
3GPP TSG CN Plenary Meeting #20 NP-030239
04-06 June 2003. Hämeenlinna, FINLAND

Source: CN5 (OSA)

Title: Rel-5 CR 29.198-01 OSA API Part 1: Overview

Agenda item: 8.2

Document for: APPROVAL

Doc-1st-
Level

Spec CR R Ph Subject Ca
t

Ver-
Curr

Doc-2nd-
Level

WI

NP-030239 29.198-01 022 - Rel-5 Removal of un-used references F 5.1.1 N5-030300 OSA2
NP-030239 29.198-01 023 - Rel-5 Correction to Java Realisation Annex F 5.1.1 N5-030275 OSA2

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-030275
Meeting #23, San Diego, USA, 19 – 22 May 2003

CR-Form-v7

CHANGE REQUEST

� 29.198-01 CR 023 � rev - � Current version: 5.1.1 �

For HELP on using this form, see bottom of this page or look at the pop-up text over the � symbols.

Proposed change affects: UICC apps� ME Radio Access Network Core Network X

Title: � Correction to Java Realisation Annex

Source: � AePONA, Ann-Marie Mulholland, IBM, Joe McIntyre

Work item code: � OSA2 Date: � 08/05/2003

Category: � F Release: � REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: � Correction to Annex C of the current specification. The current Annex references

Jain SPA. Jain SPA is no longer a supported activity or deliverable. Replace the
current Annex with the Parlay Java Realisation as an informative Annex to the
body of OSA API specfication deliverables.

Summary of change: � Replace the current Annex C that refers to Jain SPA as the informative Java

Realisation with the Java Realisation rulebook produced by the Parlay Java
Realisation Workgroup.

Consequences if �
not approved:

The API specification will reference a realisation that is no longer supported or
valid.

Clauses affected: � Annex C

 Y N
Other specs � X Other core specifications �
affected: X Test specifications
 X O&M Specifications

Other comments: �

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked � contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 3

CR page 3

Explanatory Notes

This submission is to take the form of an Annex to Open Service Access (OSA); Application Programming
Interface (API); Part 1: Overview (3GPP TS 29.198-01 V5.1.1).

Sections C1 through C4 are taken from the Parlay UML to Java API Rulebook (Issue 1.1) produced by the
Parlay Java Realisation Working Group. These rules comprise both common (applicable to both J2SE and
J2EE APIs) and J2SE specific mappings to produce a J2SE Java Realisation of the Parlay API.

Due to time constraints on the delivery of the Parlay UML to Java API Rulebook, the production of relevant
J2EE rules was not progressed within the Parlay workgroup. An additional section C5 not included in the
Parlay UML to Java API Rulebook (Issue 1.1) details new submissions for J2EE specific mappings which,
along with the common mappings, produce a J2EE Java Realisation of the Parlay API.

The J2SE Java Realisation API provides a Parlay to Java realisation for client application development. It is
transport independent and provides an API which follows common Java coding patterns to aid application
development.

The J2EE Java Realisation API provides a Parlay to Java realisation for a middleware API allowing clients
and gateways to communicate using a common J2EE remote, J2EE local and RMI programming interface.

The following points covers areas where this contribution differs from the Parlay UML to Java API Rulebook:

• Package Namespace - the J2SE API will reside under the org.caspi.jr.se namespace and the J2EE local
API will reside under the org.csapi.jr.ee namespace, and the J2EE/RMI remote interface will reside
under the org.csapi.jr.ee.remote namespace.

• Package Naming Rule - framework packages have not been abbreviated; to keep the package naming
consistent across the entire API.

• TpDate, TpTime and TpDateAndTime Rule - considered erroreous in that java.util.Calendar can only
represent absolute times and not relative times, and therefore not included here.

• IllegalStateException added - this exception has been added as it is should be a checked exception.

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 4

CR page 4

Annex C (informative):
Java API

C.1 Tools and Languages
The Java language is used as a means to programmatically define the interfaces. Java files are either generated manually
from class diagrams or by using a UML tool and editing scripts. Either way, the Java files are generated by the JAIN
Community (http://www.java.sun.com/products/jain) in accordance with the Parlay UML to Java API Rulebook, which
define a set of rules that are used to rapidly generate the Java APIs from the OSA/Parlay UML.

The generated Java files are verified using Java compilers such as javac. The Java API specifications are designed to be
compatible with the Java 2 SDK, Standard Edition, version 1.4.0
(http://java.sun.com/j2se/1.4/docs/relnotes/features.html) or later. The Java API Realizations of the OSA/Parlay APIs
are known as the JAIN Service Provider APIs (JAIN SPA).

C.2 JAIN SPA Overview
JAIN SPA is a local Java API realization of the OSA/Parlay specifications. The benefits of providing a local API (in
addition to a distribution or remote API, such as the OSA/Parlay OMG-IDL or the OSA/Parlay W3C WSDL) is that the
API is tailored to a particular programming language (in this case it's Java), which is distribution mechanism
independent, meaning that, providing the necessary adapters are put in place, Java applications can be written to this
local API that use any form of technology (e.g. CORBA, SOAP, RMI) for the purpose of distributing this API. With
remote APIs, although the programmer may be free to write in multiple programming languages, he needs knowledge
of, and is committed to, the particular distribution mechanism (e.g. CORBA, SOAP, RMI).

As the OSA/Parlay UML assumes a remote API, many optimizations have been made to the specifications, which,
although acceptable to a "specialist" programmer taking distribution into account, would appear alien to the large
community of "regular" Java programmers. As such, the JAIN SPA specifications are tailored to the Java language by
following Java language naming conventions, design patterns and object oriented practices for a local Java API, while
reusing as much Java codebase as possible. JAIN Service Provider APIs are developed by the JAIN Community under
the Java Community Process (JCP) (http://jcp.org/). Within the JCP, each JAIN Service Provider API is developed by
submitting a Java Specification Request (JSR) (http://jcp.org/jsr/overview/index.en.jsp). Each JAIN Service Provider
API is assigned a JSR number, and an associated webpage, that can be used to identify it.

Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay,
ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to
which Parlay, ETSI/OSA and 3GPP/OSA specification versions it corresponds to.

Annex C (informative):
Java Realisation API

C.1 Java Realisation Overview
The Parlay/OSA UML specifications are defined in a technology neutral manner. This annex aims to deliver
for Java, a developer API, provided as a realisation, supporting a Java API that represents the UML
specifications.

C.1.1 J2SE API
The J2SE API supports a J2SE development environment that

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 5

CR page 5

• provides an abstraction of the Parlay/OSA APIs that provides a local API for J2SE developers

• supports a listener based API for SCFs and a callback API for the Framework

• uses local object references as correlation mechanisms as Java developers are familiar with object
correlation

• is a local API without visibility to the underlying transport

C.1.2 J2EE API
The J2EE API supports a development environment which allows the creation of J2EE and Java RMI
interfaces for both the server and client, ensuring consistent interfaces for interoperability. These interfaces
may be used for Java RMI on either JRMP or IIOP (RMI/IIOP), allowing use in J2EE environments. The
interfaces may also be used as a thin layer on other transports, similar to other Java technologies that provide
a RMI programming interface.

The J2EE API is a suitable base for Java across Java platforms, allowing creation of implementations that:

• may be a thin layer on transport protocols

• may support J2EE remote interfaces

• may support J2EE local interfaces

The Java files created with the realisation will be made available with the Parlay/OSA specifications.

The remaining sections of this annex deal with the following areas:

• section C.2 covers the tools and languages used to produce and define the Java Realisation

• section C.3 covers the mappings that are common across both Java Realisation APIs

• section C.4 covers the mappings specific to the J2SE API

• section C.5 covers the mappings specific to the J2EE API

C.2 Tools and languages
The Java language is used as a means to programmatically define the interfaces. Java source files are
generated automatically from UML. The Java source files are created in accordance with the mappings
defined within this annex.

The generated Java source files are verified syntactically using Java compilers such as javac. The Java API
comprises

• J2SE API designed to be compatible with the Java 2 SDK, Standard Edition, version 1.3
(http://java.sun.com/j2se/1.3/) or later and a

• J2EE API compatible with the Java 2 Enterprise Edition (http://java.sun.com/j2ee/).

The J2SE API, developed in accordance to the conventions defined in section C.3 and C.4 will enable:

• portable Java applications, as far as the Java API is concerned

• independence of distribution mechanism technology (e.g. CORBA,SOAP,RMI)

C.3 Generic Mappings (Elements common to J2SE and
J2EE)

Note: all Java code examples given in this section are taken from the J2SE Java Realisation API. See the
appropriate Java files for examples for J2EE classes.

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 6

CR page 6

C.3.1 Namespace
The UML namespace org.csapi is represented by the Java package org.csapi.jr.

Packages under the org.csapi.jr package will contain "se" packages for J2SE specific Java artefacts and "ee"
and “ee.remote” packages for J2EE specific Java artefacts.

For example, the User Location Camel Service package structure would appear as follows:

org.csapi.jr.se.mm.ulc containing J2SE API Java artefacts

org.csapi.jr.ee.mm.ulc containing J2EE local API Java artefacts

org.csapi.jr.ee.remote.mm.ulc containing the J2EE remote/RMI API Java artefacts

C.3.2 Package Naming Conventions
UML packages will be represented by Java packages. The sub-namespaces below the root namespaces
described above will follow the naming used for the UML namespaces.

C.3.3 Object References
In Java there is no need to explicitly indicate a reference to an object as in Java objects are passed by value
and not by reference. Where the specifications explicitly indicate a reference to an object by adding “Ref” to
the object type, this addition is removed in the Java realisation.

Example 1:

UML Java Realisation

IpUserLocationCamelRef UserLocationCamel

IpCallRef Call

C.3.4 Element Naming
The UML element names that begin with an uppercase will follow the Java naming conventions of with a
leading lower case letter and mixed case names. The UML elements are equivalent to Java field names.

 Example 2:

UML Java Realisation

AddressPlan addressPlan

C.3.5 Element Naming Collisions
If an element name collides with a Java keyword, the element name will be prefixed with an underscore.

Example 3:

UML Java Realisation

Final _final

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 7

CR page 7

C.3.5 Data Type Definitions

C.3.5.1 Basic Data Types

Java does not support type definitions (typedefs); therefore types are unwound to their basic data types e.g.:

Example 4:

UML Java Realisation

TpCallAlertingMechanism int

TpAccessType java.lang.String

The following mappings apply to the basic data types:

UML Java Realisation

TpBoolean boolean

TpInt32 int

TpInt64 long

TpFloat float

TpOctet byte

TpString java.lang.String

TpLongString java.lang.String

TpAny java.lang.Object

C.3.5.2 Constants

Constants are associated with a type definition or as a standalone entity. In both cases, the constant itself will
be defined as a ‘public final static’ field using its name and value.

When defined associated with a type definition, an interface using the name of the type definition will be
defined enclosing all constants associated with the type definition.

Standalone constants within a package are defined within a Java interface with the name ‘Constants’ within
that package.

Example 5:

package org.csapi.jr.se;

public interface Constants {

public static final int METHOD_NOT_SUPPORTED = 22;

public static final int NO_CALLBACK_ADDRESS_SET = 17;

public static final int RESOURCES_UNAVAILABLE = 13;

public static final int TASK_CANCELLED = 15;

public static final int TASK_REFUSED = 14;

public static final int INVALID_STATE = 744;

}

Example 6:

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 8

CR page 8

package org.csapi.jr.se.cc;

public interface CallSuperviseReport {

public static final int CALL_SUPERVISE_TIMEOUT = 1;

public static final int CALL_SUPERVISE_CALL_ENDED = 2;

public static final int CALL_SUPERVISE_TONE_APPLIED = 4;

}

C.3.5.3 NumberedSetsOfDataElements (Collections)

In Java, Numbered Set and Numbered List are realised as an array of the data type.

Example 7:

UML Java Realisation

TpAddressSet Address[]

C.3.5.4 SequenceOfDataElements (Structures)

Struct data types are represented in Java as public final classes that implement java.io.Serializable, and have:

• each data element made available as a private variable in the class

• a default constructor and a constructor for all values are provided

• accessor and mutator methods are given for each variable

• the first letter of each sequence element name is changed to lower case

• an equals method is provided determining the equality of objects by their content

• a hashCode method is provided supporting the rules for hashCode relative to equals

Example 8:

package org.csapi.jr.se;

public final class Address implements java.io.Serializable {

private AddressPlan plan;

private String addrString = “”;

private String name = “”;

private AddressPresentation presentation;

private AddressScreening screening;

private String subAddressString = “”;

public Address () {

}

public Address (AddressPlan plan, String addrString,

String name, AddressPresentation presentation,

AddressScreening screening, String subAddressString) {

this.plan = plan;

this.addrString = addrString;

this.name = name;

this.presentation = presentation;

this.screening = screening;

this.subAddressString = subAddressString;

}

public TpAddressPlan getPlan () {

 return (plan);

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 9

CR page 9

}

public void setPlan (TpAddressPlan plan) {

 this.plan = plan;

}

public String getAddrString () {

 return (addrString);

}

public void setAddrString (String addrString) {

 this.addrString = addrString;

}

… other get and set methods …

public boolean equals (Object object) {

// equality logic

}

public int hashcode () {

// hash code calculation

}

}

C.3.5.5 NameValuePair (Enumerations)

NameValuePair data types are represented in Java as public final classes that implement java.io.Serializable,
and have:

• two static final data members per name-value pair

• a value returning method, named getValue()

• a name returning method, named getValueText()

• an integer conversion method, named getObject()

• a private constructor

• hashCode and equals implementations

No default constructor is provided. One of the data members per name-value pair has the same name as the
name-value pair name. The other has an underscore “_” prepended and is intended for use in switch
statements. Values are assigned sequentially, starting with 0.

The getObject() method returns the name-value pair class with the specified value if the specified value
corresponds to an element of the name-value pair data type. If the specified value is out of range, an
InvalidEnumValueException exception is raised

Example 9:

package org.csapi.jr.se;
public final class AddressScreening implements java.io.Serializable {

private int _value;
private static int _size = 5;
private static AddressScreening[] _array = new AddressScreening[_size];

public static final int _ADDRESS_SCREENING_UNDEFINED = 0;
public static final AddressScreening ADDRESS_SCREENING_UNDEFINED = new

AddressScreening(_ADDRESS_SCREENING_UNDEFINED);

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 10

CR page 10

public static final int _ADDRESS_SCREENING_USER_VERIFIED_PASSED = 1;
public static final AddressScreening ADDRESS_SCREENING_USER_VERIFIED_PASSED = new

AddressScreening(_ADDRESS_SCREENING_USER_VERIFIED_PASSED);

public static final int _ADDRESS_SCREENING_USER_NOT_VERIFIED = 2;
public static final AddressScreening ADDRESS_SCREENING_USER_NOT_VERIFIED = new

AddressScreening(_ADDRESS_SCREENING_USER_NOT_VERIFIED);

public static final int _ADDRESS_SCREENING_USER_VERIFIED_FAILED = 3;
public static final AddressScreening ADDRESS_SCREENING_USER_VERIFIED_FAILED = new

AddressScreening(_ADDRESS_SCREENING_USER_VERIFIED_FAILED);

public static final int _ADDRESS_SCREENING_NETWORK = 4;
public static final AddressScreening ADDRESS_SCREENING_NETWORK = new

AddressScreening(_ADDRESS_SCREENING_NETWORK);

public int getValue() {
 return _value;
}

public String getValueText() {
 switch (_value) {
 case _ADDRESS_SCREENING_UNDEFINED:

return "ADDRESS_SCREENING_UNDEFINED";
 case _ADDRESS_SCREENING_USER_VERIFIED_PASSED:

return "ADDRESS_SCREENING_USER_VERIFIED_PASSED";
 case _ADDRESS_SCREENING_USER_NOT_VERIFIED:

return "ADDRESS_SCREENING_USER_NOT_VERIFIED";
 case _ADDRESS_SCREENING_USER_VERIFIED_FAILED:

return "ADDRESS_SCREENING_USER_VERIFIED_FAILED";
 case _ADDRESS_SCREENING_NETWORK:

return "ADDRESS_SCREENING_NETWORK";
 default:

return "ERROR";
 }
}

public boolean equals(Object o) {
//equality logic
}

public int hashCode() {
//hash code calculation
 return _value;
}

public static AddressScreening getObject(int value) throws

org.csapi.jr.se.InvalidEnumValueException {
if(value >= 0 && value < _size) {

return _array[value];
} else {

throw new org.csapi.jr.se.InvalidEnumValueException();
}

}

private AddressScreening(int value) {
this._value = value;
this._array[this._value] = this;

}

}

C.3.5.6 TaggedChoiceOfDataElements (Unions)

Union data types are represented in Java as public final classes that implement java.io.Serializable, and have:

• a default constructor

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 11

CR page 11

• a discriminator field

• a discriminator accessor method, named getDiscriminator()

• an accessor and modifier method for each data element, the names of which are derived from choice
element name

Conflicting names should be resolved by prefixing the field name with an underscore for getDiscriminator if
there is a name clash with the mapped data type name or any of the data element names.

Where choice element type and choice element name are “NULL” and “Undefined”, respectively, a Java
Object set as null replaces the NULL. If multiple NULL/Undefined combinations occur in the tagged choice
of data elements, the method, setUndefined, will receive the discriminator as a parameter and set _object to
null.

Accessor methods shall raise an InvalidUnionAccessorException exception if the expected data element has
not been set.

Example 10:

package org.csapi.jr.se;
public final class AoCOrder implements java.io.Serializable {

private CallAoCOrderCategory _discriminator = null;
private java.lang.Object _object;

public AoCOrder() {
}

public CallAoCOrderCategory getDiscriminator() throws

org.csapi.jr.se.InvalidUnionAccessorException {
if(_discriminator == null) {

throw new org.csapi.jr.se.InvalidUnionAccessorException();
}
return _discriminator;

}

public org.csapi.jr.se.ChargeAdviceInfo getChargeAdviceInfo() throws
org.csapi.jr.se.InvalidUnionAccessorException {

if (!(_discriminator.equals((CallAoCOrderCategory)
CallAoCOrderCategory.CHARGE_ADVICE_INFO))) {

throw new org.csapi.jr.se.InvalidUnionAccessorException();
}
return ((org.csapi.jr.se.ChargeAdviceInfo) _object);

}

public void setChargeAdviceInfo(org.csapi.jr.se.ChargeAdviceInfo value) {
_discriminator = (CallAoCOrderCategory)

CallAoCOrderCategory.CHARGE_ADVICE_INFO;
_object = value;

}

public org.csapi.jr.se.ChargePerTime getChargePerTime() throws
org.csapi.jr.se.InvalidUnionAccessorException {

if (!(_discriminator.equals((CallAoCOrderCategory)
CallAoCOrderCategory.CHARGE_PER_TIME))) {

throw new org.csapi.jr.se.InvalidUnionAccessorException();
}
return ((org.csapi.jr.se.ChargePerTime) _object);

}

public void setChargePerTime(org.csapi.jr.se.ChargePerTime value) {
_discriminator = (CallAoCOrderCategory)

CallAoCOrderCategory.CHARGE_PER_TIME;
_object = value;

}

public java.lang.String getNetworkCharge() throws
org.csapi.jr.se.InvalidUnionAccessorException {

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 12

CR page 12

if (!(_discriminator.equals((CallAoCOrderCategory)
CallAoCOrderCategory.CHARGE_NETWORK))) {

throw new org.csapi.jr.se.InvalidUnionAccessorException();
}
return ((java.lang.String) _object);

}

public void setNetworkCharge(java.lang.String value) {
_discriminator = (CallAoCOrderCategory)

CallAoCOrderCategory.CHARGE_NETWORK;
_object = value;

}

}

C.3.5.7 Exceptions

An exception maps to a constructed exception, providing appropriate constructors and accessor methods for
the data contained within the exception. Each exception is defined as a public class extending
java.lang.Exception, and containing a private field for each information element contained within the
exception.

A default constructor is provided, along with a constructor containing only an embedded exception, a
constructor containing a list of the fields in the exception and a constructor that contains the fields plus an
embedded exception.

An accessor method is provided for each field, and for the embedded exception.

The following Java Realisations apply to mapping of exceptions:

• PlatformException

• P_XXX_XXX Exceptions

• TpCommonExceptions

• TpCommonExceptions' associated exceptions

• Additional abstract exceptions

• InvalidUnionAccessorException

• InvalidEnumValueException

C.3.5.7.1 PlatformException

PlatformException exception handles local platform and communication problem exceptions.

Example 11:

package org.csapi.jr.se;
public class PlatformException extends java.lang.RuntimeException {

private Throwable _cause;

public PlatformException () {

super();
}

public PlatformException (String message) {

super(message);
}

public PlatformException (String message, Throwable cause) {

super(message);
_cause = cause;

}

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 13

CR page 13

public PlatformException (Throwable cause) {
 _cause = cause;
}

public Throwable getCause() {

return _cause;
}

}

C.3.5.7.2 P_XXX_XXX Exceptions

P_XXX_XXX exceptions follow the XxxXxxException naming pattern, and inherit from
java.lang.Exception.

Example 12:

package org.csapi.jr.se;
public class InvalidInterfaceTypeException extends java.lang.Exception {

private Throwable _cause;

public InvalidInterfaceTypeException() {

super();
}

public InvalidInterfaceTypeException(String message) {

super(message);
}

public InvalidInterfaceTypeException(String message,Throwable cause) {

super(message);
_cause = cause;

}

public InvalidInterfaceTypeException(Throwable cause) {
_cause = cause;

}

public Throwable getCause() {
return _cause;

}

}

C.3.5.7.3 TpCommonExceptions

The name for TpCommonExceptions exception is made singular, i.e. CommonException, and inherits from
java.lang.Exception.

Example 13:

package org.csapi.jr.se;
public class CommonException extends java.lang.Exception {

private Throwable _cause;
private int exceptionType;
private String extraInformation;

public CommonException () {

super();
}

public CommonException (String message) {

super(message);
}

public CommonException (String message, Throwable cause) {

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 14

CR page 14

super(message);
_cause = cause;

}

public CommonException (Throwable cause) {
 _cause = cause;
}

public Throwable getCause() {

return _cause;
}

public int getExceptionType() {

return exceptionType;
}

public int setExceptionType() {

return exceptionType;
}

public String getExtraInformation() {

return extraInformation;
}

public String setExtraInformation() {

return extraInformation;
}

}

C.3.5.7.4 TpCommonException's associated exceptions

P_XXX_XXX exception types (constants) associated with TpCommonExceptions follow the
XxxXxxException naming pattern and inherit from CommonException.

Example 14:

package org.csapi.jr.se;
public class ResourcesUnavailableException extends org.csapi.jr.se.CommonException {

public ResourcesUnavailableException () {

super();
}

public ResourcesUnavailableException (String message) {

super(message);
}

public ResourcesUnavailableException (String message, Throwable cause) {

super(message, cause);
}

public ResourcesUnavailableException (Throwable cause) {
 _cause = cause;
}

}

C.3.5.7.5 Additional abstract exceptions

Additional abstract exceptions (See ETSI ES 202 915-2, Annex D) have been defined which are
TpInvalidArgumentException, TpFrameworkException, TpMobilityException, TpDataSessionException,
TpMessagingException, TpConnectivityException, TpAccountException, TpPAMException and
TpPolicyException and are mapped as follows:

Example 15:

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 15

CR page 15

package org.csapi.jr.se;
public class InvalidArgumentException extends java.lang.Exception {

private Throwable _cause;

public InvalidArgumentException () {

super();
}

public InvalidArgumentException (String message) {

super(message);
}

public InvalidArgumentException (String message, Throwable cause) {

super(message);
_cause = cause;

}

public InvalidArgumentException (Throwable cause) {
 _cause = cause;
}

public Throwable getCause() {

return _cause;
}

}

C.3.5.7.6 InvalidUnionAccessorException

An additional exception, InvalidUnionAccessorException, is defined which indicates that the expected data
element has not been set.

Example 16:

package org.csapi.jr.se;
public class InvalidUnionAccessorException extends
org.csapi.jr.se.InvalidArgumentException {

public InvalidUnionAccessorException (){
super ();

}

public InvalidUnionAccessorException (String message){
super (message);

}

public InvalidUnionAccessorException (String message, Throwable cause){
super (message,cause);

}

public InvalidUnionAccessorException (Throwable cause) {
 _cause = cause;
}

}

C.3.5.7.7 InvalidEnumValueException

An additional exception, InvalidEnumValueException, is defined which indicates that an enum data type was
accessed with an invalid request value.

Example 17:

package org.csapi.jr.se;
public class InvalidEnumValueException extends org.csapi.jr.se.InvalidArgumentException {

public InvalidEnumValueException () {

super ();
}

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 16

CR page 16

public InvalidEnumValueExceptions (String message) {
super (message);

}

public InvalidEnumValueException (String message, Throwable cause) {
super (message,cause);

}

public InvalidEnumValueException (Throwable cause) {
 _cause = cause;
}

}

C.3.5.7.8 IllegalStateException

IllegalStateException exception signals that a method has been invoked at an illegal or inappropriate time.

Example 18:

package org.csapi.jr.se;
public class IllegalStateException extends Exception {

private int _state;
private Object _object;

 public IllegalStateException(Object object, int state) {

 super();
 _object = object;

_state = state;
 }

public Illegal StateException(Object object, int state, String s) {
super(s);

 _object = object;
_state = state;

}

public Object getObject() {
return _object;

}

public int getState() {
return _state;

}
}

C.4 J2SE Specific Conventions

The UML interfaces are represented by Java public interfaces; those interfaces that inherit from other
interfaces are represented in Java as extending that interface. The Java realisations of OSA/Parlay SCFs use
an Event Listener design pattern while the Framework uses the Callback pattern.

This annex provides the information on realisation of the Java developer API including:

• How Java APIs are realised from Parlay UML

• Where the listener pattern is used, new classes to be generated from the UML

• Changes required to data types and methods to support correlation using object references

• Use of hierarchical exceptions

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 17

CR page 17

C.4.1 Removal of "Tp" Prefix
The UML data types labelled with the prefix “Tp” are represented in Java without this prefix.

Example 18:

UML Java Realisation

TpCallAppInfo CallAppInfo

In the case of name collisions between data types and interfaces as with IpTerminalCapabilities and
IpService the UML data types labelled with the prefix “Tp” are represented in Java with an alternative prefix
“Type”.

Example 19:

UML Java Realisation

IpTerminalCapabilities TerminalCapabilities

TpTerminalCapabilities TypeTerminalCapabilities

The above example is based in conjunction with C.4.3 Removal of "Ip" Prefix.

C.4.2 Constants
The UML constants labelled with the prefix “P_” are represented in Java without this prefix.

Example 20:

UML Constant Java Constant

P_NO_CALLBACK_ADDRESS_SET NO_CALLBACK_ADDRESS_SET

C.4.3 Removal of "Ip" prefix
The "Ip" prefix is removed in the Java realisation of UML interfaces.

Example 21:

UML Java

IpCallControlManager CallControlManager

C.4.4 Mapping of IpInterface
IpInterface interface is represented by the CsapiInterface interface. This is a ‘marker’ interface, in that it
contains no methods, but provides a common interface for related interfaces to inherit from. All interfaces
to be serializable; this can be done by CsapiInterface extending Serializable.

Example 22:

package org.csapi.jr.se;
public interface CsapiInterface extends Serializable{
}

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 18

CR page 18

C.4.5 Mapping of IpService
IpService interface is represented by the Java Service interface. This provides a common interface for
related interfaces to inherit from.

Example 23:

Service Interface:

package org.csapi.jr.se;
public interface Service extends CsapiInterface {

public final static int IN_SERVICE_STATE=0 ;
public final static int OUT_OF_SERVICE_STATE=1;

void addServiceStateChangeListener(ServiceStateChangeListener listener)
int getServiceState();
void removeServiceStateChangeListener(ServiceStateChangeListener listener) ;

}

Listener interface:

package org.csapi.jr.se;
public interface ServiceStateChangeListener {

void onOutOfService(OutOfServiceEvent event);
 }

Event class:

package org.csapi.jr.se;
public class OutOfServiceEvent extends EventObject {}

C.4.6 Mapping of UML Operations
The UML operations are represented in Java as methods.

Exceptions that can be raised by UML operations are represented in Java with the throws clause and the Java
Realisation of the UML Exceptions.

UML “in” parameters, represented by “in ” preceding the parameter type are represented in Java without this
clause.

Example 24:

public void managerResumed ();

public CsapiInterface obtainInterface (InterfaceName interfaceName) throws
InvalidInterfaceNameException;

public Service createServiceManager (ClientAppID application, ServicePropertyList
serviceProperties, ServiceInstanceID serviceInstanceID);

The above example method signatures are based on generic mapping of interfaces, exceptions and data types.

C.4.7 Mapping of TpSessionID
The UML TpSessionID data types will be hidden in the J2SE APIs (and optionally supported by the
underlying Java implementation). Consequently, the TpSessionIDSet data type and
IpService.setCallbackWithSessionID() method are superfluous. Also, structures with only TpSessionID and
interface references (e.g. TpCallIdentifier) are no longer necessary and references to these structures should

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 19

CR page 19

be replaced by just the reference to the interface. For data types that contain TpSessionID the Java API
Realisation object replaces theTpSessionID.

The following figure shows how Java API Realisation objects relate to Parlay UML objects and sessions.
How this is realised in the adaptors is implementation dependent.

Parlay UML Object

Parlay UML Sessions

Java API Realisation Objects

Relationships

C.4.8 Mapping of TpAssignmentID to the creation of an Activity
object.

The UML TpAssignmentID data types, which differentiate between multiple parallel asynchronous method
invocations (activities) on the same (“parent”) interface, are deleted and replaced with createXxx methods
(one for each parallel asynchronous activity) that create (“child”) activity interfaces. Where this would result
in method names of the pattern createCreateXxx, this should be changed to method names with the pattern
createXxx. Associated listeners would then remove the Create prefix from their name. These activity
interfaces, in addition to possibly supporting other methods, will support one of the previously mentioned
multiple parallel asynchronous method invocations. Hence, the Java API realisation creates multiple
(activity) objects and invokes a single request per object rather than creating a single object and invoking
multiple requests on that object, each request being differentiated using the TpAssignmentID value. The
results of the asynchronous method invocation will be handled by the activity interface’s listener interface.
To create the activity interface, the original IpXxx interface (to be named Xxx) will replace its parallel
supporting asynchronous method invocations, yyyYyyReq, with createYyyYyy methods that take no
parameters but returns the activity interface, YyyYyy. Where this would result in method names of the
pattern createCreateXxx, this should be changed to method names with the pattern createXxx. Associated
listeners would then remove the Create prefix from their name. The activity interface will extend Activity
interface (see next rule), have a simple FSM, the addYyyYyyListener, removeYyyYyyListener and the
asynchronous method that previously supported a parallel capability (typically named yyyYyyReq, but also
yyyYyyStop).

An Activity interface, packaged in org.csapi.jr.se, is added as a parent to all activity interfaces. An
application may add listeners of type ActivityStateChangeListener to an Activity if it wishes be explicitly
informed when the activity becomes invalid.

The YyyYyyListener activity listener interfaces will extend java.util.EventListener. The asynchronous
methods of previously named IpAppXxx, typically labelled yyyYyyRes and yyyYyyErr but also yyyYyy,
will be renamed onYyyYyyRes and onYyyYyyErr but also onYyyYyy. Each method will have an event
parameter, typically labelled YyyYyyResEvent and YyyYyyErrEvent, but also YyyYyyEvent. Events will
be classes that extend java.util.EventObject and contain a public constructor (with multiple parameters – one

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 20

CR page 20

per class carried by the event) and a number of public getter methods (one per “gettable” class carried by the
event). As a result of adding activity listener interfaces, this may cause the requirement for the original
IpAppXxx to disappear, since the yyyYyyRes and yyyYyyErr methods will effectively be ported to the
activity listener interfaces.

For data types that contain TpAssignmentID the activity object replaces the TpAssignmentID.

Example 25:

Activity Interface:

package org.csapi.jr.se;
public interface Activity {

public final static int IDLE_STATE = 0;
public final static int ACTIVE_STATE = 1;
public final static int INVALID_STATE = 2;
public int getState();
public void addActivityStateChangeListener(ActivityStateChangeListener listener);
public void removeActivityStateChageListener(ActivityStateChangeListener

listener);
}

Activity Listener Interface and Event class:

package org.csapi.jr.se;
public interface ActivityStateChangeListener {

onInvalidState (InvalidActivityEvent event)
}

public class InvalidActivityEvent extends EventObject {

 }

Parent interface:

package org.csapi.jr.se.mmm.ul;
public interface UserLocation {

public LocationReport createLocationReport();
public ExtendedLocationReport createExtendedLocationReport();
public PeriodicLocationReporting createPeriodicLocationReporting();

}

Child Interface:

package org.csapi.jr.se.mm.ul;
public interface LocationReport extends Activity {

public void addLocationReportListener(LocationReportListener listener)
public void removeLocationReportListener(LocationReportListener listener)
public void locationReportReq(Address[] users) throws …

}

Listener Interface:

package org.csapi.jr.se.mm.ul;
public interface LocationReportListener extends CsapiInterface, java.util.EventListener {

public void onLocationReportRes(LocationReportResEvent event);
public void onLocationReportErr(LocationReportErrEvent event);

}

Event classes:

package org.csapi.jr.se.mmm.ul;
public class LocationReportResEvent extends java.util.EventObject{

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 21

CR page 21

// with a public UserLocation[] constructor and a public getter
// method for the parameter of the event

}

public classLocationReportErrEvent extends java.util.EventObject {

// with a public MobilityError and MobilityDiagnostic constructor
// and two public getter methods, one for each of the parameters
// of the event

}

The Finite State Model for the Activity interface is given below:

Idle

Active

Invalid

This interface specifies an activity, which might be provided by a service. An activity has three states: "idle",
"active" and "invalid". The initial state is "idle" and here the listeners should be registered. It performs in
the "active" state. It enters the "invalid" state when it has fulfilled its task or a fatal error occurred. In special
cases state transition from "idle" to "invalid" is possible.

An example activity interface FSM is given below for a single activity request with a single response:

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 22

CR page 22

Idle

Active

Invalid

^LocationReportResEvent
^LocationReportErrEvent

locationReportReq()

removeLocationReportListener()

locationReportReq() exception

addLocationReportListener()
removeLocationReportListener()

An example activity interface FSM is given below for a single activity request with repeating responses:

Idle

Active

Invalid

periodicLocationReportingStop(“all users”)
^PeriodicLocationReportErrEvent

periodocLocationReportingStartReq()

removePeriodicLocationReportingListener()
^PeriodicLocationReportEvent
periodicLocationReportingStop(“selected users”)

periodicLocationReportingStartReq() exception

addPeriodicLocationReportingListener()
removePeriodicLocationReportingListener()

C.4.9 Callback Rule
The UML callback design pattern for non client-to-service interfaces (Parlay interface numbers 1, 3, 4, 5 and
6 [Fig 1]) is represented in Java with the callback design pattern. The UML callback design pattern for
client-to-service interfaces (Parlay interface number 2 [Fig 1]) is represented in Java with the event listener
design pattern.

The UML client-to-service interfaces (Parlay interface number 2) with the IpAppXxxx naming convention
are represented in Java with the XxxxListener naming convention.

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 23

CR page 23

The IpService.setCallback method can be deleted; the interfaces that inherited the setCallback method now
have associated addXxxxListener and removeXxxxListener methods. According to the TpSessionID
mapping, IpService.setCallbackWithSessionID() method is deleted.

The XxxxListener listener interfaces will extend java.util.EventListener. The asynchronous methods of
previously named IpAppXxxx, typically labelled yyyyYyyyRes and yyyyYyyyyErr but also yyyyYyyy, will
be renamed onYyyyYyyyRes and onYyyyYyyyErr but also onYyyyYyyy. Each method will have an event
parameter, typically labelled YyyyYyyyResEvent and YyyyYyyyErrEvent, but also YyyyYyyyEvent.
Events will be classes that extend java.util.EventObject and contain a private constructor (with multiple
parameters – one per class carried by the event) and a number of public getter methods (one per “gettable”
class carried by the event). Events are read-only and serializable.

Example 26:

Listener Interface:

package org.csapi.jr.se.cc.mpccs;

MultiPartyCallListener extends CsapiInterface, java.util.EventListener{

public void onGetInfoRes(GetInfoResEvent event)
public void onGetInfoErr(GetInfoErrEvent event)
public void onSuperviseRes(SuperviseResEvent event)
public void onSuperviseErr(SuperviseErrEvent event)
public void onCallEnded(CallEndedEvent event)
public void onCreateAndRouteCallLegErr(CreateAndRouteCallLegErrEvent event)
}

MuliPartyCall Interface additional methods:

public void addMultiPartyCallListener(MultiPartyCallListener multiPartyCallListener);

public void removeMultiPartyCallListener(MultiPartyCallListener multiPartyCallListener);

C.4.10 Factory Rule
The following Factory class allows applications to obtain proprietary peer API objects. The term "peer" is
Java nomenclature for a particular platform-specific implementation of a Java interface.

Example 27:

package org.csapi.jr.se.fw;
import org.csapi.jr.se.PeerUnavailableException;
import org.csapi.jr.se.InvalidArgumentException;
import org.csapi.jr.se.ResourcesUnavailableException;
import org.csapi.jr.se.fw.access.tsm.Initial;
import java.util.*;

public class InitialFactory {

private static InitialFactory myFactory;
private static String className = null;
private static String lang = "en";
private static String cntry = "US";

private InitialFactory() {
}

public synchronized Initial createInitial(String initialPeerReference) throws

PeerUnavailableException, ResourcesUnavailableException , InvalidArgumentException {

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 24

CR page 24

Locale currentLocale;
ResourceBundle messages;
String tryMessage;

try {

currentLocale = new Locale(lang, cntry);
messages = ResourceBundle.getBundle("InitialFactoryBundle",
currentLocale);

// Validate all used values before using them later
// avoiding error text exception to hide the real exception

tryMessage = messages.getString("InitialPeerReferenceNull");
tryMessage = messages.getString("InitialInstFailure");
tryMessage = message.getString("DestroyInitialFailure");

}
catch (Exception e) {

throw new ResourcesUnavailableException ("Localisation failed to be
initialized");

}

if (initialPeerReference == null) {
String errmsg = messages.getString("InitialPeerReferenceNull");
throw new InvalidArgumentException (errmsg);

}

try {
Class c = Class.forName (getImplementationClassName ());
if(initialPeerReference.equals(“”)){

// Creates a new instance of the Object class
// using default constructor
return (Initial)c.newInstance ();

}

Class[] paramTypes = {initialPeerReference.getClass()};
java.lang.reflect.Constructor ctor =
c.getConstructor(paramTypes);
Object[] params = {initialPeerReference};
return (Initial) ctor.newInstance(params);

} catch (Exception e) {
String errmsg = messages.getString("InitialInstFailure");
throw new PeerUnavailableException (errmsg);

}
}

public synchronized static InitialFactory getInstance() {

if (myFactory == null) {
myFactory = new InitialFactory ();

}
return myFactory;

}

public String getImplementationClassName () {

return className;
}

public static void setImplementationClassName (String className) {

this.className = className;
}

public synchronized static void setLocale(String language, String country) {

if (langauage == null) {
lang = "en";

}
else {

lang = language;
}

if (country == null) {

cntry = "US";

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 25

CR page 25

}
else {

cntry = country;
}

}

public void destroyInitial(Initial initialInstance) {

if (initialInstance == null) {
return;

}

try {

delete initialInstance;
} catch (Exception e) {

String errmsg = messages.getString("DestroyInitialFailure");
throw new RuntimeException(errmsg);

}
}

}

C.4.11 J2SE Specific Exceptions
Exceptions in this section are only applicable within a J2SE environment.

C.4.11.1 PeerUnavailableException

PeerUnavailableException indicates failure to access an implementation of the Initial interface.

Example 28:

public class PeerUnavailableException extends java.lang.Exception {
private Throwable _cause;
public PeerUnavailableException () {

super();
}

public PeerUnavailableException (String message) {

super(message);
}

public PeerUnavailableException (String message, Throwable cause) {

super(message);
_cause = cause;

}

public PeerUnavailableException (Throwable cause) {
 _cause = cause;
}

public Throwable getCause() {

return _cause;
}

}

C.4.11.2 IllegalStateException

IllegalStateException exception signals that a method has been invoked at an illegal or inappropriate time.

Example 29:

package org.csapi.jr.se;
public class IllegalStateException extends Exception {

private int _state;
private Object _object;

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 26

CR page 26

 public IllegalStateException(Object object, int state) {
 super();

 _object = object;
_state = state;

 }

public Illegal StateException(Object object, int state, String s) {
super(s);

 _object = object;
_state = state;

}

public Object getObject() {
return _object;

}

public int getState() {
return _state;

}
}

C.4.12 User Interaction Specific Rules

C.4.12.1 Interfaces representing UML IpUI and IpUICall Rule

The following mappings take account of the fact that when the TpAssignmentID rule is applied the Java
interfaces representing UML IpUICall does not extend the Java interfaces representing UML IpUI.

Java UIGeneric replaces the UML IpUI. Methods common to both the Java UIGeneric and Java UICall are
pulled up into a super-interface called UI. UML IpAppUI and IpAppUiCall interfaces are replaced by a
UIListener interface.

C.4.12.2 Naming Collisions of GUI and CUI Activities Rule

Naming collisions that arise through GUI and CUI activities e.g. XXX, having the same name will be dealt
with by prefixing the Call Related UI activity by “CallRelated”. Methods to create the activity will become
createCallRelatedXXX().

C.5 J2EE Specific Conventions
J2EE supports both remote and local interfaces. To support one set of data type definitions that will work with both
remote and local interfaces, an inheritance approach is used where the remote interface is a super interface to the local
interface, supporting Java language rules and accomplishing this goal. This is transparent to the application writer.

Remote Interface

Local Interface

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 27

CR page 27

C.5.1 Interface Fields in Data Types
A data type as a field must reference the interface as defined in the org.csapi.jr.ee package. This requirement
addresses the Java language rule that allows exceptions to be removed in a sub-interface, but does not allow
an exception to be added to a sub-interface.

Example 2730:

package org.csapi.jr.ee;

public class TpMultiPartyCallIdentifier {
org.csapi.jr.ee.remote.IpMultiPartyCall callReference;
int callSessionID;

}

C.5.2 Serialization UID
All data types will have a serialVersionUID defined within its definition, as a static final long value.

Example 2831:

package org.csapi.jr.ee;

public final class TpAddress implements java.io.Serializable {

static final long serialVersionUID = 989898989898L;

private TpAddressPlan plan;

… remainder of class …

}

C.5.3 Remote Interface Definitions

C.5.3.1 IpInterface

This interface implements java.io.Serializable. Since it is the root interface for all other interfaces, this makes
all defined interfaces serializable.

Example 22932:

public interface IpCall extends IpService

C.5.3.3 Methods for Remote Interfaces

A public method is defined within a remote interface for each method defined in the specification, with zero
or one output specified as the return value, and all other parameters listed without any input marker. Each
method will return java.rmi.RemoteException in addition to other exceptions, if any.

Example 3033:

public void deassignCall (int callSessionID) throws java.rmi.RemoteException,
org.csapi.jr.ee.TpCommonException, org.csapi.jr.ee.InvalidSessionIdException;

C.5.4 Local Interface Definitions

C.5.4.1 Parent Interface

Each local interface extends its corresponding remote interface.

3GPP TS 29.198-01 v5.1.1 (2003-03) CR page 28

CR page 28

Example 3134:

public interface IpCall extends org.csapi.jr.ee.remote.IpCall

C.5.4.2 Interface Inheritance

Interfaces in Java may extend each other using the ‘extends’ keyword. Where an interface is defined as
inheriting from one or more other interfaces, it will declare the list of interfaces it inherits from in its
interface declaration.

Example 3135:

public interface IpCall extends org.csapi.jr.ee.remote.IpCall, IpService

C.5.4.3 Methods for Local Interfaces

A public method is defined within a local interface for each method defined in the specification, with zero or
one output specified as the return value, and all other parameters listed without any input marker.

Example 3236:

public void deassignCall (int callSessionID) throws org.csapi.jr.ee.TpCommonExceptions,
org.csapi.jr.ee.InvalidSessionIdException;

End of Submission

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-030300
Meeting #23, San Diego, CA, USA, 19 - 23 May 2003

CR-Form-v7

CHANGE REQUEST

� 29.198-01 CR 022 � rev - � Current version: 5.1.1 �

For HELP on using this form, see bottom of this page or look at the pop-up text over the � symbols.

Proposed change affects: UICC apps� ME Radio Access Network Core Network X

Title: � Removal of un-used references

Source: � N5

Work item code: � OSA2 Date: � 26/05/2003

Category: � F Release: � REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: � Most of the references are not used in the body text and hence should be

removed.

Summary of change: � Remove un-used references

Consequences if �
not approved:

May generate confusion.

Clauses affected: � 2 References

 Y N
Other specs � X Other core specifications �
affected: X Test specifications
 X O&M Specifications

Other comments: �

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked � contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP

3GPP TS 29.198-1 V5.1.1 (2003-03)2Error! No text of specified style in document.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] 3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA)".

[3] 3GPP TS 23.127: "Virtual Home Environment / Open Service Access (OSA)".

[4] 3GPP TS 23.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL);
Stage 2". - NOT used in body text (should be removed)

[5] 3GPP TS 22.101: "Service Aspects; Service Principles".

[6] World Wide Web Consortium "Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation" (http://www.w3.org/TR/NOTE-CCPP/). - NOT used in body
text (should be removed)

[7] 3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[8] 3GPP TS 29.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL);
CAMEL Application Part (CAP) specification".

[9] Wireless Application Protocol (WAP), Version 2.0: "User Agent Profiling Specification"
(WAP-248) (http://www.wapforum.org/what/technical.htm). - NOT used in body text (should be
removed)

[10] Wireless Application Protocol (WAP), Version 2.0: "WAP Service Indication Specification"
(WAP-167) (http://www.wapforum.org/what/technical.htm). - NOT used in body text (should be
removed)

[11] Wireless Application Protocol (WAP), Version 2.0: "Push Architectural Overview"
(WAP-250) (http://www.wapforum.org/what/technical.htm). - NOT used in body text (should be
removed)

[12] Wireless Application Protocol (WAP), Version 2.0: "Wireless Application Protocol Architecture
Specification" (WAP-210) (http://www.wapforum.org/what/technical.htm). - NOT used in body
text (should be removed)

[13] Void.

[14] Void.

[15] Void.

[16] 3GPP TS 22.002: "Circuit Bearer Services (BS) supported by a Public Land Mobile Network
(PLMN)". - NOT used in body text (should be removed)

[17] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)". -
NOT used in body text (should be removed)

[18] 3GPP TS 24.002: "GSM - UMTS Public Land Mobile Network (PLMN) Access Reference
Configuration". - NOT used in body text (should be removed)

3GPP

3GPP TS 29.198-1 V5.1.1 (2003-03)3Error! No text of specified style in document.

[19] ITU-T Q.763: "Signalling System No. 7 – ISDN user part formats and codes". - NOT used in body
text (should be removed)

[20] ITU-T Q.931: "ISDN user-network interface layer 3 specification for basic call control". - NOT
used in body text (should be removed)

[21] ISO 8601: "Data elements and interchange formats -- Information interchange -- Representation of
dates and times". - NOT used in body text (should be removed)

[22] ISO 4217: "Codes for the representation of currencies and funds". - NOT used in body text (should
be removed)

[23] 3GPP TS 22.121: "Service aspects; The Virtual Home Environment; Stage 1". - NOT used in body
text (should be removed)

[24] void

[25] void

[26] 3GPP TS 23.057: "Mobile Execution Environment (MExE); Functional Description; Stage 2". -
NOT used in body text (should be removed)

[27] void

[28] void

[29] void

[30] void

[31] 3GPP TS 23.271 "Functional stage 2 description of location services (3GPP TS 23.271)". - NOT
used in body text (should be removed)

[32] ISO 639: "Code for the representation of names of languages". - NOT used in body text (should be
removed)

[33] IETF RFC 822: "Standard for the format of ARPA Internet text messages". NOT used in body text
(should be removed)

[34] IETF RFC 1738: "Uniform Resource Locators (URL)".- NOT used in body text (should be
removed)

[35] ANSI T1.113: "Signalling System No. 7 (SS7) - Integrated Services Digital Network (ISDN) User
Part".- NOT used in body text (should be removed)

[36] IETF RFC 3261: "SIP: Session Initiation Protocol".- NOT used in body text (should be removed)

[37] ITU-T Recommendation Q.932: "Digital subscriber signalling system No. 1 - Generic procedures
for the control of ISDN supplementary services".- NOT used in body text (should be removed)

[38] ITU-T Recommendation H.221: "Frame structure for a 64 to 1920 kbit/s channel in audiovisual
teleservices".- NOT used in body text (should be removed)

[39] ITU-T Recommendation H.323: "Packet-based multimedia communications systems".- NOT used
in body text (should be removed)

[40] IETF RFC 1994: "PPP Challenge Handshake Authentication Protocol (CHAP)". - NOT used in
body text (should be removed)

[41] IETF RFC 2630: "Cryptographic Message Syntax".- NOT used in body text (should be removed)

[42] IETF RFC 2313: "PKCS #1: RSA Encryption Version 1.5".- NOT used in body text (should be
removed)

[43] IETF RFC 2459: "Internet X.509 Public Key Infrastructure Certificate and CRL Profile".- NOT
used in body text (should be removed)

3GPP

3GPP TS 29.198-1 V5.1.1 (2003-03)4Error! No text of specified style in document.

[44] IETF RFC 2437: "PKCS #1: RSA Cryptography Specifications Version 2.0".- NOT used in body
text (should be removed)

[45] IETF RFC 1321: "The MD5 Message-Digest Algorithm".- NOT used in body text (should be
removed)

[46] IETF RFC 2404: "The Use of HMAC-SHA-1-96 within ESP and AH".- NOT used in body text
(should be removed)

[47] IETF RFC 2403: "The Use of HMAC-MD5-96 within ESP and AH".- NOT used in body text
(should be removed)

[48] ITU-T Recommendation G.722: "7 kHz audio-coding within 64 kbit/s".- NOT used in body text
(should be removed)

[49] ITU-T Recommendation G.711: "Pulse code modulation (PCM) of voice frequencies".- NOT used
in body text (should be removed)

[50] ITU-T Recommendation G.723.1: "Speech coders : Dual rate speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s".- NOT used in body text (should be removed)

[51] ITU-T Recommendation G.728: "Coding of speech at 16 kbit/s using low-delay code excited
linear prediction".- NOT used in body text (should be removed)

[52] ITU-T Recommendation G.729: "Coding of speech at 8 kbit/s using conjugate-structure algebraic-
code-excited linear-prediction (CS-ACELP)". - NOT used in body text (should be removed)

[53] ITU-T Recommendation H.261: "Video codec for audiovisual services at p x 64 kbit/s".- NOT
used in body text (should be removed)

[54] ITU-T Recommendation H.263: "Video coding for low bit rate communication".- NOT used in
body text (should be removed)

[55] ITU-T Recommendation H.262: "Information technology - Generic coding of moving pictures and
associated audio information: Video".- NOT used in body text (should be removed)

[56] World Geodetic System 1984 (WGS 84). (http://www.wgs84.com/files/wgsman24.pdf). - NOT
used in body text (should be removed)

[57] ITU-T Recommendation X.400: "Message handling services: Message handling system and
service overview".- NOT used in body text (should be removed)

[58] ITU-T Recommendation E.164: " The international public telecommunication numbering plan".-
NOT used in body text (should be removed)

[59] IETF RFC 2445: "Internet Calendaring and Scheduling Core Object Specification (iCalendar)". -
NOT used in body text (should be removed)

[60] IETF RFC 2778: "A Model for Presence and Instant Messaging".- NOT used in body text (should
be removed)

	NP-030239 Rel-5 CR 29.198-01.doc
	N5-030275 Rel 5 CR 29.198-01 Java Realisation Annex .doc
	N5-030300 Rel-5 CR 29.198-01 Remove un-used references.doc

