Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030620

Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-02
	CR
	037
	(

rev
	-
	(

Current version:
	4.6.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Description correction of TpOctetSet

	
	

	Source:
(

	CN5 (ETSI PTCC)

	
	

	Work item code:
(

	OSA1
	
	Date: (

	31/10/2003

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	TpOctetSet is described as a Numbered Set of TpOctet. The definition of a Numbered Set requires that it be an unordered set, with no duplication of data elements.

All current usage of TpOctetSet in OSA requires that it be an ordered list, with duplication of data elements permitted. This means that a TpOctetList type would be more appropriate.

The specification as it is currently written is seriously misleading. Developers have complained about this particular error.

TpOctetList and TpOctetSet resolve to the same base type in IDL, WSDL and Java versions of OSA. So TpOctetSet can be redefined to mean the same a s a TpOctetList without any backwards compatibility issues.

	
	

	Summary of change:
(

	Redefine TpOctetSet to be a Numbered List of Data Elements.
Introduce a new TpUnorderedOctetSet to be a Numbered Set of Data Elements.

Add a description of Numbered List of Data Elements, missing in Release 4.

	
	

	Consequences if
(

not approved:
	A serious contradiction between the definition of a type and its use will remain in the specification.
Questions have been asked by developers about the stability and coherence of the OSA specifications, with such an error in them.

	
	

	Clauses affected:
(

	5.1, 5.1.6, 5.2, 5.2.3

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	Rel-5 29.198-02

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	Rel-5 Mirror CR in N5-030621

How to create CRs using this form:

Change in Clause 5

5.1.5
TpOctet

Defines an 8-bit quantity that is not translated during transmission.

5.1.6
TpOctetSet

Defines a Numbered List of Data elements of TpOctet. Note that this is an ordered list.
5.1.7
TpString

Defines a Byte string, comprising length and data. The length shall be at least a 16-bit integer.

5.1.8
TpAssignmentID

Defines an assignment ID with a value that is unique within any instance of an implementation of a given interface, irrespective of the method invoked on that interface instance. This ID may be used for example to identify single or multiple event notifications enabled by a requesting interface implementation, or may be used by a requesting interface implementation to modify or stop functionality associated with a previously supplied assignment ID, e.g event notifications, call load control, abort requests.

The assignment ID is identical to a TpInt32 type.

5.1.9
TpSessionID

Defines a session ID with a value that is at least unique within the context of a specific instance of an SCF. An instance of an SCF is a single service manager instance plus the associated subordinate instances. For example, a single MultiPartyCallControlManager instance plus all associated MultiPartyCall and MultiPartyCallLeg instances. The session ID is used to identify different sessions (e.g. different call or call leg sessions) of an interface capable of handling multiple sessions.

Example 1, myCallObject may implement the IpCall interface. If so, myCallObject may handle multiple call sessions, and each call session will be identified by a call session ID value (e.g. 1, 2, 3) that is unique within the context of the SCF instance.

Example 2, myCallAndCallLegObject may implement the IpCall and IpCallLeg interfaces. If so, myCallAndCallLegObject may handle multiple call sessions and multiple call leg sessions. Each call session will be identified by a call session ID value (e.g. 1, 2, 3) that is unique within the context of the SCF instance. Similarly, each call leg session will be identified by a call leg session ID value (e.g. 1, 2, 3, 4, 5, 6) that is also unique within the context of the SCF instance. Because call session IDs and call leg session IDs are different data types, overlapping values are permitted and their uniqueness still remains.

The session ID is identical to a TpInt32 type.

5.1.10
TpSessionIDSet

Defines a Numbered Set of Data Elements of TpSessionID.

5.1.11
TpAny

Defines a type that can hold any type. This is not restricted to only the primitive types.

5.1.12
TpAttribute

This is a Sequence of Data Elements containing the attribute name, type, and value. The attribute Value is interpreted based on the value of the attribute Type.

	Sequence Element Name
	Sequence Element Type
	Notes

	AttributeName
	TpString
	The name of the attribute.

	AttributeType
	TpAttributeType
	The type of the attirbute. Valid values for Type must include at least TpString, TpInt32 and TpFloat.

	AttributeValue
	TpAny
	The values for the attribute. This model allows multi-valued attributes. Cannot be an empty list.

5.1.13
TpAttributeType

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an attribute. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no attribute type

	P_STRING
	Attribute type is type TpString.

	P_INT32
	Attribute type is type TpInt32.

	P_FLOAT
	Attribute type is type TpFloat.

5.1.14
TpAttributeList

This is a Numbered List of Data Elements of type TpAttribute.

5.1.15
TpAttributeSet

This is a Numbered Set of Data Elements of type TpAttribute.

5.1.16
TpUnorderedOctetSet

Defines a Numbered Set of Data Elements of TpOctet. Note that this is an un-ordered set.
Note that this type should not be removed from this specification, even if unused by any part of the OSA specifications. It is included to ensure that TpOctetSet is correctly used as a Numbered List of Data Elements, and not a Numbered Set.
5.2
Other Data sorts

The APIs assumes that the following data syntaxes can be supported:

5.2.1
Sequence of Data Elements

This describes a sequence of data types. This may be defined as a structure (for example, in C++) or simply a sequence of data elements within a structure.

EXAMPLE:
The TpAddress data type may be defined in C++ as:

typedef struct {

 TpAddressPlan

Plan;

 TpString

AddrString;

 TpString

Name;

 TpAddressPresentation
Presentation;

TpAddressScreening

Screening;

TpString

SubAddressString;

} TpAddress;

5.2.2
Tagged Choice of Data Elements

This describes a data type which actually evaluates to one of a choice of a number of data elements. This data element contains two parts: a tag data type (the tag part) which is used to identify the chosen data type, and the chosen data type itself (the union part). This form of data type is also referred to as a tagged union.

This data type can be implemented (for example, in C++) as a structure containing an integer for the tag part, and a union for the union part.

This data type is implementation specific. Please refer to the appropriate IDL documents (and the resulting language mappings) to see how this data type is implemented.

EXAMPLE:
The TpCallError data type may be defined in C++ as:

typedef struct {

 TpCallErrorType Tag;

 union {

 TpCallErrorInfoUndefined Undefined;

 TpCallErrorInfoRoutingAborted RoutingAborted;

 TpCallErrorInfoCallAbandoned CallAbandoned;

 TpCallErrorInfoInvalidAddress InvalidAddress;

 TpCallErrorInfoInvalidState InvalidState;

 TpCallErrorInfoInvalidCriteria InvalidCriteria;

 } callErrorInfo;

} TpCallError;

5.2.3
Numbered Set of Data Elements

This describes a data type which comprises an integer which indicates the total number of data elements in the set (the number part), and an unordered set of data elements (the data part). Set data types do not contain duplicate data elements.
Note that TpOctetSet is a Numbered List of Data Elements, not a Numbered Set.
EXAMPLE:
The TpAddressSet data type may be defined in MIDL as:

typedef struct TpAddressSet

{

TpInt32 Number; [size_is(Number)] TpAddress Set[];

}

TpAddressSet;

5.2.4
Reference

This describes a reference (or pointer) to a data type.

5.2.5
Numbered List of Data Elements

This describes a data type which comprises an integer which indicates the total number of data elements in the set (the number part), and an ordered set of data elements (the data part). List data types can contain duplicate data elements.

EXAMPLE:
The TpStringList data type may be defined in C++ as:

typedef struct {

 TpInt32 Number;

 TpString List[Number];

} TpStringList;

End of Change in Clause 5

End of Document

Annex B (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4 (Exception handling mechanism without ambiguity - Replace TpGeneralException and TpResultInfo with detailed exception classes which can be thrown for each method (N5‑010261)
	4.0.0
	4.1.0

	Jun 2001
	CN_12
	NP-010333
	002
	--
	Introduction of TpOctet (In order to make sure that some data is sent over the “distributed wire” untouched a new data type is needed) (N5-010304)
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010465
	003
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010465
	004
	--
	Clarification of common exceptions
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010465
	005
	--
	Invalid parameter value exception for SLA violation
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010465
	006
	--
	Storing eventCriteria
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010595
	007
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010595
	008
	--
	Correction to Common Data (CD)
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010595
	009
	--
	Correction to values of TpAddressPlan
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020104
	010
	--
	Ambiguous definition of TpAssignmentID
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020104
	011
	--
	Data type alignment in the common data types
	4.3.0
	4.4.0

	Mar 2003
	CN_19
	NP-030018
	023
	--
	Correction to defintion of sessionID
	4.4.0
	4.5.0

	Mar 2003
	CN_19
	NP-030018
	024
	--
	Clarification on uniqueness of assignmentID
	4.4.0
	4.5.0

	Mar 2003
	CN_19
	NP-030018
	026
	--
	Correction to P_INVALID_STATE value
	4.4.0
	4.5.0

	Mar 2003
	CN_19
	NP-030018
	028
	--
	Addition of Support of National Numbering Plans
	4.4.0
	4.5.0

	Jun 2003
	CN_20
	NP-030236
	033
	--
	Correction of SIP Address wildcard rules
	4.5.0
	4.6.0

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

