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Change in Clause 5

5.1.5
TpOctet

Defines an 8-bit quantity that is not translated during transmission.

5.1.6
TpOctetSet

Defines a Numbered List of Data elements of TpOctet.  Note that this is an ordered list.
5.1.7
TpString

Defines a Byte string, comprising length and data. The length shall be at least a 16-bit integer.

5.1.8
TpAssignmentID

Defines an assignment ID with a value that is unique within any instance of an implementation of a given interface, irrespective of the method invoked on that interface instance.  This ID may be used for example to identify single or multiple event notifications enabled by a requesting interface implementation,  or may be used by a requesting interface implementation to modify or stop functionality associated with a previously supplied assignment ID, e.g  event notifications, call load control, abort requests.

The assignment ID is identical to a TpInt32 type. 

5.1.9
TpSessionID

Defines a session ID with a value that is at least unique within the context of a specific instance of an SCF. An instance of an SCF is a single service manager instance plus the associated subordinate instances. For example, a single MultiPartyCallControlManager instance plus all associated MultiPartyCall and MultiPartyCallLeg instances. The session ID is used to identify different sessions (e.g. different call or call leg sessions) of an interface capable of handling multiple sessions.

Example 1, myCallObject may implement the IpCall interface. If so, myCallObject may handle multiple call sessions, and each call session will be identified by a call session ID value (e.g. 1, 2, 3) that is unique within the context of the SCF instance.

Example 2, myCallAndCallLegObject may implement the IpCall and IpCallLeg interfaces. If so, myCallAndCallLegObject may handle multiple call sessions and multiple call leg sessions. Each call session will be identified by a call session ID value (e.g. 1, 2, 3) that is unique within the context of the SCF instance. Similarly, each call leg session will be identified by a call leg session ID value (e.g. 1, 2, 3, 4, 5, 6) that is also unique within the context of the SCF instance. Because call session IDs and call leg session IDs are different data types, overlapping values are permitted and their uniqueness still remains.

The session ID is identical to a TpInt32 type.

5.1.10
TpSessionIDSet

Defines a Numbered Set of Data Elements of TpSessionID.

5.1.11
TpAny

Defines a type that can hold any type. This is not restricted to only the primitive types.

5.1.12
TpAttribute

This is a Sequence of Data Elements containing the attribute name, type, and value. The attribute Value is interpreted based on the value of the attribute Type.

	Sequence Element Name
	Sequence Element Type
	Notes

	AttributeName
	TpString
	The name of the attribute.

	AttributeType
	TpAttributeType
	The type of the attirbute. Valid values for Type must include at least TpString, TpInt32 and TpFloat.

	AttributeValue
	TpAny
	The values for the attribute. This model allows multi-valued attributes. Cannot be an empty list.


5.1.13
TpAttributeType

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an attribute.  Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_".  The following values are defined.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no attribute type

	P_STRING
	Attribute type is type TpString.

	P_INT32
	Attribute type is type TpInt32.

	P_FLOAT
	Attribute type is type TpFloat.


5.1.14
TpAttributeList

This is a Numbered List of Data Elements of type TpAttribute.

5.1.15
TpAttributeSet

This is a Numbered Set of Data Elements of type TpAttribute.

5.1.16
TpUnorderedOctetSet

Defines a Numbered Set of Data Elements of TpOctet.  Note that this is an un-ordered set.
Note that this type should not be removed from this specification, even if unused by any part of the OSA specifications.  It is included to ensure that TpOctetSet is correctly used as a Numbered List of Data Elements, and not a Numbered Set.
5.2
Other Data sorts

The APIs assumes that the following data syntaxes can be supported:

5.2.1
Sequence of Data Elements

This describes a sequence of data types. This may be defined as a structure (for example, in C++) or simply a sequence of data elements within a structure.

EXAMPLE:
The TpAddress data type may be defined in C++ as:

typedef struct {

  TpAddressPlan       

Plan;

  TpString        


AddrString;

  TpString         

Name;

  TpAddressPresentation
Presentation;


TpAddressScreening

Screening;


TpString



SubAddressString;

} TpAddress;

5.2.2
Tagged Choice of Data Elements

This describes a data type which actually evaluates to one of a choice of a number of data elements. This data element contains two parts: a tag data type (the tag part) which is used to identify the chosen data type, and the chosen data type itself (the union part). This form of data type is also referred to as a tagged union.

This data type can be implemented (for example, in C++) as a structure containing an integer for the tag part, and a union for the union part.

This data type is implementation specific. Please refer to the appropriate IDL documents (and the resulting language mappings) to see how this data type is implemented.

EXAMPLE:
The TpCallError data type may be defined in C++ as:

typedef struct {

  TpCallErrorType Tag;

  union {

    TpCallErrorInfoUndefined     Undefined;

    TpCallErrorInfoRoutingAborted  RoutingAborted;

    TpCallErrorInfoCallAbandoned   CallAbandoned;

    TpCallErrorInfoInvalidAddress  InvalidAddress;

    TpCallErrorInfoInvalidState   InvalidState;

    TpCallErrorInfoInvalidCriteria  InvalidCriteria;

  } callErrorInfo;

} TpCallError;

5.2.3
Numbered Set of Data Elements

This describes a data type which comprises an integer which indicates the total number of data elements in the set (the number part), and an unordered set of data elements (the data part). Set data types do not contain duplicate data elements.
Note that TpOctetSet is a Numbered List of Data Elements, not a Numbered Set.
EXAMPLE:
The TpAddressSet data type may be defined in MIDL as:

typedef struct TpAddressSet

{

TpInt32 Number; [size_is(Number)] TpAddress Set[];

}

TpAddressSet;

5.2.4
Reference

This describes a reference (or pointer) to a data type.

5.2.5
Numbered List of Data Elements

This describes a data type which comprises an integer which indicates the total number of data elements in the set (the number part), and an ordered set of data elements (the data part). List data types can contain duplicate data elements.

EXAMPLE:
The TpStringList data type may be defined in C++ as:

typedef struct {

  TpInt32 Number;

  TpString List[Number];

} TpStringList;

End of Change in Clause 5
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