it supports Network Discovery procedure as described in draft-adrangi-eap-network-discovery-and-selection [12], then the WLAN sends a subsequent EAP-Request/Identity message to the WLAN UE including the Supported PLMNs list for WLAN access.

If the WLAN is unable to route the WLAN UE's EAP authentication signalling to the 3GPP AAA Server based on the NAI sent in the initial EAP-Response/Identity message and if it does not support Network Discovery procedure as described in draft-eap-network-discovery-and-selection [12], then the WLAN sends an EAP-Failure message to the WLAN UE.

5.2.2.2.2 UE procedures

Upon reception of an EAP-Request/Identity message including the Supported PLMNs list for WLAN access the WLAN UE shall:

- Perform PLMN selection according to clause 5.2.2.3.
- Decorate NAI as specified in clause 4.2 and using the PLMN ID of the Selected PLMN.
- Attempt to authenticate as specified in clause 6.1.1 and using the NAI determined in the prior step.

If the Selected PLMN is HPLMN, then decoration shall not be performed as HPLMN ID is already contained in the root NAI. As an implementation option, the WLAN UE may store the Supported PLMNs list for WLAN access.

Editors note: Upon reception of an EAP-Failure message in response to an EAP-Identity/Response message, the exact behaviour of the WLAN UE is FFS. The WLAN UE may (i) attempt authentication via one of the preferred PLMNs or (ii) attempt access to another WLAN or (iii) do nothing.

5.2.2.3 PLMN selection

5.2.2.3.1 UE I-WLAN Selection procedure

The WLAN UE shall use scanning procedures as specified in clause 5.1.1 in order to find the available WSIDs.

The WLAN UE shall perform association with a particular access point for the purpose of discovering the supported PLMNs, using the list of available WSIDs in the following order:

- a) In case the 'Preferred WSID list' is available in the USIM, each WSID in the 'Preferred WSID list' data file in the USIM in priority order.
- b) In case when the 'Preferred WSIDs list' is not available in the USIM and the ME supports the optional 'Preferred WSIDs list' in the ME memory, each WSID in the 'Preferred WSIDs list' data file in the ME in priority order.
- c) Other WSIDs of WLAN APs supporting 3GPP-WLAN interworking.

In the case of Automatic PLMN selection the WLAN UE shall stop performing association with other WLANs once a direct connection to the HPLMN has been found.

If no association with any I-WLAN is found, the WLAN UE behaviour is implementation dependent.

5.2.2.3.2 UE-PLMN Selection Procedures

In order to perform PLMN selection the WLAN UE shall discover the PLMNs supported by the available I-WLANs using the I-WLAN selection procedure in clause 5.2.2.3.1.

There are two modes for PLMN selection:

- i) Automatic mode: this mode utilizes a list of PLMNs in priority order. The highest priority PLMN which is available and allowable is selected according to clause 5.2.2.3.3.
- ii) Manual mode: here the WLAN UE indicates to the user a list of Available PLMNs according to clause 5.2.2.3.4. When the user makes a manual selection then the WLAN UE attempts to authenticate with the Selected PLMN.

5.2.2.3.3 Automatic PLMN Selection Mode Procedure

In case of automatic selection the WLAN UE shall select and attempt to authenticate with an available and allowable PLMN, in the following precedence.

- a) HPLMN.
- b) If the "User Controlled PLMN Selector for I-WLAN access" data file is available in the USIM, each PLMN in the "User Controlled PLMN Selector for I-WLAN access" data file in the USIM (in priority order).
- c) If the "Operator Controlled PLMN Selector for I-WLAN access" data file is available in the USIM, each PLMN in the "Operator Controlled PLMN Selector for I-WLAN access" data file in the USIM (in priority order).
- NOTE: Requirements for the presence of the "User Controlled PLMN Selector for I-WLAN access" data file and the "Operator Controlled PLMN Selector for I-WLAN access" data file are defined in 3GPP TS 31.102 [13].
- d) If neither "User Controlled PLMN Selector for I-WLAN access" nor "Operator Controlled PLMN Selector for I-WLAN access" data file is available in the USIM or in case when SIM is inserted:
 - i) each PLMN in the "User Controlled PLMN Selector with Access Technology" data file, if available in the USIM/SIM (in priority order);
 - ii) each PLMN in the "Operator Controlled PLMN Selector with Access Technology" data file, if available in the USIM/SIM (in priority order).
- e) If none of the PLMN selector lists in steps b, c and d is available and the ME supports at least one of the optional "User Controlled PLMN Selector for I-WLAN access" or "Operator Controlled PLMN Selector for I-WLAN access" lists in the ME:
 - i) each PLMN in the "User Controlled PLMN Selector for I-WLAN access" data file in the ME (in priority order);
 - ii) each PLMN in the "Operator Controlled PLMN Selector for I-WLAN access" data file in the ME (in priority order).
- f) Any other PLMN randomly.

If successful authentication is achieved, the WLAN UE shall indicate to the user the Selected PLMN.

If no PLMN is selected, the WLAN UE behaviour is implementation dependent.

If the WLAN UE loses coverage with the associated AP, a new I-WLAN is discovered automatically using the I-WLAN association procedure in clause 5.2.2.3.1.

5.2.2.3.4 Manual PLMN Selection Mode Procedure

In case of manual network selection mode, the WLAN UE shall request for a list of supported PLMNs by issuing an EAP-Response/Identity message to the WLAN including as identity the Root NAI. See the clause 4.2.3.

The WLAN UE shall indicate to the user the PLMNs which are available. If more than one I-WLAN is capable of being used to establish a direct connection with a PLMN the WLAN UE should indicate each of the candidate I-WLANs along with the PLMN to the user. If displayed, PLMNs from the Supported PLMNs list shall be presented in the following order:

13

- a) HPLMN.
- b) If the "User Controlled PLMN Selector for I-WLAN access" data file is available, PLMNs in the "User Controlled PLMN Selector for I-WLAN access" data file in the USIM (in priority order).
- c) If the "Operator Controlled PLMN Selector for I-WLAN access" data file is available, PLMNs in the "Operator Controlled PLMN Selector for I-WLAN access" data file in the USIM (in priority order).
- d) If neither "User Controlled PLMN Selector for I-WLAN access" nor "Operator Controlled PLMN Selector for WLAN access" data file is available in the USIM or in case when SIM is inserted:
 - i) each PLMN in the "User Controlled PLMN Selector with Access Technology" data file, if available in the USIM/SIM (in priority order);
 - ii) each PLMN in the "Operator Controlled PLMN Selector with Access Technology " data file, if available in the USIM/SIM (in priority order).
- e) If none of the PLMN selector lists in steps b, c and d is available and the ME supports at least one of the optional "User Controlled PLMN Selector for I-WLAN access" and "Operator Controlled PLMN Selector for I-WLAN access" lists in the ME:
 - i) each PLMN in the "User Controlled PLMN Selector for I-WLAN access " data file in the ME (in priority order);
 - ii) each PLMN in the "Operator Controlled PLMN Selector for I-WLAN access " data file in the ME (in priority order).
- f) Any other PLMN in random order.

If a PLMN was selected before the procedure and if the user does not select a PLMN, the selected PLMN shall be the one that was selected before the PLMN selection procedure started.

If successful authentication is achieved, the WLAN UE shall indicate the Selected PLMN.

If no PLMN is found, the WLAN UE behaviour is implementation dependent.

- 5.2.2.4 User reselection
- 5.2.2.4.1 UE procedures
- 5.2.2.4.1.1 General

At any time the user can request the WLAN UE to initiate reselection onto a supported PLMN, according to the following procedures, dependent upon the PLMN selection mode (automatic or manual). In this case and in both PLMN selection modes, the WLAN UE shall:

- Disassociate with the current associated WSID by initiating disassociation procedure as specified in IEEE 802.11 1999 [11].
- Initiate association procedure as specified in IEEE 802.11 1999 [11], taking into account PLMN selection procedure as specified in clause 5.2.2.3.1;
- Depending on the PLMN selection mode (automatic or manual), perform a new PLMN selection as specified in clauses 5.2.2.4.1.2 and 5.2.2.4.1.3.

Editor's note: Disassociation if the WLAN UE can find a PLMN without disassociating needs to be clarified in the future.

5.2.2.4.1.2 Automatic Network Selection Mode

The WLAN UE shall follow the Automatic Network Selection Mode Procedure as specified in clause 5.2.2.3.3 with the exception that the WLAN UE shall not chose the current mediating PLMN unless it is the only PLMN that is available.

5.2.2.4.1.3 Manual Network Selection Mode

The WLAN UE shall follow the Manual Network Selection Mode Procedure as specified in clause 5.2.2.3.4.

5.2.2.4.2 3GPP AAA Server procedures

The WLAN UE may associate with a new access point and select a different PLMN than the current mediating PLMN. In this case the 3GPP AAA server may receive a new authentication request from the same user but with different NAI (i.e. the new Selected WLAN VPLMN will generate a new Decorated NAI). The 3GPP AAA Server shall proceed with the new request and release the current authentication status information once the new authentication procedure has been successfully completed.

- Editor's note: How the 3GPP AAA Server will find out that the mediating PLMN has changed for the same user, depends on the format of the Decorated NAI. Therefore, this issue will be specified further when NAI decoration format is more stable in IETF.
- Editor's note: Further collision and abnormal cases may need to be considered. For example, it is FFS the response of the 3GPP AAA server upon reception of a new authentication request from the same user and with the same NAI.

5.3 List of forbidden PLMNs for WLAN access

The WLAN UE shall contain a list of "Forbidden PLMNs for WLAN access". The list shall be removed at switch off. The list is defined in clause 7.3.

The WLAN UE shall not use the "Forbidden PLMNs for WLAN access" available from other accesses for WLAN PLMN selection nor Authentication procedures.

Editor's note: When a WLAN UE receives an EAP-Failure message in response to an EAP Response/Identity message, presently there is no such error cause like 'WLAN services not allowed in this PLMN' defined according to the draft-arkko-pppext-eap-aka-12 [9]. So the addition of PLMN identity (which was used to decorate the NAI in the EAP Response/Identity message) to the list of forbidden PLMNs for WLAN access is FFS.

6 UE to 3GPP Network protocols

6.1 UE to 3GPP AAA Server protocols

6.1.1 WLAN Access Authentication and Authorization protocols

Editor's Note: Functionality in WLAN UE and 3GPP AAA server for identification, full authentication and reauthentication. Procedures are defined in [9] and [10]. This TS should specify the mandatory and optional features from SIM and AKA drafts. As an example Reauthentication and Privacy support are optional in the EAP-SIM and EAP-AKA drafts but mandatory for the WLAN UE and network.

6.1.1.1 General

WLAN authentication signalling shall be executed between WLAN UE and 3GPP AAA Server for the purpose of authenticating the end-user and enabling the access to the WLAN network or to the WLAN and 3GPP network.

The WLAN UE and 3GPP AAA server shall support EAP authentication procedures as specified in draft-arkko-pppext-eap-aka [9] and draft-haverinen-pppext-eap-sim [10].

Other EAP authentication methods than those specified in draft-arkko-pppext-eap-aka [9] and draft-haverinen-pppext-eap-sim [10] may be supported by the WLAN UE but are not part of 3GPP WLAN IW therefore are out of the scope of the present document.

WLAN authentication signalling for 3GPP-WLAN interworking shall be based on Extensible Authentication Protocol (EAP) as specified in RFC 2284 [6]).

WLAN access authorization shall be performed upon successful user authentication in the 3GPP AAA Server and it includes access rules as defined by the operator (see clause 6.1.1.3.6).

6.1.1.2 UE procedures

6.1.1.2.1 Identity management

In both EAP AKA and EAP SIM based authentications, the WLAN UE shall proceed as follows.

The WLAN UE shall always use the leading digits notation when building the username part of NAI from IMSI, as specified in TS 23.003 [1A]. draft-arkko-pppext-eap-aka [9] and draft-haverinen-pppext-eap-sim [10] each define the leading digits to identify their particular authentication mechanism.

In the first EAP-Response/Identity message the WLAN UE shall include a NAI which username is derived from IMSI. The format of such username is defined in 3GPP TS 23.003 [1A].

The WLAN UE shall support the mechanism for communicating its identity to the server using EAP/AKA and EAP/SIM messages as specified in EAP AKA and EAP SIM respectively.

If the WLAN UE receives an EAP-Request/AKA-Identity message or EAP-Request/SIM/Start message including an AT_PERMANENT_ID_REQ after sending an identity response including the pseudonym, the WLAN UE shall respond to this new identification request by including a NAI in which username is derived from IMSI. This WLAN UE behaviour is defined in draft-haverinen-pppext-eap-sim [10] and in draft-arkko-pppext-eap-aka [9].

6.1.1.2.2 User Identity Privacy

In both EAP AKA and EAP SIM based authentications, the support of user identity privacy is mandatory for the WLAN UE.

The reception of temporary identity(ies) (pseudonym and/or re-authentication identity) in any EAP authentication indicates to the WLAN UE that user identity privacy is enabled as described in clause 6.1.1.3.2.

The WLAN UE shall not interpret the temporary identity(ies), but store the received identity(ies) and use it at the next EAP authentication.

If the WLAN UE receives temporary identity(ies) (pseudonym and/or re-authentication identity) during EAP authentication from the 3GPP AAA server (as specified in 3GPP TS 33.234 [5]), then the WLAN UE shall process the authentication challenge information (e.g. RAND, AUTN, MAC) received together with the temporary identity(ies). If the EAP authentication procedure is successful (i.e. EAP–Success message), the WLAN UE shall consider the new temporary identity(ies) as valid.

The WLAN UE after successful EAP authentication takes the following actions if new temporary identity(ies) was received in AT_ENCR_DATA attribute:

- if the temporary identity is a pseudonym, the WLAN UE shall store it in the "Pseudonym" data file in the USIM. If the "Pseudonym" data file is not available in the USIM, the WLAN UE shall store the pseudonym in the ME; and
- if the temporary identity is a re-authentication identity, the WLAN UE shall store it in the "Re-authentication identity", data file in the USIM together with new Master Key, Transient EAP Keys and Counter value. If the "Re-authentication identity" data file is not available in the USIM, the WLAN UE shall store the re-authentication identity in the ME together with new Master Key, Transient EAP Key and Counter value.

Release 6

The WLAN UE after successful EAP authentication takes the following actions if no new temporary identity(ies) was received in AT_ENCR_DATA attribute:

- Temporary identities are one-time identities. If the WLAN UE does not receive a new temporary identity(ies), the WLAN UE shall delete the corresponding temporary identity(ies) from the USIM/ME (i.e. the WLAN UE shall set the username of the corresponding temporary identity(ies) field to the "deleted" value to indicate no valid temporary identity(ies) exists as specified in TS 23.003 [1A]). When the temporary identity(ies) stored in the USIM/ME indicates the "deleted" value in the username part, the WLAN UE shall consider the corresponding temporary identity(ies) as invalid and shall not send that temporary identity(ies) at the next EAP authentication.
- Editor's note: The temporary identity(ies) format and the "deleted" value, which indicates the case when no valid temporary identity(ies) exists in the UE, requires definition in TS 23.003 [1A].

Upon reception of an EAP-Request/Identity message, the WLAN UE shall take one of the following actions depending on the presence of the temporary identity(ies):

- if valid re-authentication identity is available, the WLAN UE shall use the re-authentication identity at the next EAP authentication. If not, then
- if valid pseudonym is available, the WLAN UE shall use the pseudonym at the next EAP authentication. If not, then
- The WLAN UE shall use the permanent IMSI-based identity at the next EAP authentication.

6.1.1.2.3 EAP AKA based Authentication

The WLAN UE with USIM inserted shall support EAP AKA based authentication, and it shall attempt to authenticate using EAP AKA authentication as the first EAP method. The WLAN UE shall be able to accept EAP AKA based authentication in the EAP method negotiation.

6.1.1.2.4 EAP SIM based Authentication

If the WLAN UE supports the ME-SIM interface, and if SIM has been inserted, then the WLAN UE shall support EAP SIM based authentication. In this case, the WLAN UE shall be able to accept EAP SIM based authentication as EAP method negotiation.

The EAP-SIM based authentication does not require the ME-SIM interface, and therefore EAP-SIM based authentication could also be performed using the 2G Authentication and Key Agreement (AKA) functions on the USIM application. However, if a UICC with USIM has been inserted, then the default EAP method policy of the WLAN UE shall not accept EAP-SIM based authentication.

6.1.1.2.4.1 Interoperability cases

If the WLAN UE does not accept EAP-SIM based authentication when USIM has been inserted, then interoperability problems may occur with pre-release 6 authentication servers that only support EAP-SIM authentication. Therefore, ME implementations may allow configuring an EAP method policy that allows EAP-SIM based authentication even if a UICC with USIM has been inserted.

Editor's note: The details and security aspects of ME policy configuration are for further study.

6.1.1.2.4.2 Re-authentication

In both EAP AKA and EAP SIM based authentication, the support of re-authentication is mandatory for the WLAN UE.

The reception of re-authentication identity in any EAP authentication indicates to the WLAN UE that fast re-authentication is enabled as described in clause 6.1.1.3.5.

If the WLAN UE receives a re-authentication identity from the 3GPP AAA server (as specified in 3GPP TS 33.234 [5]), then the WLAN UE shall process the authentication challenge information (e.g. Counter, NONCE, MAC) received together with the re-authentication identity. If the authentication challenge procedure is successful, the WLAN UE shall consider the new re-authentication identity as valid.

The WLAN UE after successful EAP authentication shall store the new re-authentication identity and associated security parameters and overwrite any previously stored re-authentication identity and associated security parameters as described in clause 6.1.1.2.2.

The WLAN UE shall send the re-authentication identity during the re-authentication attempt to the 3GPP AAA Server, only if re-authentication identity, whose value is not set to "deleted", exists.

6.1.1.3 3GPP AAA Server procedures

6.1.1.3.1 Identity management

In both EAP AKA and EAP SIM based authentications, the 3GPP AAA server shall proceed as follows.

The 3GPP AAA server shall always (re)request the user identity, using EAP-Request/AKA-Identity or EAP-Request/SIM/Start, in order to ensure that it has an unmodified copy of the identity, regardless of the identity the 3GPP AAA server received in EAP-Response/Identity (see draft-arkko-pppext-eap-aka [9] and draft-haverinen-pppext-eap-sim [10] for details on this requirement).

The 3GPP AAA Server shall use, if present, the leading digits part of IMSI based username to identify the proposed authentication mechanism, as specified in 3GPP TS 23.003 [1A].

6.1.1.3.2 User Identity Privacy

In both EAP AKA and EAP SIM based authentications, the support of user identity privacy is mandatory for the 3GPP AAA server. However, the usage of this feature is optional for the 3GPP AAA server.

The user identity privacy should be enabled in the 3GPP AAA server. If user identity privacy is enabled, the 3GPP AAA server shall send new encrypted temporary identity(ies) (pseudonym and/ or re-authentication identity) to the UE in every EAP authentication procedure. The description of temporary identity management is specified in 3GPP TS 33.234 [5].

When mapping a user temporary identity (pseudonym or re-authentication identity) to a permanent IMSI-based identity, the 3GPP AAA server shall only examine the username portion of the user temporary identity and ignore the realm portion of the identity.

NOTE: The realm portion of the temporary identity will always be the roam of the 3GPP AAA server.

6.1.1.3.3 EAP SIM and EAP AKA based Authentication

The 3GPP AAA server shall support both EAP SIM and EAP AKA based authentication as specified in draft-arkko-pppext-eap-aka [9] and draft-haverinen-pppext-eap-sim [10].

6.1.1.3.4 3GPP AAA Server Operation in the Beginning of Authentication

The 3GPP AAA server shall support EAP method negotiation, as specified in EAP RFC 2284 [6].

The EAP method policy of the 3GPP AAA server shall not accept EAP-SIM based authentication for USIM subscribers, and only accept EAP-SIM based authentication for SIM subscribers.

Editor's note: The details and security aspects of AAA server policy configuration are for further study.

The procedure to select the EAP method to use for authentication is the following:

- The format of the identity received in EAP-Response/Identity may contain an indication of the EAP method to be used by the 3GPP AAA server as defined in 3GPP TS 23.003 [1A]. For example, if the identity format indicates EAP SIM, the leading character in the identity is "1" so, the identity might be a permanent IMSI-based identity for EAP SIM. The permanent identity format and the usage of leading digits for IMSI-based permanent identity are specified in draft-arkko-pppext-eap-aka [9] and draft-haverinen-pppext-eap-sim [10]. The format of the pseudonyms and re-authentication identities are specified in 3GPP TS 33.234 [5].
- 2) If the 3GPP AAA server is not able to map the user identity received in EAP-Response/Identity to a subscriber identity (e.g. an obsolete pseudonym), but it recognizes the EAP method, the 3GPP AAA server shall request a new identity using the EAP method indicated by the WLAN UE.

- 3) If the 3GPP AAA server is able to map the user identity received in EAP-Response/Identity to a subscriber identity (IMSI), but the EAP method does not match with user's subscription information, the 3GPP AAA server shall use the EAP method indicated by user's subscription (with the exception specified in the clause 6.1.1.3.4.1). For example, if the EAP method indicates EAP AKA, but the 3GPP AAA server has available information that subscriber's UICC only supports SIM based authentication, (e.g. received authentication vectors are triplets rather than quintuplets), then user's subscription shall prevail and the 3GPP AAA server shall propose EAP SIM as the first authentication method.
- 4) If the 3GPP AAA server is not able to recognize the user identity received in EAP-Response/Identity and hence the EAP method, the EAP method to use is implementation dependent. If this EAP method does not match user's subscription in the WLAN UE, the WLAN UE shall respond with a NACK to the 3GPP AAA server. Then, the 3GPP AAA server shall use the other EAP method until a recognized identity is received.

6.1.1.3.4.1 Interoperability cases

3GPP AAA servers may be configured to support an EAP method policy that accepts EAP-SIM based authentication for USIM subscribers. This configuration option may be used, if many USIM subscribers are expected to use prerelease 6 ME implementations that do not support EAP AKA.

NOTE: When the operator issues USIM cards to subscribers, it is strongly recommended to upgrade the AAA servers to 3GPP release 6 and to support EAP-AKA.

6.1.1.3.5 Re-authentication

The 3GPP AAA server shall support re-authentication as specified in the 3GPP TS 33.234 [5].

Re-authentication should be enabled in the 3GPP AAA server. If re-authentication is enabled, the re-authentication may be full or fast, as follows:

- Full re-authentication means that a new full authentication procedure shall take place as the initial authentication procedure, where all keys are generated afresh in both the (U)SIM and network. Full re-authentication requires that the WLAN UE sends pseudonym or permanent IMSI-based identity.
- Fast re-authentication means that a new authentication procedure takes place in which Master Key and Transient EAP Keys are not generated in both the (U)SIM and network, but reused from the previous authentication process to generate the remaining keys necessary for this procedure. Fast re-authentication requires that the WLAN UE sends re-authentication identity.

The decision of using fast re-authentication is taken in the 3GPP AAA server depending on operator's policies. Operator's policies regarding fast re-authentication may contain for example, a timer to control start of fast re-authentication, a counter to control the maximum number of allowed fast re-authentications before a full EAP authentication shall be initiated towards the WLAN UE or a restriction on whether fast re-authentication is allowed to visiting subscribers.

The 3GPP AAA server indicates to the WLAN UE the decision of using fast re-authentication by means of sending the re-authentication identity in the EAP authentication procedure (i.e. in EAP-Request/AKA-Challenge or EAP-Request/AKA-re-authentication or EAP-Request/SIM/Challenge or EAP-Request/SIM/re-authentication messages). On each fast re-authentication procedure the 3GPP AAA server has the ultimate point of decision of whether to continue with the ongoing fast re-authentication procedure or to defer to a full re-authentication.

NOTE: The use of fast re-authentication implies to save power consumption in the WLAN UE and processing time in both the WLAN UE and the 3GPP AAA server. However, when the fast re-authentication is used through a low trusted I-WLAN, it is strongly recommended to refresh the keys using full re-authentication. The use of fast re-authentication should be left for situations in which the user is accessing a high trusted I-WLAN.

The full and fast re-authentication signalling flows are described in 3GPP TS 33.234 [5].

6.1.1.3.6 WLAN Access Authorization

WLAN Access Authorization between the UE and the 3GPP AAA Server shall be combined with the WLAN Access Authentication and performed before service authorization and transport IP address allocation.

The 3GPP AAA Server shall perform access authorization once user authentication succeeds but before sending EAP-Success message to the WLAN UE.

The 3GPP AAA Server shall check whether the user is allowed to use WLAN service based on the user's subscription and optionally, information about the I-WLAN (e.g. I-WLAN operator name, location and throughput). If the check is successful the 3GPP AAA Server shall complete the authentication procedure by sending a positive response to the WLAN UE that is, an EAP-Success message.

Additionally, the 3GPP AAA Server may apply certain access control rules (such as access scope limitation, time limitation, bandwidth control values, and/or user priority) based on user's subscription, the account status, O&M rules (e.g. blacklist, access limitation list), and local agreements or information about the I-WLAN.

7 Parameters coding

7.1 General

This clause specifies the parameters used for WLAN interworking. By default, unless otherwise specified for a particular procedure, the WLAN UE shall use the parameters described below as follows: if the parameter is available in the USIM, then the WLAN UE shall use it. If the parameter is not available in the USIM and it is present in the ME, then the WLAN UE shall use the parameter stored in ME.

7.2 Pseudonym

The format of the pseudonym is defined for EAP-AKA in draft-arkko-pppext-eap-aka [9] and for EAP-SIM in drafthaverinen-pppext-eap-sim [10]. Pseudonym generation in the 3GPP AAA server is specified in 3GPP TS 33.234 [5].

7.3 Forbidden PLMNs for WLAN access

The *Forbidden PLMNs for WLAN access* file contains a list of PLMN codes to which the WLAN UE shall not attempt to authenticate in automatic mode. It shall be possible to store at least ten entries on the list. The contents of this file are specified in 3GPP TS 31.102 [13].

7.4 User Controlled PLMN Selector for WLAN access

The *User Controlled PLMN Selector for WLAN access* file contains a list of PLMN codes preferred by the user. It shall be possible to store at least ten entries on the list. The contents of this file are specified in 3GPP TS 31.102 [13].

7.5 Operator Controlled PLMN Selector for WLAN access

The *Operator Controlled PLMN Selector for WLAN access* file contains a list of PLMN codes preferred by the operator. It shall be possible to store at least ten entries on the list. The contents of this file are specified in 3GPP TS 31.102 [13].

7.6 Operator Preferred WSID list

The *Preferred WSID list* file contains a list of WSIDs related to I-WLAN preferred by the operator. It shall be possible to store at least ten entries on the list. The contents of this file are specified in 3GPP TS 31.102 [13].

7.7 Supported PLMNs list for WLAN access

The *Supported PLMNs list for WLAN access* file contains a list of PLMN codes of roaming partners (i.e. to which the WLAN operator has a direct roaming relationship). This list is per WSID and the WLAN UE may store it for further use. The list shall be deleted at switch off. The format of this list is specified in draft-adrangi-eap-network-discovery-and-selection [12].

7.8 Re-authentication identity

The format of the re-authentication identity is specified in 3GPP TS 23.003 [1A].

8 Tunnel management procedures

8.1 General

The purpose of tunnel management procedures is to define the procedures for establishment or disconnection of an endto-end tunnel between the WLAN UE and the PDG. Tunnel Establishment procedure is always initiated by a WLAN UE, whereas Tunnel Disconnection procedure can be initiated by the WLAN UE or network.

The security mechanisms for tunnel setup using IPSec and IKEv2 are specified in 3GPP TS 33.234 [5].

8.2 Tunnel establishment procedures

8.2.1 UE procedures

8.2.1.1 General

After successful EAP authentication and before initiation of tunnel establishment the WLAN UE shall offer the possibility to the subscriber to select between direct access to external IP network from the WLAN or access through the PLMN. In case the user selects to access through the PLMN, the WLAN UE shall initiate the Tunnel Establishment procedure after selecting a remote tunnel endpoint using DNS procedure as mentioned in clause 8.3.1.2.

The WLAN UE shall support IKEv2 for IPSec tunnel negotiation as specified in 3GPP TS 33.234 [5], in order to establish trusted relationships (i.e. mutual authentication with the PDG).

The WLAN UE shall support IPSec ESP [14] in order to provide secure tunnels between the WLAN UE and the PDG as specified in 3GPP TS 33.234 [5].

8.2.1.2 Selection of remote tunnel endpoint

The WLAN UE shall support the implementation of standard DNS mechanisms in order to retrieve the IP address(es) of the remote tunnel endpoint, i.e. the PDG.

When performing W-APN resolution (i.e. building an FQDN for the DNS request), the WLAN UE shall include both W-APN Network Identifier (NI) and W-APN Operator Identifier (OI). If the user did not provide a value for W-APN OI, then the WLAN UE shall use the HPLMN ID or VPLMN ID as the W-APN OI, depending on internal configuration. See TS 23.003 [1a]. Details on the construction of W-APN in the different roaming scenarios are specified in 3GPP TS 23.234 [2].

NOTE: The W-APN NI identifies the IP network the user wants to access, e.g. operator service network or the Internet. The W-APN OI defines in which PLMN the PDG is located and it is used in WLAN IW in order to select a PDG in VPLMN or a PDG in HPLMN, for this reason the W-APN OI usage in the DNS query is mandatory in WLAN IW.

The initial selection of the remote tunnel endpoint is done in the WLAN UE. Upon reception of a DNS response containing one or more IP addresses of PDGs that support the requested W-APN, the WLAN UE shall select an IP address with the same IP version as its local IP address. This selection may be performed by the user (WLAN UE implementation option) or may be performed automatically by the WLAN UE. In the later case, the criteria for automatic selection is implementation dependant.

8.2.1.3 UE initiated tunnel establishment

In order to request the establishment of a tunnel to a certain W-APN, the WLAN UE shall comply with IKE_v2 protocol definitions as defined in draft-ietf-ipsec-ikev2-15 [14]. In order to set up an IKE connection between the UE and the PDG, the UE shall initiate the signalling procedure by sending the IKE_SA_INIT request message defined in IKE_v2 [14] to the PDG. On receipt of an IKE_SA_INIT response, the WLAN UE shall send a tunnel establishment request (IKE_AUTH request message in IKE_v2 [14]) to the selected PDG (see clause 8.2.1.2) including the W-APN and the NAI. The WLAN UE shall include in IDr payload the W-APN that was used in the DNS query and in the IDi payload the NAI.

NOTE: The username part of the NAI included in IDi payload may be an IMSI, pseudonym or re-authentication ID. There is no requirement to use full authentication mechanism for the 1st tunnel establishment. Fast re-authentication mechanism is optional, and therefore is an implementation option in the WLAN UE and operator configuration issue (i.e. it also depends on whether the AAA server sent an re-authentication ID during previous EAP authentication) whether to use it during tunnel establishment.

Upon of reception of a response message with Notify payload of type "ERROR" i.e. indicating the failure of the tunnel establishment the WLAN UE may either:

- select a new PDG from the list received from the DNS server during remote tunnel endpoint selection (see clause 8.2.1.2) and initiate a new tunnel establishment using this newly selected PDG; or
- perform a new remote tunnel endpoint selection requesting PDG IP addresses from HPLMN, select a new PDG from the list received from the DNS server (see clause 8.2.1.2) and initiate a new tunnel establishment using this newly selected PDG; or
- stop the tunnel establishment attempt and release the Security Association (SA) with the PDG.

8.2.1.4 Subsequent tunnel establishment

Editor's note: From 3GPP TS 23.234: 'In the case that the user attempts a subsequent tunnel establishment to a different PDG, it should be possible to avoid repeating the full authentication process (for example, a shorter re-authentication process should be used). This is ffs in Stage 3 work.'

8.2.1.5 Redirection

Editor's note: WLAN UE functionality to support redirection procedure as specified in 3GPP TS 23.234, clause 7.9.1.

8.2.2 PDG procedures

8.2.2.1 General

The PDG shall support the implementation of a VPN server application in order to assist tunnel establishment towards the WLAN UE. However the selection of a particular VPN application is implementation dependant.

The PDG shall support IPSec tunnelling using IKEv2, in order to establish trusted relationships (i.e. mutual authentication with the WLAN UE).

The PDG shall support IPSec ESP [15] [AvT1]in order to provide secure tunnels between the WLAN UE and the PDG as specified in 3GPP TS 33.234 [5].

8.2.2.2 UE initiated tunnel establishment

Upon reception of an IKE_AUTH request message (tunnel establishment request) from the WLAN UE, the PDG shall contact the 3GPP AAA Server as specified in 3GPP TS 29.234 [3] in order to retrieve service authorization and authentication information for the WLAN UE requesting the establishment of the tunnel.

Upon successful authorization and authentication, the PDG shall accept the tunnel establishment request by sending the IKE_AUTH response message and including the allocated remote IP address in the 'Configuration' payload.

Upon, authentication failure the PDG shall reject the tunnel establishment request by sending the IKE_AUTH response message with the Notify payload set to 'AUTHENTICATION FAILED'.

8.2.2.3 Subsequent tunnel establishment

Editor's note: From 3GPP TS 23.234: 'In the case that the user attempts a subsequent tunnel establishment to a different PDG, it should be possible to avoid repeating the full authentication process (for example, a shorter re-authentication process should be used). This is ffs in Stage 3 work.'

8.2.2.4 Redirection

Editor's note: PDG functionality to support redirection procedure as specified in 3GPP TS 23.234, clause 7.9.1.

8.3 Tunnel disconnection procedures

8.3.1 UE procedures

WLAN UE shall use the procedures defined in IKEv2 [14] to disconnect an IPSec tunnel to the PDG. The UE shall close the incoming Security Associations associated with the tunnel and instruct the PDG to do the same by sending the INFORMATIONAL request message including a "DELETE" payload. The DELETE payload shall contain either:

- i) Protocol ID set to "1" and no subsequent Security Parameters Indexes (SPIs) in the payload. This indicates closing of IKE Security Association, and implies the deletion of all IPsec ESP Security Associations that were negotiated within the IKE SA.
- ii) Protocol ID set to "3" for ESP. The Security Parameters Indexes included in the payload shall correspond to the particular incoming ESP Security Associations at the WLAN UE for the given tunnel in question.
- NOTE: More than one tunnel may be disconnected in this message, via inclusion of multiple Security Parameters Indexes in one DELETE payload or multiple DELETE payloads in one INFORMATIONAL request message.

8.3.1.1 PDG Initiated Tunnel Disconnection Procedures

On receipt of the INFORMATIONAL request message including "DELETE" payload, indicating that the PDG is attempting tunnel disconnection, the WLAN UE shall:

- i) Close all Security Associations identified within the DELETE payload (these Security Associations correspond to outgoing Security Associations from the WLAN UE perspective). If no Security Associations were present in the DELETE payload, and the protocol ID was set to "1", the WLAN UE shall close the IKE Security Association, and all IPsec ESP Security Associations that were negotiated within it towards the PDG.
- ii) The UE shall delete the incoming Security Associations corresponding to the outgoing Security Associations identified in the "DELETE" payload.

The WLAN UE shall send an INFORMATIONAL response message. If the INFORMATIONAL request message contained a list of Security Associations, the INFORMATIONAL response message shall contain a list of Security Associations deleted in step (ii) above.

If the WLAN UE is unable to comply with the INFORMATIONAL request message, the WLAN UE shall send INFORMATION response message with either:

- i) A NOTIFY payload of type "INVALID_SPI", for the case that it could not identify one or more of the Security Parameters Indexes in the message from the PDG; or
- ii) A more general NOTIFY payload type. This payload type is implementation dependent.

8.3.2 PDG procedures

PDG shall use the procedures defined in IKEv2 [14] to disconnect an IPSec tunnel to the UE. The PDG shall close the incoming Security Associations associated with the tunnel and instruct the UE to do likewise by sending the INFORMATIONAL request message including a "DELETE" payload. The DELETE payload shall contain either:

- i) Protocol ID set to "1" and no subsequent Security Parameter Indexes in the payload. This indicates that the IKE Security Association, and all IPsec ESP Security Associations that were negotiated within it between PDG and UE shall be deleted.
- Protocol ID set to "3" for ESP. The SECURITY PARAMETERS INDEXES s included in the payload shall correspond to the particular incoming ESP SECURITY ASSOCIATION at the UE for the given tunnel in question.

8.3.2.2 UE Initiated Tunnel Disconnection Procedures

On receipt of the INFORMATIONAL request message including "DELETE" payload indicating that the UE is initiating tunnel disconnect procedure, the PDG shall:

- i) Close all Security Associations identified within the DELETE payload (these Security Associations correspond to outgoing Security Associations from the PDG perspective). If no Security Associations were present in the DELETE payload, and the protocol ID was set to "1", the PDG shall close the IKE Security Association, and all IPsec ESP Security Associations that were negotiated within it towards the UE.
- ii) The PDG shall delete the incoming Security Associations corresponding to the outgoing Security Associations identified in the "DELETE" payload.

The PDG shall send an INFORMATIONAL response message. This shall contain a list of Security Associations deleted in step (ii) above.

If the PDG is unable to comply with the INFORMATIONAL request message, the PDG shall send INFORMATION response message with either:

- i) a NOTIFY payload of type "INVALID_SPI", for the case that it could not identify one or more of the SECURITY PARAMETERS INDEXES in the message from the UE; or
- ii) a more general NOTIFY payload type. This payload type is implementation dependent.

8.4 Timers and counters for tunnel management

Editor's note: it contains timers and counters that are not covered in IETF specifications but that are needed for the purposes of 3GPP IW.

8.5 Cause codes for tunnel management

Editor's note: it contains causes codes that are not covered in IETF specifications but that are needed for the purposes of 3GPP IW. For example when tunnel establishment failure reason is that the WLAN UE is not allowed to use a visited-PDG to access the given W-APN.

Annex A (informative): Change history

				Change history		
Date	TSG #	TSG Doc.	CR R	ev Subject/Comment	Old	New
22.09.03	CN1#31			First draft. TS number assigned by MCC. Incorporates agreements from the following Tdocs: N1-031104, N1- 031305, N1-031306, N1-031308, N1-031309 and N1-031310.		0.1.0
12.11.03	CN1#32	24.234		Second draft. TS sent to plenary for information. Incorporates agreements from the following Tdocs: N1-031536, N1- 031685, N1-031686, N1-031691, N1-031692, N1-031693, N1- 031694, N1-031695, N1-031696	0.1.0	0.2.0
01.02.04	CN1#32- bis			Incorporates agreements from the following Tdocs: N1-040191, N1- 040192, N1-040193, N1-040194, N1-040195, N1-040048.	1.0.0	1.1.0
24.02.04	CN1#33			Incorporates agreements from the following Tdocs: N1-040447, N1- 040448, N1-040452, N1-040477, N1-040489, N1-040490, N1- 040491, N1-040492.	1.1.0	1.2.0
23.04.04	CN1#33- bis			Incorporates agreements from the following Tdocs: N1-040640,N1- 040703,N1-040707,N1-040708,N1-040710,N1-040712,N1- 040713,N1-040718,N1-040724,N1-040725,N1-040726,N1- 040742,N1-040743,N1-040744,N1-040745,N1-040746,N1- 040748,N1-040749	1.2.0	1.3.0
24.05.04	CN1#34			Incorporates agreements from the following Tdocs: N1-040929, N1- 040930, N1-041018, N1-041043, N1-041044, N1-041046, N1- 041048, N1-041049, N1-041051		
25.05.04	CN1#34			Correction to 041044	1.4.0	1.4.1
2.07.04	CN1#34bi s			Incorporates agreed CRs N1-041178, N1-041191, N1-041197, N1- 041221, N1-041242, N1-041246, N1-041247, N1-041287, N1- 041298, N1-041299, N1-041309	1.4.1	1.5.0
25.08.04	CN1 #35			Incorporates agreed CRs N1-041556, N1-041557, N1-041560, N1- 041637, N1-041466	1.5.0	1.6.0
Sep-2004	CN#25	NP-040365		Version 2.0.0 created for Plenary approval, editorial changes done	1.6.0	2.0.0