
3GPP TSG CN Plenary Meeting #19 NP-030031
12- 14 March 2003, Birmingham, UK

Source: CN5 (OSA)

Title: Rel-5 CRs 29.198-04-3 OSA API Part 4: Call control;

 Sub-part 3: Multi-Party Call Control SCF

Agenda item: 8.2

Document for: APPROVAL

Doc-1st-
Level

Spec CR Rev Phase Subject Cat Version-
Current

Doc-2nd-
Level

Workite
m

NP-030031 29.198-04-3 007 - Rel-5 Correction of status of MPCC methods F 5.1.0 N5-020874 OSA2
NP-030031 29.198-04-3 008 - Rel-5 Inconsistent description of use of secondary

callback
F 5.1.0 N5-021038 OSA2

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020874
Meeting #20, Miami/ FL, USA, 23 – 27 September 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04-3 CR 007 ! rev - ! Current version: 5.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of status of MPCC methods

Source: ! N5

Work item code: ! OSA2 Date: ! 27/09/2002

Category: ! F Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! There is no requirement in the standard about the necessity to implement all or

only some of the methods defined for an interface.

Summary of change: ! Clarify which methods are mandatory and which are optional.

Consequences if !
not approved:

Application developers will not know which methods will actually be available.

Clauses affected: ! 6 Multi Party Call Control Service Interface Classes

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

6 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

6.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

<<deprecated>> getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

<<new>> enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) :
TpAssignmentID

<<new>> disableNotifications () : void

<<new>> getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application
controlling the call or session at the same point in time during call or session processing.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with createNotification().

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.5 Method <<deprecated>> getNotification()

This method is deprecated and replaced by getNextNotification(). It will be removed in a later release.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty set is
returned when no notifications exist.

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

6.1.6 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

If the same application requests to enable notifications for a second time with a different
IpAppMultiPartyCallControlManager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. This means that the callback will only be used in cases when the first callback specified by the
application is unable to handle the callEventNotify (e.g. due to overload or failure).

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisoned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

Returns

TpAssignmentID

Raises

TpCommonExceptions

6.1.8 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Raises

TpCommonExceptions

6.1.9 Method <<new>> getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be
used in an iterative way. Each method invocation may return part of the total set of notifications if the set is too large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset : in TpBoolean

TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.

FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns

TpNotificationRequestedSetEntry

Raises

TpCommonExceptions

6.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface
using a setCallback() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or if supplied must
be the same as that provided during the setCallback().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Returns

TpAppMultiPartyCallBack

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.3 Method managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

6.3 Interface Class IpMultiPartyCall
Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods, and
either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum requirement.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

6.3.1 Method getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.2 Method createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

6.3.3 Method createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() has to be
received before the next createAndRouteCallLegReq() can be invoked. The Service Property
P_PARALLEL_INITIAL_ROUTING_REQUESTS (see section 7.5) indicates how a specific implementation handles
the initial createAndRouteCallLegReq(). This method shall throw P_TASK_REFUSED if an application is not allowed
to use parallel routing requests.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

6.3.4 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.3.5 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

When this method is invoked, all outstanding supervision requests will be cancelled.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.6 Method getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.7 Method setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.8 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

6.3.9 Method superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in
the network, e.g. answered by the B-party or the user-interaction system.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.4 Interface Class IpAppMultiPartyCall
Inherits from: IpInterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : void

6.4.1 Method getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

6.4.2 Method getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.3 Method superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

CR page 16

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

6.4.4 Method superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.5 Method callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

6.4.6 Method createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

CR page 17

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.5 Interface Class IpCallLeg
Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

This interface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(), release(),
continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

6.5.1 Method routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18

CR page 18

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

Note that for application initiated calls in some networks the result of the first routeReq() has to be received before the
next routeReq() can be invoked. The Service Property P_PARALLEL_INITIAL_ROUTING_REQUESTS (see section
7.5) indicates how a specific implementation handles the initial routeReq().This method shall throw
P_TASK_REFUSED if an application is not allowed to use parallel routing requests.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.5.2 Method eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19

CR page 19

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

6.5.3 Method release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.5.4 Method getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.5.5 Method getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 20

CR page 20

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.5.6 Method attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method is invoked while there is still a request to detach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.5.7 Method detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method is invoked while there is still a request to attach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.5.8 Method getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 21

CR page 21

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

6.5.9 Method continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call leg processing is not interrupted the exception
P_INVALID_NETWORK_STATE will be raised.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.5.10 Method setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.5.11 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 22

CR page 22

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

6.5.12 Method superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the callLeg is
connected in the network.

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.5.13 Method deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.6 Interface Class IpAppCallLeg
Inherits from: IpInterface

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 23

CR page 23

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

6.6.1 Method eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

6.6.2 Method eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 24

CR page 24

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.3 Method attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connections to this leg is now available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

6.6.4 Method attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.5 Method detachMediaRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer
connections to this leg is no longer available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

6.6.6 Method detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 25

CR page 25

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.7 Method getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

6.6.8 Method getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.9 Method routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.10 Method superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 26

CR page 26

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

6.6.11 Method superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.12 Method callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this
method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the reason the connection is terminated.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021038
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v5

CHANGE REQUEST

! 29.198-04-3 CR 008 ! rev - ! Current version: 5.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: ! (U)SIM ME/UE Radio Access Network Core Network X

Title: ! Inconsistent description of use of secondary callback

Source: ! N5

Work item code: ! OSA2 Date: ! 10/10/2002

Category: ! F Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: ! OSA Specification describes use of secondary callback interface inconsistently

between the different parts which confuses application developers.

Summary of change: ! Describe that most recent call back will be used as the callback interface. Only if

this one does not work, the initially provided callback interface is used.

Consequences if !
not approved:

Interoperability problems.

Clauses affected: !

Other specs ! Other core specifications !
affected: Test specifications
 O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Introduction
The OSA Specifications contains the following descriptions about the use of a secondary callback interface:

Part 1:

7.12 Notification Handling
It is possible to recreate a (set of) notification(s) or re-register for notifications. This is only useful when providing a
different callback interface reference. In this case, the last provided interface is used for reporting notifications. The
earlier provided callback interface is used as “backup” interface (this can be the one provided with setCallback() or
setCallbackWithSessionID() if NULL was provided initially). Notifications are reported on this interface when calls
to the most recent provided callback interface fail (object providing the interface is crashed or overloaded). When re-
creating or re-registering, the same assignment ID is returned.

Part 4-2:

6.1.2 Method enableCallNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is
used. In case the enableCallNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

Part 4-3:

6.1.2 Method createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is
used. In case the createNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

6.1.7 Method <<new>> enableNotifications()

If the same application requests to enable notifications for a second time with a different
IpAppMultiPartyCallControlManager reference (i.e. without first disabling them), the second callback will be treated
as an additional callback. This means that the callback will only be used in cases when the first callback specified by
the application is unable to handle the callEventNotify (e.g. due to overload or failure).

Part 4-4:

6.1.1 Method createMediaNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is
used. In case the createMediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Part 5:

8.1.3 Method createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. This means that the callback will only be used in case when
the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or
failure).

8.1.7 Method <<new>> enableNotifications()

If the same application requests to enable notifications for a second time with a different IpAppUIManager reference
(i.e. without first disabling them), the second callback will be treated as an additional callback. This means that the
callback wil only be used in cases when the first callback specified by the application is unable to handle the
callEventNotify (e.g. due to overload or failure).

Part 8:

8.4.1 Method <<deprecated>> createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is
used. In case the createNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

8.4.5 Method <<new>> enableNotifications()

If the same application requests to enable notifications for a second time with a different
IpAppDataSessionControlManager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. This means that the callback wil only be used in cases when the first callback specified by the
application is unable to handle the callEventNotify (e.g. due to overload or failure).

8.4.8 Method <<new>> createNotifications()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is
used. In case the createNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

Part 11:

8.1.1 Method createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is
used. In case the enableCallNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

8.1.7 Method <<new>> enableNotifications()

If the same application requests to enable notifications for a second time with a different IpAppAccountManager
reference (i.e. without first disabling them), the second callback will be treated as an additional callback. This means
that the callback will only be used in cases when the first callback specified by the application is unable to handle the
reportNotification (e.g. due to overload or failure).

Solution
The intended use of the 2nd callback interface is as described in part 1, therfore the changes to the following method
descriptions are proposed:

− Part 4-3, method enableNotifications()

− Part 5, method createNotification()

− Part 5, method enableNotifications()

− Part 8, method enableNotifications()

− Part 11, method enableNotifications()

This contribution proposes the changes for Part 4-3.

Proposed Changes

6.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

If the same application requests to enable notifications for a second time with a different
IpAppMultiPartyCallControlManager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. The gateway will always use the most recent callback. In case this most recent callback fails the
second most recent is used.This means that the callback will only be used in cases when the first callback specified by
the application is unable to handle the callEventNotify (e.g. due to overload or failure).

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisoned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Returns

TpAssignmentID

Raises

TpCommonExceptions

	NP-030031.doc
	29198-04-3CR007.doc
	29198-04-3CR008.doc

