3GPP TS 29.198-03 v5.4.0 (2003-09)
CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030633

Meeting #25, Bangkok, Thailand, 27 – 31 October 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	090
	(

rev
	-
	(

Current version:
	5.4.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Correction and Clarification of Framework Access Session Behaviour

	
	

	Source:
(

	CN5 (AePONA – Eamonn Murray)

	
	

	Work item code:
(

	OSA2
	
	Date: (

	31/10/2003

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Section 6 of the Framework specification contains a number of clauses in which the definition of the Framework Access session and intended behaviour is either misleading or lacks sufficient clarity regarding the behaviour intended and the possible uses of the Access session.

	
	

	Summary of change:
(

	Introduce additional clarifying text and correct misleading statements or references.

	
	

	Consequences if
(

not approved:
	Ambiguity around the intended use of the Framework Access session shall result and give rise to interoperabilty and incompatibility problems for vendors and implementors.

	
	

	Clauses affected:
(

	6.1, 6.3.1.3, 6.3.1.4, 6.3.1.5

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

************** Start of Change # 1 ***********************

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it is to initiate the authentication process with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion and the deprecated initiateAuthentication methods to allow the authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces provided by the Framework.

[image: image1.wmf]Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion()

2: selectAuthenticationMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

1:
Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be supported. Note however that the framework need not accept this algorithm.

3:
The client authenticates the Framework, issuing a challenge in the challenge() method.

4:
The client provides an indication if authentication succeeded.

5:
The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies a challenge and the client returns the correct response. The Framework could authenticate the client before the client authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client until the Framework has successfully authenticated the client.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to a framework Access interface that is unique for this client. The success or failure of the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8:
The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9:
The client invokes obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used to obtain a reference to a framework interface that supports the required framework functionality, such as service discovery, integrity management, service subscription etc.
6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service instances. This type of termination is unusual, but possible with the terminateAccess method. Note that if at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

[image: image2.wmf]AppLogic

 :

IpClientAccess

 :

IpAppServiceAgreementManagement

 : IpAccess

 :

IpServiceAgreementManagement

 :

IpMultiPartyCallControlManager

 :

IpUserLocationCamel

1: signServiceAgreement()

2: signServiceAgreement()

3: createNotification()

4: triggeredLocationReportingStartReq()

5: terminateAccess()

1:
Following successful authentication and service discovery, the client initiates the service agreement signing process (not shown). This is completed when the client invokes signServiceAgreement on the Framework's IpServiceAgreementManagement interface, and a reference to an instance of a service manager interface is returned.

2:
The client (application) had initiated service agreement signing process for a second service agreement (not shown), and when the client signs this second service agreement, a reference to an instance of another service manager, for another service type, is returned.

3:
The application starts to use the new service manager interface.

4:
The application starts to use the other new service manager interface.

5:
The framework decides to terminate the application's access session, and to terminate all its service agreements. This is an unusual and drastic step, but could be e.g. due to violation or expiry of the application's service agreements, or some problem within the framework itself. The framework will also destroy each of the service managers the application was using (not shown). The application is now no longer authenticated with the framework, and all Framework and service interfaces it was using are destroyed.

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This type of termination is unusual, but possible with the terminateAccess method.

[image: image3.wmf]App Logic

 :

IpClientAccess

 : IpAccess

 :

IpMultiPartyCallControlManager

 :

IpUserLocationCamel

1: destroyNotification()

2: triggeredLocationReportingStop()

3: terminateAccess()

1:
The application terminates its use of the multi-party call control service manager in a controlled manner.
2:
The application ceases to use the user location camel SCF .
3:
The application decides to terminate its access session and all its service agreements in one go. The framework will also destroy each of the service managers the application was using (not shown). The application is now no longer authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The application could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the Framework's IpServiceAgreementManager interface, and then invoked terminateAccess on the Framework's IpAccess interface, which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have mutually authenticated one another using an underlying distribution technology mechanism, or the client and the framework recognise each other as a trusted party, not requiring authentication.

[image: image4.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthenticationWithVersion()

2: requestAccess()

4: obtainInterface()

Underlying Distribution Technology Mechanism is used for application

identification and authentication, or both the client and the Framework

recognise each other as trusted parties not requiring API level

authentication. There is no requirement as to when authentication should

take place using the Underlying Distribution Technology Mechanism:

before initiateAuthenticationWithVersion is invoked, after requestAccess is

invoked, or between the two.

3: selectSigningAlgorithm()

1:
The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the API.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. This returns a reference to the framework Access interface that is unique for the client.
3:
If the authentication was successful, the client and the framework can negotiate, on the framework's Access interface, the signing algorithm to be used for any signed exchanges.

4:
The client can now invoke obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used to obtain a reference to a framework interface such as service discovery, integrity management, service subscription etc.
6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthenticationWithVersion method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for example CHAP prescribes the MD5 hashing algorithm as the minimum to be supported, however the framework need not accept this algorithm.

3)
The application and Framework interact to authenticate each other by using the challenge method. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There are in fact two authentication processes: authentication of the client performed by the Framework , and authentication of the Framework performed by the client. Mutual authentication is achieved by both these processes terminating successfully. Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to authenticate the Framework. There is also no required order for the execution of these two authentication processes, however, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

[image: image5.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthenticationWithVersion()

2: selectAuthenticationMechanism()

3: challenge()

4: challenge()

5: challenge()

7: challenge()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

************** End of Change # 1 ************************

************** Start of Change # 2 ***********************

6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface shall be implemented by a Framework. The initiateAuthentication() and the initiateAuthenticationWithVersion() methods shall be implemented.

	<<Interface>>

IpInitial

	

	<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.4 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present document.

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
6.3.1.3.5 Method <<new>> initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework cannot work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for the requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.
Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the authentication interface may not be shared amongst multiple clients.
Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION
************** End of Change # 2 ************************

************** Start of Change # 3 ***********************

6.3.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client to request access to other interfaces supported by the Framework. The authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.

At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a minimum requirement. The requestAccess() method shall be implemented in each.

	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

6.3.1.4.4 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework. The access reference provided is unique to the requesting client.
Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, P_INVALID_INTERFACE_TYPE
************** End of Change # 3 ************************

************** Start of Change # 4 ***********************

6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used to initiate the authentication process.

If the IpAPILevelAuthentication interface is implemented by a Framework, then selectEncryptionMethod(), selectAuthenticationMechanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.

	<<Interface>>

IpAPILevelAuthentication

	

	<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

<<new>> selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.4 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.
Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
6.3.1.5.5 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994). The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.6 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This method is invoked if the client no longer wishes to continue the authentication process, (unless the framework responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client again, however).

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions,P_ACCESS_DENIED
6.3.1.5.7 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful authentication of the client.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.8 Method <<new>> selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of API level Authentication. The Framework will select one of the suggested authentication mechanisms and that mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() on the IpInitial interface.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.
Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
6.3.1.5.9 Method <<new>> challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with challenge() calls by the framework on the client's APILevelAuthentication interface.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() on the IpInitial interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain any useful value.
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
************** End of Change # 4 ************************

Annex D (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Jun 2003
	CN_20
	NP-030237
	079
	--
	Correction to TpEncryptionCapability to correct support for Triple-DES
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	081
	--
	Correction of the Framework Service Instance Lifecycle Manager Sequence Diagram
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	083
	--
	Correction of the use of TpDomainID in Framework initiateAuthentication method
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	085
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

