
3GPP

3GPP TSG CN Plenary Meeting #22 NP-030552
10 - 12 December 2003, Maui, Hawaii, USA

Source: CN5

Title: Rel-6 Draft v100 TS 29.199 (Open Service Access (OSA); Parlay X
Web Services) - for Information

Agenda item: 9.7

Document for: Information

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-030663
Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

Presentation of Technical Specification to TSG CN
Presentation to: TSG CN Meeting #22
Document for presentation: TS 29.199, Version 1.0.0
 Open Service Access (OSA); Parlay X Web Services
Presented for: Information

Abstract of document:

Work done against the WID in NP-030353 (Work Item ID: OSA3).

This draft TS specifies an initial set of Parlay X Web Services. For each selected Web Service, this
document describes the motivation for its inclusion, the commercial and technical rationale, and an
illustrative usage scenario(s). This document also specifies the message(s) exchanged during
invocations of each Web Service, by defining the semantics in English and the syntax using W3C
WSDL.

The present document covers:

• Third Party Call
• Network-Initiated Third Party Call
• SMS
• Multimedia Message
• Payment
• Account Management
• User Status
• Terminal Location

Purpose of This Specification:

The OSA APIs are designed to enable creation of telephony applications as well as to "telecom-
enable" IT applications. IT developers, who develop and deploy applications outside the traditional
telecommunications network space and business model, are viewed as crucial for creating a dramatic
whole-market growth in next generation applications, services and networks.
The Parlay X Web Services are intended to stimulate the development of next generation network
applications by developers in the IT community who are not necessarily experts in telephony or
telecommunications. The selection of Web Services should be driven by commercial utility and not

3GPP

necessarily by technical elegance. The goal is to define a set of powerful yet simple, highly
abstracted, imaginative, telecommunications capabilities that developers in the IT community can
both quickly comprehend and use to generate new, innovative applications.

Changes since last presentation to TSG-SA:

New.

Outstanding Issues:

None.

Contentious Issues:

None.

3GPP TS 29.199 V1.0.0 (2003-12)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access (OSA);
Parlay X Web Services

(Release 6)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)2Release 6

Keywords
API, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2003, 3GPP Organizational Partners (ARIB, CCSA, ETSI, T1, TTA, TTC).

All rights reserved.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)3Release 6

Contents

Foreword..7

1 Scope..8

2 References ..8

3 Definitions and abbreviations..8
3.1 Definitions.. 8
3.2 Abbreviations ... 9

4 Parlay X Web Services ...10
4.1 Selection Criteria .. 10
4.2 Implementation Considerations... 11
4.2.1 Versioning .. 11
4.3 Optional Parameters.. 11
4.4 Document Structure .. 12

5 Common Data Definitions ..13
5.1 Common Data Type Definitions.. 13
5.1.1 EndUserIdentifier .. 13
5.1.2 ArrayOfEndUserIdentifier ... 13
5.1.3 ArrayOfURI .. 13
5.2 Common Exception Definitions .. 13
5.3 Common Data Definitions Syntax – WSDL .. 14

6 Third Party Call ..14
6.1 Overview.. 14
6.1.1 Description.. 14
6.1.2 Commercial & Technical Rationale ... 14
6.1.3 Relationship to Similar or Supplanted Specifications.. 15
6.1.4 Scenarios... 15
6.2 Call API ... 15
6.2.1 Attempt Immediate Call Set-Up Between Two Addresses .. 16
6.2.2 Get Current Status of a Call ... 16
6.2.3 End a Call ... 17
6.2.4 Cancel a Call Request.. 17
6.3 Web Service Data Definitions ... 17
6.3.1 Data Types .. 17
6.3.1.1 CallInformationType ... 17
6.3.1.2 CallStatus.. 18
6.3.1.3 CallTerminationCause... 18
6.3.2 Exceptions .. 18
6.4 Web Service Syntax – WSDL ... 18

7 Network-Initiated Third Party Call..19
7.1 Overview.. 19
7.1.1 Description.. 19
7.1.2 Commercial & Technical Rationale ... 19
7.1.3 Relationship to Similar or Supplanted Specifications.. 19
7.1.4 Scenarios... 19
7.1.4.1 Incoming call handling .. 19
7.1.4.2 Service numbers.. 20
7.2 Call API ... 20
7.2.1 Request Application Handling of a 'Busy' Condition .. 20
7.2.2 Request Application Handling of a 'Not Reachable' Condition.. 21
7.2.3 Request Application Handling of a 'No Answer' Condition... 22
7.2.4 Request Application Handling of a 'Called Number' Condition... 22
7.2.5 Request Application Handling of an 'Off Hook' Condition.. 23
7.3 Web Service Data Definitions ... 23
7.3.1 Data Types .. 23

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)4Release 6

7.3.1.1 Action 24
7.3.1.2 ActionValues .. 24
7.3.2 Exceptions .. 24
7.4 Web Service Syntax – WSDL ... 24

8 SMS ...24
8.1 Overview.. 24
8.1.1 Description.. 24
8.1.2 Commercial & Technical Rationale ... 25
8.1.3 Relationship to Similar or Supplanted Specifications.. 25
8.1.4 Scenarios... 25
8.2 Send SMS API ... 27
8.2.1 Send an SMS Message .. 27
8.2.2 Send an SMS Logo.. 28
8.2.3 Send an SMS Ringtone.. 28
8.2.4 Get Current Status of an SMS Delivery.. 29
8.3 SMS Notification API... 30
8.3.1 Notify Application of an SMS Message Sent to a Specific Address .. 30
8.4 Receive SMS API... 30
8.4.1 Retrieve All SMS Messages Sent to a Specific Address.. 31
8.5 Web Service Data Definitions ... 31
8.5.1 Data Types .. 31
8.5.1.1 DeliveryStatusType ... 31
8.5.1.2 DeliveryStatus... 31
8.5.1.3 SmsType ... 31
8.5.1.4 SmsFormat.. 32
8.5.2 Exceptions .. 32
8.6 Web Service Syntax – WSDL ... 32

9 Multimedia Message...33
9.1 Overview.. 33
9.1.1 Description.. 33
9.1.2 Commercial & Technical Rationale ... 33
9.1.3 Relationship to Similar or Supplanted Specifications.. 33
9.1.4 Scenarios... 33
9.2 Send Message API.. 34
9.2.1 Send a Multimedia Message .. 34
9.2.2 Get Current Status of a Multimedia Message Delivery ... 35
9.3 Receive Message API ... 36
9.3.1 Provide Application with Multimedia Messages Sent to the Application... 36
9.3.2 Retrieve URI References to the Parts of a Multimedia Message.. 37
9.3.3 Provide Application with a Multimedia Message as an Attachment .. 37
9.4 Message Notification API ... 38
9.4.1 Notify Application of a Multimedia Message Sent to a Specific Address .. 38
9.5 Web Service Data Definitions ... 38
9.5.1 Data Types .. 38
9.5.1.1 MessagePriority .. 38
9.5.1.2 DeliveryStatus... 38
9.5.1.3 DeliveryStatusType ... 39
9.5.1.4 MessageRef... 39
9.5.1.5 MessageURI ... 39
9.5.2 Exceptions .. 39
9.6 Web Service Syntax – WSDL ... 40

10 Payment..40
10.1 Overview .. 40
10.1.1 Description.. 40
10.1.2 Commercial & Technical Rationale ... 40
10.1.3 Relationship to Similar or Supplanted Specifications.. 41
10.1.4 Scenarios... 41
10.1.4.1 Scenario Number 1 .. 41
10.1.4.2 Scenario Number 2 .. 41
10.2 Amount Charging API... 41

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)5Release 6

10.2.1 Charge Currency Amount to an Account.. 42
10.2.2 Refund Currency Amount to an Account.. 42
10.3 Volume Charging API... 43
10.3.1 Charge Volume to an Account ... 43
10.3.2 Convert a Volume to a Currency Amount .. 43
10.3.3 Refund Volume to an Account... 44
10.4 Reserved Amount Charging API.. 44
10.4.1 Reserve a Currency Amount from an Account ... 44
10.4.2 Adjust the Currency Amount of an Existing Reservation .. 45
10.4.3 Charge a Currency Amount against an Existing Reservation... 46
10.4.4 Release an Existing Reservation .. 46
10.5 Reserved Volume Charging API.. 46
10.5.1 Convert a Volume to a Currency Amount .. 47
10.5.2 Reserve a Volume from an Account... 47
10.5.3 Adjust the Volume of an Existing Reservation ... 48
10.5.4 Charge a Volume against an Existing Reservation.. 48
10.5.5 Release an Existing Reservation .. 49
10.6 Web Service Data Definitions.. 49
10.6.1 Data Types .. 49
10.6.2 Exceptions .. 49
10.7 Web Service Syntax – WSDL.. 49

11 Account management ...50
11.1 Overview .. 50
11.1.1 Description.. 50
11.1.2 Commercial & Technical Rationale ... 50
11.1.3 Relationship to Similar or Supplanted Specifications.. 50
11.1.4 Scenarios... 50
11.1.4.1 Scenario Number 1 .. 51
11.1.4.2 Scenario Number 2 .. 51
11.1.4.3 Scenario Number 3 .. 51
11.2 Account Management API... 51
11.2.1 Account Balance Query... 51
11.2.2 Account Credit Expiration Date Query... 52
11.2.3 Account Balance Recharging... 52
11.2.4 Account Balance Voucher Recharging... 53
11.2.5 Account Transaction History Query... 54
11.3 Web Service Data Definitions.. 54
11.3.1 Data Types .. 54
11.3.1.1 DatedTransaction ... 54
11.3.2 Exceptions .. 55
11.4 Web Service Syntax – WSDL.. 55

12 User status ..55
12.1 Overview .. 55
12.1.1 Description.. 55
12.1.2 Commercial & Technical Rationale ... 55
12.1.3 Relationship to Similar or Supplanted Specifications.. 55
12.1.4 Scenarios... 56
12.1.4.1 Buddy-list .. 56
12.1.4.2 Manual call routing.. 56
12.2 User Status API... 56
12.2.1 Get User Status.. 56
12.3 Web Service Data Definitions.. 56
12.3.1 Data Types .. 56
12.3.1.1 UserStatusData .. 57
12.3.1.2 UserStatusIndicator.. 57
12.3.2 Exceptions .. 57
12.4 Web Service Syntax – WSDL.. 57

13 Terminal Location ..57
13.1 Overview .. 57
13.1.1 Description.. 57

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)6Release 6

13.1.2 Commercial & Technical Rationale ... 57
13.1.3 Relationship to Similar or Supplanted Specifications.. 58
13.1.4 Scenarios... 58
13.1.4.1 Location enabled Buddy-list:.. 58
13.2 Terminal Location API.. 58
13.2.1 Get Location of Terminal .. 58
13.3 Web Service Data Definitions.. 59
13.3.1 Data Types .. 59
13.3.1.1 LocationInfo .. 59
13.3.1.2 LocationAccuracy.. 59
13.3.2 Exceptions .. 59
13.4 Web Service Syntax – WSDL.. 59

Annex A (informative): W3C WSDL Description of Web Service Syntax......................................60

Annex B (informative): Change history ...61

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)7Release 6

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

3GPP acknowledges the contribution of the Parlay X Web Services specification from The Parlay Group. The Parlay
Group is pleased to see 3GPP acknowledge and publish this specification, and the Parlay Group looks forward to
working with the 3GPP community to improve future versions of this specification.

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)8Release 6

1 Scope
The present document specifies an initial set of Parlay X Web Services. For each selected Web Service, this document
describes the motivation for its inclusion, the commercial and technical rationale, and an illustrative usage scenario(s).
This document also specifies the message(s) exchanged during invocations of each Web Service, by defining the
semantics in English and the syntax using W3C WSDL.

The OSA APIs are designed to enable creation of telephony applications as well as to "telecom-enable" IT applications.
IT developers, who develop and deploy applications outside the traditional telecommunications network space and
business model, are viewed as crucial for creating a dramatic whole-market growth in next generation applications,
services and networks.

The Parlay X Web Services are intended to stimulate the development of next generation network applications by
developers in the IT community who are not necessarily experts in telephony or telecommunications. The selection of
Web Services should be driven by commercial utility and not necessarily by technical elegance. The goal is to define a
set of powerful yet simple, highly abstracted, imaginative, telecommunications capabilities that developers in the IT
community can both quickly comprehend and use to generate new, innovative applications.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] 3GPP TS 22.101: "Service aspects; Service principles".

[3] 3GPP TS 23.040: "Technical realization of Short Message Service (SMS)".

[4] RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax".

[5] RFC 2732: "Format for Literal IPv6 Addresses in URL's".

[6] RFC 2806: "URLs for Telephone Calls".

[7] RFC 3261: "SIP: Session Initiation Protocol".

[8] RFC 2848: "The PINT Service Protocol: Extensions to SIP and SDP for IP Access to Telephone
Call Services".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in 3GPP TS 22.101 [2] and the following
apply.

(Parlay X) Application: unless otherwise specified, the document will be using the term (Parlay X) application to refer
to software that invokes or can invoke a Parlay X Web Service.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)9Release 6

Parlay X Gateway: used to describe the implementation of a set of Parlay X Web Services. In telecommunications
parlance an implementation of a Parlay X Web Service on a Parlay X Gateway would also be referred to as a service.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.

A/IN (Advanced) Intelligent Network
AAA Authorization, Authentication, and Accounting
AM Account Management
API Application Programming Interface
APP Application
CBC Content Based Charging
CC Call Control
DIME Direct Internet Message Encapsulation
EMS Enhanced Messaging Service
FW (OSA/Parlay) Framework
GIF Graphics Interchange Format
GPRS General Packet Radio System
IM Instant Messaging
IP Internet Protocol
ICQ ???
IT Information Technology
IVR Interactive Voice Response
JAIN Integrated Network APIs for the JavaTM platform
JCP JavaTM Community ProcessSM
JPay Payment API for the JavaTM platform
MIME Multipurpose Internet Mail Extensions
MM7 Communication protocol between MMS Relay/Server and MMS Application Server
MMS Multimedia Message Service
MMS-C Multimedia Message Service Center
MPS Mobile Positioning System
MS Mobile Station Why not UE User Equipment ???? - see 3GPP TR 21.905 [1]
MSC Mobile Switching Center
MSISDN Mobile Station ISDN Number
OASIS Organization for the Advancement of Structured Information Standards
PIN Personal Identification Number
PINT PSTN and Internet inter-networking
PSTN Public Switched Telephone Network
SAML Security Assertion Markup Language: i.e. an XML-based security standard for exchanging

authentication and authorization information, developed by SSTC)
SCF Service Capability Feature
SCS Service Capability Server
SIP Session Initiation Protocol
SLA Service Level Agreement
SMS Short Message Service
SMS-C Short Message Service Center
SOAP Simple Object Access Protocol
SSTC Security Services Technical Committee (of OASIS)
UCP Universal Computer Protocol
URI Uniform Resource Identifier
VASP Virtual Application Service Provider
W3C World Wide Web Consortium
WAP Wireless Application Protocol
WG Working Group
WGS 84 World Geodetic System 1984
WS Web Service
WSDL Web Service Definition Language
WS-I Web Services-Interoperability Organization
XML Extensible Markup Language

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)10Release 6

4 Parlay X Web Services

4.1 Selection Criteria
Each Parlay X Web Service should be abstracted from the set of telecommunications capabilities exposed by the Parlay
APIs, but may also expose related capabilities that are not currently supported in the Parlay APIs where there are
compelling reasons. These tiered levels of abstraction, and the Parlay – Parlay X relationship, are illustrated in
Figure 1.

Parlay Gateway

Parlay X Web Services

Parlay X APIs

Parlay APIs

Parlay X
Applications

Parlay
Applications

Network Protocols
(e.g. SIP, INAP etc)

Network Elements

Increasing
abstraction

Figure 1: Parlay X Web Services, Parlay X APIs and Parlay APIs

The selection criteria for the Parlay X Web Services are as follows:

• The capabilities offered by a Parlay X Web Service may be either homogeneous (e.g. call control only) or
heterogeneous (e.g. terminal location and user status).

• The interaction between an application incorporating a Parlay X Web Service and the server implementing the
Parlay X Web Service will be done with an XML-based message exchange. The message exchange should
follow the synchronous request/response model and be initiated by the application; the 'response' from the
Parlay X Web Service is optional. However asynchronous messages from the Parlay X Web Service
implementation (on a Parlay X Gateway) to the application may be defined where there are compelling
reasons; e.g. to implement a notification type web service. In the latter case, the message exchange would
invoke an application web service using a similar, synchronous request/response model.

• Parlay X Web Service invocations should not be correlated and the Web Service itself should be stateless from
the perspective of the application, unless there are compelling reasons. In particular, in the case of
asynchronous notifications from a Parlay X Web Service implementation (on a Parlay X Gateway) to an
application, NO application-initiated invocations to provision (or de-provision) notification-related criteria in
the Parlay X Web Service should be implemented.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)11Release 6

• Parlay X Web Services follow simple application semantics, allowing the developer to focus on access to the
telecom capability using common Web Services programming techniques.

• Parlay X Web Services are not network equipment specific, and not network specific where a capability is
relevant to more than one type of network.

• Parlay X Web Services should be based on the reference Web Service technology, as it is defined in the IT
world and according to the Parlay Web Services WG recommendations; more specifically, at the moment,
WSDL is the chosen standard to invoke and describe Parlay X Web Services.

• The Parlay X APIs should be extendible; integration of third party provided interfaces must be supported using
proven, reliable, and standard Web Service technology.

• Parlay X Web Services are application interfaces and do not provide an implementation of AAA
(Authorization, Authentication, and Accounting), service level agreements or other environment-specific
capabilities. Rather, they shall rely on proven and reliable solutions provided by the Web Services
infrastructure.

4.2 Implementation Considerations

4.2.1 Versioning

The namespace will contain a version number as a suffix for the service name. The suffix will be a separate path
element consisting of: the letter 'v' followed by a major version number followed by an underscore and a minor version
number.

• The major version number will reflect the version of Parlay X for the last change to the API.

• The minor version number will reflect maintenance of the API between Parlay X versions.

EXAMPLE: www.csapi.org/wsdl/parlayx/account_management/v1_0 represents the initial public version of the
Parlay X Account Management Web Service.

The rationale for this version number scheme is as follows:

• Prefixing the path element with "v" and using an underscore minimizes the possibility of tool issues. Using
namespace elements that are only digits (or that contain characters other than letters, digits and underscores)
may result in issues with different tools - e.g. period is a package delimiter

• Adding the version path element after the API element, instead of after the "parlayx" element, means that as
Parlay X changes, that APIs that do not change will not require changes to running services since their
namespaces will not change

• Using this convention eliminates parsing and related issues with two digit versions, leading zeros, etc.

• This convention can also be applied to other Parlay X namespaces such as Common Data.

4.3 Optional Parameters
Some parameters are defined as OPTIONAL. Within a message signature, the XML schema type definition for an
optional parameter may use the nillable attribute to allow the actual value of the parameter to be "NULL" (or "NIL").
Since this approach is dependant upon the industry adoption of WS-I's Basic Profile 1.0, which is currently not widely
implemented, this version of the Parlay X Web Services specification does not follow this approach. As a temporary
measure this specification explicitly defines "NULL" values for parameters tagged OPTIONAL such that, if used, the
actual value of the parameter must be considered "NULL".

The following "NULL" values are defined for each OPTIONAL parameter data type:

• Type String: the empty string ("").

• Type DateTime: "0001-01-01T00:00:00Z".

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)12Release 6

• Type Integer: "-1".

• Type EndUserIdentifier (which encapsulates a URI): "null://null".

4.4 Document Structure
The present document has the following clauses:

4) Parlay X Web Services

5) Common Data Definitions

6) Third Party Call

7) Network-Initiated Third Party Call

8) SMS

9) Multimedia Message

10) Payment

11) Account Management

12) User Status

13) Terminal Location

Apart from this clause and clause 5, each of the remaining clauses specifies a Parlay X Web Service with the following
structure:

• Overview, describing the Web Service, the underlying commercial and/or technical rationale, its relationship
to other specifications, and illustrative usage scenario(s).

• A semantic specification of the message-based Parlay X API(s) that constitute the Web Service.

• A definition of the Web-Service-specific data types and exceptions.

• Web Service Syntax, referencing two types of WSDL files for this release of the Parlay X APIs:

- A modular set of WSDL files that provide an 'rpc/literal' binding and follows the current draft provided
by the WS-I Basic Profile. This set of files may be used by tools that support the features included in the
Basic Profile definition.

- A second set of monolithic WSDL files that provide an 'rpc/encoded' binding and use SOAP encoded
arrays. This allows developers to use tools that do not yet support the features included in the Basic
Profile definition. It is expected that tools will be updated over time, and that developers will migrate to
the first set of files, to be compliant with the WS-I Basic Profile.

This document structure, one clause for each Parlay X Web Service, facilitates future releases of the Parlay X
specification. It minimizes the scope of editorial work required to either introduce a new Parlay X Web Service, which
is accomplished by adding a new document clause, or to update an existing Parlay X Web Service, which is achieved by
editing a single, existing document clause.

In addition to the Parlay X Web Service-specific clauses, the present document (in clause 5) provides a listing of data
definitions (including exceptions) that are common across multiple Parlay X Web Services. As more Web Services are
defined in the future, the number of common data definitions may increase. Thus clause 5 has the following structure:

• Record of Changes, providing a detailed record of any additions, deletions, modifications and other changes
that have been applied to the data definitions since its previous public release.

• An English language definition of the common data types and exceptions.

• Common Data Definitions Syntax, referencing two types of WSDL files for this release of the Parlay X APIs.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)13Release 6

5 Common Data Definitions

5.1 Common Data Type Definitions
Where possible standard XML Schema data types are used, as defined in http://www.w3.org/TR/xmlschema-2/#built-
in-datatypes.

Other data types that are common to multiple Parlay X Web Services are defined in the following subclauses.

5.1.1 EndUserIdentifier

The EndUserIdentifier data type is specified as a URI: [scheme]:[schemeSpecificPart] (RFC 2396 [4], amended by
RFC 2732 [5]). Example schemes are tel (RFC 2806 [6]) and sip (RFC 3261 [7]).

5.1.2 ArrayOfEndUserIdentifier

A collection of elements where each element is of data type EndUserIdentifier.

5.1.3 ArrayOfURI

A collection of elements where each element is of data type URI.

5.2 Common Exception Definitions
All of these exceptions are common to multiple Parlay X Web Services. Each exception is assigned an eight character
identifier, where:

• The first 3 characters "GEN" identify the exception as generic: i.e. common to multiple Parlay X services. The
"GEN" string shall not be assigned to any Parlay X Web Service-specific exception.

• The next 4 digits "1xxx" uniquely identifies the exception within the set of common exceptions. The "1xxx"
string may be re-used by any Parlay X Web Service-specific exception defined in this specification.

• The last character identifies the severity of the exception condition, as follows:

- "F": fatal error, typically indicating an infrastructure problem; the operation triggering the exception
should not be retried

- "E": error, typically indicating an application or user error; the operation triggering the exception has not
completed and may be retried

- "W": warning, typically indicating that an operation has completed, but there are cautions or other
caveats.

The common exceptions are as follows:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)14Release 6

UNIQUE ID TEXT STRING MEANING
GEN1000E UnknownEndUserException This fault occurs if the end user identification that is passed is unknown.
GEN1001E InvalidArgumentException This fault occurs if an argument passed is semantically incorrect or when the

parameter does not conform to the limits specified in the Parlay X
specification: e.g. when passing the end user identification:
"tel:www.parlay.org".

GEN1002F ServiceException This fault is caused by generic platform or network errors.
GEN1003E PolicyException This fault is caused by a violation of a policy of the Parlay X Web Service:

e.g., when parameter values are used that are outside the scope of the
service level agreement.

GEN1004E ApplicationException This fault is caused by a generic error in an application web service when
processing a message invocation from a Parlay X Web Service. The Parlay X
Web Service can log this information and possibly raise an alarm when the
number of exceptions reaches a pre-defined threshold.

GEN1005W MessageTooLongException This fault is caused if a message to be sent exceeds the maximum length
supported by the Web Service; e.g. the message may be too long for a
destination terminal device.

5.3 Common Data Definitions Syntax – WSDL
The rpc/literal files include two common files

• parlayx_common_types.xsd

• parlayx_common_faults.wsdl

The rpc/encoded files contain these definitions within each service file.

6 Third Party Call

6.1 Overview

6.1.1 Description

Currently, in order to perform a third party call in telecommunication networks we have to write applications using
specific protocols to access Call Control functions provided by network elements (specifically operations to initiate a
call from applications). This approach requires a high degree of network expertise. We can also use the OSA gateway
approach, invoking standard interfaces to gain access to call control capabilities, but these interfaces are usually
perceived to be quite complex by application IT developers. Developers must have advanced telecommunication skills
to use Call Control OSA interfaces.

In this subclause we describe a Parlay X Web Service, Third Party Call, for creating and managing a call initiated by an
application (third party call). The overall scope of this Web Service is to provide functions to application developers to
create a call in a simple way. Using the Third Party Call Web Service, application developers can invoke call handling
functions without detailed telecommunication knowledge.

6.1.2 Commercial & Technical Rationale

The basic commercial rationale for developing the Third Party Call Web Service is:

• to increase the use of Call Control capabilities in software applications

• to empower traditional IT developers to produce large numbers of such applications

• to lower the development cost and time for such applications.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)15Release 6

6.1.3 Relationship to Similar or Supplanted Specifications

In the PSTN/Internet Interworking (PINT) working group a "request to call" scenario has been defined (RFC 2848 [8]).
A request is sent to an IP host that cause a phone call to be made, connecting party A to some remote party B.

The PINT approach is not API-based but instead it proposes an extension to SIP to implement the scenarios identified.
The Third Party Call Web Service proposed here while addressing similar scenarios aims at providing a high-level Web
Services interface to invoke the service. It does not aim at defining a concrete architecture implementing the
functionality. Therefore the two specifications are at different levels of abstraction.

6.1.4 Scenarios

Figure 2 shows an scenario using the Third Party Call Web Service to handle third party call functions. The application
invokes a web service to retrieve stock quotes and a Parlay X Interface to initiate a third party call between a broker and
his client.

In the scenario, whenever a particular stock quote reaches a threshold value (1) and (2), the client application invokes a
third party call between one or more brokers and their corresponding customers to decide actions to be taken. After
invocation (3) by the application, the Third Party Call Web Service invokes a Parlay API method (4) using the
Parlay/OSA SCS-CC (Call control) interface. This SCS handles the invocation and sends a message (5) to an MSC to
set-up a call between user A and user B.

In an alternative scenario, the Parlay API interaction involving steps (4) and (5) could be replaced with a direct
interaction between the Third Party Call Web Service and the Mobile network.

3PC-X
component

Third Party
Call Web
Service

Parlay X I/F

Parlay Gateway

MSCMSC

SCS-CCSCS-CC

Parlay API

Mobile network

Stock Quotes
Web Service

Stock Quotes
Web Service

……..
getStockQuote ()
…..
Retrieve
user Profile (userA,

userB)
….
makeACall(userA,

userB,,)
User

profile

1

2

3

4

5

UserA
(broker)

UserB
(customer)

Figure 2: Third Party Call Scenario

6.2 Call API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• makeACall

• getCallInformation

• endCall

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)16Release 6

• cancelCallRequest

6.2.1 Attempt Immediate Call Set-Up Between Two Addresses

a) makeACall(EndUserIdentifier callingParty, EndUserIdentifier calledParty, String
charging, out String callIdentifier)

b) Behaviour:

The invocation of makeACall requests to set-up a voice call between two addresses, callingParty and calledParty,
provided that the invoking application is allowed to connect them. Optionally the application can also indicate the
charging arrangements (charging), i.e. the name of an operator-specific charging plan that defines who to charge for the
call and how much.

By invoking this operation the application requires to monitor the status of the requested call. The returned parameter,
callIdentifier, can be used to identify the call. In order to receive the information on call status the application has to
explicitly invoke getCallInformation.

c) Parameters:

NAME TYPE DESCRIPTION
callingParty EndUserIdentifier It contains the address of the first user involved in the call
calledParty EndUserIdentifier It contains the address of the second user involved in the call
charging String OPTIONAL. If present, represents the name of an operator-specific charging plan

that defines who to charge for the call and how much. If the named charge plan does
not exist, the InvalidArgumentException is thrown. If no charge plan is specified,
charging occurs in accordance with an operator-specific charging policy.

callIdentifier String OUTPUT. It identifies a specific call request

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ServiceException

6.2.2 Get Current Status of a Call

a) getCallInformation(String callIdentifier, out CallInformationType callInformation)

b) Behaviour:

The invocation of getCallInformation retrieves the current status, callInformation, of the call identified by
callIdentifier. This method can be invoked multiple times by the application even if the call has already ended.
However, after the call has ended, status information will be available only for a limited period of time that should be
specified in an off-line configuration step.

c) Parameters:

NAME TYPE DESCRIPTION
callIdentifier String It identifies a specific call request
callInformation CallInformationType OUTPUT. It identifies the status of the call

d) Exceptions:

UnknownCallIdentifierException

ServiceException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)17Release 6

6.2.3 End a Call

a) endCall(String callIdentifier)

b) Behaviour:

The invocation of endCall terminates the call identified by callIdentifier. If the call is still in the initial state this
method has the same effect as the cancelCallRequest method.

c) Parameters:

NAME TYPE DESCRIPTION
callIdentifier String It identifies a specific call request

d) Exceptions:

CallTerminatedException

UnknownCallIdentifierException

ServiceException

6.2.4 Cancel a Call Request

a) cancelCallRequest(String callIdentifier)

b) Behaviour:

The invocation of cancelCallRequest cancels the previously requested call identified by callIdentifier. Note that this
method differs from the endCall method since it only attempts to prevent the call from starting but it does not have any
effect if the call has already started.

c) Parameters:

NAME TYPE DESCRIPTION
callIdentifier String It identifies a specific call request

d) Exceptions:

CallConnectedException

UnknownCallIdentifierException

ServiceException

6.3 Web Service Data Definitions

6.3.1 Data Types

In addition to the Common Data Types defined in clause 5, the following Data Types are specific to this Web Service.

6.3.1.1 CallInformationType

The CallInformationType data type is a structure containing the following parameters:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)18Release 6

NAME TYPE DESCRIPTION
callStatus CallStatus It indicates the current status of the call (see possible values below)
startTime DateTime When applicable (callStatus <> CallInitial), it indicates the time of the

beginning of the call
duration Integer When applicable (callStatus = CallTerminated), it indicates the duration of

the call expressed in seconds
terminationCause CallTerminationCause When applicable (callStatus = CallTerminated), it indicates the cause of the

termination of the call (see possible values below)

6.3.1.2 CallStatus

The CallStatus data type is an enumeration with the following values:

VALUE DESCRIPTION
CallInitial The call is being established
CallConnected The call is active
CallTerminated The call was terminated

6.3.1.3 CallTerminationCause

The CallTerminationCause data type is an enumeration with the following values:

VALUE DESCRIPTION
CallingPartyNoAnswer Calling Party did not answer
CalledPartyNoAnswer Called Party did not answer
CallingPartyBusy Calling Party was busy
CalledPartyBusy Called Party was busy
CallingPartyNotReachable Calling Party was not reachable
CalledPartyNotReachable Called Party was not reachable
CallHangUp The call was terminated by either party hanging up
CallAborted The call was aborted (any other termination cause)

6.3.2 Exceptions

In addition to the Common Exceptions defined in clause 5.2, there are exceptions specific to this Web Service. Similar
to the Common Exceptions, each Web Service-specific exception is assigned an eight-character identifier. This
identifier is interpreted as described in clause 5.2, except that the first 3 characters uniquely identify this Web Service.

The following exceptions are specific to this Web Service:

UNIQUE
ID

TEXT STRING MEANING

3PC1000W CallConnectedException The call was already active
3PC1001W CallTerminatedException The call is already terminated
3PC1002E UnknownCallIdentifierException The callIdentifier supplied does not relate to any known call request or

has expired.

6.4 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

• parlayx_third_party_calling_types.xsd

• parlayx_third_party_calling_service_port.wsdl

• parlayx_third_party_calling_service.wsdl

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)19Release 6

The rpc/encoded file is

• parlayx_third_calling_party_service.wsdl.

7 Network-Initiated Third Party Call

7.1 Overview

7.1.1 Description

Currently, in order to determine the handling of a subscriber initiated call in telecommunication networks we have to
write applications using specific protocols to access Call Control functions provided by network elements. This
approach requires a high degree of network expertise. We can also use the OSA gateway approach, invoking standard
interfaces to gain access to call control capabilities, but these interfaces are usually perceived to be quite complex by
application IT developers. Developers must have advanced telecommunication skills to use Call Control OSA
interfaces.

In this subclause we will describe a Parlay X Web Service, Network-Initiated Third Party Call, for handling calls
initiated by a subscriber in the network. A (third party) application determines how the call should be treated. The
overall scope of this Web Service is to provide simple functions to application developers to determine how a call
should be treated. Using the Network-Initiated Third Party Call Web Service, application developers can perform
simple handling of network-initiated calls without specific Telco knowledge.

7.1.2 Commercial & Technical Rationale

The basic commercial rationale for developing the Network-Initiated Third Party Call Web Service is:

• to increase the use of Call Control capabilities in software applications

• to empower traditional IT developers to produce large numbers of such applications

• to lower the development cost and time for such applications.

7.1.3 Relationship to Similar or Supplanted Specifications

All the capabilities of the Network-Initiated Third Party Call Web Service (and more) can also be achieved with the
Parlay/OSA generic call control or multiparty call control services. The Network-Initiated Third Party Call Web Service
can be seen as a very limited subset of the network initiated call control functionality present in Parlay/OSA. This has
the advantage that the application needs less telecom knowledge. The disadvantage is that the control over the call is
much reduced. Basically, a Parlay X application can only choose to release, continue or re-route the call. It does not
have control over the specific parameters used in the call (e.g., on the presentation indicators of the addresses), nor can
the application control the call over a longer period of time. Furthermore, it is not likely that the robustness and
performance requirements of Parlay/OSA services will be matched by the Network-Initiated Third Party Call Web
Service.

7.1.4 Scenarios

This subclause gives some possible scenarios using the Network-Initiated Third Party Call Web Service to handle
network-initiated calls.

7.1.4.1 Incoming call handling

A subscriber receives a call while he is logged-on to the Internet. Since this occupies his telephone connection, he is
regarded as busy by the network. The subscriber has an application that is invoked when somebody tries to call him
while he is busy. The application provides the subscriber with a list of choices on how to handle the call (e.g., route the
call to voicemail, redirect the call to a secretary, reject the call). Based on the response of the subscriber the call is
handled in the network.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)20Release 6

Alternatively, the call be re-routed or released depending on the preferences of the subscriber and some context
information (e.g., based on the status or location of the subscriber).

7.1.4.2 Service numbers

An application is triggered whenever a certain service number is dialled. This number is used to connect the caller to
one of the maintenance personnel. The application redirects the call to the appropriate maintenance person based on,
e.g., calling party number, time, location and availability of the maintenance personnel.

7.2 Call API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• handleBusy

• handleNotReachable

• handleNoAnswer

• handleCalledNumber

• handleOffHook

These messages are initiated by the Network-Initiated Third Party Call Web Service (running in a Parlay X Gateway)
and invoke an application web service(s), as a result of activity in the network. The result of the invocation is used as an
indication on how the call should be handled in the network.

Note that because the results of the invocations of the application web service(s) determine call handling in the network,
the names of the methods are prefixed with 'handle', rather than 'notify'. The prefix 'notify' would imply a more
asynchronous behaviour, whereas 'handle' shows the synchronous nature of these invocations.

The type of events (busy, answer etc.) and related numbers, for which the application web service(s) should be
invoked, should be determined by the operator in an off-line process.

7.2.1 Request Application Handling of a 'Busy' Condition

a) handleBusy(EndUserIdentifier callingParty, EndUserIdentifier calledParty, out
Action action)

b) Behaviour:

The invocation of handleBusy requests the application to inform the gateway how to handle the call between two
addresses, the callingParty and the calledParty, where the calledParty is busy when the call is received. The
application returns the action, which directs the gateway to perform one of the following actions:

• "Continue", resulting in normal handling of the busy event in the network, e.g. playing of a busy tone to the
callingParty

• "EndCall", resulting in the call being terminated; the exact tone or announcement that will be played to the
callingParty is operator-specific

• "Route", resulting in the call being re-routed to a calledParty specified by the application.

Optionally, in the action parameter, the application can also indicate the charging arrangements, i.e. the name of an
operator-specific charging plan that defines who to charge for the call and how much.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)21Release 6

c) Parameters:

NAME TYPE DESCRIPTION
callingParty EndUserIdentifier It contains the address of the caller.
calledParty EndUserIdentifier It contains the address of the called party. This party is busy.
action Action OUTPUT. It indicates the action to be performed by the gateway.

d) Exceptions:

ApplicationException

UnknownEndUserException

InvalidArgumentException

7.2.2 Request Application Handling of a 'Not Reachable' Condition

a) handleNotReachable(EndUserIdentifier callingParty, EndUserIdentifier
calledParty, out Action action)

b) Behaviour:

The invocation of handleNotReachable requests the application to inform the gateway how to handle the call between
two addresses, the callingParty and the calledParty, where the calledParty is not reachable when the call is received.
The application returns the action, which directs the gateway to perform one of the following actions:

• "Continue", resulting in normal handling of the 'not reachable' event in the network, e.g. playing of a busy tone
to the callingParty

• "EndCall", resulting in the call being terminated; the exact tone or announcement that will be played to the
callingParty is operator-specific

• "Route", resulting in the call being re-routed to a calledParty specified by the application.

Optionally, in the action parameter, the application can also indicate the charging arrangements, i.e. the name of an
operator-specific charging plan that defines who to charge for the call and how much.

c) Parameters:

NAME TYPE DESCRIPTION
callingParty EndUserIdentifier It contains the address of the caller.
calledParty EndUserIdentifier It contains the address of the called party. This party is not reachable.
action Action OUTPUT. It indicates the action to be performed by the gateway.

d) Exceptions:

ApplicationException

UnknownEndUserException

InvalidArgumentException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)22Release 6

7.2.3 Request Application Handling of a 'No Answer' Condition

a) handleNoAnswer(EndUserIdentifier callingParty, EndUserIdentifier calledParty,
out Action action)

b) Behaviour:

The invocation of handleNoAnswer requests the application to inform the gateway how to handle the call between two
addresses, the callingParty and the calledParty, where the calledParty does not answer the received call. The
application returns the action, which directs the gateway to perform one of the following actions:

• "Continue", resulting in normal handling of the 'no answer' event in the network, e.g. playing of a busy tone to
the callingParty

• "EndCall", resulting in the call being terminated; the exact tone or announcement that will be played to the
callingParty is operator-specific

• "Route", resulting in the call being re-routed to a calledParty specified by the application.

Optionally, in the action parameter, the application can also indicate the charging arrangements, i.e. the name of an
operator-specific charging plan that defines who to charge for the call and how much.

c) Parameters:

NAME TYPE DESCRIPTION
callingParty EndUserIdentifier It contains the address of the caller.
calledParty EndUserIdentifier It contains the address of the called party. This party does not answer the call.
action Action OUTPUT. It indicates the action to be performed by the gateway.

d) Exceptions:

ApplicationException

UnknownEndUserException

InvalidArgumentException

7.2.4 Request Application Handling of a 'Called Number' Condition

a) handleCalledNumber(EndUserIdentifier callingParty, EndUserIdentifier
calledParty, out Action action)

b) Behaviour:

The invocation of handleCalledNumber requests the application to inform the gateway how to handle the call between
two addresses, the callingParty and the calledParty. The method is invoked when the callingParty tries to call the
calledParty, but before the network routes the call to the calledParty. For example, the calledParty does not have to
refer to a real end user, i.e., it could be a service number. The application returns the action, which directs the gateway
to perform one of the following actions:

• "Continue", resulting in normal handling in the network, i.e. the call will be routed to the calledParty number,
as originally dialled

• "EndCall", resulting in the call being terminated; the exact tone or announcement that will be played to the
callingParty is operator-specific

• "Route", resulting in the call being re-routed to a calledParty specified by the application.

Optionally, in the action parameter, the application can also indicate the charging arrangements, i.e. the name of an
operator-specific charging plan that defines who to charge for the call and how much.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)23Release 6

c) Parameters:

NAME TYPE DESCRIPTION
callingParty EndUserIdentifier It contains the address of the caller.
calledParty EndUserIdentifier It contains the address of the called party.
action Action OUTPUT. It indicates the action to be performed by the gateway.

d) Exceptions:

ApplicationException

UnknownEndUserException

InvalidArgumentException

7.2.5 Request Application Handling of an 'Off Hook' Condition

a) handleOffHook(EndUserIdentifier callingParty, out Action action)

b) Behaviour:

The invocation of handleOffHook requests the application to inform the gateway how to handle the fact that the
callingParty tries to initiate a call. The application returns the action, which directs the gateway to perform one of the
following actions:

• "Continue", resulting in normal handling in the network, i.e. the calling party can enter digits and, when
enough digits are entered, the call is routed based on this information

• "EndCall", resulting in the call being terminated; the exact tone or announcement that will be played to the
callingParty is operator-specific

• "Route", resulting in the call being routed to a calledParty specified by the application.

Optionally, in the action parameter, the application can also indicate the charging arrangements, i.e. the name of an
operator-specific charging plan that defines who to charge for the call and how much.

c) Parameters:

NAME TYPE DESCRIPTION
callingParty EndUserIdentifier It contains the address of the caller.
action Action OUTPUT. It indicates the action to be performed by the gateway.

d) Exceptions:

ApplicationException

UnknownEndUserException

InvalidArgumentException

7.3 Web Service Data Definitions

7.3.1 Data Types

In addition to the Common Data Types defined in clause 5.1, the following Data Types are specific to this Web Service.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)24Release 6

7.3.1.1 Action

The Action data type is a structure containing the following parameters:

NAME TYPE DESCRIPTION
actionToPerform ActionValues Indicates the action as described below
routingAddress EndUserIdentifier The address to be used in case the action indicates 'Route'
charging String OPTIONAL. If present, represents the name of an operator-specific charging

plan that defines who to charge for the call and how much. If no charge plan is
specified, the charging will be based on an operator-specific charging policy.

7.3.1.2 ActionValues

The ActionValues data type is an enumeration with the following values:

VALUE DESCRIPTION
Route Request to (re-)route the call to the address indicated with routingAddress.
Continue Request to continue the call without any changes. This will result in normal handling of the event in the

network
EndCall Request to end the call. This will result in termination of the call. The callingParty will receive a tone or

announcement.

7.3.2 Exceptions

All exceptions thrown by this Web Service are Common Exceptions, as defined in clause 5.2.

7.4 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

• parlayx_network_initiated_call_types.xsd

• parlayx_network_initiated_call_service_port.wsdl

• parlayx_network_initiated_call_service.wsdl

The rpc/encoded file is

• parlayx_network_initiated_call_service.wsdl.

8 SMS

8.1 Overview

8.1.1 Description

Currently, in order to programmatically receive and send SMS it is necessary to write applications using specific
protocols to access SMS functions provided by network elements (e.g., SMS-C). This approach requires a high degree
of network expertise. Alternatively it is possible to use the Parlay/OSA approach, invoking standard interfaces (e.g.,
User Interaction or Messaging Service Interfaces) to gain access to SMS capabilities, but these interfaces are usually
perceived to be quite complex by IT application developers. Developers must have advanced telecommunication skills
to use OSA interfaces.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)25Release 6

In this chapter we describe a Parlay X Web Service, SMS for sending and receiving SMS. The overall scope of this
Web Service is to provide to application developers primitives to handle SMS in a simple way. In fact, using the SMS
Web Service, application developers can invoke SMS functions without specific Telco knowledge.

For sending a message to the network (see clause 8.2 of the present document, Send SMS API), the application invokes
a message to send it and must subsequently become active again to poll for delivery status. There is an alternative to
this polling mechanism, i.e. an asynchronous notification mechanism implemented with an application-side web
service. However it was decided not to provide a notification mechanism in the first release, to make the API as simple
as possible, even though the polling mechanism is not as network efficient as the notification mechanism.

For receiving a message from the network, the application may use either polling (see clause 8.4 of the present
document, Receive SMS API) or notification (see clause 8.3 of the present document, SMS Notification API)
mechanisms. The notification mechanism is more common: network-initiated messages are sent to autonomous
application-side web services. Both mechanisms are supported, but the provisioning of the notification-related criteria is
not specified.

8.1.2 Commercial & Technical Rationale

The basic commercial rationale for developing the SMS Web Service is:

• to increase the use of SMS capabilities in software applications

• to empower traditional IT developers to produce large numbers of such applications

• to lower the development cost and time for such applications.

8.1.3 Relationship to Similar or Supplanted Specifications

Published web services exist that allow transmission of SMS messages, ring-tones and operator logos. For example, the
Xmethods site (http://www.xmethods.com/) hosts more than one web service to handle SMS. These web services
provide basic SMS capabilities, each using a different interfaces. The SMS Web Service aims to be a standard way to
perform SMS operations and to provide more advanced features.

To specify the format of logos and ringtones, the following alternatives exist:

• 3GPP EMS format (see Note).

• Smart Messaging format.

• Other proprietary formats

NOTE: EMS (Enhanced Messaging Service) is an enhancement to SMS that provides the ability to send a
combination of simple melodies, pictures, sounds, animations, modified text and standard text as an
integrated message for display on an EMS compliant handset. EMS is standardized in 3GPP
TS 23.040 [3] where the coding mechanisms and formats are specified.

Both the standardized EMS format and de facto Smart Messaging formats are supported. As an enhancement to SMS
for sending content, dedicated methods are proposed taking into account the different content formats applied on the
market.

8.1.4 Scenarios

Figure 3 shows a scenario using the SMS Web Service to send an SMS message from an application. The application
invokes a web service to retrieve a weather forecast for a subscriber (1) & (2) and a Parlay X Interface (3) to use the
SMS Web Service operations (i.e. to send an SMS). After invocation, the SMS Web Service invokes a Parlay API
method (4) using the Parlay/OSA SCS-SMS (User Interaction) interface. This SCS handles the invocation and sends an
UCP operation (5) to an SMS-C. Subsequently the weather forecast is delivered (6) to the subscriber.

In an alternative scenario, the Parlay API interaction involving steps (4) and (5) could be replaced with a direct
interaction between the SMS Web Service and the Mobile network.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)26Release 6

SMS-X
component

Parlay X I/F

Parlay Gateway

SMS-CSMS-C

SCS-SMSSCS-SMS

Parlay API

Mobile network

You have
a new SMS…
…Weather info

Info meteo
Web ServiceWeb Service

……..
getMeteoInfo()
…..
Retrieve
user Profile
….

SendSms (
“Weather info..”,,,)

User
profile

1

2

3

4

5

6

Weather Info SMS Web
Service

Figure 3: Send SMS Scenario

Figure 4 shows a scenario using the SMS Web Service to deliver a received SMS message to an application. The
application receives a Parlay X web service invocation to retrieve an SMS sent by a subscriber (1) & (2). The SMS
message contains the e-mail address of the person the user wishes to call. The application invokes a Parlay X Interface
(3) to the Third Party Call Web Service in order to initiate the call (4).

SMS-X
component

SMS Web
Service

Parlay X I/F

Mobile network

Call
mary@company.com

……..
notifySmsReception()
{…..
 Retrieve

user number
 ….

makeACall(“..”,,,)
}

User
profile

2

2

1

SOAP

3PC-X
component

Third Party Call
Web Service

Parlay X I/F

SOAP 2

3

4

3

Figure 4: Receive SMS Scenario

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)27Release 6

8.2 Send SMS API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations (i.e. of the SMS Web Service by the application) are:

• sendSms

• sendSmsLogo

• sendSmsRingtone

• getSmsDeliveryStatus.

8.2.1 Send an SMS Message

a) sendSms (EndUserIdentifier[] destinationAddressSet, String senderName,
String charging, String message, out String requestIdentifier)

b) Behaviour:

The invocation of sendSms requests to send an SMS, specified by the String message to the specified address (or
address set), specified by destinationAddressSet. Optionally the application can also indicate the sender name
(senderName), i.e. the string that is displayed on the user's terminal as the originator of the message, and the charging
arrangements (charging), i.e. the name of an operator-specific charging plan that defines who to charge for the SMS
and how much. By invoking this operation the application requires to receive the notification of the status of the SMS
delivery. In order to receive this information the application has to explicitly invoke the getSmsDeliveryStatus. The
requestIdentifier, returned by the invocation, can be used to identify the SMS delivery request.

For GSM systems, if message contains characters not in the GSM 7-bit character set, the SMS is sent as a Unicode
SMS.

If message is longer than the maximum supported length (e.g. for GSM, 160 GSM 7-bit characters or 70 Unicode
characters), the message will be sent as several concatenated short messages.

c) Parameters:

NAME TYPE DESCRIPTION
destinationAddressSet Array of

EndUserIdentifier
Addresses to which the SMS will be sent

senderName String If present, it indicates the SMS sender name, i.e. the string that is
displayed on the user's terminal as the originator of the message.

charging String OPTIONAL. If present, represents the name of an operator-specific
charging plan that defines who to charge for the SMS and how much. If
the named charge plan does not exist, the InvalidArgumentException is
thrown. If no charge plan is specified, the sending service/application will
be charged, based on an operator-specific charging policy.

message String Text to be sent in SMS
requestIdentifier String OUTPUT. It identifies a specific SMS delivery request

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ServiceException

MessageTooLongException

PolicyException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)28Release 6

8.2.2 Send an SMS Logo

a) sendSmsLogo(EndUserIdentifier[] destinationAddressSet, String senderName,
String charging, Base64Binary image, SmsFormat smsFormat, out String
requestIdentifier)

b) Behaviour:

The invocation of sendSmsLogo requests to send an SMS logo, specified by the byte array image to the specified
address (or address set), specified by destinationAddressSet. Optionally the application can also indicate the sender
name (senderName), i.e. the string that is displayed on the user's terminal as the originator of the message, and the
charging arrangements (charging), i.e. the name of an operator-specific charging plan that defines who to charge for the
SMS logo and how much. By invoking this operation the application requires to receive the notification of the status of
the SMS delivery. In order to receive this information the application has to explicitly invoke the
getSmsDeliveryStatus. The requestIdentifier, returned by the invocation, can be used to identify the SMS delivery
request.

c) Parameters:

NAME TYPE DESCRIPTION
destinationAddressSet Array of

EndUserIdentifier
Addresses to which the SMS logo will be sent

senderName String If present, it indicates SMS sender name, i.e. the string that is displayed
on the user's terminal as the originator of the message.

charging String OPTIONAL. If present, represents the name of an operator-specific
charging plan that defines who to charge for the SMS logo and how much.
If the named charge plan does not exist, the InvalidArgumentException is
thrown. If no charge plan is specified, the sending service/application will
be charged, based on an operator-specific charging policy.

image Base64Binary The image in jpeg, gif or png format. The image will be scaled to the
proper format.

smsFormat SmsFormat Possible values are: 'Ems',
'SmartMessaging'.

requestIdentifier String OUTPUT. It identifies a specific SMS delivery request

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

MessageTooLongException

UnsupportedFormatException

ServiceException

PolicyException

8.2.3 Send an SMS Ringtone

a) sendSmsRingtone(EndUserIdentifier[] destinationAddressSet, String
senderName, String charging, String ringtone, SmsFormat smsFormat, out
String requestIdentifier)

b) Behaviour:

The invocation of sendSmsRingtone requests to send an SMS ringtone, specified by the String ringtone (in RTX
format) to the specified address (or address set), specified by destinationAddressSet. Optionally the application can
also indicate the sender name (senderName) i.e. the string that is displayed on the user's terminal as the originator of
the message, and the charging arrangements (charging), i.e. the name of an operator-specific charging plan that defines

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)29Release 6

who to charge for the SMS ringtone and how much. By invoking this operation the application requires to receive the
notification of the status of the SMS delivery. In order to receive this information the application has to explicitly
invoke the getSmsDeliveryStatus. The requestIdentifier, returned by the invocation, can be used to identify the SMS
delivery request.

Depending on the length of the ringtone, it may be sent as several concatenated short messages.

c) Parameters:

NAME TYPE DESCRIPTION
destinationAddressSet Array of

EndUserIdentifier
Addresses to which the SMS ringtone will be sent

senderName String If present, it indicates SMS sender name, i.e. the string that is displayed
on the user's terminal as the originator of the message.

charging String OPTIONAL. If present, represents the name of an operator-specific
charging plan that defines who to charge for the SMS ringtone and how
much. If the named charge plan does not exist, the
InvalidArgumentException is thrown. If no charge plan is specified, the
sending service/application will be charged, based on an operator-specific
charging policy.

ringtone String The ringtone in RTX format (see Note).
(http://www.logomanager.co.uk/help/Edit/RTX.html)

smsFormat SmsFormat Possible values are: 'Ems',
'SmartMessaging'.

requestIdentifier String OUTPUT. It identifies a specific SMS delivery request
NOTE: RTX Ringtone Specification : An RTX file is a text file, containing the ringtone name, a control subclause and a

subclause containing a comma separated sequence of ring tone commands.

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

UnsupportedFormatException

MessageTooLongException

ServiceException

PolicyException

8.2.4 Get Current Status of an SMS Delivery

a) getSmsDeliveryStatus(String requestIdentifier, out DeliveryStatusType[]
deliveryStatus)

b) Behaviour:

The invocation of getSmsDeliveryStatus requests the status of a previous SMS delivery request identified by
requestIdentifier. The information on the status is returned in deliveryStatus, which is an array of status related to the
request identified by requestIdentifier. The status is identified by a couplet indicating a user address and the associated
delivery status. This method can be invoked multiple times by the application even if the status has reached a final
value. However, after the status has reached a final value, status information will be available only for a limited period
of time that should be specified in an off-line configuration step. The following four different SMS delivery status have
been identified:

• 'Delivered': in case of concatenated messages, only when all the SMS-parts have been successfully delivered.

• 'DeliveryUncertain': e.g. because it was handed off to another network.

• 'DeliveryImpossible': unsuccessful delivery; the message could not be delivered before it expired.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)30Release 6

• 'MessageWaiting': the message is still queued for delivery.

c) Parameters:

NAME TYPE DESCRIPTION
requestIdentifier String It identifies a specific SMS delivery request
deliveryStatus Array of DeliveryStatusType OUTPUT. It lists the variations on the delivery status of the SMS

d) Exceptions:

UnknownRequestIdentifierException

ServiceException

8.3 SMS Notification API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations (i.e. of a notification web service by the SMS Web Service) are:

• notifySmsReception

8.3.1 Notify Application of an SMS Message Sent to a Specific Address

a) notifySmsReception(String registrationIdentifier, String
smsServiceActivationNumber, EndUserIdentifier senderAddress, String
message)

b) Behaviour:

The notifySmsReception method must be implemented by a Web Service at the application side. It will be invoked by
the Parlay X server to notify the application of the reception of an SMS. The notification will occur if and only if the
SMS received fulfils the criteria specified in an off-line provisioning step, identified by the registrationIdentifier. The
criteria must at least include an smsServiceActivationNumber, i.e. the SMS destination address that can be
"monitored" by the application. The parameter senderAddress contains the address of the sender. The application can
apply the appropriate service logic to process the SMS.

c) Parameters:

NAME TYPE DESCRIPTION
registrationIdentifier String Identifies the off-line provisioning step that enables the application to receive

notification of SMS reception according to specified criteria.
smsServiceActivation
Number

String Number associated with the invoked Message service, i.e. the destination
address used by the terminal to send the message.

senderAddress EndUserIdentifier It indicates the address sending the SMS
message String Text received in the SMS

d) Exceptions:

ApplicationException

8.4 Receive SMS API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations (i.e. of the SMS Web Service by the application) are:

• getReceivedSms.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)31Release 6

8.4.1 Retrieve All SMS Messages Sent to a Specific Address

a) getReceivedSms(String registrationIdentifier, out SmsType[] receivedSms)

b) Behaviour:

The invocation of getReceivedSms retrieves all the SMS messages received that fulfil the criteria identified by
registrationIdentifier. The method returns only the list of SMS messages received since the previous invocation of the
same method, i.e. each time the method is executed the messages returned are removed from the server. Moreover, each
SMS message will be automatically removed from the server after a maximum time interval specified in an off-line
configuration step.

The received SMS messages are returned in receivedSms. An SMS message is identified by a structure indicating the
sender of the SMS message and the content.

c) Parameters:

NAME TYPE DESCRIPTION
registrationIdentifier String Identifies the off-line provisioning step that enables the application to receive

notification of SMS reception according to specified criteria.
receivedSms Array of SmsType OUTPUT. It lists the received SMS since last invocation.

d) Exceptions:

UnknownRegistrationIdentifierException

ServiceException

8.5 Web Service Data Definitions

8.5.1 Data Types

In addition to the Common Data Types defined in clause 5.1, the following Data Types are specific to this Web Service.

8.5.1.1 DeliveryStatusType

The DeliveryStatusType data type is a structure containing the following parameters:

NAME TYPE DESCRIPTION
destinationAddress EndUserIdentifier It indicates the destination address to which the notification is related
deliveryStatus DeliveryStatus Indicates the delivery result for destinationAddress. Possible values are:

'Delivered', 'DeliveryUncertain', 'DeliveryImpossible'.

8.5.1.2 DeliveryStatus

The DeliveryStatus data type is an enumeration with the following values:

VALUE DESCRIPTION
Delivered Successful delivery
DeliveryUncertain Delivery status unknown: e.g. because it was handed off to another network.
DeliveryImpossible Unsuccessful delivery; the message could not be delivered before it expired.
MessageWaiting The message is still queued for delivery. This is a temporary state, pending transition to one of the

preceding states.

8.5.1.3 SmsType

The SmsType data type is a structure containing the following parameters:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)32Release 6

NAME TYPE DESCRIPTION
message String Text received in SMS
senderAddress EndUserIdentifier It indicates address sending the SMS

8.5.1.4 SmsFormat

The SmsFormat data type is an enumeration with the following values:

VALUE DESCRIPTION
Ems Enhanced Messaging Service, standardized in 3GPP TS 23.040 [3], which defines a logo/ringtone

format
SmartMessagingTM Defines a logo/ringtone format

8.5.2 Exceptions

In addition to the Common Exceptions defined in clause 5.2, there are exceptions specific to this Web Service. Similar
to the Common Exceptions, each Web Service-specific exception is assigned an eight-character identifier. This
identifier is interpreted as described in clause 5.2, except that the first 3 characters uniquely identify this Web Service.

The following exceptions are specific to this Web Service:

UNIQUE
ID

TEXT STRING MEANING

SMS1000E UnsupportedFormatException The smsFormat supplied is not one of the permitted values of the
SmsFormat data type.

SMS1001E UnknownRegistration
IdentifierException

The registrationIdentifier supplied is not known by the server

SMS1002E UnknownRequestIdentifier
Exception

The requestIdentifier supplied does not relate to any known SMS request
or has expired.

8.6 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

• parlayx_sms_types.xsd

• parlayx_sms_service_port.wsdl

• parlayx_sms_send_service.wsdl

• parlayx_sms_receive_service.wsdl

• parlayx_sms_notification_service_port.wsdl

• parlayx_sms_notification_service.wsdl

The rpc/encoded files are

• parlayx_sms_service.wsdl

• parlayx_sms_notification_service.wsdl

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)33Release 6

9 Multimedia Message

9.1 Overview

9.1.1 Description

Currently, in order to programmatically receive and send Multimedia Messages, it is necessary to write applications
using specific protocols to access MMS functions provided by network elements (e.g., MMS-C). This approach requires
application developers to have a high degree of network expertise.

This contribution defines a Multimedia Message Web Service that can map to SMS, EMS, MMS, IM, E-mail etc.

The choice is between defining one set of APIs per messaging network or a single set common to all networks; e.g. we
could define sendMMS, sendEMS, sendSMS, … or just use sendMessage. Although the more specific the API the
easier it is to use, there are advantages to a single set of network-neutral APIs. These advantages include:

• improved service portability

• lower complexity, by providing support for generic user terminal capabilities only.

For this version of the Parlay X specification, we provide sets of APIs for two messaging web services: SMS-specific
APIs (as described in clause 8) and Multimedia Message APIs (this clause), which provides generic messaging features
(including SMS).

For sending a message to the network (see clause 9.2 of the present document, Send Message API), the application
invokes a message to send it and must subsequently become active again to poll for delivery status. There is an
alternative to this polling mechanism, i.e. an asynchronous notification mechanism implemented with an application-
side web service. However it was decided not to provide a notification mechanism in the first release, to make the API
as simple as possible, even though the polling mechanism is not as network efficient as the notification mechanism.

For receiving a message from the network, the application may use either polling (see clause 9.3 of the present
document, Receive Message API) or notification (see clause 9.4 of the present document, Message Notification API)
mechanisms. The notification mechanism is more common: network-initiated messages are sent to autonomous
application-side web services. Both mechanisms are supported, but the provisioning of the notification-related criteria is
not specified.

9.1.2 Commercial & Technical Rationale

The scope of this Web Service is much more than an enhancement of the Parlay X SMS Web Service. The purpose is
not to add more SMS features, but to form a generic multimedia adapted messaging API. The reason to incorporate
SMS in the API is mainly to create one set of APIs for messaging instead of one set per network. We believe that the
benefits of a single set of APIs, i.e. service portability and the ability to serve different handsets or even multiple sub-
networks using common APIs, is highly beneficial for both the Network Operators and the Service Providers.

9.1.3 Relationship to Similar or Supplanted Specifications

This Web Service includes functions implemented in the SMS Web Service.

9.1.4 Scenarios

Figure 5 shows an example scenario using sendMessage and getMessageDeliveryStatus to send data to subscribers and
to determine if the data has been received by the subscriber. The application invokes a web service to retrieve a stock
quote (1) & (2) and sends the current quote - sendMessage - using the Parlay X Interface (3) of the Multimedia Message
Web Service. After invocation, the Multimedia Message Web Service sends the message to an MMS-C using the MM7
interface (4) for onward transmission (5) to the subscriber over the Mobile network

Later, when the next quote is ready, the application checks to see - getMessageDeliveryStatus - if the previous quote has
been successfully delivered to the subscriber. If not, it may for instance perform an action (not shown) to provide a

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)34Release 6

credit for the previous message transmission. This way, the subscriber is only charged for a stock quote if it is delivered
on time.

MMSC -X
component

Multimedia
Message Web
Service

Parlay X I/F
MMSCMMS-C

MM7 VASP
Interface

Mobile network

Stock Quote
Web Service

Stock Quote
Web Service

…… ..
content1 =getStockQuote ()
…..
Retrieve
user Profile
….
messageId= sendMessage(content)
….
status= getMessageDeliveryStatus (messageId)
if status=Message_Waiting
….
fi
…
content2 =getStockQuote ()
messageId= sendMessage (content2)

User
profile

1

2

3

4

5

6

Figure 5: Multimedia Messaging Scenario

9.2 Send Message API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations (i.e. of the Multimedia Message Web Service by the application) are:

• sendMessage

• getMessageDeliveryStatus

9.2.1 Send a Multimedia Message

a) sendMessage(EndUserIdentifier [] destinationAddressSet, String
senderAddress, String subject, MessagePriority priority, String charging, out
String requestIdentifier) Attachment[content]

b) Behaviour:

Request to send a Message to a set of destination addresses, returning a requestIdentifier to identify the message. The
requestIdentifier can subsequently be used by the application to poll for the message status, i.e. using
getMessageDeliveryStatus to see if the message has been delivered or not. The content is sent as a SOAP-Attachment
(see note) encoded using MIME or DIME.

NOTE: SOAP-Attachment is used because specification of the WS-Attachments standard is not yet complete.
The decision to use SOAP-Attachment may be revisited in future releases. Please refer to your
SOAP/WSDL toolkit documentation for information on populating or retrieving a SOAP-Attachment.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)35Release 6

c) Parameters:

NAME TYPE DESCRIPTION
destinationAddressSet Array of

EndUserIdentifier
Destination addresses for the Message.

senderAddress String OPTIONAL. If present, indicates Message sender address. This
parameter is not allowed for all 3rd party providers. Parlay X server needs
to handle this according to a SLA for the specific application and its use
can therefore result in a PolicyException.

subject String OPTIONAL. If present, it indicates the message subject. If mapped to
SMS this parameter will be used as the senderAddress, even if a separate
senderAddress is provided.

priority MessagePriority OPTIONAL. If present, represents the priority of the message. If not
defined, the network will assign a priority based on an operator policy.

charging String OPTIONAL. If present, represents the name of an operator-specific
charging plan that defines who to charge for the message and how much.
If the named charge plan does not exist, the InvalidArgumentException is
thrown. If no charge plan is specified, the sending service/application will
be charged, based on operator-specific charging policy.

requestIdentifier String OUTPUT. It is a correlation identifier that is used in a
getMessageDeliveryStatus message invocation, i.e. to poll for the
delivery status of all of the sent Messages.

Input Attachments
content MIME or DIME

format
Data to be sent with Message, i.e. in MIME or DIME format and sent as a
SOAP-Attachment

d) Exceptions

UnknownEndUserException

InvalidArgumentException

ServiceException

PolicyException

MessageTooLongException

9.2.2 Get Current Status of a Multimedia Message Delivery

a) getMessageDeliveryStatus(String requestIdentifier, out DeliveryStatusType[]
deliveryStatus)

b) Behaviour:

This is a poll method used by the application to retrieve delivery status for each message sent as a result of a previous
sendMessage message invocation. The requestIdentifier parameter identifies this previous message invocation.

c) Parameters:

NAME TYPE DESCRIPTION
requestIdentifier String Identifier related to the delivery status request.
deliveryStatus Array of

DeliveryStatusType
OUTPUT. It is an array of status of the messages that were previously sent.
Each array element represents a sent message: i.e. its destination address
and its delivery status.

d) Exceptions

InvalidArgumentException

ServiceException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)36Release 6

Policy Exception

UnknownRequestIdentifierException

9.3 Receive Message API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations (i.e. of the Multimedia Message Web Service by the application) are:

• getReceivedMessages

• getMessageURIs

• getMessage

9.3.1 Provide Application with Multimedia Messages Sent to the
Application

a) getReceivedMessages(String registrationIdentifier, MessagePriority priority, out
MessageRef [] messageRef)

b) Behaviour:

This method enables the application to poll for new messages associated with a specific registrationIdentifier. If the
registrationIdentifier is not specified, the Parlay X server will return references to all messages sent to the application.
The process of binding different registrationIdentifier parameters to applications is an off-line process. The Parlay X
gateway shall not allow an application to poll for messages using registrationIdentifier parameters that are not
associated with the application. The priority parameter may be used by the application to retrieve references to higher
priority messages, e.g. if Normal is chosen only references to high priority and normal priority messages are returned. If
the priority parameter is omitted all message references are returned.

c) Parameters:

NAME TYPE DESCRIPTION
registrationIdentifier String Identifies the off-line provisioning step that enables the application to receive

notification of Message reception according to specified criteria.
priority MessagePriority OPTIONAL. The priority of the messages to poll from the Parlay X gateway.

All messages of the specified priority and higher will be retrieved. If not
specified, all messages shall be returned, i.e. the same as specifying Low.

messageRef Array of
MessageRef

OUTPUT. It contains an array of messages received according to the
specified filter of registrationIdentifier and priority.

d) Exceptions

InvalidArgumentException

ServiceException

PolicyException

UnknownRegistrationIdentifierException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)37Release 6

9.3.2 Retrieve URI References to the Parts of a Multimedia Message

getMessageURIs(String messageRefIdentifier, out MessageURI message)

b) Behaviour:

This method will read the different parts of the message, create local files in the Parlay Gateway and return URI
references to them. The application can then simply read each file or just have them presented as links to the end-user.
The URIs to the files will be active for an agreed time.

c) Parameters:

NAME TYPE DESCRIPTION
messageRefIdentifier String The identity of the message to retrieve.
message MessageURI OUTPUT. It contains the complete message, i.e. the textual part of the

message, if such exists, and a list of file references for the message
attachments, if any.

d) Exceptions

InvalidArgumentException

ServiceException

PolicyException

UnknownMessageException

9.3.3 Provide Application with a Multimedia Message as an Attachment

getMessage(String messageRefIdentifier) Attachments[out content]

b) Behaviour:

This method will read the whole message. The data is returned as a SOAP-Attachment (see note) in the return message.

NOTE: SOAP-Attachment is used because specification of the WS-Attachments standard is not yet complete.
The decision to use SOAP-Attachment may be revisited in future releases. Please refer to your
SOAP/WSDL toolkit documentation for information on populating or retrieving a SOAP-Attachment.

c) Parameters:

NAME TYPE DESCRIPTION
messageRefIdentifier String The identity of the message
Output Attachments
content MIME or DIME

format
Data to be returned with Message, i.e. in MIME or DIME format and received
as a SOAP-Attachment

d) Exceptions

InvalidArgumentException

ServiceException

PolicyException

UnknownMessageException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)38Release 6

9.4 Message Notification API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations (i.e. of a notification web service by the Multimedia Message Web Service) are:

• notifyMessageReception

9.4.1 Notify Application of a Multimedia Message Sent to a Specific
Address

a) notifyMessageReception (String registrationIdentifier, MessageRef messageRef)

b) Behaviour:

This method will have to be implemented by a web service on the client application side. The registration of the URI for
this application web service is done off-line. This means that there is a registration mechanism in the Parlay X Gateway
that binds different registrationIdentifier parameters to applications and their web service URIs.

A client application is notified that a new Message, sent to a specific Service Activation Number, has been received.
Using the registrationIdentifier, the client application can apply appropriate service logic with specific behaviour.

c) Parameters:

NAME TYPE DESCRIPTION
registrationIdentifier String A handle connected to the off-line registration of the notifications. This

distinguishes registrations that point to the same application web service.
messageRef MessageRef This parameter contains all the information associated with the received message.

d) Exceptions

ApplicationException

9.5 Web Service Data Definitions

9.5.1 Data Types
In addition to the Common Data Types defined in clause 5.1, the following Data Types are specific to this Web Service.

9.5.1.1 MessagePriority

The MessagePriority data type is an enumeration with the following values:

VALUE DESCRIPTION
Default This is the "NULL" value as described in subclause 4.3. This value is applicable if the parameter of type

MessagePriority is tagged OPTIONAL.
Low Low message priority
Normal Normal message priority
High High message priority

9.5.1.2 DeliveryStatus

The DeliveryStatus data type is an enumeration with the following values:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)39Release 6

VALUE DESCRIPTION
Delivered Successful delivery
DeliveryUncertain Delivery status unknown: e.g. because it was handed off to another network.
DeliveryImpossible Unsuccessful delivery; the message could not be delivered before it expired.
MessageWaiting The message is still queued for delivery. This is a temporary state, pending transition to one of the

preceding states.

9.5.1.3 DeliveryStatusType

The DeliveryStatusType data type is a structure containing the following parameters:

NAME TYPE DESCRIPTION
destinationAddress EndUserIdentifier Address associated with the delivery status. The address field is coded as a

URI.
deliveryStatus DeliveryStatus Parameter indicating the delivery status.

9.5.1.4 MessageRef

The MessageRef data type is a structure containing six parameters as described below.

This data type is used to return the basic message data when polled by the application.

• If a message is a pure text message, the content will be returned in the message parameter and the
messageRefIdentifier parameter will then not be sent.

• If a message contains attachments or other non-text messages the message parameter will not be sent; instead
the messageRefIdentifier will contain a reference to the message stored in the Parlay X gateway.

NAME TYPE DESCRIPTION
messageRefIdentifier String OPTIONAL: If present, contains a reference to a message stored in the

Parlay X gateway. If the message is pure text, this parameter is not present.
messageService
ActivationNumber

String Number associated with the invoked Message service, i.e. the destination
address used by the terminal to send the message.

senderAddress EndUserIdentifier Indicates message sender address
subject String OPTIONAL: If present, indicates the subject of the received message. This

parameter will not be used for SMS services.
priority MessagePriority The priority of the message: default is Normal
message String OPTIONAL: If present, then the messageRefIdentifier is not present and

this parameter contains the whole message. The type of the message is
always pure ASCII text in this case. The message will not be stored in the
Parlay X gateway.

9.5.1.5 MessageURI

The MessageURI data type is a structure containing the following parameters:

NAME TYPE DESCRIPTION
bodyText String Contains the message body if it is encoded as ASCII text.
fileReferences Array of

URI
This is an array of URI references to all the attachments in the Multimedia message. These
are URIs to different files, e.g. GIF pictures or pure text files.

9.5.2 Exceptions

In addition to the Common Exceptions defined in clause 5.2, there are exceptions specific to this Web Service. Similar
to the Common Exceptions, each Web Service-specific exception is assigned an eight-character identifier. This
identifier is interpreted as described in clause 5.2, except that the first 3 characters uniquely identify this Web Service.

The following exceptions are specific to this Web Service:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)40Release 6

UNIQUE ID TEXT STRING MEANING
MMM1000E UnknownRequestIdentifier

Exception
The Parlay X gateway did not recognize the requestIdentifier parameter.
The message may have timed out or may have never been sent. This fault
includes a string that provides additional information

MMM1001E UnknownRegistration
IdentifierException

The provided registration identifier does not exist. This fault includes a
string that provides additional information.

MMM1002E UnknownMessageException The provided messageRefIdentifier was not found in the Parlay X
gateway. The message may have been timed out or it may never have
been received by the gateway. This fault includes a string that provides
additional information

9.6 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

• parlayx_mm_types.xsd

• parlayx_mm_service_port.wsdl

• parlayx_mm_send_service.wsdl

• parlayx_mm_receive_service.wsdl

• parlayx_mm_notification_service_port.wsdl

• parlayx_mm_notification_service.wsdl

The rpc/encoded file is

• parlayx_mm_service.wsdl

• parlayx_mm_notification_service.wsdl

10 Payment

10.1 Overview

10.1.1 Description

A vast amount of content, both information and entertainment, will be made available to subscribers. To support a
business model that enables operators to offer integrated billing, a payment API is crucial. Open and inter-operable
"payment APIs" are the key to market growth and investment protection. The Payment Web Service supports payments
for any content in an open, Web-like environment.

The Payment Web Service described in this document supports payment reservation, pre-paid payments, and post-paid
payments. It supports charging of both volume and currency amounts, a conversion function and a settlement function
in case of a financially resolved dispute.

Note that certain parameters are negotiated off line. For example the currency, volume type, default reservation
enforcement time, as well as the taxation procedures and parameters.

10.1.2 Commercial & Technical Rationale

The payment process is a complex and critical component of telecom networks. The Payment Web Service:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)41Release 6

• further enlarges the market for third party software, services and content by providing essential primitives for
integrated billing

• enables charging through trusted and authenticated service or content providers

• allows charging by subscriber address (e.g. MSISDN), against an existing reservation or directly against an
account.

10.1.3 Relationship to Similar or Supplanted Specifications

Payment APIs are the focus of a number of industry standardisation initiatives:

• Parlay/OSA have developed powerful, carrier-grade Content-Based Charging (CBC) APIs

• PayCircle intends to provide a full, hand-crafted XML version of the Parlay/OSA CBC APIs

• Within the JCP, the JPay expert group seeks to specify a local Java API that can be implemented on top of
either Parlay/OSA CBC, Parlay X Payment Web Service, or PayCircle's Payment Web Service

• OMA is commencing an e-commerce initiative.

The Payment Web Service provides a simpler, higher-level, WSDL-defined interface consistent with the Parlay X
philosophy.

10.1.4 Scenarios

This subclause discusses two scenarios: one where the subscriber account is directly charged and one where a
subscriber uses a service for which the provider needs a reservation. Note, associated Payment API messages are shown
in 'bold' format: e.g. (chargeAmount).

10.1.4.1 Scenario Number 1

Assume a subscriber is interested in downloading a ring tone to his mobile (MS). The subscriber selects a ring tone and
establishes a trusted relation with the ring tone provider. Essentially, the ring tone provider obtains the address
(MSISDN) and other information from the subscriber. The ring tone may be downloaded to the MS using SMS. As
soon as the download succeeds, the provider of the ring tone will charge the subscriber (chargeAmount).

10.1.4.2 Scenario Number 2

Assume a subscriber is interested in receiving a stream of, say, a soccer match. The subscriber selects a match and
establishes a trusted relation with the provider. Again, the provider obtains the MSISDN and other information from
the subscriber. The subscriber wants to know what the service will cost and the provider interacts with the operators
rating engine (getAmount) taking into account the subscriber's subscription, time of day, etc. The value returned is a
currency amount and is printed on the page that is displayed at the MS. The subscriber then decides to stream the match
to his MS. Subsequently, the provider will reserve the appropriate amount with the operator (reserveAmount) to
ensure that the subscriber can fulfil his payment obligations. The match starts and the provider periodically charges
against the reservation (chargeReservation). The match ends in a draw and is extended with a 'sudden death' phase.
The subscriber continues listening, so the existing reservation is enlarged (reserveAdditionalAmount). Suddenly, one
of the teams scores a goal, so the match abruptly ends, leaving part of the reserved amount unused. The provider now
releases the reservation (releaseReservation), and the remaining amount is available for future use by the subscriber.

Now we can extend the second scenario by having the subscriber participate in a game of chance in which the provider
refunds a percentage of the usage costs (refundAmount) based on the ranking of a particular team in this tournament.
For example, the subscriber gambling on the team that wins the tournament receives a full refund, while for gambling
on the team that finishes in second place, the refund is 50%, etc.

10.2 Amount Charging API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)42Release 6

• chargeAmount

refundAmount

10.2.1 Charge Currency Amount to an Account

a) chargeAmount(EndUserIdentifier endUserIdentifier, Decimal amount, String
billingText, String referenceCode)

b) Behaviour:

This message results in directly charging to the account indicated by the end user identifier. The charge is specified as a
currency amount. The billing text field is used for textual information to appear on the bill. The reference code is used
to uniquely identify the request; it is the application's responsibility to provide a unique reference code within the scope
of the application.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account to be charged
amount Decimal The currency amount of the charge
billingText String Textual information to appear on the bill
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ChargeFailureException

10.2.2 Refund Currency Amount to an Account

a) refundAmount(EndUserIdentifier endUserIdentifier, Decimal amount, String
billingText, String referenceCode)

b) Behaviour:

This message results in directly applying a refund to the account indicated by the end user identifier. The refund is
specified as a currency amount. The billing text field is used for textual information to appear on the bill. The reference
code is used to uniquely identify the request; it is the application's responsibility to provide a unique reference code
within the scope of the application.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account to be refunded
amount Decimal The currency amount of the refund
billingText String Textual information to appear on the bill
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ChargeFailureException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)43Release 6

10.3 Volume Charging API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• chargeVolume

• getAmount

• refundVolume

10.3.1 Charge Volume to an Account

a) chargeVolume(EndUserIdentifier endUserIdentifier, Long volume, String
billingText, String referenceCode)

b) Behaviour:

This message results in directly charging to the account indicated by the end user identifier. The charge is specified as a
volume. The billing text field is used for textual information to appear on the bill. The reference code is used to
uniquely identify the request; it is the application's responsibility to provide a unique reference code within the scope of
the application.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account to be charged
volume Long The volume to be charged
billingText String Textual information to appear on the bill
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ChargeFailureException

10.3.2 Convert a Volume to a Currency Amount

a) getAmount(EndUserIdentifier endUserIdentifier, Long volume, out Decimal
amount)

b) Behaviour:

This message results in converting the given volume to a currency amount. The end user identifier is given to indicate
the subscriber for whom this conversion calculation must be made. The message returns a currency amount if
successful.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account to be charged
volume Long The volume to be converted
amount Decimal OUTPUT. It is the currency amount resulting from the conversion process

d) Exceptions:

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)44Release 6

UnknownEndUserException

InvalidArgumentException

ServiceException

10.3.3 Refund Volume to an Account

a) refundVolume(EndUserIdentifier endUserIdentifier, Long volume, String
billingText, String referenceCode)

b) Behaviour:

This message results in directly applying a refund to the account indicated by the end user identifier. The refund is
specified as a volume. The billing text field is used for textual information to appear on the bill. The reference code is
used to uniquely identify the request; it is the application's responsibility to provide a unique reference code within the
scope of the application.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account to be refunded
volume Long The volume to be refunded
billingText String Textual information to appear on the bill
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ChargeFailureException

10.4 Reserved Amount Charging API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• reserveAmount

• reserveAdditionalAmount

• chargeReservation

• releaseReservation

10.4.1 Reserve a Currency Amount from an Account

c) reserveAmount(EndUserIdentifier endUserIdentifier, Decimal amount, String
billingText, out String reservationIdentifier)

b) Behaviour:

This message results in directly reserving an amount for an account indicated by the end user identifier. The reservation
is specified as a currency amount. Note that reservations do not last forever; it is assumed the default reservation
enforcement time is negotiated off-line. If the reservation times out, the remaining funds will be returned to the account

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)45Release 6

from which this reservation was made. However, the remaining funds shall preferably be returned explicitly to the
account using the releaseReservation message. The billing text field is used for textual information to appear on the
bill. Subsequent textual information provided during this charging session will be appended to this textual information;
one charging session to a reservation will result in only one entry on the bill. In case of success, a reservation id is
returned for future reference; e.g. subsequent charging against the existing reservation using the chargeReservation
message.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account subject to the reservation
amount Decimal The currency amount of the reservation
billingText String Textual information to appear on the bill
reservationIdentifier String OUTPUT. It is an identifier for the newly created reservation

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ServiceException

10.4.2 Adjust the Currency Amount of an Existing Reservation

a) reserveAdditionalAmount(String reservationIdentifier, Decimal amount, String
billingText)

b) Behaviour:

This message results in the addition/reduction of a currency amount to/from an existing reservation indicated by the
reservation id. The reservation is specified as a currency amount. Note that reservations do not last forever; it is
assumed the default reservation enforcement time is negotiated off-line. Invoking this message will extend the
reservation enforcement time for another off-line-negotiated period. The billing text field is used for appending textual
information to appear on the bill. The textual information is appended to the initial textual information given by the
reserveAmount message; one charging session to a reservation will result in only one entry on the bill. Reserved credit
can be returned to the account through the releaseReservation message.

c) Parameters:

NAME TYPE DESCRIPTION
reservationIdentifier String An identifier for the reservation to be amended
amount Decimal The currency amount to be added to (or subtracted from) the reservation
billingText String Textual information to appear on the bill

d) Exceptions:

UnknownReservationException

InvalidArgumentException

ServiceException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)46Release 6

10.4.3 Charge a Currency Amount against an Existing Reservation

a) chargeReservation(String reservationIdentifier, Decimal amount, String
billingText, String referenceCode)

b) Behaviour:

This message results in charging to a reservation indicated by the reservation id. Reservations, identified by reservation
id, are established through invoking the reserveAmount message. The charge is specified as a currency amount.
Optionally, the billing text field can be used for appending textual information to appear on the bill. The textual
information is appended to the initial textual information given by the reserveAmount message; one charging session
to a reservation will result in only one entry on the bill. The reference code is used to uniquely identify the request; it is
the application's responsibility to provide a unique reference code within the scope of the application.

c) Parameters:

NAME TYPE DESCRIPTION
reservationIdentifier String An identifier for the reservation to be charged
amount Decimal The currency amount of the charge
billingText String OPTIONAL. Textual information to appear on the bill
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes

d) Exceptions:

UnknownReservationException

InvalidArgumentException

ChargeFailureException

10.4.4 Release an Existing Reservation

a) releaseReservation(String reservationIdentifier)

b) Behaviour:

Returns funds left in a reservation indicated by reservation id to the account from which this reservation was made.
Reservations, identified by reservation id, are established by invoking the reserveAmount message.

c) Parameters:

NAME TYPE DESCRIPTION
reservationIdentifier String An identifier for the reservation to be released

d) Exceptions:

UnknownReservationException

ServiceException

10.5 Reserved Volume Charging API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• getAmount

• reserveVolume

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)47Release 6

• reserveAdditionalVolume

• chargeReservation

• releaseReservation

10.5.1 Convert a Volume to a Currency Amount

a) getAmount(EndUserIdentifier endUserIdentifier, Long volume, out Decimal
amount)

b) Behaviour:

Returns the amount resulting from converting the given volume. The end user identifier is given to indicate the
subscriber for whom this calculation must be made. The message returns a currency amount if successful.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account to be charged
volume Long The volume to be converted
amount Decimal OUTPUT. It is the currency amount resulting from the conversion process

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ServiceException

10.5.2 Reserve a Volume from an Account

a) reserveVolume(EndUserIdentifier endUserIdentifier, Long volume, String
billingText, out String reservationIdentifier)

b) Behaviour:

Reserves an amount of an account indicated by the end user identifier. The reservation is specified as a volume. Note
that reservations do not last forever; it is assumed the default reservation enforcement time is negotiated off-line. If the
reservation times out, the remaining volume will be returned to the account from which this reservation was made.
However, the remaining volume should preferably be returned explicitly to the account using the releaseReservation
message. The billing text field is used for textual information to appear on the bill. Subsequent textual information
provided during this charging session will be appended to this textual information; one charging session to a reservation
will result in only one entry on the bill. In case of success, a reservation identifier is returned for future reference; e.g.
subsequent charging against the existing reservation using the chargeReservation message.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier The end user's account subject to the reservation
volume Long The volume of the reservation
billingText String Textual information to appear on the bill
reservationIdentifier String OUTPUT. It is an identifier for the newly created reservation

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)48Release 6

d) Exceptions:

UnknownEndUserException

InvalidArgumentException

ServiceException

10.5.3 Adjust the Volume of an Existing Reservation

a) reserveAdditionalVolume(String reservationIdentifier, Long volume, String
billingText)

b) Behaviour:

Adds/reduces a volume to an existing reservation indicated by the reservation id. The reservation is specified as a
volume. Note that reservations do not last forever; it is assumed the default reservation enforcement time is negotiated
off-line. Invoking this message will extend the reservation enforcement time for another off-line-negotiated period.
The billing text field is used for appending textual information to appear on the bill. The textual information is
appended to the initial textual information given by the reserveVolume message; one charging session to a reservation
will result in only one entry on the bill. A reserved credit can be returned to the account through the
releaseReservation message.

c) Parameters:

NAME TYPE DESCRIPTION
reservationIdentifier String An identifier for the reservation to be amended
volume Long The volume to be added to (or subtracted from) the reservation
billingText String Textual information to appear on the bill

d) Exceptions:

UnknownReservationException

InvalidArgumentException

ServiceException

10.5.4 Charge a Volume against an Existing Reservation

a) chargeReservation(String reservationIdentifier, Long volume, String billingText,
String referenceCode)

b) Behaviour:

This message results in charging to a reservation indicated by the reservation id.. Reservations, identified by
reservation id., are established through invoking the reserveVolume message. The charge is specified as a volume.
Optionally, the billing text field can be used for appending textual information to appear on the bill. The textual
information is appended to the initial textual information given by the reserveVolume message; one charging session to
a reservation will result in only one entry on the bill. The reference code is used to uniquely identify the request; it is the
application's responsibility to provide a unique reference code within the scope of the application.

c) Parameters:

NAME TYPE DESCRIPTION
reservationIdentifier String An identifier for the reservation to be charged
volume Long The currency amount of the charge
billingText String OPTIONAL. Textual information to appear on the bill
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)49Release 6

d) Exceptions:

UnknownReservationException

InvalidArgumentException

ChargeFailureException

10.5.5 Release an Existing Reservation

a) releaseReservation(String reservationIdentifier)

b) Behaviour:

Returns funds left in a reservation indicated by reservation id. to the account from which this reservation was made.
Reservations, identified by reservation id., are established through invoking the reserveVolume message.

c) Parameters:

NAME TYPE DESCRIPTION
reservationIdentifier String An identifier for the reservation to be released

d) Exceptions:

UnknownReservationException

ServiceException

10.6 Web Service Data Definitions

10.6.1 Data Types

All data types are defined in clause 5.1.

10.6.2 Exceptions

In addition to the Common Exceptions defined in clause 5.2, there are exceptions specific to this Web Service. Similar
to the Common Exceptions, each Web Service-specific exception is assigned an eight-character identifier. This
identifier is interpreted as described in clause 5.2, except that the first 3 characters uniquely identify this Web Service.

The following exceptions are specific to this Web Service:

UNIQUE
ID

TEXT STRING MEANING

PAY1000E ChargeFailureException Indicates that an error occurred when attempting to charge to the account. The
charge did not occur.

PAY1001F UnknownReservation
Exception

Indicates that the passed reservation identifier is unknown.

PAY1002E UnknownReservation
Exception

Indicates that the passed reservation identifier is unavailable; it may have timed
out according to the policy in place.

10.7 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)50Release 6

• parlayx_payment_service_port.wsdl

• parlayx_payment_amount_charging_service

• parlayx_payment_volume_charging_service

• parlayx_payment_reserve_amount_charging_service

• parlayx_payment_reserve_volume_charging_service

The rpc/encoded file is

• parlayx_payment_service.wsdl

11 Account management

11.1 Overview

11.1.1 Description

Pre-paid subscribers, whether they have subscribed to pre-paid telephony, SMS, or data service, have credits with their
service providers; the consumption of services will lead to reduction of their credit, or the credit may expire. Therefore,
from time to time, subscribers may have to recharge their accounts. This occurs through an application that interfaces
with the subscriber either directly or indirectly. Examples of direct interaction are voice prompts and WAP/web pages,
or even SMS. Typically, such multi-modal applications either request a currency amount and, e.g. credit card
information, or a voucher number plus credentials. The voucher number and credentials are then validated and causes a
pre-determined currency amount to be transferred.

The Parlay X Account Management API described in this document supports account querying, direct recharging and
recharging through vouchers. As a side effect, it may prevent subscribers from having their account balance credits
expire.

11.1.2 Commercial & Technical Rationale

The recharging process is a critical component of telecom networks. At present, a number of prepaid services exist: e.g.
Voice, SMS, and GPRS. The Account Management Web Service:

• further enlarges the market for third party software and outsourcing as it supports subscriber self service
through re-charging, account querying and prevents subscriber credits from expiring

• enables subscriber "self-service" through trusted and authenticated service or content providers

• allows recharging by subscriber address (e.g. MSISDN and PIN).

11.1.3 Relationship to Similar or Supplanted Specifications

Parlay/OSA have developed powerful, carrier-grade Content-Based Charging (CBC) and Account Management (AM)
APIs. The CBC APIs can be used to do recharging, but they also enable many other functions (e.g. debiting from
accounts) as well. The AM APIs support some subscriber self-service (i.e. query functions), but they are not as
comprehensive as the Account Management Web Service.

11.1.4 Scenarios

This subclause discusses three scenarios; one where a subscriber uses a voucher, one where the subscriber directly
recharges after the payment is cleared, and one where the subscriber checks the recent transactions. Note, associated
Account Management API messages are shown in 'bold' format: e.g. (getBalance).

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)51Release 6

11.1.4.1 Scenario Number 1

The prepaid subscriber wishes to recharge their account with a voucher and query their account balance. The subscriber
uses their mobile phone or other wireline phone to interact with an IVR system. In order to recharge their account, the
subscriber must enter the voucher number, the MSISDN to be recharged , and PIN(s). The IVR system accesses an
external voucher database to validate the voucher number. The subscriber's account balance is then increased with the
value of the voucher (voucherUpdate). The subscriber queries their account balance (getBalance), before and/or after
the recharge.

11.1.4.2 Scenario Number 2

Directly recharging (i.e. without a voucher) works much along the same way. In this case, we assume the prepaid
subscriber interacts with a web page. After providing the MSISDN, along with the PIN, the user can query the account
balance (getBalance). For recharging, the subscriber must enter payment details, for example credit card information,
from which the payment will be made. After clearing the payment details, the currency amount will be transferred and
the subscriber's prepaid account balance expiration date will be reset (balanceUpdate). The subscriber also queries
their account balance expiration date (getCreditExpiryDate), after the recharge.

11.1.4.3 Scenario Number 3

Every time a subscriber makes a telephone call the balance of their prepaid account is decremented with the cost of the
call. When a recharge is done, the balance is increased either directly (balanceUpdate) or with an amount represented
by a voucher (voucherUpdate). When a subscriber has doubts about the correctness of the account balance, the
subscriber can request the last transactions on the account and verify them (getHistory). By offering automated access
to this information, a call to the Operator's Help Desk is prevented which saves operational costs.

11.2 Account Management API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• getBalance

• getCreditExpiryDate

• balanceUpdate

• voucherUpdate

• getHistory

Note that certain parameters are negotiated off line. For example the reseller identifier, which identifies the reseller of
calling cards.

11.2.1 Account Balance Query

getBalance(EndUserIdentifier endUserIdentifier, String endUserPin, out Decimal amount)

b) Behaviour:

This message results in getting account balance indicated by the end user identifier and associated end user PIN. The
returned amount is specified as a currency amount.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier This parameter identifies the end user's account.
endUserPin String Contains the end user's credentials for authorizing access to the account
amount Decimal OUTPUT. It is the balance on the end user's account.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)52Release 6

d) Exceptions:

InvalidArgumentException

ServiceException

PolicyException

EndUserAuthenticationException

11.2.2 Account Credit Expiration Date Query

a) getCreditExpiryDate(EndUserIdentifier endUserIdentifier, String endUserPin, out
DateTime date)

b) Behaviour:

This message results in getting the expiration date of the credit indicated by the end user identifier and associated end
user PIN. The returned date is the date the current balance will expire. Nil is returned if the balance does not expire.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier This parameter identifies the end user's account.
endUserPin String Contains the end user's credentials for authorizing access to the account.
date DateTime OUTPUT. It is the date the current balance will expire. Nil is returned if the

balance does not expire.

d) Exceptions:

InvalidArgumentException

ServiceException

PolicyException

EndUserAuthenticationException

11.2.3 Account Balance Recharging

a) balanceUpdate(EndUserIdentifier endUserIdentifier, String endUserPin, String
referenceCode, Decimal amount, Integer period)

b) Behaviour:

This message results in directly recharging the account indicated by the end user identifier and optional associated end
user PIN. The reference code is used to uniquely identify the request; it is the application's responsibility to provide a
unique reference code within the scope of the application. The charge is specified as a currency amount. The balance is
requested to expire in the number of days indicated by the period parameter. The operator's policies may overrule this
parameter. If the optional period parameter is not present, the operator's policy on balance expiration is always in
effect.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)53Release 6

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier This parameter identifies the end user's account.
endUserPin String OPTIONAL. Contains the end user's credentials for authorizing access to the

account.
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes
amount Decimal Currency amount that should be added to the end user's account.
period Integer OPTIONAL. The balance is requested to expire in the number of days indicated

by this parameter. The operator's policies may overrule this parameter. If this
optional parameter is not present, the operator's policy on balance expiration is
always in effect.

d) Exceptions:

InvalidArgumentException

ServiceException

PolicyException

EndUserAuthenticationException

11.2.4 Account Balance Voucher Recharging

a) voucherUpdate(EndUserIdentifier endUserIdentifier, String endUserPin, String
referenceCode, String voucherIdentifier, String voucherPin)

b) Behaviour:

This message results in directly recharging the account indicated by the end user identifier and optional associated end
user PIN. The reference code is used to uniquely identify the request; it is the application's responsibility to provide a
unique reference code within the scope of the application. A voucher identifier indirectly specifies the charge. The
optional voucher PIN code can be used to verify the voucher.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier This parameter identifies the end user's account.
endUserPin String OPTIONAL. Contains the end user's credentials for authorizing access to the

account.
referenceCode String Textual information to uniquely identify the request, e.g. in case of disputes
voucherIdentifier String This parameter identifies the voucher.
voucherPin String OPTIONAL. Contains the voucher's credentials for authentication.

d) Exceptions:

InvalidArgumentException

UnknownVoucherException

ServiceException

PolicyException

EndUserAuthenticationException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)54Release 6

11.2.5 Account Transaction History Query

a) getHistory(EndUserIdentifier endUserIdentifier, String endUserPin, DateTime
date, Integer maxEntries, out DatedTransaction[] history)

b) Behaviour:

This message results in returning the transaction history of the account indicated by the end user identifier and
associated optional end user PIN. The maximum number of entries to return and the start date define the range of
transactions that are of interest to the requester.

If the total number of entries in the transaction history, starting at the specified date, is larger than the specified
maximum number of entries, only the most recent events are returned. Note that the operator might limit the maximum
amount of entries to be returned or the period for which the entries are to be returned.

c) Parameters:

NAME TYPE DESCRIPTION
endUserIdentifier EndUserIdentifier This parameter identifies the end user's account.
endUserPin String OPTIONAL. Contains the end user's credentials for authorizing access to the

account.
date DateTime OPTIONAL. This parameter indicates the desired starting date for the entries

to be returned. If this parameter is not present, it is up to the discretion of the
service to decide this date.

maxEntries Integer OPTIONAL. This parameter indicates the maximum number of entries that
shall be returned. If this parameter is not present, it is up to the discretion of
the service to decide how many entries to return.

history Array of
DatedTransaction

OUTPUT. It is a DatedTransaction array that consists of types with a date
field and a string field: i.e. the date of the occurrence and the transaction
details, respectively.

d) Exceptions:

InvalidArgumentException

ServiceException

PolicyException

EndUserAuthenticationException

11.3 Web Service Data Definitions

11.3.1 Data Types

In addition to the Common Data Types defined in clause 5.1, the following Data Types are specific to this Web Service.

11.3.1.1 DatedTransaction

The DatedTransaction data type is a structure containing the following parameters:

NAME TYPE DESCRIPTION
transactionDate DateTime The date the transaction occurred.
transactionDetails String The transaction details.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)55Release 6

11.3.2 Exceptions

In addition to the Common Exceptions defined in clause 5.2, there are exceptions specific to this Web Service. Similar
to the Common Exceptions, each Web Service-specific exception is assigned an eight-character identifier. This
identifier is interpreted as described in clause 5.2, except that the first 3 characters uniquely identify this Web Service.

The following exceptions are specific to this Web Service:

UNIQUE
ID

TEXT STRING MEANING

ACM1000E UnknownVoucherException This fault occurs if the voucher identification that is passed is unknown.
ACM1001E EndUserAuthentication

Exception
This fault occurs if either the end user identification that is passed is
unknown, the end user's credentials are required but are not passed, or the
end user's credentials are passed but are invalid.

11.4 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

• parlayx_account_management_types.xsd

• parlayx_account_management_service_port.wsdl

• parlayx_account_management_service.wsdl

The rpc/encoded file is

• parlayx_account_management_service.wsdl

12 User status

12.1 Overview

12.1.1 Description

The Parlay X User Status Web Service will be used for getting user status information. The use of the Web Service will
not require any specific telecommunication skills.

12.1.2 Commercial & Technical Rationale

The use of a Parlay X User Status Web Service will enable fast and easy development of user status aware applications.

12.1.3 Relationship to Similar or Supplanted Specifications

The Parlay/OSA Mobility (User Status) Service API can also provide user status information, but the Parlay X API for
this Web Service is easier to use.

The Parlay/OSA Presence and Availability Management Service specifies a set of interfaces for applications that
provide broader presence and availability capabilities than those currently defined for this Web Service. These
capabilities will be considered for inclusion in future Parlay X Web Services.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)56Release 6

12.1.4 Scenarios

In the following, two sample Scenarios are described.

12.1.4.1 Buddy-list

This application is a mobile version of services like ICQ, MSN Messenger Service and Yahoo! Messenger, which offer
text and voice chat and text conferencing. With a mobile terminal the user can be always on.

The user of the service can define one or more buddy-lists containing their friends (alternatively their family, colleagues
or a combination). The status of buddies can be shown in the Buddy-list

12.1.4.2 Manual call routing

When a switchboard receives a call, the switchboard operator may obtain the status of a mobile terminal before trying to
route the call to it.

12.2 User Status API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• getUserStatus

12.2.1 Get User Status

a) getUserStatus(EndUserIdentifier endUser, EndUserIdentifier requester, out
UserStatusData userStatus)

b) Behaviour:

Requests the user status information of a user. Before returning the user status indicator, end-user and operator policies
must be satisfied.

c) Parameters:

NAME TYPE DESCRIPTION
endUser EndUserIdentifier It identifies the end user for whom user status information is being requested.
requester EndUserIdentifier OPTIONAL. The address of the requester.
userStatus UserStatusData OUTPUT. It is the user status of the end user

d) Exceptions:

InvalidArgumentException

UnknownEndUserException

ServiceException

PolicyException

12.3 Web Service Data Definitions

12.3.1 Data Types

In addition to the Common Data Types defined in clause 5.1, the following Data Types are specific to this Web Service.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)57Release 6

12.3.1.1 UserStatusData

The UserStatusData data type is a structure containing the following parameters:

NAME TYPE DESCRIPTION
userStatusIndicator UserStatusIndicator It indicates the status of the end user.
additionalUserStatus
Information

String A string to hold additional information if the userStatusIndicator is 'Other'.

12.3.1.2 UserStatusIndicator

The UserStatusIndicator data type is an enumeration with the following values:

VALUE

DESCRIPTION

Online User is online.
Offline User is offline (mobile terminal switched off/other terminal not connected to the service), or wants to appear to

be offline.
Busy User is busy.
Other Custom user status information can be retrieved from additionalUserStatusInformation.

12.3.2 Exceptions

All exceptions thrown by this Web Service are Common Exceptions, as defined in clause 5.2.

12.4 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

• parlayx_user_status_types.xsd

• parlayx_user_status_service_port.wsdl

• parlayx_user_status_service.wsdl

The rpc/encoded file is

parlayx_user_status_service.wsdl

13 Terminal Location

13.1 Overview

13.1.1 Description

The Parlay X Terminal Location Web Service will be used for getting location information. The use of the Web Service
will not require any specific telecommunication skills, but knowledge of location co-ordinates will be required.

13.1.2 Commercial & Technical Rationale

The use of a Parlay X Terminal Location Web Service will enable fast and easy development of location aware
Applications. The use of the Web Service will only require knowledge of longitude and latitude from the World
Geodetic System 1984 (WGS 84), which is the reference system chosen for the coding of locations.

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)58Release 6

The market for location aware services is growing, and easy access to location information will stimulate the growth of
this market.

13.1.3 Relationship to Similar or Supplanted Specifications

The Mobile Positioning System (MPS) offers much of the same functionality that the Parlay X Terminal Location Web
Service will offer.

13.1.4 Scenarios

In the following, a sample Scenario is described.

13.1.4.1 Location enabled Buddy-list:

This application is a mobile version of services like ICQ, MSN Messenger Service and Yahoo! Messenger, which offer
text and voice chat and text conferencing. With a mobile terminal the user can be always on, and the service can also
show where buddies are located.

The user of the service can define one or more buddy-lists containing their friends (alternatively their family, colleagues
or a combination). The Buddy List application may access terminal location information, and the following two cases
are considered: a user initiates the retrieval of i) its own location and ii) other users' location.

13.2 Terminal Location API
This subclause describes an initial set of capabilities in terms of message invocations, parameters and data types. The
message-based invocations are:

• getLocation

13.2.1 Get Location of Terminal

a) getLocation(EndUserIdentifier endUser, EndUserIdentifier requester,
LocationAccuracy accuracy, out LocationInfo location)

b) Behaviour:

Requests the location of one terminal. The location is returned if the terminal is available. Before returning the location,
end-user and operator policies must be satisfied.

c) Parameters:

NAME TYPE DESCRIPTION
endUser EndUserIdentifier The address of the terminal for which location information is being requested.
requester EndUserIdentifier OPTIONAL. The address of the terminal from which the request is initiated.
accuracy LocationAccuracy The desired accuracy. Possible values are: 'Low', 'Medium', 'High'. Each operator must

assign a "radius of uncertainty" to each value (e.g. < 3 km, < 1 km, < 10 m, respectively)
location LocationInfo OUTPUT. It identifies the location of the terminal.

d) Exceptions:

InvalidArgumentException

UnknownEndUserException

ServiceException

PolicyException

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)59Release 6

13.3 Web Service Data Definitions

13.3.1 Data Types

In addition to the Common Data Types defined in clause 5.1, the following Data Types are specific to this Web Service.

13.3.1.1 LocationInfo

The LocationInfo data type is a structure containing the following parameters:

NAME TYPE DESCRIPTION
longitude Float Longitude
latitude Float Latitude
accuracy LocationAccuracy How accurate the Location information is. If the degree of accuracy wanted is available

this should be given, if not the best possible accuracy should be returned. Possible
values are: 'Low', 'Medium', 'High'.

dateTime DateTime Identifies when the location information was obtained.

13.3.1.2 LocationAccuracy

The LocationAccuracy data type is an enumeration with the following values: (Each Parlay X Gateway operator must
specify the uncertainty radiuses for Low, Medium and High)

VALUE DESCRIPTION
Low Low accuracy i.e. < 3 km radius of uncertainty.
Medium Medium accuracy i.e. < 1 km radius of uncertainty.
High High accuracy i.e. < 100 m radius of uncertainty.

13.3.2 Exceptions

All exceptions thrown by this Web Service are Common Exceptions, as defined in clause 5.2.

13.4 Web Service Syntax – WSDL
The W3C WSDL representation of this API is contained in a set of files which accompany the present document (see
Annex A).

The rpc/literal files are

• parlayx_terminal_location_types.xsd

• parlayx_terminal_location_service_port.wsdl

• parlayx_terminal_location_service.wsdl

The rpc/encoded file is

parlayx_terminal_location_service.wsdl

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)60Release 6

Annex A (informative):
W3C WSDL Description of Web Service Syntax
The W3C WSDL representation of the APIs specified in the present document is contained in a set of files which
accompany the present document:

 px0326rpcenc.zip

 px0326rpclit.zip

3GPP

3GPP TS 29.199 V1.0.0 (2003-12)61Release 6

Annex B (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Jul 03 -- -- -- -- 1st Draft in 3GPP Spec. format, no number assigned - 0.0.1
Oct 03 -- -- -- -- Change of Title and removal of PayCircle copyright from

Clause 10. Addition of Parlay and PayCircle
acknowledgement in Forward clause

0.0.1 0.0.2

Oct 03 -- -- -- -- • Change 3GPP reference to include 29.199;
• Removal of PayCircle from the acknowledgement

in the Foreword clause. .
• Title changed to remove the word 'specification'.
• Addition of WSDL files to the zip file.

0.0.2

Nov 2003 -- -- -- -- • EditHelp document processing & MCC review.

• Created reference list (please review the IETF
ones !!)

• Added a new

Annex A (informative):
W3C WSDL Description of Web Service Syntax
referred to from the various subclauses entitled
x.y Web Service Syntax – WSDL

• Field codes/automatic numbering/Bookmarking of

Clauses/Figures etc. had been removed

• Hidden text still exist (to be removed by the
authors ?)

0.0.2 0.0.3

Dec 2003 CN_21 NP-030552 -- -- Submitted to CN#22 for Information 1.0.0

	NP-030552 N5-030639 29199 Parlay X CoverPage.doc
	29199-100.doc

