Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040352

Meeting #27, Miami, FL, USA, 10-14 May 2004
	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	117
	(

rev
	-
	(

Current version:
	6.0.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Correct description for the use of selectSigningAlgorithm

	
	

	Source:
(

	CN5 Lucent Technologies

	
	

	Work item code:
(

	OSA2
	
	Date: (

	18/05/2004

	
	
	
	
	

	Category:
(

	A
	
	Release: (

	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	The described usage of the selectSigningAlgorithm() method is ambiguous and requires correction

	
	

	Summary of change:
(

	Additional clarifying text has been added to correct the description of selectSigningAlgorithm() and to each of the methods that use a digital signature.

	
	

	Consequences if
(

not approved:
	A client application could use an incorrect signing algorithm with some methods resulting in operational failures.

	
	

	Clauses affected:
(

	6.3.1.6.6, 6.3.1.6.7, 6.3.1.6.8, 7.3.2.1.2, 7.3.2.2.1, 7.3.2.2.2

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	Mirror CR for Rel-5 in N5-040351

Change in Clause 6.3.1.6.6

4 Method <<new>> selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method remains valid for an instance of IpAccess and until this method is re-invoked by the client.
Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session. However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently selected must be used for the client’s invocation of signServiceAgreement() on the Framework as well as for subsequent calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.
Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM
End of change in Clause 6.3.1.6.6

Change in Clause 6.3.1.6.7

4 Method <<new>> terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE
End of change in Clause 6.3.1.6.7

Change in Clause 6.3.1.6.8

4 Method <<new>> relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the digitalSignature parameter requires a terminationText to sign.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the interface is released, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME
End of change in Clause 6.3.1.6.8

Change in Clause 7.3.2.1.2

4 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the P_INVALID_SERVICE_TOKEN exception will be thrown.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework. If a match is made, the service agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
End of change in Clause 7.3.2.1.2

Change in Clause 7.3.2.2.1

4 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement interface, this method is used by the client application to request that the framework sign the service agreement, which allows the client application to use the service. A reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned. If the client application invokes this method before the processing (i.e. digital signature verification) the reponse of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface completed, a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, a reference to the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one used by the framework when invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM, P_SERVICE_ACCESS_DENIED
End of change in Clause 7.3.2.2.1

Change in Clause 7.3.2.2.2

4 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
End of change in Clause 7.3.2.2.2

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.0.1

	Sep 2001
	CN_13
	NP-010466
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	003
	--
	Update to the definitions of method svcUnavailableInd
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	004
	--
	Only one subject per method invocation for fault and load management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	005
	--
	Fault management is missing some *Err methods
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	006
	--
	Method balance on Fault management interfaces
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	007
	--
	Change "TpString" into "TpOctetSets" in authentication and access
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	008
	--
	Replacement of register/unregisterLoadController
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	009
	--
	Redundant Framework Heartbeat Mechanism
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	010
	--
	Add a releaseInterface() method to IpAccess
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	011
	--
	Removal of serviceID from queryAppLoadReq()
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	012
	--
	Addition of listInterfaces() method
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	013
	--
	Introduction and use of new Service Instance ID
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	014
	--
	P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible serviceID is provided
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	015
	--
	Introduction of Service Instance Lifecycle Management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	016
	--
	Add support for multi-vendorship
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	017
	--
	Removal of P_SERVICE_ACCESS_TYPE
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	018
	--
	Confusing meaning of prescribedMethod
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	019
	--
	A client should only have one instance of a given service
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	020
	--
	Some methods on the IpApp interfaces should throw exceptions
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010596
	021
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010596
	022
	--
	Correctionto Framework (FW)
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020105
	023
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	024
	--
	Replace erroneous mention of P_OSA_ACCESS by the correct value P_OSA_AUTHENTICATION
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	025
	--
	Add missing inheritance in service agreement management interfaces
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	026
	--
	Include Operation Set as part of General Service Properties
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	027
	--
	Improved description of activityTestReq with respect to ServiceInstanceID
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	028
	--
	OSA Framework - Generate statistics records on behalf of another entity using genFaultStatsRecordReq
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	029
	--
	Update the interface names for alignment between 3GPP and ETSI/Parlay
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020179
	030
	--
	Solving the problem in the OSA Framework with method appUnavailableInd() in a scenario with multiple service sessions per access session
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020179
	031
	--
	Adding missing mandatory method (authenticationSucceeded) to sequence flow
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020186
	032
	--
	Remove redundant data type definition TpServiceSpecString
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020181
	033
	--
	Addition of support for Java API technology realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	035
	--
	Addition of support for WSDL realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	036
	--
	Clarify semantics of service properties of type BOOLEAN_SET
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	037
	--
	Addition of version management support to the Framework (29.198-03) in run-time
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	038
	--
	Enhancements on subscription management error information
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	039
	--
	Delete conflicting description of P_APPLICATION_NOT_ACTIVATED
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	040
	--
	Note added for P_SERVICE_INSTANCE Choice Element Name
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	041
	--
	Correcting the method descriptions for abortAuthentication and for initiateAuthentication
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	042
	--
	Correcting the description of heartbeat failure
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	043
	--
	Correcting erroneous FW<->Service instance sequence diagrams
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	044
	--
	Correcting the scope of TpFwID, which currently is giving it false limitations
	4.5.0
	5.0.0

	Sep 2002
	CN_17
	NP-020428
	046
	
	Correction to description of TpServicePropertyTypeName
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	047
	
	Remove undefined exception in registerService
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	048
	
	Remove ServiceIDs from IpFwFaultManager.genFaultStatsRecordReq()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	049
	
	Correct appUnavailableInd and related methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	050
	
	Remove unusable exception from IpFaultManager.appActivityTestRes()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	051
	
	Clarify the sequence of events in signing the service agreement
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	052
	
	Correct use of electronic signatures
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	053
	
	Addition of Sequence Diagrams for terminateAccess
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	054
	
	Add indication what part of service agreement must be signed
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	055
	
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	056
	
	Introduce types and modes for generic properties
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	057
	
	Correction on use of NULL in Framework API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	058
	
	Add Negotiation of Authentication Mechanism for OSA level Authentication
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	058
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030019
	063
	-
	Correction to Initial Access Sequence Diagram
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	065
	-
	Enable creation/destruction of load level notifications at the request of Framework
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	067
	-
	Correction of Sequence for Framework – Service load management
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	074
	-
	Add Initial Load Notification report for Framework Integrity Management Load Notification model
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	068
	--
	Correction to Application's requirements for supporting methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	069
	--
	Correction of status of methods to interfaces in clause 7.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	070
	--
	Correction of status of methods to interfaces in clause 8.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	071
	--
	Correction of status of methods to interfaces in clause 6.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	075
	--
	Adding the appAvailStatusInd() and svcAvailStatusInd() methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	076
	--
	Remove race condition in signServiceAgreement
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	077
	--
	Change reference to deprecated method "authenticate" in TpAuthMechanism to "challenge"
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030237
	079
	--
	Correction to TpEncryptionCapability to correct support for Triple-DES
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	081
	--
	Correction of the Framework Service Instance Lifecycle Manager Sequence Diagram
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	083
	--
	Correction of the use of TpDomainID in Framework initiateAuthentication method
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	085
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	Dec 2003
	CN_22
	NP-030549
	086
	--
	Correction of the sequence diagram for Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	087
	--
	Correction of State Transition Diagram for IpAccess
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	088
	--
	Correction of Correlation Behaviour in Load Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	089
	--
	Correction of Correlation Behaviour in Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	090
	--
	Correction and Clarification of Framework Access Session Behaviour
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030553
	091
	--
	Add OSA API support for 3GPP2 networks
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	092
	--
	Add description for service super and sub types
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	093
	--
	Add support for registration of additional service property types and modes
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	094
	--
	Improve User Interaction message management functions
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	095
	--
	Add new values for TpServiceTypeName for Policy Management
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	096
	--
	Allow for applications to re-obtain the reference to the service manager
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	097
	--
	Add support in OSA to inform applications about new SCSs and their level of Backward compatibility – Align with SA1's 22.127
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	098
	--
	Add “Extended User Status” as service type name - Align with 29.198-06
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	099
	--
	Add P_USER_BINDING to TpServiceTypeName
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	100
	--
	Modify Framework Availability Indication in Fault Management
	5.5.0
	6.0.0

	Feb 2004
	--
	--
	--
	--
	Added Java code attachment 2919803J2EE.zip which was delivered late by outside developers. See Annex C.
	6.0.0
	6.0.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

