
3GPP TSG CN Plenary Meeting #25 NP-040358
08-10 September 2004, Palm Springs, CA, USA

Source: CN5 (OSA)

Title: 18 Rel-6 CR 29.198-xy Corrections to support High-Availability (HA)

Agenda item: 9.7 (OSA Enhancements [OSA3])

Document for: APPROVAL

Doc-1st-Level Spec CR R Phase Subject Cat VerCur Doc-2nd-Level WI

NP-040358 29.198-03 126 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040660 OSA3
NP-040358 29.198-04-1 014 -- Rel-6 Support High Availability at API Level F 6.2.0 N5-040646 OSA3
NP-040358 29.198-04-2 023 -- Rel-6 Additional GCC Feature to support HA C 6.1.0 N5-040611 OSA3
NP-040358 29.198-04-2 024 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040647 OSA3
NP-040358 29.198-04-3 030 -- Rel-6 Additional MPCC Feature to support HA C 6.2.0 N5-040612 OSA3
NP-040358 29.198-04-3 031 -- Rel-6 Support High Availability at API Level F 6.2.0 N5-040648 OSA3
NP-040358 29.198-04-4 021 -- Rel-6 Support High Availability at API Level F 6.2.0 N5-040649 OSA3
NP-040358 29.198-05 057 -- Rel-6 Additional GUI Feature to support HA C 6.1.0 N5-040613 OSA3
NP-040358 29.198-05 058 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040650 OSA3
NP-040358 29.198-06 029 -- Rel-6 Support High Availability at API Level F 6.2.0 N5-040651 OSA3
NP-040358 29.198-07 031 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040652 OSA3
NP-040358 29.198-08 036 -- Rel-6 Additional DSC Feature to support HA C 6.1.0 N5-040614 OSA3
NP-040358 29.198-08 037 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040653 OSA3
NP-040358 29.198-11 032 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040654 OSA3
NP-040358 29.198-12 032 -- Rel-6 Additional Charging Feature to support HA C 6.1.0 N5-040615 OSA3
NP-040358 29.198-12 033 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040655 OSA3
NP-040358 29.198-13 012 -- Rel-6 Support High Availability at API Level F 6.2.0 N5-040656 OSA3
NP-040358 29.198-14 024 -- Rel-6 Support High Availability at API Level F 6.1.0 N5-040657 OSA3

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040611
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 023 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Additional GCC Feature to support HA

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 27/08/2004

Category: ! C Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current support for high availability for applications and SCSs using the OSA API

is ambiguous and incomplete. SCS failure and recovery currently may result in
significant additional method invocation, seriously impacting the recovery time
and end to end availablility of both application and gateway SCS, and thereby
reducing the overall availability of the OSA solution.

These changes are submitted to fulfill the Release 6 stage 1 requirement for high
availability for OSA at API level.

Summary of change: ! Introduce a new method that allows the failure and recovery of a service to result

in a method to be invoked on the application indicating the list of call sessions
that have been lost as a result of this failure. The recovery from failure in an SCS
can therefore be supported more efficiently thereby improving the end to end
availability of the OSA solution.

Consequences if !
not approved:

The existing API does not support efficient failure recovery mechanisms required
to ensure a highly available end to end OSA deployment, therefore application
and gateway implementations shall be required to adopt vendor proprietary
solutions to these problems, thereby resulting in loss of interoperability.

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 6.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 6.2

6.2 Interface Class IpAppCallControlManager
Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

<<new>>abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application
writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through
an explicit setCallbackWithSessionID() invocation on the supplied IpCall, or via the return of the callEventNotify()
method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed a reference to the IpAppCall interface using a
setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionID().

This parameterwill be null if the notification is in NOTIFY mode.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

6.2.3 Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been encountered.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been ceased

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the IpAppCallControlManager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. This may be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionIDs indicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionIDs, this shall be used to indicate that all call sessions previously active on the
IpCallControlManager interface have been aborted.

Parameters

callReferenceSet : in TpSessionIDSet

Specifies the set of sessionIDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

End of Change in 6.2

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040612
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-3 CR 030 ! rev - ! Current version: 6.2.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Additional MPCC Feature to support HA

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 27/08/2004

Category: ! C Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current support for high availability for applications and SCSs using the OSA API

is ambiguous and incomplete. SCS failure and recovery currently may result in
significant additional method invocation, seriously impacting the recovery time
and end to end availablility of both application and gateway SCS, and thereby
reducing the overall availability of the OSA solution.

These changes are submitted to fulfill the Release 6 stage 1 requirement for high
availability for OSA at API level.

Summary of change: ! Introduce a new method that allows the failure and recovery of a service to result

in a method to be invoked on the application indicating the list of call sessions
that have been lost as a result of this failure. The recovery from failure in an SCS
can therefore be supported more efficiently thereby improving the end to end
availability of the OSA solution.

Consequences if !
not approved:

The existing API does not support efficient failure recovery mechanisms required
to ensure a highly available end to end OSA deployment, therefore application
and gateway implementations shall be required to adopt vendor proprietary
solutions to these problems, thereby resulting in loss of interoperability.

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 6.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 6.2

6.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

<<new>>abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface
using a setCallbackWithSessionID() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionID().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.3 Method managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased.

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the IpAppCallControlManager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. This may be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionIDs indicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionIDs, this shall be used to indicate that all call sessions previously active on the
IpCallControlManager interface have been aborted.

Parameters

callReferenceSet : in TpSessionIDSet

Specifies the set of sessionIDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

End of Change in 6.2

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040613
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-05 CR 057 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Additional GUI Feature to support HA

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 27/08/2004

Category: ! C Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current support for high availability for applications and SCSs using the OSA API

is ambiguous and incomplete. SCS failure and recovery currently may result in
significant additional method invocation, seriously impacting the recovery time
and end to end availablility of both application and gateway SCS, and thereby
reducing the overall availability of the OSA solution.

These changes are submitted to fulfill the Release 6 stage 1 requirement for high
availability for OSA at API level.

Summary of change: ! Introduce a new method that allows the failure and recovery of a service to result

in a method to be invoked on the application indicating the list of user interaction
sessions that have been lost as a result of this failure. The recovery from failure
in an SCS can therefore be supported more efficiently thereby improving the end
to end availability of the OSA solution.

Consequences if !
not approved:

The existing API does not support efficient failure recovery mechanisms required
to ensure a highly available end to end OSA deployment, therefore application
and gateway implementations shall be required to adopt vendor proprietary
solutions to these problems, thereby resulting in loss of interoperability.

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 8.1.2, 11

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 8.1.2

8.1.2 Interface Class IpAppUIManager

Inherits from: IpInterface.

The Generic User Interaction Service manager application interface provides the application callback functions to the
Generic User Interaction Service.

<<Interface>>

IpAppUIManager

userInteractionAborted (userInteraction : in TpUIIdentifier) : void

<<deprecated>> reportNotification (userInteraction : in TpUIIdentifier, eventInfo : in TpUIEventInfo,
assignmentID : in TpAssignmentID) : IpAppUIRef

userInteractionNotificationInterrupted () : void

userInteractionNotificationContinued () : void

<<new>> reportEventNotification (userInteraction : in TpUIIdentifier, eventNotificationInfo : in
TpUIEventNotificationInfo, assignmentID : in TpAssignmentID) : IpAppUIRef

<<new>>abortMultipleUserInteractions (userInteractionSet : in TpUIIdentifierSet) : void

8.1.2.1 Method userInteractionAborted()

This method indicates to the application that the User Interaction service instance has terminated or closed abnormally.
No further communication will be possible between the User Interaction service instance and application.

Parameters

userInteraction : in TpUIIdentifier

Specifies the interface and sessionID of the user interaction service that has terminated.

8.1.2.2 Method <<deprecated>> reportNotification()

This method is deprecated and replaced by reportEventNotification(). It will be removed in a later release.

This method notifies the application of an occurred network event which matches the criteria installed by the
createNotification method.

Returns: appUI

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

If the application has previously explicitly passed a reference to the IpAppUI interface using a
setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionID().

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Parameters

userInteraction : in TpUIIdentifier

Specifies the reference to the interface and the sessionID to which the notification relates.

eventInfo : in TpUIEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

IpAppUIRef

8.1.2.3 Method userInteractionNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected). Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

8.1.2.4 Method userInteractionNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

8.1.2.5 Method <<new>> reportEventNotification()

This method notifies the application of an occurred network event which matches the criteria installed by the
createNotification method.

Returns: appUI

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

If the application has previously explicitly passed a reference to the IpAppUI interface using a
setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionID().

Parameters

userInteraction : in TpUIIdentifier

Specifies the reference to the interface and the sessionID to which the notification relates.

eventNotificationInfo : in TpUIEventNotificationInfo

Specifies data associated with this event.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

IpAppUIRef

8.1.2.6 Method abortMultipleUserInteractions()

The service may invoke this method on the IpAppUIManager interface to indicate that a number of ongoing user
interaction sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the user interaction sessions. This may be used for example in the event of service failure and recovery
in order to instruct the application that a number of sessions have failed. The service shall provide a set of
TpUIIdentifiers, indicating to the application the interface references and sessionsIDs of the user interaction sessions
that have aborted. In the case that the service invokes this method and provides an empty set of TpUIIdentifiers, this
shall be used to indicate that all user interaction sessions previously active on the IpUIManager interface have been
aborted.

Parameters

userInteractionSet : in TpUIIdentifierSet

Specifies the set of interfaces and sessionIDs of the user interaction sessions that have aborted or terminated
abnormally. The empty set shall be used to indicate that all user interactions have aborted.

End of Change in 8.1.2

Change in 11

11.16 TpUIIdentifier
Defines the Sequence of Data Elements that unambiguously specify the UI object

Structure Element Name Structure Element Type Structure Element Description
UIRef IpUIRef This element specifies the interface reference

for the UI object.

UserInteractionSessionID TpSessionID This element specifies the User Interaction
session ID.

11.17 TpUIIdentifierSet
Defines a Numbered Set of Data Elements of TpUIIdentifier.

End of Change in 11

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040614
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-08 CR 036 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Additional DSC Feature to support HA

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 27/08/2004

Category: ! C Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current support for high availability for applications and SCSs using the OSA API

is ambiguous and incomplete. SCS failure and recovery currently may result in
significant additional method invocation, seriously impacting the recovery time
and end to end availablility of both application and gateway SCS, and thereby
reducing the overall availability of the OSA solution.

These changes are submitted to fulfill the Release 6 stage 1 requirement for high
availability for OSA at API level.

Summary of change: ! Introduce a new method that allows the failure and recovery of a service to result

in a method to be invoked on the application indicating the list of data sessions
that have been lost as a result of this failure. The recovery from failure in an SCS
can therefore be supported more efficiently thereby improving the end to end
availability of the OSA solution.

Consequences if !
not approved:

The existing API does not support efficient failure recovery mechanisms required
to ensure a highly available end to end OSA deployment, therefore application
and gateway implementations shall be required to adopt vendor proprietary
solutions to these problems, thereby resulting in loss of interoperability.

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 8.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 8.2

8.2 Interface Class IpAppDataSessionControlManager
Inherits from: IpInterface.

The data session control manager application interface provides the application data session control management
functions to the data session control SCF.

<<Interface>>

IpAppDataSessionControlManager

dataSessionAborted (dataSession : in TpSessionID) : void

reportNotification (dataSessionReference : in TpDataSessionIdentifier, eventInfo : in
TpDataSessionEventInfo, assignmentID : in TpAssignmentID) : IpAppDataSessionRef

dataSessionNotificationContinued () : void

dataSessionNotificationInterrupted () : void

<<new>>abortMultipleDataSessions (dataSessionSet : in TpSessionIDSet) : void

8.2.1 Method dataSessionAborted()

This method indicates to the application that the Data Session object has aborted or terminated abnormally. No further
communication will be possible between the Data Session object and the application.

Parameters

dataSession : in TpSessionID

Specifies the session ID of the data session that has aborted or terminated abnormally.

8.2.2 Method reportNotification()

This method notifies the application of the arrival of a data session-related event.

If this method is invoked with a monitor mode of P_DATA_SESSION_MONITOR_MODE_INTERRUPT, then the
application has control of the data session. If the application does nothing with the data session within a specified time
period (the duration of which forms a part of the service level agreement), then the data session in the network shall be
released and dataSessionFaultDetected() shall be invoked, giving a fault code of
P_DATA_SESSION_TIMEOUT_ON_INTERRUPT.

Returns appDataSession : Specifies a reference to the application object which implements the callback interface for the
new data session. If the application has previously explicitly passed a reference to the IpAppDataSession interface using
a setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionID().

This parameter will be null if the notification is in NOTIFY mode.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Parameters

dataSessionReference : in TpDataSessionIdentifier

Specifies the session ID and the reference to the Data Session object to which the notification relates. If the notification
is being given in NOTIFY mode, this parameter shall be ignored by the application client implementation, and
consequently the implementation of the SCS entity invoking reportNotification may populate this parameter as it
chooses.

eventInfo : in TpDataSessionEventInfo

 Specifies data associated with this event. This data includes the destination address provided by the end-user and the
quality of service requested or negotiated for the data session.

assignmentID : in TpAssignmentID

 Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
ID to associate events with event-specific criteria and to act accordingly.

Returns

IpAppDataSessionRef

8.2.3 Method dataSessionNotificationContinued()

This method indicates to the application that all event notifications are resumed.

Parameters
No Parameters were identified for this method

8.2.4 Method dataSessionNotificationInterrupted()

This method indicates to the application that event notifications will no longer be sent (for example, due to faults
detected).

Parameters
No Parameters were identified for this method

8.2.5 Method abortMultipleDataSessions()

The service may invoke this method on the IpAppDataSessionControlManager interface to indicate that a number of
ongoing data sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the data sessions. This may be used for example in the event of service failure and recovery in order to
instruct the application that a number of data sessions have failed. The service shall provide a set of data sessionIDs
indicating to the application the data sessions that have aborted. In the case that the service invokes this method and
provides an empty set of sessionIDs, this shall be used to indicate that all data sessions previously active on the
IpDataSessionControlManager interface have been aborted.

Parameters

dataSessionSet : in TpSessionIDSet

Specifies the set of sessionIDs of data sessions that have aborted or terminated abnormally. The empty set shall be used
to indicate that all data sessions have aborted.

End of Change in 8.2

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040615
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-12 CR 032 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Additional Charging Feature to support HA

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 27/08/2004

Category: ! C Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current support for high availability for applications and SCSs using the OSA API

is ambiguous and incomplete. SCS failure and recovery currently may result in
significant additional method invocation, seriously impacting the recovery time
and end to end availablility of both application and gateway SCS, and thereby
reducing the overall availability of the OSA solution.

These changes are submitted to fulfill the Release 6 stage 1 requirement for high
availability for OSA at API level.

Summary of change: ! Introduce a new method that allows the failure and recovery of a service to result

in a method to be invoked on the application indicating the list of charging
sessions that have been lost as a result of this failure. The recovery from failure
in an SCS can therefore be supported more efficiently thereby improving the end
to end availability of the OSA solution.

Consequences if !
not approved:

The existing API does not support efficient failure recovery mechanisms required
to ensure a highly available end to end OSA deployment, therefore application
and gateway implementations shall be required to adopt vendor proprietary
solutions to these problems, thereby resulting in loss of interoperability.

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 8.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 8.2

8.2 Interface Class IpAppChargingManager
Inherits from: IpInterface.

This interface is the manager application interface for the Charging Service. The Charging manager interface provides
the application Charging Session Management functions to the charging service.

<<Interface>>

IpAppChargingManager

sessionAborted (sessionID : in TpSessionID) : void

<<new>>abortMultipleChargingSessions (chargingSessionSet : in TpSessionIDSet) : void

8.2.1 Method sessionAborted()

This method indicates to the application that the charging session object (at the gateway) has aborted or terminated
abnormally. No further communication will be possible between the charging session and application.

Parameters

sessionID : in TpSessionID

Specifies the sessionID of the charging session that has aborted or terminated abnormally.

8.2.2 Method abortMultipleChargingSessions()

The service may invoke this method on the IpAppChargingManager interface to indicate that a number of ongoing
charging sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the charging sessions. This may be used for example in the event of service failure and recovery in
order to instruct the application that a number of charging sessions have failed. The service shall provide a set of
charging sessionIDs indicating to the application the charging sessions that have aborted. In the case that the service
invokes this method and provides an empty set of sessionIDs, this shall be used to indicate that all charging sessions
previously active on the IpChargingManager interface have been aborted.

Parameters

chargingSessionSet : in TpSessionIDSet

Specifies the set of sessionIDs of charging sessions that have aborted or terminated abnormally. The empty set shall be
used to indicate that all charging sessions have aborted.

End of Change in 8.2

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040646
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-1 CR 014 ! rev - ! Current version: 6.2.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
CallControl API in order to provide a complete specification that will support this
feature in an unambigous and consistent fashion. These changes are submitted
to fulfill the Release 6 stage 1 requirement for high availability for OSA at API
level.

Summary of change: ! The behaviour and operation of the setCallBack and setCallBackWithSessionID

methods have been clarified to indicate how mutliple callback references may be
used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 5.4.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 5.4.1

5.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

5.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used..

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 5.4.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040647
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 024 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
GCC API in order to provide a complete specification that will support this feature
in an unambigous and consistent fashion. These changes are submitted to fulfill
the Release 6 stage 1 requirement for high availability for OSA at API level.

Summary of change: ! The behaviour and operation of the enableCallNotification and

disableCallNotification methods have been clarified to indicate how mutliple
callback references may be used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 6.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 6.1

6.1 Interface Class IpCallControlManager
Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.
 This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall
be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted() to the application (the
application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The SCS shall use the most recent callback interface provided by the application using this method.
In the event that a callback reference fails or is no longer available, the next most recent callback reference available
shall be used.

In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

End of Change in 6.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040648
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-3 CR 031 ! rev - ! Current version: 6.2.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
MPCC API in order to provide a complete specification that will support this
feature in an unambigous and consistent fashion. These changes are submitted
to fulfill the Release 6 stage 1 requirement for high availability for OSA at API
level.

Summary of change: ! The behaviour and operation of the createNotification and enableNotifications

methods have been clarified to indicate how mutliple callback references may be
used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 6.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 6.1

6.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.
 This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

<<deprecated>> getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

<<new>> enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) :
TpAssignmentID

<<new>> disableNotifications () : void

<<new>> getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application
controlling the call or session at the same point in time during call or session processing.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If a notification is requested by an application with an event type that is mutually exclusive compared to existing
requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be
one application that trigger on "user busy" together with another application that trigger on "answer" - both requests
should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can
prevent other applications to be invoked in the case single point of application control applies in the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control
Common Definitions subpart of this specification (TS 29.198-4-1) for further details on application control over a call
or session.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The SCS shall use the most recent callback interface provided by the application using this method.
In the event that a callback reference fails or is no longer available, the next most recent callback reference available
shall be used.

In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with createNotification().

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.5 Method <<deprecated>> getNotification()

This method is deprecated and replaced by getNextNotification(). It will be removed in a later release.

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty set is
returned when no notifications exist.

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

6.1.6 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

If the same application requests to enable notifications for a second time with a different
IpAppMultiPartyCallControlManager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. The gateway will always use the most recent callback. In case this most recent callback fails the
second most recent is used.

If the same application invokes this method multiple times with different IpAppMultiPartyCallControlManager
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The gatewaySCS shall use the most recent callback interface provided by the application using this
method.The gateway shall use multiple callback interfaces in the order that they are provided by the application using
this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

Returns

TpAssignmentID

Raises

TpCommonExceptions

6.1.8 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

6.1.9 Method <<new>> getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be
used in an iterative way. Each method invocation may return part of the total set of notifications if the set is too large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset : in TpBoolean

TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.

FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns

TpNotificationRequestedSetEntry

Raises

TpCommonExceptions

End of Change in 6.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040649
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-4 CR 021 ! rev - ! Current version: 6.2.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
MMCC API in order to provide a complete specification that will support this
feature in an unambigous and consistent fashion. These changes are submitted
to fulfill the Release 6 stage 1 requirement for high availability for OSA at API
level.

Summary of change: ! The behaviour and operation of the createMediaNotification method has been

clarified to indicate how mutliple callback references may be used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 6.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 6.1

6.1 Interface Class IpMultiMediaCallControlManager
Inherits from: IpMultiPartyCallControlManager

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. The multi-media call
control manager interface provides the management functions to the multi-media call control service. The application
programmer can use this interface to create, destroy, change and get media stream related notifications.
 This interface shall be implemented by a Multi Media Call Control SCF. As a minimum requirement the
createMediaNotification() and destroyMediaNotification() methods shall be implemented. The minimum required
methods from IpMultiPartyCallControlManager are also required.

<<Interface>>

IpMultiMediaCallControlManager

createMediaNotification (appInterface : in IpAppMultiMediaCallControlManagerRef,
notificationMediaRequest : in TpNotificationMediaRequest) : TpAssignmentID

destroyMediaNotification (assignmentID : in TpAssignmentID) : void

changeMediaNotification (assignmentID : in TpAssignmentID, notificationMediaRequest : in
TpNotificationMediaRequest) : void

getMediaNotification () : TpMediaNotificationRequestedSet

6.1.1 Method createMediaNotification()

This method is used to create media stream notifications so that events can be sent to the application.

This applies both to callsetup media (e.g., SIP initial INVITE or H.323 with faststart) and for media setup during the
call.

This is the first step an application has to do to get initial notifications of media streams happening in the network.
When such an event happens, the application will be informed by reportMediaNotification(). In case the application is
interested in other events during the context of a particular call session it has to use the mediaStreamMonitorReq()
method on the Multi-Media call leg object.

The createMediaNotification method is purely intended for applications to indicate their interest to be notified when
certain media stream events take place. It is possible to subscribe to a certain media stream event for a whole range of
addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with
800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The SCS shall use the most recent callback interface provided by the application using this method.
In the event that a callback reference fails or is no longer available, the next most recent callback reference available
shall be used.

In case the createMediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the multi-media call control manager interface for this newly-
created notification.

Parameters

appInterface : in IpAppMultiMediaCallControlManagerRef

Specifies a reference to the application interface, which is used for callbacks.

notificationMediaRequest : in TpNotificationMediaRequest

The mediaMonitorMode is a parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in
interrupt mode the application has to specify which media streams are allowed by calling mediaStreamAllow on the
callLeg.

The notificationMediaRequest parameter specifies the event specific criteria used by the application to define the event
required. This is the media portion of the criteria. Only events that meet the notificationMediaRequest are reported.

Individual addresses or address ranges may be specified for the destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.2 Method destroyMediaNotification()

This method is used by the application to disable Multi Media Channel notifications

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the Multi Media call control manager interface when the previous
enableMediaNotification was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised.

Raises

TpCommonExceptions

6.1.3 Method changeMediaNotification()

This method is used by the application to change the event criteria introduced with createMediaNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi-media call control manager interface for the media stream notification. If two
callbacks have been registered under this assignment ID both of them will be disabled.

notificationMediaRequest : in TpNotificationMediaRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.4 Method getMediaNotification()

This method is used by the application to query the event criteria set with createMediaNotification or
changeMediaNotification.

Returns notificationsMediaRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

Returns

TpMediaNotificationRequestedSet

Raises

TpCommonExceptions

End of Change in 6.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040650
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-05 CR 058 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
User Interaction API in order to provide a complete specification that will support
this feature in an unambigous and consistent fashion. These changes are
submitted to fulfill the Release 6 stage 1 requirement for high availability for OSA
at API level.

Summary of change: ! The behaviour and operation of the setCallBack, setCallBackWithSessionID,

createNotification and enableNotifications methods have been clarified to
indicate how mutliple callback references may be used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1, 8.1.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

Change in 8.1.1

8.1.1 Interface Class IpUIManager

Inherits from: IpService.

This interface is the 'service manager' interface for the Generic User Interaction Service and provides the management
functions to the Generic User Interaction Service.
 This interface shall be implemented by a Generic User Interaction SCF. The createUI() method, or the
createUICall() method, or both the createNotification() and destroyNotification methods, or both the
enableNotifications() and disableNotifications() methods shall be implemented as a minimum requirement.

<<Interface>>

IpUIManager

createUI (appUI : in IpAppUIRef, userAddress : in TpAddress) : TpUIIdentifier

createUICall (appUI : in IpAppUICallRef, uiTargetObject : in TpUITargetObject) : TpUICallIdentifier

createNotification (appUIManager : in IpAppUIManagerRef, eventCriteria : in TpUIEventCriteria) :
TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpUIEventCriteria) : void

getNotification () : TpUIEventCriteriaResultSet

<<new>> enableNotifications (appUIManager : in IpAppUIManagerRef) : TpAssignmentID

<<new>> disableNotifications () : void

8.1.1.1 Method createUI()

This method is used to create a new user interaction object for non-call related purposes

Results: userInteraction

Specifies the interface and sessionID of the user interaction created.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

appUI : in IpAppUIRef

Specifies the application interface for callbacks from the user interaction created.

userAddress : in TpAddress

Indicates the end-user with whom to interact.

Returns

TpUIIdentifier

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_INTERFACE_TYPE

8.1.1.2 Method createUICall()

This method is used to create a new user interaction object for call related purposes.

The user interaction can take place to the specified party or to all parties in a call. Note that for certain implementation
user interaction can only be performed towards the controlling call party, which shall be the only party in the call.

Returns: userInteraction

Specifies the interface and sessionID of the user interaction created.

Parameters

appUI : in IpAppUICallRef

Specifies the application interface for callbacks from the user interaction created.

uiTargetObject : in TpUITargetObject

Specifies the object on which to perform the user interaction. This can either be a Call, Multi-party Call or call leg
object.

Returns

TpUICallIdentifier

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_INTERFACE_TYPE

8.1.1.3 Method createNotification()

This method is used by the application to install specified notification criteria, for which the reporting is implicitly
activated. If some application already requested notifications with criteria that overlap the specified criteria, or the
specified criteria overlap with criteria already present in the network (when provisioned from within the network), the
request is refused with P_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and
the same servicecode is used.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. The gateway will always use the most recent callback. In case
this most recent callback fails the second most recent is used.

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The SCS shall use the most recent callback interface provided by the application using this method.
In the event that a callback reference fails or is no longer available, the next most recent callback reference available
shall be used.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction manager interface for this newly installed notification criteria.

Parameters

appUIManager : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpUIEventCriteria

Specifies the event specific criteria used by the application to define the event required, like user address and service
code.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE

8.1.1.4 Method destroyNotification()

This method is used by the application to destroy previously installed notification criteria via the createNotification
method.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic user interaction manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
framework will return the error code P_INVALID_ASSIGNMENT_ID.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

8.1.1.5 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification method. Any
stored notification request associated with the specified assignmentID will be replaced with the specified events
requested.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.

eventCriteria : in TpUIEventCriteria

Specifies the new set of event criteria used by the application to define the event required. Only events that meet these
criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA

8.1.1.6 Method getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns: eventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpUIEventCriteriaResultSet

Raises

TpCommonExceptions

8.1.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

If the same application requests to enable notifications for a second time with a different IpAppUIManager reference
(i.e. without first disabling them), the second callback will be treated as an additional callback. The gateway will always
use the most recent callback. In case this most recent callback fails the second most recent is used.

If the same application invokes this method multiple times with different IpAppUIManager references, then these shall
be treated as additional callback references. Each such notification request shall share the same assignmentID. The SCS
shall use the most recent callback interface provided by the application using this method. In the event that a callback
reference fails or is no longer available, the next most recent callback reference available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in
any reportNotification() that relates to notifications provisioned from within the network.

Parameters

appUIManager : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

Returns

TpAssignmentID

Raises

TpCommonExceptions

8.1.1.8 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

End of Change in 8.1.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040651
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-06 CR 029 ! rev - ! Current version: 6.2.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Mobility API in order to provide a complete specification that will support this
feature in an unambigous and consistent fashion. These changes are submitted
to fulfill the Release 6 stage 1 requirement for high availability for OSA at API
level.

Summary of change: ! The behaviour and operation of the setCallBack and setCallBackWithSessionID,

methods have been clarified to indicate how mutliple callback references may be
used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040652
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-07 CR 031 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Terminal Capabilities API in order to provide a complete specification that will
support this feature in an unambigous and consistent fashion. These changes
are submitted to fulfill the Release 6 stage 1 requirement for high availability for
OSA at API level.

Summary of change: ! The behaviour and operation of the setCallBack and setCallBackWithSessionID,

methods have been clarified to indicate how mutliple callback references may be
used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040653
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-08 CR 037 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Data Session API in order to provide a complete specification that will support
this feature in an unambigous and consistent fashion. These changes are
submitted to fulfill the Release 6 stage 1 requirement for high availability for OSA
at API level.

Summary of change: ! The behaviour and operation of the setCallBack, setCallBackWithSessionID,

createNotification, createNotifications and enableNotifications methods have
been clarified to indicate how mutliple callback references may be used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1, 8.4

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

Change in 8.4

8.4 Interface Class IpDataSessionControlManager
Inherits from: IpService.

This interface is the 'SCF manager' interface for Data Session Control. This interface shall be implemented by a Data
Session Control SCF. As a minimum requirement, the createNotifications() and destroyNotification(), or the
enableNotifications() and disableNotifications() methods shall be implemented.

<<Interface>>

IpDataSessionControlManager

<<deprecated>> createNotification (appDataSessionControlManager : in
IpAppDataSessionControlManagerRef, eventCriteria : in TpDataSessionEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpDataSessionEventCriteria) :
void

<<deprecated>> getNotification () : TpDataSessionEventCriteria

<<new>> enableNotifications (appDataSessionControlManager : in IpAppDataSessionControlManagerRef) :
TpAssignmentID

<<new>> disableNotifications () : void

<<new>> getNotifications () : TpDataSessionEventCriteriaResultSet

<<new>> createNotifications (appDataSessionControlManager : in IpAppDataSessionControlManagerRef,
eventCriteria : in TpDataSessionEventCriteria) : TpAssignmentID

8.4.1 Method <<deprecated>> createNotification()

This method is deprecated and will be removed in a later release. It is replaced with createNotifications().

This method is used to enable data session notifications so that events can be sent to the application. This is the first step
an application has to do to get initial notifications of data session happening in the network. When such an event
happens, the application will be informed by reportNotification(). In case the application is interested in other events

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

during the context of a particular data session it has to use the connectReq() method on the data session object. The
application will get access to the data session object when it receives the reportNotification().

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
data session events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a data session is setup to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not give control of a data session. Only
one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The SCS shall use the most recent callback interface provided by the application using this method.
In the event that a callback reference fails or is no longer available, the next most recent callback reference available
shall be used.

In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentID : Specifies the ID assigned by the Data Session Manager object for this newly-enabled event
notification.

Parameters

appDataSessionControlManager : in IpAppDataSessionControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpDataSessionEventCriteria

Specifies the event specific criteria used by the application to define the event required. Individual addresses or address
ranges may be specified for destination and/or origination. Examples of events are "Data Session set up".

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

8.4.2 Method destroyNotification()

This method is used by the application to disable data session notifications. This method only applies to notifications
created with createNotification().

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the data session manager object when the previous createNotification() was done.

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_ASSIGNMENT_ID

8.4.3 Method changeNotification()

This method is used by the application to change the event criteria introduced with the createNotification method. Any
stored notification request associated with the specified assignmentID will be replaced with the specified events
requested.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.

eventCriteria : in TpDataSessionEventCriteria

Specifies the new set of event criteria used by the application to define the event required. Only events that meet these
criteria are reported.

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_ASSIGNMENT_ID,
P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE

8.4.4 Method <<deprecated>> getNotification()

This method is deprecated and its use is discouraged. It will be removed in a later release. It is replaced with
getNotifications.

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns eventCriteria : Specifies the event criteria used by the application to define the event required. Only events that
meet these requirements are reported.

Parameters
No Parameters were identified for this method

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Returns

TpDataSessionEventCriteria

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE

8.4.5 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive which are provisioned from within the network
(i.e. these notifications are NOT set using createNotification() but via, for instance, a network management system). If
notifications provisioned for this application are created or changed, the application is unaware of this until the
notification is reported.

If the same application requests to enable notifications for a second time with a different
IpAppDataSessionControlManager reference (i.e. without first disabling them), the second callback will be treated as an
additional callback. The gateway will always use the most recent callback. In case this most recent callback fails the
second most recent is used.

If the same application invokes this method multiple times with different IpAppDataSessionControlManager references,
then these shall be treated as additional callback references. Each such notification request shall share the same
assignmentID. The SCS shall use the most recent callback interface provided by the application using this method. In
the event that a callback reference fails or is no longer available, the next most recent callback reference available shall
be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in
any reportNotification() that relates to notifications provisioned from within the network. Repeated calls to
enableNotifications() return the same assignment ID.

Parameters

appDataSessionControlManager : in IpAppDataSessionControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Returns

TpAssignmentID

Raises

TpCommonExceptions

8.4.6 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

8.4.7 Method <<new>> getNotifications()

This method replaces getNotification().

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns eventCriteria: the list of event criteria for the notifications requested by the application. If there is no
information to return (e.g. no notifications requested by the application), an empty set (zero length) is returned.

Parameters
No Parameters were identified for this method

Returns

TpDataSessionEventCriteriaResultSet

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE

8.4.8 Method <<new>> createNotifications()

This method is deprecated and will be removed in a later release. It is replaced with createNotifications().

This method is used to enable data session notifications so that events can be sent to the application. This is the first step
an application has to do to get initial notifications of data session happening in the network. When such an event
happens, the application will be informed by reportNotification(). In case the application is interested in other events
during the context of a particular data session it has to use the connectReq() method on the data session object. The
application will get access to the data session object when it receives the reportNotification().

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
data session events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a data session is setup to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

refused with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not give control of a data session. Only
one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The SCS shall use the most recent callback interface provided by the application using this method.
In the event that a callback reference fails or is no longer available, the next most recent callback reference available
shall be used.

In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentID : Specifies the ID assigned by the Data Session Manager object for this newly-enabled event
notification.

Parameters

appDataSessionControlManager : in IpAppDataSessionControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpDataSessionEventCriteria

Specifies the event specific criteria used by the application to define the event required. Individual addresses or address
ranges may be specified for destination and/or origination. Examples of events are "Data Session set up".

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE, P_INVALID_INTERFACE_TYPE

End of Change in 8.4

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040654
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-11 CR 032 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Account Management API in order to provide a complete specification that will
support this feature in an unambigous and consistent fashion. These changes
are submitted to fulfill the Release 6 stage 1 requirement for high availability for
OSA at API level.

Summary of change: ! The behaviour and operation of the setCallBack, setCallBackWithSessionID,

createNotification and enableNotifications methods have been clarified to
indicate how mutliple callback references may be used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1, 8.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

Change in 8.1

8.1 Interface Class IpAccountManager
Inherits from: IpService.

The account manager interface provides methods for monitoring accounts. Applications can use this interface to enable
or disable charging-related event notifications and to query account balances.
 This interface shall be implemented by an Account Management SCF. The queryBalanceReq() method, or the
retrieveTransactionHistoryReq() method, or both the createNotification() and destroyNotification methods, or both the
enableNotifications and disableNotifications methods shall be implemented as a minimum requirement.

<<Interface>>

IpAccountManager

createNotification (appAccountManager : in IpAppAccountManagerRef, chargingEventCriteria : in
TpChargingEventCriteria) : TpAssignmentID

destroyNotification (assignmentId : in TpAssignmentID) : void

queryBalanceReq (users : in TpAddressSet) : TpAssignmentID

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpChargingEventCriteria) : void

getNotification () : TpChargingEventCriteriaResultSet

retrieveTransactionHistoryReq (user : in TpAddress, transactionInterval : in TpTimeInterval) :
TpAssignmentID

<<new>> enableNotifications (appAccountManager : in IpAppAccountManagerRef) : TpAssignmentID

<<new>> disableNotifications () : void

8.1.1 Method createNotification()

This method is used by the application to enable charging event notifications to be sent to the application.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The SCS shall use the most recent callback interface provided by the application using this method.
In the event that a callback reference fails or is no longer available, the next most recent callback reference available
shall be used.

In case the enableCallNotification createNotification contains no callback, at the moment the application needs to be
informed the gateway will use as callback the callback that has been registered by setCallback().

Returns assignmentId : Specifies the ID assigned by the account management object for this newly enabled event
notification.

Parameters

appAccountManager : in IpAppAccountManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

chargingEventCriteria : in TpChargingEventCriteria

Specifies the event specific criteria used by the application to define the charging event required. Individual addresses
or address ranges may be specified for subscriber accounts. Example of events are "charging" and "recharging".

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE, P_UNKNOWN_SUBSCRIBER

8.1.2 Method destroyNotification()

This method is used by the application to disable charging notifications.This method only applies to notifications
created with createNotification().

Parameters

assignmentId : in TpAssignmentID

Specifies the assignment ID that was given by the account management object when the application enabled the
charging notification.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

8.1.3 Method queryBalanceReq()

This method is used by the application to query the balance of an account for one or several users.

Returns queryId : Specifies the ID of the balance query request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Parameters

users : in TpAddressSet

Specifies the user(s) for which the balance is queried.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_UNKNOWN_SUBSCRIBER, P_UNAUTHORIZED_APPLICATION

8.1.4 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.

eventCriteria : in TpChargingEventCriteria

Specifies the new set of event criteria used by the application to define the event required. Only events that meet these
criteria are reported

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE, P_UNKNOWN_SUBSCRIBER, P_INVALID_ADDRESS

8.1.5 Method getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns eventCriteria : Specifies the event criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpChargingEventCriteriaResultSet

Raises

TpCommonExceptions

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

8.1.6 Method retrieveTransactionHistoryReq()

This asynchronous method is used by the application to retrieve a transaction history of a subscriber's account. The
history is a set of Detailed Records.

Returns retrievalID : Specifies the retrieval ID of the transaction history retrieval request.

Parameters

user : in TpAddress

Specifies the subscriber for whose account the transaction history is to be retrieved.

transactionInterval : in TpTimeInterval

Specifies the time interval for which the application history is to be retrieved.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_UNKNOWN_SUBSCRIBER, P_UNAUTHORIZED_APPLICATION,
P_INVALID_TIME_AND_DATE_FORMAT

8.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive which are provisioned from within the network
(i.e. these notifications are NOT set using createNotification() but via, for instance, a network management system). If
notifications provisioned for this application are created or changed, the application is unaware of this until the
notification is reported.

If the same application requests to enable notifications for a second time with a different IpAppAccountManager
reference (i.e. without first disabling them), the second callback will be treated as an additional callback. The gateway
will always use the most recent callback. In case this most recent callback fails the second most recent is used.

If the same application invokes this method multiple times with different IpAppAccountManager references, then these
shall be treated as additional callback references. Each such notification request shall share the same assignmentID. The
SCS shall use the most recent callback interface provided by the application using this method. In the event that a
callback reference fails or is no longer available, the next most recent callback reference available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in
any reportNotification() that relates to notifications provisioned from within the network Repeated calls to
enableNotifications() return the same assignment ID.

Parameters

appAccountManager : in IpAppAccountManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Returns

TpAssignmentID

Raises

TpCommonExceptions

8.1.8 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

End of Change in 8.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040655
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-12 CR 033 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Charging API in order to provide a complete specification that will support this
feature in an unambigous and consistent fashion. These changes are submitted
to fulfill the Release 6 stage 1 requirement for high availability for OSA at API
level.

Summary of change: ! The behaviour and operation of the setCallBack and setCallBackWithSessionID,

methods have been clarified to indicate how mutliple callback references may be
used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040656
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-13 CR 012 ! rev - ! Current version: 6.2.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Policy Management API in order to provide a complete specification that will
support this feature in an unambigous and consistent fashion. These changes
are submitted to fulfill the Release 6 stage 1 requirement for high availability for
OSA at API level.

Summary of change: ! The behaviour and operation of the setCallBack and setCallBackWithSessionID,

methods have been clarified to indicate how mutliple callback references may be
used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040657
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-14 CR 024 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Presence API in order to provide a complete specification that will support this
feature in an unambigous and consistent fashion. These changes are submitted
to fulfill the Release 6 stage 1 requirement for high availability for OSA at API
level.

Summary of change: ! The behaviour and operation of the setCallBack and setCallBackWithSessionID,

methods have been clarified to indicate how mutliple callback references may be
used.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 7.4.1

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 7.4.1

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 7.4.1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040660
Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-03 CR 126 ! rev - ! Current version: 6.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Support High Availability at API Level

Source: ! CN5 AePONA – Eamonn Murray

Work item code: ! OSA3 Date: ! 02/09/2004

Category: ! F Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Current application high availability that employs features of the OSA API is

ambiguous and incomplete. Corrections and modifications are required to the
Framework API in order to provide a complete specification that will support this
feature in an unambigous and consistent fashion. These changes are submitted
to fulfill the Release 6 stage 1 requirement for high availability for OSA at API
level.

Summary of change: ! Correct the framework API such that multiple identical application instances may

establish an access session with the framework and thereafter obtain a reference
to and use a common service manager.

The behaviour and operation of several framework methods have been clarified
to indicate their ability to support a deployment choice utilising multiple
application instances.

The changes are introduced in a manner that does not mandate the use of
multiple application instances in order to achieve high availability, and vendors
are free to implement an alternate high availability solution within their products.

Consequences if !
not approved:

The Release 6 stage 1 requirements cannot be addressed.

Clauses affected: ! 5.4.1, 6.3.1.2.1, 6.3.1.3, 7.1.4, 7.3.1, 7.3.2.2, 8.1.3

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Change in 5.4.1

5.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

5.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 5.4.1

Change in 6.3.1.2.1

6.3.1.2.1 Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session
or on behalf of the client during this access session shall be terminated. The framework shall also identify and
terminate all remaining service instances that apply as a result of the client access termination. If at any point the
framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing,
the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the
client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security
model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with
it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client
can check that the terminationText has been signed by the framework. If a match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

End of Change in 6.3.1.2.1

Change in 6.3.1.3

6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.

The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface
shall be implemented by a Framework. The initiateAuthentication() and the initiateAuthenticationWithVersion()
methods shall be implemented.

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) :
TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present
document.

This method is invoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.
 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is
defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator
(i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together as independent sessions under the same TpClientAppID.

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE

6.3.1.3.2 Method <<new>> initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework
response. If the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.
 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for the each
requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to
authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the
authentication interface may not be shared amongst multiple clients.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator
(i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together as independent sessions under the same TpClientAppID.

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE, P_INVALID_VERSION

End of Change in 6.3.1.3

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Change in 7.1.4

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

 :
IpServiceAgreementManagement

 :
IpAppServiceAgreementManagement

Application Framework

1: selectService()

3: signServiceAgreement()

4: signServiceAgreement()

2: initiateSignServiceAgreement()

1: Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the
serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application a new an identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.

Input is:

· in serviceID

This identifies the SCF required.

And output:

· out serviceToken

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement. An application (identifiable by a given
TpClientAppID) may select the same service on more than one occasion in which case the same serviceToken, that
identifies the relationship between the Application and the network, and the service agreement that applies, shall be
returned. Multiple selection of the same service may be used, for example, to allow the same application to be deployed
multiple times in order to support a possible resilient application deployment configuration. Alternate approaches to
achieving a resilient deployment, using a single service selection, shall also be possible.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this
contractual details have been agreed, then the Application can be given the means to actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's
IpAppServiceAgreementManagement interface before the application calls signServiceAgreement on the frameworks's
IpServiceAgreementManagement, is the only sequence permitted.

Input:

· in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

· out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable by a given
TpClientAppID) attempts to select a service for which it has already signed a service agreement and this service
agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise
an exception to the client indicating that this request is denied. Multiple selection of the same service may be used, for
example, to allow the same application to be deployed multiple times in order to support a possible resilient application
deployment configuration. Alternate approaches to achieving a resilient deployment, using a single service selection,
shall also be possible.

End of Change in 7.1.4

Change in 7.3.1

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties" are applicable to each service type. The listServiceTypes() method returns a list of all "service
types" that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the "service-specific properties" that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.
 This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

End of Change in 7.3.1

Change in 7.3.2.2

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.

This interface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSignServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement
interface, this method is used by the client application to request that the framework sign the service agreement, which

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

allows the client application to use the service. A reference to the service manager interface of the service is returned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is
returned. If the client application invokes this method before the processing (i.e. digital signature verification) the
reponse of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface completed, a
TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is
currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with
ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount
of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service
for which it has already signed a service agreement and this service agreement has not been terminated, a reference to
the already existing service manager will be returned. Multiple selection of the same service may be used, for example,
to allow the same application to be deployed multiple times in order to support a possible resilient application
deployment configuration. Alternate approaches to achieving a resilient deployment, using a single service selection,
shall also be possible.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
 structure TpSignatureAndServiceMgr {
 digitalSignature: TpOctetSet;
 serviceMgrInterface: IpServiceRef;
 };

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT,
P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM,
P_SERVICE_ACCESS_DENIED

End of Change in 7.3.2.2

Change in 8.1.3

8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

 : IpAppCallCont rolManagerAppLogic : IpInitial :
IpServ iceAgreementManagement

 : IpCallControlManager :
IpAppServ iceAgreem ent Managem ent

GenericCallControlServ ice :
IpServ iceInstanceLif ecy cleManager

1: selectServ ice()

3: signServ ic eAgreement()
4: createServ iceManager() 5: new()

6: new()

7: setCallback()

W e assum e that t he appl ication is already authenticat ed and dis cov ered t he serv ice i t wants t o us e

2: signServ iceAgreement()

1: The application selects the service, using a serviceID for the generic call control service. The serviceID could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The client application signs the service agreement.

3: The framework signs the service agreement. As a result a service manager interface reference (in this case of type
IpCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the serviceID to return a service manager interface reference. The service manager is the initial
point of contact to the service.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

5: The lifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that this is an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a serviceInstanceID by the Framework, which is provided to
the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework
Integrity Management functionality and operations are to be supported between the Framework and the service instance
identified by the defined serviceInstanceID, it is then necessary for the new service instance to establish an access
session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the
service instance that relates to a particular application client. The steps required to establish a Framework access
session are outlined in chapter 6 of this specification.

6: The application creates a new IpAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientAppID may carry out the sequence, as exemplified above, multiple
times. This approach may be used, for example, to allow the same application to be deployed multiple times in order to
support a possible resilient application deployment configuration. Alternate approaches to achieving a resilient
deployment, using a single signServiceAgreement sequence shall also be possible.

End of Change in 8.1.3

	NP-040358.doc
	N5-040611 Rel 6 CR 29.198-04-2 Additional GCC feature to support HA.doc
	N5-040612 Rel 6 CR 29.198-04-3 Additional MPCC feature to support HA.doc
	N5-040613 Rel 6 CR 29.198-05 Additional GUI feature to support HA.doc
	N5-040614 Rel 6 CR 29.198-08 Additional DSC feature to support HA.doc
	N5-040615 Rel 6 CR 29.198-12 Additional Charging feature to support HA.doc
	N5-040646 Rel 6 CR 29.198-04-1 CC Common Corrections to support HA.doc
	N5-040647 Rel 6 CR 29.198-04-2 GCC Corrections to support HA.doc
	N5-040648 Rel 6 CR 29.198-04-3 MPCC Corrections to support HA.doc
	N5-040649 Rel 6 CR 29.198-04-4 MMCC Corrections to support HA.doc
	N5-040650 Rel 6 CR 29.198-05 GUI Corrections to support HA.doc
	N5-040651 Rel 6 CR 29.198-06 Mobility Corrections to support HA.doc
	N5-040652 Rel 6 CR 29.198-07 TermCaps Corrections to support HA.doc
	N5-040653 Rel 6 CR 29.198-08 DSC Corrections to support HA.doc
	N5-040654 Rel 6 CR 29.198-11 ActMgt Corrections to support HA.doc
	N5-040655 Rel 6 CR 29.198-12 Charging Corrections to support HA.doc
	N5-040656 Rel 6 CR 29.198-13 PolicyMgt Corrections to support HA.doc
	N5-040657 Rel 6 CR 29.198-14 PAM Corrections to support HA.doc
	N5-040660 Rel 6 CR 29.198-03 Framework Corrections to support HA.doc

