
3GPP TSG CN Plenary Meeting #19  NP-030028 
12- 14 March 2003, Birmingham, UK 

 

Source: CN5 (OSA) 

Title: Rel-5 CRs 29.198-03 OSA API Part 3: Framework 

Agenda item: 8.2 

Document for: APPROVAL 

 
 

Doc-1st-
Level 

Spec CR Rev Phase Subject Cat Version-
Current 

Doc-2nd-
Level 

Workite
m 

NP-030028 29.198-03 068 - Rel-5 Correction to Application's requirements for 
supporting methods 

F 5.1.0 N5-020882 OSA2 

NP-030028 29.198-03 069 - Rel-5 Correction of status of methods to interfaces 
in clause 7.3 

F 5.1.0 N5-020897 OSA2 

NP-030028 29.198-03 070 - Rel-5 Correction of status of methods to interfaces 
in clause 8.3 

F 5.1.0 N5-020898 OSA2 

NP-030028 29.198-03 071 - Rel-5 Correction of status of methods to interfaces 
in clause 6.3 

F 5.1.0 N5-021143 OSA2 

NP-030028 29.198-03 075 - Rel-5 Adding the appAvailStatusInd() and 
svcAvailStatusInd() methods 

F 5.1.0 N5-030046 OSA2 

NP-030028 29.198-03 076 - Rel-5 Remove race condition in 
signServiceAgreement 

F 5.1.0 N5-030082 OSA2 

NP-030028 29.198-03 077 - Rel-5 Change reference to deprecated method 
"authenticate" in TpAuthMechanism to 
"challenge" 

F 5.1.0 N5-030083 OSA2 

 



CR page 1 

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020882 
Meeting #20, Miami/ FL, USA, 23 – 27 September 2002 

CR-Form-v7 

CHANGE REQUEST 
 

! 29.198-03 CR 068 ! rev - ! Current version: 5.1.0 
! 

 
For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. 

 
Proposed change affects: UICC apps!  ME  Radio Access Network  Core Network X 
 
Title: ! Correction to Application's requirements for supporting methods 
  
Source: ! N5 
  
Work item code: ! OSA2  Date: ! 27/09/2002 
     
Category: ! F  Release: ! REL-5 
 Use one of the following categories: 

F  (correction) 
A  (corresponds to a correction in an earlier release) 
B  (addition of feature),  
C  (functional modification of feature) 
D  (editorial modification) 

Detailed explanations of the above categories can 
be found in 3GPP TR 21.900. 

Use one of the following releases: 
2 (GSM Phase 2) 
R96 (Release 1996) 
R97 (Release 1997) 
R98 (Release 1998) 
R99 (Release 1999) 
Rel-4 (Release 4) 
Rel-5 (Release 5) 
Rel-6 (Release 6) 

  
Reason for change: ! It is not clear in the specification what methods an application should or should 

not support.  This may lead to interworking problems where different application 
developers choose options which will not interwork.  

  
Summary of change: ! Clarify what an application has to support. 
  
Consequences if  ! 
not approved: 

Interworking problems may arise. 

  
Clauses affected: ! 4 Overview of the Framework 
  
 Y N   
Other specs !  X  Other core specifications !  
affected:  X  Test specifications  
  X  O&M Specifications  
  
Other comments: !  
 
How to create CRs using this form: 
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  
Below is a brief summary: 

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are 
closest to. 

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word 
"revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be 
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name 
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. 

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of 
the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to 
the change request. 



CR page 2 

4 Overview of the Framework 
This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating 
applications. 

The Framework API contains interfaces between the Application Server and the Framework, and between Network 
Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the figure 
below).  The description of the Framework in the present document separates the interfaces into two distinct sets:  
Framework to Application interfaces and Framework to Service interfaces. 

 

 

Figure:  

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a 
user subscription is made to an application (e.g. enabling the call attempt event for a new user). 

Basic mechanisms between Application and Framework: 

- Authentication: Once an off-line service agreement exists, the application can access the authentication 
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be 
mutual. The application must be authenticated before it is allowed to use any other OSA interface.  It is a policy 
decision for the application whether it must authenticate the framework or not. It is a policy decision for the 
framework whether it allows an application to authenticate it before it has completed its authentication of the 
application. 

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of 
determining what a previously authenticated application is allowed to do. Authentication shall precede 
authorisation. Once authenticated, an application is authorised to access certain SCFs. 

- Discovery of Framework and network SCFs: After successful authentication, applications can obtain available 
Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.  
The Discovery interface can be used at any time after successful authentication. 

- Establishment of service agreement: Before any application can interact with a network SCF, a service 
agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging 
documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is 
allowed to access any network SCF. 

- Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs 
or service data for any API method from an application, with the specified security level, context, domain, etc. 

Registered Services 

Client Application 

Framework 
Call 

Control 
Mobility UI 



CR page 3 

Basic mechanism between Framework and Service Capability Server (SCS): 

- Registering of network SCFs. SCFs offered by a SCS can be registered at the Framework. In this way the 
Framework can inform the Applications upon request about available SCFs (Discovery). For example, this 
mechanism is applied when installing or upgrading an SCS. 

The following clauses describe each aspect of the Framework in the following order: 

• The sequence diagrams give the reader a practical idea of how the Framework is implemented.  

• The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another. 

• The interface specification clause describes in detail each of the interfaces shown within the class diagram part. 

• The State Transition Diagrams (STD) show the transition between states in the Framework.  The states and 
transitions are well-defined; either methods specified in the Interface specification or events occurring in the 
underlying networks cause state transitions. 

• The data definitions clause shows a detailed expansion of each of the data types associated with the methods within 
the classes.  Note that some data types are used in other methods and classes and are therefore defined within the 
common data types part of the present document (29.198-2).  

An implementation of this API which supports or implements a method described in the present document, shall 
support or implement the functionality described for that method, for at least one valid set of values for the parameters 
of that method.  Where a method is not supported by an implementation of a Framework or Service interface, the 
exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.  Where a method is not 
supported by an implementation of an Application interface, a call to that method shall be possible, and no exception 
shall be returned. 



CR page 1 

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-030083 
Meeting #22, Bangkok, THAILAND, 27 – 31 January 2003 

CR-Form-v7 

CHANGE REQUEST 
 

! 29.198-03 CR 077 ! rev - ! Current version: 5.1.0 
! 

 
For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. 

 
Proposed change affects: UICC apps!  ME  Radio Access Network  Core Network X 
 
Title: ! Change reference to deprecated method "authenticate" in TpAuthMechanism to 

"challenge" 
  
Source: ! N5 
  
Work item code: ! OSA2  Date: ! 31/01/2003 
     
Category: ! F  Release: ! REL-5 
 Use one of the following categories: 

F  (correction) 
A  (corresponds to a correction in an earlier release) 
B  (addition of feature),  
C  (functional modification of feature) 
D  (editorial modification) 

Detailed explanations of the above categories can 
be found in 3GPP TR 21.900. 

Use one of the following releases: 
2 (GSM Phase 2) 
R96 (Release 1996) 
R97 (Release 1997) 
R98 (Release 1998) 
R99 (Release 1999) 
Rel-4 (Release 4) 
Rel-5 (Release 5) 
Rel-6 (Release 6) 

  
Reason for change: ! Change reference to deprecated method "authenticate" in TpAuthMechanism to 

"challenge" 
  
Summary of change: ! Changed reference to deprecated method "authenticate" in TpAuthMechanism to 

"challenge". 
  
Consequences if  ! 
not approved: 

Inconsistent specification, interoperability issues 

  
Clauses affected: ! 10.3.13 
  
 Y N   
Other specs !  """"  Other core specifications !  
affected:  """"  Test specifications  
  """"  O&M Specifications  
  
Other comments: !  
 
How to create CRs using this form: 
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  
Below is a brief summary: 

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are 
closest to. 

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word 
"revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be 
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name 
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. 

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of 
the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to 
the change request. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2 

CR page 2 

10.3.13 TpAuthMechanism 

This data type is identical to a TpString. It identifies an authentication mechanism to be used for API Level 
Authentication. The following values are defined: 

String Value Description 
P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a 

shared secret and a challenge received via challengeauthenticate() method.  The capability to use this 
algorithm is required to be supported when using CHAP (RFC 1994) but its use is not recommended. 

P_OSA_HMAC_SHA1_96 Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response 
based on a shared secret and a challenge received via challengeauthenticate () method. 

P_OSA_HMAC_MD5_96 Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response 
based on a shared secret and a challenge received via authenticate challenge() method. 

 

 

 



CR page 1 

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-030082 
Meeting #22, Bangkok, THAILAND, 27 – 31 January 2003 

CR-Form-v7 

CHANGE REQUEST 
 

! 29.198-03 CR 076 ! rev - ! Current version: 5.1.0 
! 

 
For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. 

 
Proposed change affects: UICC apps!  ME  Radio Access Network  Core Network X 
 
Title: ! Remove race condition in signServiceAgreement 
  
Source: ! N5 
  
Work item code: ! OSA2  Date: ! 31/01/2003 
     
Category: ! F  Release: ! REL-5 
 Use one of the following categories: 

F  (correction) 
A  (corresponds to a correction in an earlier release) 
B  (addition of feature),  
C  (functional modification of feature) 
D  (editorial modification) 

Detailed explanations of the above categories can 
be found in 3GPP TR 21.900. 

Use one of the following releases: 
2 (GSM Phase 2) 
R96 (Release 1996) 
R97 (Release 1997) 
R98 (Release 1998) 
R99 (Release 1999) 
Rel-4 (Release 4) 
Rel-5 (Release 5) 
Rel-6 (Release 6) 

  
Reason for change: ! A race condition was identified in the service agreement interaction. 
  
Summary of change: ! An appropriate exception is identified that indicates to an application that a race 

condition was encountered.   
  
Consequences if  ! 
not approved: 

Occurence of the race condition could result in unexpected behavior. 

  
Clauses affected: ! 7.3.3.2.1 
  
 Y N   
Other specs !  """"  Other core specifications !  
affected:  """"  Test specifications  
  """"  O&M Specifications  
  
Other comments: !  
 
How to create CRs using this form: 
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  
Below is a brief summary: 

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are 
closest to. 

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word 
"revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be 
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name 
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. 

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of 
the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to 
the change request. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2 

CR page 2 

 

7.3.3.2.1 Method signServiceAgreement() 

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement 
interface, this method is used by the client application to request that the framework sign the service agreement, which 
allows the client application to use the service. A reference to the service manager interface of the service is returned to 
the client application.  The service manager returned will be configured as per the service level agreement. If the 
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties 
contained in the contract/profile for the client application, which will be a restriction of the registered properties.  If the 
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is 
returned.  If the client application invokes this method before the processing (i.e. digital signature verification) the 
reponse of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface completed, a 
TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is 
currently unable to complete the method due to a race condition.  In this case, the TpCommonExceptions with 
ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount 
of time has passed. 

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, 
and a reference to the service manager interface of the service.                
    structure TpSignatureAndServiceMgr {                  
       digitalSignature:  TpOctetSet;                  
        serviceMgrInterface:  IpServiceRef;               
       };                          
 The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with 
content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the 
agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent 
field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time 
attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.        
                        The serviceMgrInterface is a 
reference to the service manager interface for the selected service.   

Parameters 

serviceToken : in TpServiceToken 

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the 
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code 
(P_INVALID_SERVICE_TOKEN) is returned. 

agreementText : in TpString 

This is the agreement text that is to be signed by the framework using the private key of the framework.  If the 
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned. 

signingAlgorithm : in TpSigningAlgorithm 

This is the algorithm used to compute the digital signature.  It shall be identical to the one chosen by the framework in 
response to IpAccess.selectSigningAlgorithm().  If the signingAlgorithm is not the chosen one, is invalid, or unknown 
to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.  The list of possible algorithms 
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the 
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below). 

Returns 

TpSignatureAndServiceMgr 

Raises 

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SER
VICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED 

  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3 

CR page 3 

 



CR page 1 

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-030046 
Meeting #22, Bangkok, THAILAND, 27 – 31 January 2003 

CR-Form-v5 

CHANGE REQUEST 
 

! 29.198-03 CR 075 ! rev - ! Current version: 5.1.0 
! 

 
For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. 

 
Proposed change affects: ! (U)SIM  ME/UE  Radio Access Network  Core Network X 
 
Title: ! Adding the appAvailStatusInd() and svcAvailStatusInd() methods 
  
Source: ! N5 
  
Work item code: ! OSA2  Date: ! 21/01/03 
     
Category: ! F  Release: ! REL-5 
 Use one of the following categories: 

F  (correction) 
A  (corresponds to a correction in an earlier release) 
B  (addition of feature),  
C  (functional modification of feature) 
D  (editorial modification) 

Detailed explanations of the above categories can 
be found in 3GPP TR 21.900. 

Use one of the following releases: 
2 (GSM Phase 2) 
R96 (Release 1996) 
R97 (Release 1997) 
R98 (Release 1998) 
R99 (Release 1999) 
REL-4 (Release 4) 
REL-5 (Release 5) 

  
Reason for change: ! Currently, the appUnavailableInd and svcUnavailableInd methods on 

IpFaultManager, IpAppFaultManager, IpFWFaultManager and 
IpSvcFaultManager all imply that the application or service instance is broken, 
can't be fixed, and is to be killed. This is corrected in the CR N5-020692. 
 
The functionality of the new methods used in both the IpFwFaultManager and 
IpAppFaultManager is to enable the Service to both inform the Framework and 
Application when it becomes unavailable but as well when it becomes available 
again. The different unavailable reasons indicate to the Framework and 
Application if this problem will last a shorter or a longer time. It is then up to the 
Application to make a decision to stop using this Service and to sign up for 
another Service or wait for some time to get the availability status event. 
 
An error was also found in 8.1.4.7 where the diagram showed that the service 
instance was called using appUnavailableInd(). According to the method 
descriptions in 8.3.2.1 this is not correct. svcUnavailableInd() shall be used for 
this. 

  
Summary of change: ! Deprecate the appUnavailableInd() in IpFaultManager  and IpSvcFaultManager 

and deprecate svcUnavailableInd() in IpFwFaultManager and  
IpAppFaultManager. Instead the appAvailStatusInd() and the svcAvailStatusInd() 
methods are added. The corresponding diagrams are also corrected. Two new 
types are added. TpAppAvailStatusReason and TpSvcAvailStatusReason. 
Finally an error was found in chapter 8.1.4.7, where the call to the Services was 
done with the wrong method. 

  
Consequences if  ! 
not approved: 

The ability to support the ideas in the CR N5-020692 will not work fully. This will 
enable the service and application to become available again and to inform the 
other of that. 

  
Clauses affected: ! 7, 8 
  
Other specs !   Other core specifications !  



CR page 2 

affected:   Test specifications  
   O&M Specifications  
  
Other comments: !  
 
How to create CRs using this form: 
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.  
Below is a brief summary: 

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are 
closest to. 

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word 
"revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be 
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name 
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. 

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of 
the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to 
the change request. 



7.1.2.7 Fault Management: Framework detects a Service failure 

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The 
framework updates its own records and informs the client application using the service instance to stop. 

 

Client Application : IpAppFaultManager Framework : IpFaultManager 

The framework should detect if  
a service instance fails, for  
example via an unreturned  
heartbeat. The framework  
should inform the application  
that is using that service  
Instance using the Reason 

The application must  
cease the use of this  
service instance 

1: svcAvailStatusInd(  ) 

SERVICE_UNAVAILABLE_NO_RESPONSE 

Until it receives 
SERVICE_AVAILABLE. 

 

1: The framework informs the client application that is using the service instance that the service is unavailable. The 
client application is then expected to abandon use of this service instance and possibly access a different service 
instance via the usual means (e.g. discovery, selectService etc.) The client application may also wait to receive a new 
call to the svcAvailStatusInd with the reason SERVICE_AVAILABLE when the Service has become available again. 
The different Unavailability reasons used by the Framework (TpSvcAvailStatusReason) guides the client application 
developers to make the decision. The client application should not need to re-authenticate in order to discover and use 
an alternative service instance. The framework will also need to make the relevant updates to its internal records to 
make sure the service instance is removed from service and no client applications are still recorded as using it.  

 

***************************************** 

 



7.2  Class Diagrams 
 

  

IpAppEventNotification

reportNotification()
notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()
destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

  

Figure: Event Notification Class Diagram  

 

  



IpAppFaultManager

activityTestRes()
appActivityTestReq()
fwFaultReportInd()
fwFaultRecoveryInd()
svcUnavailableInd()
genFaultStatsRecordRes()
fwUnavailableInd()
activityTestErr()
genFaultStatsRecordErr()
appUnavailableInd()
genFaultStatsRecordReq()

<<Interface>>

IpFaultManager

activityTestReq()
appActivityTestRes()
svcUnavailableInd()
genFaultStatsRecordReq()
appActivityTestErr()
appUnavailableInd()
genFaultStatsRecordRes()
genFaultStatsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()
disableAppHeartBeat()
changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpAppLoadManager

queryAppLoadReq()
queryLoadRes()
queryLoadErr()
loadLevelNotification()
resumeNotification()
suspendNotification()

<<Interface>>

IpLoadManager

reportLoad()
queryLoadReq()
queryAppLoadRes()
queryAppLoadErr()
createLoadLevelNotification()
destroyLoadLevelNotification()
resumeNotificat ion()
suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

  

Figure: Integrity Management Package Overview  

N.B The figure above must be edited to deprecate the appUnavailableInd and to add the appAvailStatusInd in the 
IpFaultManager interface. As well as to deprecate the svcUnavailableInd and to add the svcAvailStatusInd in the 
IpAppFaultManager. 

 

 

***************************************** 

7.3.2.1 Interface Class IpAppFaultManager  

Inherits from: IpInterface. 

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client 
Application.  The Fault Management Framework will invoke methods on the Fault Management Application Interface 
that is specified when the client application obtains the Fault Management interface: i.e. by use of the 
obtainInterfaceWithCallback operation on the IpAccess interface  



<<Interface>> 

IpAppFaultManager 

 

 

 

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

appActivityTestReq (activityTestID : in TpActivityTestID) : void 

fwFaultReportInd (fault : in TpInterfaceFault) : void 

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void 

<<deprecated>> svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void 

<<new>> svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void 

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void 

fwUnavailableInd (reason : in TpFwUnavailReason) : void 

activityTestErr (activityTestID : in TpActivityTestID) : void 

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : 
void 

appUnavailableInd (serviceID : in TpServiceID) : void 

genFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void 

 

  

7.3.2.1.1 Method activityTestRes() 

The framework uses this method to return the result of a client application-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the client application to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

  

7.3.2.1.2 Method appActivityTestReq() 

The framework invokes this method to test that the client application is operational. On receipt of this request, the 
application must carry out a test on itself, to check that it is operating correctly.  The application reports the test result 
by invoking the appActivityTestRes method on the IpFaultManager interface.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the framework to correlate the response (when it arrives) with this request. 

  

7.3.2.1.3 Method fwFaultReportInd() 

The framework invokes this method to notify the client application of a failure within the framework. The client 
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).   



Parameters 

fault : in TpInterfaceFault 

Specifies the fault that has been detected by the framework. 

  

7.3.2.1.4 Method fwFaultRecoveryInd() 

The framework invokes this method to notify the client application that a previously reported fault has been rectified.  
The application may then resume using the framework.   

Parameters 

fault : in TpInterfaceFault 

Specifies the fault from which the framework has recovered. 

  

7.3.2.1.5 Method <<deprecated>> svcUnavailableInd() 

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this 
method. The new method svcAvailStatusInd shall be used instead, using the new type of reason parameter to inform the 
Service the reason why the Application is unavailable and also when the application becomes available again. 

 

The framework invokes this method to inform the client application that it can no longer use its instance of the indicated 
service. On receipt of this request, the client application must act to reset its use of the specified service (using the 
normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin 
use of a different service instance).  

Parameters 

serviceID : in TpServiceID 

Identifies the affected service. 

reason : in TpSvcUnavailReason 

Identifies the reason why the service is no longer available 

7.3.2.1.6  Method <<new>> svcAvailStatusInd() 

The framework invokes this method to inform the client application about the Service instance availability status, i.e. 
that it can no longer use its instance of the indicated service according to the reason parameter but as well information 
when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset 
its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to 
stop use of this service instance and begin use of a different service instance). The client application can also wait for 
the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with 
the reason SERVICE_AVAILABLE.  

Parameters 

serviceID : in TpServiceID 

Identifies the affected service. 

reason : in TpSvcAvailStatusReason 

Identifies the reason why the service is no longer available or that it has become available again. 

 



7.3.2.1.67.3.2.1.7 Method genFaultStatsRecordRes() 

This method is used by the framework to provide fault statistics to a client application in response to a 
genFaultStatsRecordReq method invocation on the IpFaultManager interface.   

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

serviceIDs : in TpServiceIDList 

Specifies the framework or services that are included in the general fault statistics record.  If the serviceIDs parameter is 
an empty list, then the fault statistics are for the framework. 

  

7.3.2.1.77.3.2.1.8 Method fwUnavailableInd() 

The framework invokes this method to inform the client application that it is no longer available.  

Parameters 

reason : in TpFwUnavailReason 

Identifies the reason why the framework is no longer available 

  

7.3.2.1.87.3.2.1.9 Method activityTestErr() 

The framework uses this method to indicate that an error occurred during an application-initiated activity test.   

Parameters 

activityTestID : in TpActivityTestID 

Used by the application to correlate this response (when it arrives) with the original request. 

  

7.3.2.1.97.3.2.1.10 Method genFaultStatsRecordErr() 

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to 
a genFaultStatsRecordReq method invocation on the IpFaultManager interface.  

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

serviceIDs : in TpServiceIDList 

Specifies the framework or services that were included in the general fault statistics record request.  If the serviceIDs 
parameter is an empty list, then the fault statistics were requested for the framework. 

  

7.3.2.1.107.3.2.1.11 Method appUnavailableInd() 

The framework invokes this method to indicate to the application that the service instance has detected that it is not 
responding.  On receipt of this indication, the application must end its current session with the service instance.   



Parameters 

serviceID : in TpServiceID 

Specifies the service for which the indication of unavailability was received. 

  

7.3.2.1.117.3.2.1.12 Method genFaultStatsRecordReq() 

This method is used by the framework to solicit fault statistics from the client application, for example when the 
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the 
IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for 
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes 
operation on the IpFaultManager interface.   

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the client 
application. 

7.3.2.2 Interface Class IpFaultManager  

Inherits from: IpInterface. 

This interface is used by the application to inform the framework of events that affect the integrity of the framework 
and services, and to request information about the integrity of the system.  The fault manager operations do not 
exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback 
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback 
operation on the IpAccess interface.  

<<Interface>> 

IpFaultManager 

 

 

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void 

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

svcUnavailableInd (serviceID : in TpServiceID) : void 

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void 

appActivityTestErr (activityTestID : in TpActivityTestID) : void 

<<deprecated>> appUnavailableInd (serviceID : in TpServiceID) : void 

<<new>> appAvailStatusInd(reason : in TpAppAvailStatusReason) : void  

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void 

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void 

 

  

7.3.2.2.1 Method activityTestReq() 

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of 
this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check 
that it is operating correctly.  The framework reports the test result by invoking the activityTestRes method on the 
IpAppFaultManager interface.  If the application does not have access to a service instance with the specified serviceID, 
the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the 
exception shall contain the corresponding serviceID. 



For security reasons the client application has access to the service ID rather than the service instance ID. However, as 
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of 
the specified service per client application, it is the obligation of the framework to determine the service instance ID 
from the service ID.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the client application to correlate the response (when it arrives) with this request. 

svcID : in TpServiceID 

Identifies either the framework or a service for testing. The framework is designated by a null value. 

Raises 

TpCommonExceptions,P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

 
  

7.3.2.2.2 Method appActivityTestRes() 

The client application uses this method to return the result of a framework-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

Raises 

TpCommonExceptions,P_INVALID_SERVICE_ID,P_INVALID_ACTIVITY_TEST_ID 

 
  

7.3.2.2.3 Method svcUnavailableInd() 

This method is used by the client application to inform the framework that it can no longer use its instance of the 
indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this 
request, the framework should take the appropriate corrective action. The framework assumes that the session between 
this client application and service instance is to be closed and updates its own records appropriately as well as 
attempting to inform the service instance and/or its administrator. Attempts by the client application to continue using 
this session should be rejected.  If the application does not have access to a service instance with the specified 
serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field 
of the exception shall contain the corresponding serviceID.  

Parameters 

serviceID : in TpServiceID 

Identifies the service that the application can no longer use. 



Raises 

TpCommonExceptions ,P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

 
  

7.3.2.2.4 Method genFaultStatsRecordReq() 

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the 
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified 
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes 
operation on the IpAppFaultManager interface.  If the application does not have access to a service instance with the 
specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The 
extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework. 

serviceIDs : in TpServiceIDList 

Specifies either the framework or services to be included in the general fault statistics record.  If this parameter is not an 
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault 
statistics record of the framework is returned. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

 
  

7.3.2.2.5 Method appActivityTestErr() 

The client application uses this method to indicate that an error occurred during a framework-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 

Raises 

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID 

 
  

7.3.2.2.6 Method appUnavailableInd() 

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This 
may a result of the application detecting a failure.  The framework assumes that the session between this client 
application and service instance is to be closed and updates its own records appropriately as well as attempting to 
inform the service instance and/or its administrator.  

Parameters 

serviceID : in TpServiceID 

Identifies the affected application. 



Raises 

TpCommonExceptions 

 

7.3.2.2.7 Method <<new>> appAvailStatusInd() 

This method is used by the application to inform the framework that of its availability status. If the Application has 
detected a failure it uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its 
use of all of its subscribed service instances. When the Application is working again it shall call this method again with 
the APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also 
attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.  

Parameters 

reason :  in TpAppAvailStatusReason 

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework 
and the Service that the Application is available again.  

Raises 

TpCommonExceptions 

 

  

7.3.2.2.8 Method genFaultStatsRecordRes() 

This method is used by the client application to provide fault statistics to the framework in response to a 
genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.   

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

Raises 

TpCommonExceptions 

 
  

7.3.2.2.9 Method genFaultStatsRecordErr() 

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in 
response to a genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.   

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

Raises 

TpCommonExceptions 

 
 



******************************************** 
 

In the following diagram the appUnavailableInd() is swapped to the svcUnavailableInd(), i.e. according to the 
description of the methods in chapter 8.3.4.2 below. 

8.1.4.7 Fault Management: Application detects service is unavailable 

 

 

Client Application :  
IpAppFaultManager 

Service :  
IpSvcFaultManager 

Framework :  
IpFaultManager 

 :  
IpFwFaultManager 

The application detects that  
the service is not responding,  
so it informs the framework via  
the svcUnavailableInd method  
and then ceases use of the  
service. 

The framework informs the  
service that the application  
is no longer using it. 

1: svcUnavailableInd( ) 

2: svcUnavailableInd( ) 

 

1: The client application detects that the service instance is currently not available, i.e. the service instance is not 
responding to the client application in the normal way, so it informs the framework and takes action to stop using this 
service instance and change to a different one (via the usual mechanisms, such as discovery, selectService etc.). The 
client application should not need to re-authenticate in order to discover and use an alternative service instance. 

2: The framework informs the service instance that the client application was unable to get a response from it and has 
ceased to be one of its users. The framework and service instance must carry out the appropriate updates to remove the 
client application as one of the users of this service instance. The service or framework may then decide to carry out an 
activity test to see whether there is a general problem with the service instance that requires further action. 

 
 

******************************************** 



8.2 Class Diagrams 
 

  

IpFwServiceDiscovery

listServiceTypes()
describeServiceType()
discoverService()
listRegisteredServices()

(from Framework interfaces)

<<Interface>>

  

Figure: Service Discovery Package Overview  

 

  

IpFwServiceRegistration

regis terService()
announceServiceAvailability()
unregisterService()
describeService()
unannounceService()

(from Framework interfaces)

<<Interface>>

  

Figure: Service Registration Package Overview  

  



IpInitial

<<deprecated>> initiateAuthentication()
<<new>> initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>
IpAccess

obtainInterface()
obtainInterfaceWithCallback()
endAccess()
listInterfaces()
releaseInterface()

(f rom Fram ework i nterfa ces)

<<Interface>> IpAPILevelAuthent ication

selectEncryptionMethod()
authenticate()
abortAuthentication()
authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(f rom Cl ien t in te rface s)

<<Interface>>
IpClientAPILevelAuthentication

authenticate()
abortAuthentication()
authenticationSucceeded()

(from Client interfaces)

<<Interface>>

<<uses>> <<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

  

Figure: Trust and Security Management Package Overview  

 

  

IpServiceInstanceLifecycleManager

createServiceManager()
destroyServiceManager()

(from Service Interfaces)

<<Interface>>

  

Figure: Service Instance Lifecycle Manager Package Overview  

 

  



IpSvcHeartBeatMgmt

enableSvcHeartBeat()
disableSvcHeartBeat()
changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpFwLoadManager

reportLoad()
queryLoadReq()
querySvcLoadRes()
querySvcLoadErr()
createLoadLevelNotification()
destroyLoadLevelNotification()
suspendNotification()
resumeNotification()

<<Interface>>

IpSvcLoadManager

querySvcLoadReq()
queryLoadRes()
queryLoadErr()
loadLevelNotification()
suspendNotification()
resumeNotification()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()
svcActivityTestReq()
fwFaultReportInd()
fwFaultRecoveryInd()
fwUnavailableInd()
svcUnavailableInd()
appUnavailableInd()
genFaultStatsRecordRes()
activityTestErr()
genFaultStatsRecordErr()
genFaultStatsRecordReq()

<<Interface>>

IpFwFaultManager

activityTestReq()
svcActivityTestRes()
appUnavailableInd()
genFaultStatsRecordReq()
svcUnavailableInd()
svcActivityTestErr()
genFaultStatsRecordRes()
genFaultStatsRecordErr()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

  

Figure: Integrity Management Package Overview  

 

 N.B The figure above must be edited to deprecate the appUnavailableInd and add the appAvailStatusInd in the 
IpSvcFaultManager interface. As well as to deprecate the svcUnavailableInd and to add the svcAvailStatusInd in the 
IpFwFaultManager. 

 

IpFwEventNotification

createNotification()
destroyNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNotification

reportNotification()
notificationTerminated()

(from Service Interfaces)

<<Interface>>

<<uses>>

  

Figure: Event Notification Package Overview  

 



 
 

8.3.2.1 Interface Class IpFwFaultManager  

Inherits from: IpInterface. 

This interface is used by the service instance to inform the framework of events which affect the integrity of the API, 
and request fault management status information from the framework.  The fault manager operations do not exchange 
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the 
time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on 
the IpAccess interface.  

<<Interface>> 

IpFwFaultManager 

 

 

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void 

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

appUnavailableInd () : void 

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void 

<<deprecated>> svcUnavailableInd (reason : in TpSvcUnavailReason) : void 

<<new>> svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void 

svcActivityTestErr (activityTestID : in TpActivityTestID) : void 

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void 

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : 
void 

 

  

 

8.3.2.1.1 Method activityTestReq() 

The service instance invokes this method to test that the framework or the client application is operational. On receipt of 
this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. 
The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the service instance to correlate the response (when it arrives) with this request. 

testSubject : in TpSubjectType 

Identifies the subject for testing (framework or client application). 

Raises 

TpCommonExceptions 

 
  



 

8.3.2.1.2 Method svcActivityTestRes() 

The service instance uses this method to return the result of a framework-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

Raises 

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID 

 
  

 

8.3.2.1.3 Method appUnavailableInd() 

This method is used by the service instance to inform the framework that the client application is not responding.  On 
receipt of this indication, the framework must act to inform the client application that it should cease use of this service 
instance.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.1.4 Method genFaultStatsRecordReq() 

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the 
framework must produce a fault statistics record, for the framework or for the application during the specified time 
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the 
IpSvcFaultManager interface.  

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework. 

recordSubject : in TpSubjectType 

Specifies the subject to be included in the general fault statistics record (framework or application). 



Raises 

TpCommonExceptions 

 
  

 

8.3.2.1.5 Method <<deprecated>> svcUnavailableInd() 

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this 
method. The new method svcAvailStatusInd() shall be used instead, using the new and updated reason parameter to 
inform the Framework the reason why the Service has become unavailable and also when the Service instance becomes 
available again. 

 

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The 
framework should inform the client application that is currently using this service instance that it is unavailable for use 
(via the svcUnavailableInd method on the IpAppFaultManager interface).  

Parameters 

reason : in TpSvcUnavailReason 

Identifies the reason for the service instance's unavailability. 

Raises 

TpCommonExceptions 

8.3.2.1.6 Method <<new>> svcAvailStatusInd() 

This method is used by the service instance to inform the framework that it is about to become unavailable for use 
according to the provided reason and as well to inform the Framework when the Service instance becomes available 
again. The framework should inform the client applications that are currently using this service instance that it is 
unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the 
IpAppFaultManager interface).  

Parameters 

reason : in TpSvcAvailStatusReason 

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to 
inform the Framework when the Service instance becomes available again. 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.1.68.3.2.1.7 Method svcActivityTestErr() 

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.   

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 



Raises 

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID 

 
  

 

8.3.2.1.78.3.2.1.8 Method genFaultStatsRecordRes() 

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq 
method invocation on the IpSvcFaultManager interface.   

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

serviceIDs : in TpServiceIDList 

Specifies the services that are included in the general fault statistics record.  The serviceIDs parameter is not allowed to 
be an empty list. 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.1.88.3.2.1.9 Method genFaultStatsRecordErr() 

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a 
genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.   

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

serviceIDs : in TpServiceIDList 

Specifies the services that were included in the general fault statistics record request.  The serviceIDs parameter is not 
allowed to be an empty list. 

Raises 

TpCommonExceptions 

 



8.3.2.2 Interface Class IpSvcFaultManager  

Inherits from: IpInterface. 

This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or 
Client Application.  The Framework will invoke methods on the Fault Management Service Interface that is specified 
when the service instance obtains the Fault Management Framework interface: i.e. by use of the 
obtainInterfaceWithCallback operation on the IpAccess interface  

<<Interface>> 

IpSvcFaultManager 

 

 

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

svcActivityTestReq (activityTestID : in TpActivityTestID) : void 

fwFaultReportInd (fault : in TpInterfaceFault) : void 

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void 

fwUnavailableInd (reason : in TpFwUnavailReason) : void 

svcUnavailableInd () : void 

<<deprecated>> appUnavailableInd () : void 

<<new>> appAvailStatusInd (reason : in TpAppAvailStatusReason) : void 

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void 

activityTestErr (activityTestID : in TpActivityTestID) : void 

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : 
void 

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void 

 

  

 

8.3.2.2.1 Method activityTestRes() 

The framework uses this method to return the result of a service-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the service to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

Raises 

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID 

 
  

 



8.3.2.2.2 Method svcActivityTestReq() 

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service 
instance must carry out a test on itself, to check that it is operating correctly.  The service instance reports the test result 
by invoking the svcActivityTestRes method on the IpFwFaultManager interface.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the framework to correlate the response (when it arrives) with this request. 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.2.3 Method fwFaultReportInd() 

The framework invokes this method to notify the service instance of a failure within the framework. The service 
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).  

Parameters 

fault : in TpInterfaceFault 

Specifies the fault that has been detected by the framework. 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.2.4 Method fwFaultRecoveryInd() 

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.  
The service instance may then resume using the framework.  

Parameters 

fault : in TpInterfaceFault 

Specifies the fault from which the framework has recovered. 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.2.5 Method fwUnavailableInd() 

The framework invokes this method to inform the service instance that it is no longer available.  



Parameters 

reason : in TpFwUnavailReason 

Identifies the reason why the framework is no longer available 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.2.6 Method svcUnavailableInd() 

The framework invokes this method to inform the service instance that the client application has reported that it can no 
longer use the service instance (either due to a failure in the client application or in the service instance itself).  The 
service should assume that the client application is leaving the service session and the service should act accordingly to 
terminate the session from its own end too.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.2.7 Method <<deprecated>> appUnavailableInd() 

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this 
method. The new method appAvailStatusInd shall be used instead, using the new reason parameter to inform the 
Service the reason why the Application is unavailable and also when the application becomes available again. 

 

The framework invokes this method to inform the service instance that the client application is ceasing its current use of 
the service.  This may be a result of the application reporting a failure.  Alternatively, the framework may have detected 
that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 
 

8.3.2.2.8 Method <<new>> appAvailStatusInd() 

 

The framework invokes this method to inform the service instance that the client application is no longer available 
using different reasons for the unavailability. This may be a result of the application reporting a failure.  Alternatively, 
the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return 



heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again 
the reason APP_AVAILABLE shall be used to inform the Service about that. 

Parameters 

reason :  in TpAppAvailStatusReason 

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that 
the Application is available again.  

Raises 

TpCommonExceptions 

 
 

  

 

8.3.2.2.9 Method genFaultStatsRecordRes() 

This method is used by the framework to provide fault statistics to a service instance in response to a 
genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.  

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

recordSubject : in TpSubjectType 

Specifies the entity (framework or application)  whose fault statistics record has been provided. 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.2.10 Method activityTestErr() 

The framework uses this method to indicate that an error occurred during a service-requested activity test.   

Parameters 

activityTestID : in TpActivityTestID 

Used by the service instance to correlate this response (when it arrives) with the original request. 

Raises 

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID 

 
  

 



8.3.2.2.11 Method genFaultStatsRecordErr() 

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to 
a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.  

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

recordSubject : in TpSubjectType 

Specifies the entity (framework or application) whose fault statistics record was requested. 

Raises 

TpCommonExceptions 

 
  

 

8.3.2.2.12 Method genFaultStatsRecordReq() 

This method is used by the framework to solicit fault statistics from the service, for example when the framework was 
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager 
interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the 
client's instances of the specified services during the specified time interval, which is returned to the framework using 
the genFaultStatsRecordRes operation on the IpFwFaultManager interface.  If the framework does not have access to a 
service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be 
thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.   

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the service. 

serviceIDs : in TpServiceIDList 

Specifies the services to be included in the general fault statistics record.  This parameter is not allowed to be an empty 
list. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

 
 

****************************************** 



10.4.8 TpSvcUnavailReason 

Defines the reason why a SCF is unavailable. 

  Name Value Description 
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined 
SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed 
SERVICE_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed 
SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded 
SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from 

fraud or malicious attack) 

10.4.9 TpSvcAvailStatusReason 

Defines the reason why a SCF is unavailable. 

  Name Value Description 
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined 
SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed. 

Normally take longer time to correct 
SERVICE_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed 

Normally take longer time to correct 
SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded Normally a 

temporary problem 
SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from 

fraud or malicious attack)  
Normally take longer time to correct 

SERVICE_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that the service has 
failed: e.g. non-response from an activity test, 

failure to return heartbeats   
SERVIVE_UNAVAILABLE_SW_UPGRADE 6 The Service is unavailable due to SW upgrade or 

other similar maintenance  
Normally a temporary problem 

SERVICE_AVAILABLE 7 The Service has become available again 
 

10.4.10 TAppAvailStatusReason 

Defines the reason why the Application is unavailable. 

Name Value Description 
APP_UNAVAILABLE_UNDEFINED 0 Undefined 
APP_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Application has been detected 

Normally take longer time to correct 
APP_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the application has been detected, e.g. a 

database is not working 
Normally take longer time to correct 

APP_UNAVAILABLE_OVERLOADED 3 The Application is fully overloaded 
Often a temporary problem 

APP_UNAVAILABLE_CLOSED 4 The Application has closed itself (e.g. to protect from fraud 
or malicious attack) 

Normally take longer time to correct 
APP_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that the application has 

failed: e.g. non-response from an activity test, failure to 
return heartbeats  

APP_UNAVAILABLE_SW_UPGRADE 6 The Application is unavailable due to SW upgrade or other 
similar maintenance 

Often a temporary problem 
APP_AVAILABLE 7 The Application has become available 
 

 



 



CR page 1 

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021143 
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002 

CR-Form-v7 

CHANGE REQUEST 
 

! 29.198-03 CR 071 ! rev - ! Current version: 5.1.0 
! 

 
For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. 

 
Proposed change affects: UICC apps!  ME  Radio Access Network  Core Network X 
 
Title: ! Correction of status of methods to interfaces in clause 6.3 
  
Source: ! N5 
  
Work item code: ! OSA2  Date: ! 31/10/2002 
     
Category: ! F  Release: ! REL-5 
 Use one of the following categories: 

F  (correction) 
A  (corresponds to a correction in an earlier release) 
B  (addition of feature),  
C  (functional modification of feature) 
D  (editorial modification) 

Detailed explanations of the above categories can 
be found in 3GPP TR 21.900. 

Use one of the following releases: 
2 (GSM Phase 2) 
R96 (Release 1996) 
R97 (Release 1997) 
R98 (Release 1998) 
R99 (Release 1999) 
Rel-4 (Release 4) 
Rel-5 (Release 5) 
Rel-6 (Release 6) 

  
Reason for change: ! There is no requirement in the standard about the necessity to implement all or 

only some of the methods defined for an interface. 
  
Summary of change: ! Clarify which methods are mandatory and which are optional. 
  
Consequences if  ! 
not approved: 

Application developers will not know which methods will actually be available. 

  
Clauses affected: ! 6.3.1 Trust and Security Management Interface Classes 
  
 Y N   
Other specs !  X  Other core specifications !  
affected:  X  Test specifications  
  X  O&M Specifications  
  
Other comments: !  
 
How to create CRs using this form: 
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  
Below is a brief summary: 

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are 
closest to. 

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word 
"revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be 
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name 
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. 

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of 
the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to 
the change request. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2 

CR page 2 

6.3 Interface Classes 

6.3.1 Trust and Security Management Interface Classes 

The Trust and Security Management Interfaces provide: 

- the first point of contact for a client to access a Framework provider; 

- the authentication methods for the client and Framework provider to perform an authentication protocol; 

- the client with the ability to select a service capability feature to make use of; 

- the client with a portal to access other Framework interfaces. 

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a 
different Framework interface: 

1) Initial Contact with the Framework; 

2) Authentication; 

3) Access to Framework and Service Capability Features. 

 

6.3.1.1 Interface Class IpClientAPILevelAuthentication  

Inherits from: IpInterface. 

If the IpClientAPILevelAuthentication interface is implemented by a client, authenticate(), challenge(), 
abortAuthentication() and authenticationSucceeded() methods shall be implemented.   

<<Interface>> 

IpClientAPILevelAuthentication 

 

 

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet 

abortAuthentication () : void 

authenticationSucceeded () : void 

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet 

 

  

6.3.1.1.1 Method <<deprecated>> authenticate() 

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method 
initiateAuthentication() is used on the IpInitial interface instead of initiateAuthenticationWithVersion().  This method 
will be removed in a later release of the specification. 

This method is used by the framework to authenticate the client.  The challenge will be encrypted using the mechanism 
prescribed by selectEncryptionMethod.  The client must respond with the correct responses to the challenges presented 
by the framework. The number of exchanges is dependent on the policies of each side.  The authentication of the client 
is deemed successful when the authenticationSucceeded method is invoked by the Framework.   

The invocation of this method may be interleaved with authenticate() calls by the client on the 
IpAPILevelAuthentication interface.  The client shall respond immediately to authentication challenges from the 
Framework, and not wait until the Framework has responded to any challenge the client may issue. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3 

CR page 3 

Returns <response> : This is the response of the client application to the challenge of the framework in the current 
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by 
selectEncryptionMethod().   

Parameters 

challenge : in TpOctetSet 

The challenge presented by the framework to be responded to by the client.  The challenge mechanism used will be in 
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, 
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod(). 

Returns 

TpOctetSet 

  

6.3.1.1.2 Method abortAuthentication() 

The framework uses this method to abort the authentication process where the client is authenticating the Framework. 
This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by 
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client 
should occur.)  Calls to this method after the Framework has been authenticated by the client shall not result in an 
immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again, 
however).  

Parameters 
No Parameters were identified for this method 

  

6.3.1.1.3 Method authenticationSucceeded() 

The Framework uses this method to inform the client of the success of the authentication attempt. The client may 
invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.  

Parameters 
No Parameters were identified for this method 

 

6.3.1.1.4 Method <<new>> challenge() 

This method is used by the framework to authenticate the client. The client must respond with the correct responses to 
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side.  The 
authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the 
Framework.   

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication 
interface.  The client shall respond immediately to authentication challenges from the Framework, and not wait until the 
Framework has responded to any challenge the client may issue. 

This method shall only be used when the method initiateAuthenticationWithVersion() is used on the IpInitial interface. 

Returns <response> : This is the response of the client application to the challenge of the framework in the current 
sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response 
packet shall be used to carry the response string. The Response packet shall make the contents of this returned 
parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4 

CR page 4 

Parameters 

challenge : in TpOctetSet 

The challenge presented by the framework to be responded to by the client.  The challenge format used will be in 
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, 
August1996]. 

The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet 
shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain 
any useful value. 

Returns 

TpOctetSet 

 

6.3.1.2 Interface Class IpClientAccess  

Inherits from: IpInterface. 

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access 
session.   

This interface and the terminateAccess() method shall be implemented by a client. 

<<Interface>> 

IpClientAccess 

 

 

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : 
in TpOctetSet) : void 

 

  

6.3.1.2.1 Method terminateAccess() 

The terminateAccess operation is used by the framework to end the client's access session. 

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be 
able to use the references to any of the framework interfaces gained during the access session. Any calls to these 
interfaces will fail.  Also, all remaining service instances created by the framework either directly in this access session 
or on behalf of the client during this access session shall be terminated.  If at any point the framework's level of 
confidence in the identity of the client becomes too low, perhaps due to re-authentication failing,  the framework should 
terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session 
WITHOUT invoking terminateAccess() on the client.  This follows a generally accepted security model where the 
framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.  

Parameters 

terminationText : in TpString 

This is the termination text describes the reason for the termination of the access session. 

signingAlgorithm : in TpSigningAlgorithm 

This is the algorithm used to compute the digital signature.  It shall be identical to the one chosen by the framework in 
response to IpAccess.selectSigningAlgorithm().  If the signingAlgorithm is not the chosen one, is invalid, or unknown 
to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5 

CR page 5 

specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm 
and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below). 

digitalSignature : in TpOctetSet 

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. 
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The 
"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be 
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, 
shall also be used to provide replay prevention.  The framework uses this to confirm its identity to the client.  The client 
can check that the terminationText has been signed by the framework.  If a match is made, the access session is 
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown. 

Raises 

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE 

 

6.3.1.3 Interface Class IpInitial  

Inherits from: IpInterface. 

The Initial Framework interface is used by the client to initiate the authentication with the Framework.  

This interface shall be implemented by a Framework.  The initiateAuthentication() and the 
initiateAuthenticationWithVersion() methods shall be implemented. 

<<Interface>> 

IpInitial 

 

 

<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : 
TpAuthDomain 

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, 
frameworkVersion : in TpVersion) : TpAuthDomain 

 

  

6.3.1.3.1 Method <<deprecated>> initiateAuthentication() 

This method is deprecated in this version, this means that it will be supported until the next major release of this 
specification. 

This method is invoked by the client to start the process of authentication with the framework, and request the use of a 
specific authentication method. 

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication 
interface of the framework.                          
     structure TpAuthDomain {                     
      domainID:   TpDomainID;                   
      authInterface:  IpInterfaceRef;                  
      };                           
   The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the 
framework to the client.                           
 The authInterface parameter is a reference to the authentication interface of the framework. The type of this 
interface is defined by the authType parameter.  The client uses this interface to authenticate with the framework.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6 

CR page 6 

Parameters 

clientDomain : in TpAuthDomain 

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface. 
                                 
   structure TpAuthDomain {                       
    domainID:   TpDomainID;                     
    authInterface:  IpInterfaceRef;                    
   };                              
 The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise 
operator (i.e. TpEntOpID), or for an instance of a registered service (i.e. TpServiceInstanceID) or for a service supplier 
(i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on 
IpAPILevelAuthentication).  If the framework does not recognise the domainID, the framework returns an error code 
(P_INVALID_DOMAIN_ID).                         
 The authInterface parameter is a reference to call the authentication interface of the client.  The type of this interface 
is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error 
code (P_INVALID_INTERFACE_TYPE). 

authType : in TpAuthType 

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the 
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific 
authentication mechanism like  CORBA Security, using the IpAuthentication interface, or Operator specific 
Authentication interfaces.  OSA API level Authentication is the default authentication mechanism 
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain 
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If 
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type 
IpAuthentication which is used when an underlying distribution technology authentication mechanism is used. 

Returns 

TpAuthDomain 

Raises 

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, 
P_INVALID_AUTH_TYPE 

 

6.3.1.3.2 Method <<new>> initiateAuthenticationWithVersion() 

This method is invoked by the client to start the process of authentication with the framework, and request the use of a 
specific authentication method using the new method with support for backward compatibility in the framework. The 
returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework 
response. If the Framework can't work with the proposed framework version the framework returns an error code 
(P_INVALID_VERSION). 

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication 
interface of the framework.                          
     structure TpAuthDomain {                     
      domainID:   TpDomainID;                   
      authInterface:  IpInterfaceRef;                  
      };                           
   The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the 
framework to the client.                           
 The authInterface parameter is a reference to the authentication interface of the framework. The type of this 
interface is defined by the authType parameter.  The client uses this interface to authenticate with the framework.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7 

CR page 7 

Parameters 

clientDomain : in TpAuthDomain 

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface. 
                                 
   structure TpAuthDomain {                       
    domainID:   TpDomainID;                     
    authInterface:  IpInterfaceRef;                    
   };                              
 The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise 
operator (i.e. TpEntOpID), or for an instance of a registered service (i.e. TpServiceInstanceID) or for a service supplier 
(i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on 
IpAPILevelAuthentication).  If the framework does not recognise the domainID, the framework returns an error code 
(P_INVALID_DOMAIN_ID).                         
 The authInterface parameter is a reference to call the authentication interface of the client.  The type of this interface 
is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error 
code (P_INVALID_INTERFACE_TYPE). 

authType : in TpAuthType 

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the 
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific 
authentication mechanism like  CORBA Security, using the IpAuthentication interface, or Operator specific 
Authentication interfaces.  OSA API level Authentication is the default authentication mechanism 
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain 
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If 
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type 
IpAuthentication that is used when an underlying distribution technology authentication mechanism is used. 

frameworkVersion : in TpVersion 

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the 
version number. Valid version numbers are defined in the respective framework specification. 

Returns 

TpAuthDomain 

Raises 

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, 
P_INVALID_AUTH_TYPE, P_INVALID_VERSION 

 

6.3.1.4 Interface Class IpAuthentication  

Inherits from: IpInterface. 

The Authentication Framework interface is used by client to request access to other interfaces supported by the 
Framework. The authentication process should in this case be done with some underlying distribution technology 
authentication mechanism, e.g. CORBA Security.  

At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a 
minimum requirement.  The requestAccess() method shall be implemented in each. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8 

CR page 8 

<<Interface>> 

IpAuthentication 

 

 

requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef 

 

  

6.3.1.4.1 Method requestAccess() 

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the 
IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they 
require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define 
their own access interfaces to satisfy client requirements for different types of access.) 

If this method is called before the client has been successfully authenticated, then the request fails, and an error code 
(P_ACCESS_DENIED) is returned. 

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not 
being used, since there is no indication to the client at API level that it is authenticated with the Framework. 

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework.  

Parameters 

accessType : in TpAccessType 

This identifies the type of access interface requested by the client.  If the framework does not provide the type of access 
identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned. 

clientAccessInterface : in IpInterfaceRef 

This provides the reference for the framework to call the access interface of the client.  If the interface reference is not 
of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE). 

Returns 

IpInterfaceRef 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, 
P_INVALID_INTERFACE_TYPE 

 

6.3.1.5 Interface Class IpAPILevelAuthentication  

Inherits from: IpAuthentication. 

The API Level Authentication Framework interface is used by the client to authenticate the Framework.  It is also used 
to initiate the authentication process.  

If the IpAPILevelAuthentication interface is implemented by a Framework, then selectEncryptionMethod(), 
selectAuthenticationMechanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded () 
shall be implemented.  IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore 
requestAccess() shall be implemented. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9 

CR page 9 

<<Interface>> 

IpAPILevelAuthentication 

 

 

<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : 
TpEncryptionCapability 

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet 

abortAuthentication () : void 

authenticationSucceeded () : void 

<<new>> selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : 
TpAuthMechanism 

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet 

 

  

6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod() 

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the 
IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of 
initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release. 

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism.  This 
should be within capability of the client.  If a mechanism that is acceptable to the framework within the capability of the 
client cannot be found, the framework  throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.   
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the 
client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the 
prescribed encryption method). 

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework 
for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the 
client, it is considered a catastrophic error and the client must abort.  

Parameters 

encryptionCaps : in TpEncryptionCapabilityList 

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework. 

Returns 

TpEncryptionCapability 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, 
P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY 

  

6.3.1.5.2 Method <<deprecated>> authenticate() 

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevelAuthentication 
interface is obtained by using the deprecated method initiateAuthentication() instead of 
initiateAuthenticationWithVersion() on the IpInitial interface.  This method will be removed in a later release. 

This method is used by the client to authenticate the framework.  The challenge will be encrypted using the mechanism 
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10 

CR page 10 

presented by the client.  The domainID received in the initiateAuthentication() can be used by the framework to 
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA 
APIs). The number of exchanges is dependent on the policies of each side.  The authentication of the framework is 
deemed successful when the authenticationSucceeded method is invoked by the client.   

The invocation of this method may be interleaved with authenticate() calls by the framework on the client's 
APILevelAuthentication interface. 

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The 
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().   

Parameters 

challenge : in TpOctetSet 

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in 
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, 
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod(). 

Returns 

TpOctetSet 

Raises 

TpCommonExceptions, P_ACCESS_DENIED 

  

6.3.1.5.3 Method abortAuthentication() 

The client uses this method to abort the authentication process where the framework is authenticating the client. This 
method is invoked if the client no longer wishes to continue the authentication process, (unless the framework 
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this 
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess 
operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been 
properly authenticated.  If this method is invoked after the client has been authenticated by the Framework, it shall not 
result in the immediate removal of the client's authentication.  (The Framework may wish to authenticate the client 
again, however).   

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions,P_ACCESS_DENIED 

  

6.3.1.5.4 Method authenticationSucceeded() 

The client uses this method to inform the framework of the success of the authentication attempt.  Calls to this method 
have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful 
authentication of the client.  

Parameters 
No Parameters were identified for this method 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11 

CR page 11 

Raises 

TpCommonExceptions, P_ACCESS_DENIED 

 

6.3.1.5.5 Method <<new>> selectAuthenticationMechanism() 

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of 
API level Authentication.  The Framework will select one of the suggested authentication mechanisms and that 
mechanism shall be used for authentication by both Framework and Client.   The authentication mechanism chosen as a 
result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is 
re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be 
found, the framework  throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.    

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using 
initiateAuthenticationWithVersion() on the IpInitial interface. 

Returns: selectedMechanism.  This is the authentication mechanism chosen by the Framework.  The chosen mechanism 
shall be taken from the list of mechanisms proposed by the Client.  

Parameters 

authMechanismList : in TpAuthMechanismList 

The list of authentication mechanisms supported by the client. 

Returns 

TpAuthMechanism 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, 
P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM 

 

6.3.1.5.6 Method <<new>> challenge() 

This method is used by the client to authenticate the framework. The framework must respond with the correct 
responses to the challenges presented by the client.  The number of exchanges is dependent on the policies of each side.  
The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the 
client.   

The invocation of this method may be interleaved with challenge() calls by the framework on the client's 
APILevelAuthentication interface. 

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using 
initiateAuthenticationWithVersion() on the IpInitial interface. 

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The 
formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be 
used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name 
field of the CHAP Response packet shall be present but not contain any useful value.  

Parameters 

challenge : in TpOctetSet 

The challenge presented by the client to be responded to by the framework. The challenge format used will be in 
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, 
August1996]. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12 

CR page 12 

The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet 
shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain 
any useful value. 

Returns 

TpOctetSet 

Raises 

TpCommonExceptions, P_ACCESS_DENIED 

 

6.3.1.6 Interface Class IpAccess  

Inherits from: IpInterface. 

This interface shall be implemented by a Framework.  As a minimum requirement the obtainInterface() and 
obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.   

<<Interface>> 

IpAccess 

 

 

obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef 

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : 
IpInterfaceRef 

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void 

listInterfaces () : TpInterfaceNameList 

<<deprecated>> releaseInterface (interfaceName : in TpInterfaceName) : void 

<<new>> selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : 
TpSigningAlgorithm 

<<new>> terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void 

<<new>> relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, 
digitalSignature : in TpOctetSet) : void 

 

  

6.3.1.6.1 Method obtainInterface() 

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to 
other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply 
a callback interface to the framework.) 

Returns <fwInterface> : This is the reference to the interface requested.  

Parameters 

interfaceName : in TpInterfaceName 

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, 
the framework returns an error code (P_INVALID_INTERFACE_NAME). 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13 

CR page 13 

Returns 

IpInterfaceRef 

Raises 

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME 

  

6.3.1.6.2 Method obtainInterfaceWithCallback() 

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to 
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface 
method should be used when no callback interface needs to be supplied.) 

Returns <fwInterface> : This is the reference to the interface requested.  

Parameters 

interfaceName : in TpInterfaceName 

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, 
the framework returns an error code (P_INVALID_INTERFACE_NAME). 

clientInterface : in IpInterfaceRef 

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this 
method should not be used. (The obtainInterface method should be used when no callback interface needs to be 
supplied.)  If the interface reference is not of the correct type, the framework returns an error code 
(P_INVALID_INTERFACE_TYPE). 

Returns 

IpInterfaceRef 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, 
P_INVALID_INTERFACE_TYPE 

  

6.3.1.6.3 Method <<deprecated>> endAccess() 

This method is deprecated and will be removed in a later release.  It is replaced with terminateAccess.  The endAccess 
operation is used by the client to request that its access session with the framework is ended.  After it is invoked, the 
client will no longer be authenticated with the framework. The client will not be able to use the references to any of the 
framework interfaces gained during the access session. Any calls to these interfaces will fail.  

Parameters 

endAccessProperties : in TpEndAccessProperties 

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session 
(e.g. existing service sessions may be stopped, or left running).  If a property is not recognised by the framework, an 
error code (P_INVALID_PROPERTY) is returned.  

Raises 

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14 

CR page 14 

6.3.1.6.4 Method listInterfaces() 

The client uses this method to obtain the names of all interfaces supported by the framework.  It can then obtain the 
interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback(). 

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework 
makes available.  

Parameters 
No Parameters were identified for this method 

Returns 

TpInterfaceNameList 

Raises 

TpCommonExceptions, P_ACCESS_DENIED 

 

6.3.1.6.5 Method <<deprecated>> releaseInterface() 

This method is deprecated and will be removed in a later release.  It is replaced with relinquishInterface.  The client 
uses this method to release a framework interface that was obtained during this access session.   

Parameters 

interfaceName : in TpInterfaceName 

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework 
throws the P_INVALID_INTERFACE_NAME exception.  If the interface has not been given to the client during this 
access session, then the P_TASK_REFUSED exception will be thrown. 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME 

 

6.3.1.6.6 Method <<new>> selectSigningAlgorithm() 

The client uses this method to inform the Framework of the different signing  algorithms it supports for use in all cases 
where digital signatures are required.  The Framework will select one of the suggested algorithms.   This method shall 
be the first method invoked by the client on IpAccess.  The algorithm chosen as a result of the response to this method 
remains valid for an instance of IpAccess and until this method is re-invoked by the client. If an algorithm that is 
acceptable to the framework within the capability of the client cannot be found, the framework  throws the 
P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.    

Returns: selectedAlgorithm.  This is the signing algorithm chosen by the Framework.  The chosen algorithm shall be 
taken from the list proposed by the Client.  

Parameters 

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList 

The list of signing algorithms supported by the client. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15 

CR page 15 

Returns 

TpSigningAlgorithm 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM 

 

6.3.1.6.7 Method <<new>> terminateAccess() 

The terminateAccess method is used by the client to request that its access session with the framework is ended.  After 
it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the 
references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. 
Also, all remaining service instances created by the framework either directly in this access session or on behalf of the 
client during this access session shall be terminated.  

Parameters 

terminationText : in TpString 

This is the termination text describes the reason for the termination of the access session. 

digitalSignature : in TpOctetSet 

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. 
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The 
"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be 
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, 
shall also be used to provide replay prevention.  The client uses this to confirm its identity to the framework.  The 
framework can check that the terminationText has been signed by the client.  If a match is made, the access session is 
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown. 

Raises 

TpCommonExceptions, P_INVALID_SIGNATURE 

 

6.3.1.6.8 Method <<new>> relinquishInterface() 

The client uses this method to release an instance of a framework interface that was obtained during this access session.    

Parameters 

interfaceName : in TpInterfaceName 

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework 
throws the P_INVALID_INTERFACE_NAME exception.  If the interface has not been given to the client during this 
access session, then the P_TASK_REFUSED exception will be thrown. 

terminationText : in TpString 

This is the termination text describes the reason for the release of the interface.  This text is required simply because the 
digitalSignature parameter requires a terminationText to sign. 

digitalSignature : in TpOctetSet 

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. 
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The 
"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be 
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, 
shall also be used to provide replay prevention.  The client uses this to confirm its identity to the framework.  The 
framework can check that the terminationText has been signed by the client.  If a match is made, the interface is 
released, otherwise the P_INVALID_SIGNATURE exception will be thrown. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16 

CR page 16 

Raises 

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME 

 



CR page 1 

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020898 
Meeting #20, Miami/ FL, USA, 23 – 27 September 2002 

CR-Form-v7 

CHANGE REQUEST 
 

! 29.198-03 CR 070 ! rev - ! Current version: 5.1.0 
! 

 
For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. 

 
Proposed change affects: UICC apps!  ME  Radio Access Network  Core Network X 
 
Title: ! Correction of status of methods to interfaces in clause 8.3 
  
Source: ! N5 
  
Work item code: ! OSA2  Date: ! 27/09/2002 
     
Category: ! F  Release: ! REL-5 
 Use one of the following categories: 

F  (correction) 
A  (corresponds to a correction in an earlier release) 
B  (addition of feature),  
C  (functional modification of feature) 
D  (editorial modification) 

Detailed explanations of the above categories can 
be found in 3GPP TR 21.900. 

Use one of the following releases: 
2 (GSM Phase 2) 
R96 (Release 1996) 
R97 (Release 1997) 
R98 (Release 1998) 
R99 (Release 1999) 
Rel-4 (Release 4) 
Rel-5 (Release 5) 
Rel-6 (Release 6) 

  
Reason for change: ! There is no requirement in the standard about the necessity to implement all or 

only some of the methods defined for an interface. 
  
Summary of change: ! Clarify which methods are mandatory and which are optional. 
  
Consequences if  ! 
not approved: 

Application developers will not know which methods will actually be available. 

  
Clauses affected: ! 8.3 Interface Classes 
  
 Y N   
Other specs !  X  Other core specifications !  
affected:  X  Test specifications  
  X  O&M Specifications  
  
Other comments: !  
 
How to create CRs using this form: 
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  
Below is a brief summary: 

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are 
closest to. 

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word 
"revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be 
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name 
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. 

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of 
the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to 
the change request. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2 

CR page 2 

8.3 Interface Classes 

8.3.1 Event Notification Interface Classes 

8.3.1.1 Interface Class IpFwEventNotification  

Inherits from: IpInterface. 

The event notification mechanism is used to notify the service of generic events that have occurred.  

If Event Notifications are supported by a Framework, this interface and all itsthe createNotification() and 
destroyNotification() methods shall be supported. 

<<Interface>> 

IpFwEventNotification 

 

 

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID 

destroyNotification (assignmentID : in TpAssignmentID) : void 

 

 

8.3.1.1.1 Method createNotification() 

This method is used to install generic notifications so that events can be sent to the service. 

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.  

Parameters 

eventCriteria : in TpFwEventCriteria 

Specifies the event specific criteria used by the service to define the event required. 

Returns 

TpAssignmentID 

Raises 

TpCommonExceptions,P_INVALID_EVENT_TYPE,P_INVALID_CRITERIA 

 

8.3.1.1.2 Method destroyNotification() 

This method is used by the service to delete generic notifications from the framework.  

Parameters 

assignmentID : in TpAssignmentID 

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the 
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code 
P_INVALID_ASSIGNMENT_ID. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3 

CR page 3 

Raises 

TpCommonExceptions,P_INVALID_ASSIGNMENT_ID 

 

8.3.1.2 Interface Class IpSvcEventNotification  

Inherits from: IpInterface. 

This interface is used by the framework to inform the service of a generic event.  The Event Notification Framework 
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface 
is obtained.  

If Event Notifications are supported by a Service, this interface and all itsthe reportNotification() and 
notificationTerminated() methods shall be supported. 

<<Interface>> 

IpSvcEventNotification 

 

 

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void 

notificationTerminated () : void 

 

 

8.3.1.2.1 Method reportNotification() 

This method notifies the service of the arrival of a generic event.  

Parameters 

eventInfo : in TpFwEventInfo 

Specifies specific data associated with this event. 

assignmentID : in TpAssignmentID 

Specifies the assignment id which was returned by the framework during the createNotification() method. The service 
can use the assignment id to associate events with event specific criteria and to act accordingly. 

Raises 

TpCommonExceptions,P_INVALID_ASSIGNMENT_ID 

 

8.3.1.2.2 Method notificationTerminated() 

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults 
detected).  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4 

CR page 4 

8.3.2 Integrity Management Interface Classes 

8.3.2.1 Interface Class IpFwFaultManager  

Inherits from: IpInterface. 

This interface is used by the service instance to inform the framework of events which affect the integrity of the API, 
and request fault management status information from the framework.  The fault manager operations do not exchange 
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the 
time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on 
the IpAccess interface.  

If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented.  
If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall implement 
svcActivityTestRes() and svcActivityTestErr() in this interface.  If the Framework is capable of invoking 
IpSvcFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and 
genFaultStatsRecordErr() in this interface.  If the Framework is capable of invoking 
IpSvcFaultManager.generateFaultStatsRecordReq(), it shall implement generateFaultStatsRecordRes() and 
generateFaultStatsRecordErr() in this interface. 

<<Interface>> 

IpFwFaultManager 

 

 

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void 

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

appUnavailableInd () : void 

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void 

svcUnavailableInd (reason : in TpSvcUnavailReason) : void 

svcActivityTestErr (activityTestID : in TpActivityTestID) : void 

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in 
TpServiceIDList) : void 

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in 
TpServiceIDList) : void 

<<new>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void 

<<new>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void 

 

 

8.3.2.1.1 Method activityTestReq() 

The service instance invokes this method to test that the framework or the client application is operational. On receipt of 
this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. 
The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the service instance to correlate the response (when it arrives) with this request. 

testSubject : in TpSubjectType 

Identifies the subject for testing (framework or client application). 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5 

CR page 5 

Raises 

TpCommonExceptions 

 

8.3.2.1.2 Method svcActivityTestRes() 

The service instance uses this method to return the result of a framework-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

Raises 

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID 

 

8.3.2.1.3 Method appUnavailableInd() 

This method is used by the service instance to inform the framework that the client application is not responding.  On 
receipt of this indication, the framework must act to inform the client application.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

8.3.2.1.4 Method genFaultStatsRecordReq() 

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the 
framework must produce a fault statistics record, for the framework or for the application during the specified time 
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the 
IpSvcFaultManager interface.  

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings 
leaves the time period to the discretion of the framework. 

recordSubject : in TpSubjectType 

Specifies the subject to be included in the general fault statistics record (framework or application). 

Raises 

TpCommonExceptions 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6 

CR page 6 

8.3.2.1.5 Method svcUnavailableInd() 

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The 
framework should inform the client application that is currently using this service instance that it is unavailable for use 
(via the svcUnavailableInd method on the IpAppFaultManager interface).  

Parameters 

reason : in TpSvcUnavailReason 

Identifies the reason for the service instance's unavailability. 

Raises 

TpCommonExceptions 

 

8.3.2.1.6 Method svcActivityTestErr() 

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.   

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 

Raises 

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID 

 

8.3.2.1.7 Method <<deprecated>> genFaultStatsRecordRes() 

This method is deprecated and will be removed in a later release.  It cannot be used as described, since the serviceIDs 
parameter has no meaning.  It is replaced with generateFaultStatsRecordRes(). 

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq 
method invocation on the IpSvcFaultManager interface.   

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

serviceIDs : in TpServiceIDList 

Specifies the services that are included in the general fault statistics record.  The serviceIDs parameter is not allowed to 
be an empty list. 

Raises 

TpCommonExceptions 

 

8.3.2.1.8 Method <<deprecated>> genFaultStatsRecordErr() 

This method is deprecated and will be removed in a later release.  It cannot be used as described, since the serviceIDs 
parameter has no meaning.  It is replaced with generateFaultStatsRecordErr(). 

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a 
genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.   



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7 

CR page 7 

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

serviceIDs : in TpServiceIDList 

Specifies the services that were included in the general fault statistics record request.  The serviceIDs parameter is not 
allowed to be an empty list. 

Raises 

TpCommonExceptions 

 

8.3.2.1.9 Method <<new>> generateFaultStatsRecordRes() 

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq 
method invocation on the IpSvcFaultManager interface.    

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

Raises 

TpCommonExceptions 

 

8.3.2.1.10 Method <<new>> generateFaultStatsRecordErr() 

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a 
genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.    

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

Raises 

TpCommonExceptions 

 

8.3.2.2 Interface Class IpSvcFaultManager  

Inherits from: IpInterface. 

This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or 
Client Application.  The Framework will invoke methods on the Fault Management Service Interface that is specified 
when the service instance obtains the Fault Management Framework interface: i.e. by use of the 
obtainInterfaceWithCallback operation on the IpAccess interface  

If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented.  If 
the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement 
activityTestRes() and activityTestErr() in this interface.  If the Service is capable of invoking 
IpFwFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and 
genFaultStatsRecordErr() in this interface.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8 

CR page 8 

<<Interface>> 

IpSvcFaultManager 

 

 

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

svcActivityTestReq (activityTestID : in TpActivityTestID) : void 

fwFaultReportInd (fault : in TpInterfaceFault) : void 

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void 

fwUnavailableInd (reason : in TpFwUnavailReason) : void 

svcUnavailableInd () : void 

appUnavailableInd () : void 

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void 

activityTestErr (activityTestID : in TpActivityTestID) : void 

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : 
void 

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) 
: void 

<<new>> generateFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void 

 

 

8.3.2.2.1 Method activityTestRes() 

The framework uses this method to return the result of a service-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the service to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

Raises 

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID 

 

8.3.2.2.2 Method svcActivityTestReq() 

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service 
instance must carry out a test on itself, to check that it is operating correctly.  The service instance reports the test result 
by invoking the svcActivityTestRes method on the IpFwFaultManager interface.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the framework to correlate the response (when it arrives) with this request. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9 

CR page 9 

Raises 

TpCommonExceptions 

 

8.3.2.2.3 Method fwFaultReportInd() 

The framework invokes this method to notify the service instance of a failure within the framework. The service 
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).  

Parameters 

fault : in TpInterfaceFault 

Specifies the fault that has been detected by the framework. 

Raises 

TpCommonExceptions 

 

8.3.2.2.4 Method fwFaultRecoveryInd() 

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.  
The service instance may then resume using the framework.  

Parameters 

fault : in TpInterfaceFault 

Specifies the fault from which the framework has recovered. 

Raises 

TpCommonExceptions 

 

8.3.2.2.5 Method fwUnavailableInd() 

The framework invokes this method to inform the service instance that it is no longer available.  

Parameters 

reason : in TpFwUnavailReason 

Identifies the reason why the framework is no longer available 

Raises 

TpCommonExceptions 

 

8.3.2.2.6 Method svcUnavailableInd() 

The framework invokes this method to inform the service instance that the client application has reported that it can no 
longer use the service instance.  

Parameters 
No Parameters were identified for this method 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10 

CR page 10 

Raises 

TpCommonExceptions 

 

8.3.2.2.7 Method appUnavailableInd() 

The framework invokes this method to inform the service instance that the framework may have detected that the 
application has failed: e.g. non-response from an activity test, failure to return heartbeats.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

8.3.2.2.8 Method genFaultStatsRecordRes() 

This method is used by the framework to provide fault statistics to a service instance in response to a 
genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.  

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

recordSubject : in TpSubjectType 

Specifies the entity (framework or application)  whose fault statistics record has been provided. 

Raises 

TpCommonExceptions 

 

8.3.2.2.9 Method activityTestErr() 

The framework uses this method to indicate that an error occurred during a service-requested activity test.   

Parameters 

activityTestID : in TpActivityTestID 

Used by the service instance to correlate this response (when it arrives) with the original request. 

Raises 

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID 

 

8.3.2.2.10 Method genFaultStatsRecordErr() 

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to 
a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11 

CR page 11 

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

recordSubject : in TpSubjectType 

Specifies the entity (framework or application) whose fault statistics record was requested. 

Raises 

TpCommonExceptions 

 

8.3.2.2.11 Method <<deprecated>> genFaultStatsRecordReq() 

This method is deprecated and will be removed in a later release.  It cannot be used as described, since the serviceIDs 
parameter has no meaning.  It is replaced with generateFaultStatsRecordReq(). 

This method is used by the framework to solicit fault statistics from the service, for example when the framework was 
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager 
interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the 
client's instances of the specified services during the specified time interval, which is returned to the framework using 
the genFaultStatsRecordRes operation on the IpFwFaultManager interface.  If the framework does not have access to a 
service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be 
thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.   

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings 
leaves the time period to the discretion of the service. 

serviceIDs : in TpServiceIDList 

Specifies the services to be included in the general fault statistics record.  This parameter is not allowed to be an empty 
list. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

 

8.3.2.2.12 Method <<new>> generateFaultStatsRecordReq() 

This method is used by the framework to solicit fault statistics from the service instance, for example when the 
framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the 
IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the 
specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the 
IpFwFaultManager interface.    

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings 
leaves the time period to the discretion of the service. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12 

CR page 12 

Raises 

TpCommonExceptions 

 

8.3.2.3 Interface Class IpFwHeartBeatMgmt  

Inherits from: IpInterface. 

This interface allows the initialisation of a heartbeat supervision of the framework by a service instance.   

If the IpFwHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and 
disableHeartBeat() shall be implemented. 

<<Interface>> 

IpFwHeartBeatMgmt 

 

 

enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void 

disableHeartBeat () : void 

changeInterval (interval : in TpInt32) : void 

 

 

8.3.2.3.1 Method enableHeartBeat() 

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at 
the specified interval.   

Parameters 

interval : in TpInt32 

The time interval in milliseconds between the heartbeats. 

svcInterface : in IpSvcHeartBeatRef 

This parameter refers to the callback interface the heartbeat is calling. 

Raises 

TpCommonExceptions,P_INVALID_INTERFACE_TYPE 

 

8.3.2.3.2 Method disableHeartBeat() 

Instructs the framework to cease the sending of its heartbeat.   

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13 

CR page 13 

8.3.2.3.3 Method changeInterval() 

Allows the administrative change of the heartbeat interval.  

Parameters 

interval : in TpInt32 

The time interval in milliseconds between the heartbeats. 

Raises 

TpCommonExceptions 

 

8.3.2.4 Interface Class IpFwHeartBeat  

Inherits from: IpInterface. 

 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat.  

If a Framework is capable of invoking IpSvcHeartBeatMgmt.enableHeartBeat(), it shall implement IpFwHeartBeat and 
the pulse() method. 

<<Interface>> 

IpFwHeartBeat 

 

 

pulse () : void 

 

 

8.3.2.4.1 Method pulse() 

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse 
at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method.  If the 
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

8.3.2.5 Interface Class IpSvcHeartBeatMgmt  

Inherits from: IpInterface. 

This interface allows the initialisation of a heartbeat supervision of the service instance by the framework.  

If the IpSvcHeartBeatMgmt interface is implemented by a Service, as a minimum enableHeartBeat() and 
disableHeartBeat() shall be implemented. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14 

CR page 14 

<<Interface>> 

IpSvcHeartBeatMgmt 

 

 

enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void 

disableSvcHeartBeat () : void 

changeInterval (interval : in TpInt32) : void 

 

 

8.3.2.5.1 Method enableSvcHeartBeat() 

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at 
the specified interval.  

Parameters 

interval : in TpInt32 

The time interval in milliseconds between the heartbeats. 

fwInterface : in IpFwHeartBeatRef 

This parameter refers to the callback interface the heartbeat is calling. 

Raises 

TpCommonExceptions,P_INVALID_INTERFACE_TYPE 

 

8.3.2.5.2 Method disableSvcHeartBeat() 

Instructs the service instance to cease the sending of its heartbeat.   

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

8.3.2.5.3 Method changeInterval() 

Allows the administrative change of the heartbeat interval.  

Parameters 

interval : in TpInt32 

The time interval in milliseconds between the heartbeats. 

Raises 

TpCommonExceptions 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15 

CR page 15 

8.3.2.6 Interface Class IpSvcHeartBeat  

Inherits from: IpInterface. 

The service heartbeat interface is used by the framework to send the service instance its heartbeat.  

If a Service is capable of invoking IpFwHeartBeatMgmt.enableHeartBeat(), it shall implement IpSvcHeartBeat and the 
pulse() method. 

<<Interface>> 

IpSvcHeartBeat 

 

 

pulse () : void 

 

 

8.3.2.6.1 Method pulse() 

The framework uses this method to send its heartbeat to the service instance.  The service will be expecting a pulse at 
the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method.  If the 
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

8.3.2.7 Interface Class IpFwLoadManager  

Inherits from: IpInterface. 

The framework API should allow the load to be distributed across multiple machines and across multiple component 
processes, according to a load management policy. The separation of the load management mechanism and load 
management policy ensures the flexibility of the load management services. The load management policy identifies 
what load management rules the framework should follow for the specific service. It might specify what action the 
framework should take as the congestion level changes. For example, some real-time critical applications will want to 
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be 
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is 
related to the QoS level to which the application is subscribed. The framework load management function is represented 
by the IpFwLoadManager interface.  To handle responses and reports, the service developer must implement the 
IpSvcLoadManager interface to provide the callback mechanism.  

If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as 
a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and 
destroyLoadLevelNotification() methods shall be implemented.  If suspendNotification() is implemented, then 
resumeNotification() shall be implemented also.  If a Framework is capable of invoking the 
IpSvcLoadManager.querySvcLoadReq() method, then it shall implement querySvcLoadRes() and querySvcLoadErr() 
methods in this interface. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16 

CR page 16 

<<Interface>> 

IpFwLoadManager 

 

 

reportLoad (loadLevel : in TpLoadLevel) : void 

queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void 

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void 

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void 

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void 

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void 

suspendNotification (notificationSubject : in TpSubjectType) : void 

resumeNotification (notificationSubject : in TpSubjectType) : void 

 

 

8.3.2.7.1 Method reportLoad() 

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load 
level on the service instance has changed.  

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). 
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.  

Parameters 

loadLevel : in TpLoadLevel 

Specifies the service instance's load level. 

Raises 

TpCommonExceptions 

 

8.3.2.7.2 Method queryLoadReq() 

The service instance uses this method to request the framework to provide load statistics records for the framework or 
for the application that uses the service instance.   

Parameters 

querySubject : in TpSubjectType 

Specifies the entity (framework or application) for which load statistics records should be reported. 

timeInterval : in TpTimeInterval 

Specifies the time interval for which load statistics records should be reported. 

Raises 

TpCommonExceptions 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17 

CR page 17 

8.3.2.7.3 Method querySvcLoadRes() 

The service instance uses this method to send load statistic records back to the framework that requested the 
information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.  

Parameters 

loadStatistics : in TpLoadStatisticList 

Specifies the service-supplied load statistics. 

Raises 

TpCommonExceptions 

 

8.3.2.7.4 Method querySvcLoadErr() 

The service instance uses this method to return an error response to the framework that requested the service instance's 
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in 
response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.  

Parameters 

loadStatisticError : in TpLoadStatisticError 

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics. 

Raises 

TpCommonExceptions 

 

8.3.2.7.5 Method createLoadLevelNotification() 

The service instance uses this method to register to receive notifications of load level changes associated with the 
framework or with the application that uses the service instance.   

Parameters 

notificationSubject : in TpSubjectType 

Specifies the entity (framework or application) for which load level changes should be reported.  

Raises 

TpCommonExceptions 

 

8.3.2.7.6 Method destroyLoadLevelNotification() 

The service instance uses this method to unregister for notifications of load level changes associated with the 
framework or with the application that uses the service instance.  

Parameters 

notificationSubject : in TpSubjectType 

Specifies the entity (framework or application) for which load level changes should no longer be reported. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18 

CR page 18 

Raises 

TpCommonExceptions 

 

8.3.2.7.7 Method suspendNotification() 

The service instance uses this method to request the framework to suspend sending it notifications associated with the 
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary 
overload condition.   

Parameters 

notificationSubject : in TpSubjectType 

Specifies the entity (framework or application) for which the sending of notifications by the framework should be 
suspended.  

Raises 

TpCommonExceptions 

 

8.3.2.7.8 Method resumeNotification() 

The service instance uses this method to request the framework to resume sending it notifications associated with the 
framework or with the application that uses the service instance; e.g. after a period of suspension during which the 
service instance handled a temporary overload condition.   

Parameters 

notificationSubject : in TpSubjectType 

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the 
framework should be resumed.   

Raises 

TpCommonExceptions 

 

8.3.2.8 Interface Class IpSvcLoadManager  

Inherits from: IpInterface. 

The service developer supplies the load manager service interface to handle requests, reports and other responses from 
the framework load manager function.  The service instance supplies the identity of its callback interface at the time it 
obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess 
interface.  

If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as a 
minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented.  If a 
the Service is capable of invoking the IpFwLoadManager.queryLoadReq() method, then it shall implement 
queryLoadRes() and queryLoadErr() methods in this interface. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19 

CR page 19 

<<Interface>> 

IpSvcLoadManager 

 

 

querySvcLoadReq (timeInterval : in TpTimeInterval) : void 

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void 

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void 

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void 

suspendNotification () : void 

resumeNotification () : void 

 

 

8.3.2.8.1 Method querySvcLoadReq() 

The framework uses this method to request the service instance to provide its load statistic records.  

Parameters 

timeInterval : in TpTimeInterval 

Specifies the time interval for which load statistic records should be reported. 

Raises 

TpCommonExceptions 

 

8.3.2.8.2 Method queryLoadRes() 

The framework uses this method to send load statistic records back to the service instance that requested the 
information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.  

Parameters 

loadStatistics : in TpLoadStatisticList 

Specifies the framework-supplied load statistics 

Raises 

TpCommonExceptions 

 

8.3.2.8.3 Method queryLoadErr() 

The framework uses this method to return an error response to the service that requested the framework's load statistics 
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an 
invocation of the queryLoadReq method on the IpFwLoadManager interface.  

Parameters 

loadStatisticsError : in TpLoadStatisticError 

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 20 

CR page 20 

Raises 

TpCommonExceptions 

 

8.3.2.8.4 Method loadLevelNotification() 

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or 
framework which has been registered for load level notifications) this method is invoked on the SCF.  

Parameters 

loadStatistics : in TpLoadStatisticList 

Specifies the framework-supplied load statistics, which include the load level change(s). 

Raises 

TpCommonExceptions 

 

8.3.2.8.5 Method suspendNotification() 

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the 
framework handles a temporary overload condition.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

8.3.2.8.6 Method resumeNotification() 

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of 
suspension during which the framework handled a temporary overload condition.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

8.3.2.9 Interface Class IpFwOAM  

Inherits from: IpInterface. 

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date 
and time to a certain extent.  Accurate time synchronisation is outside the scope of this API.  

This interface and itsthe systemDateTimeQuery() method are optional.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 21 

CR page 21 

<<Interface>> 

IpFwOAM 

 

 

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime 

 

 

8.3.2.9.1 Method systemDateTimeQuery() 

This method is used to query the system date and time. The client (service) passes in its own date and time to the 
framework. The framework responds with the system date and time. 

Returns <systemDateAndTime> : This is the system date and time of the framework.  

Parameters 

clientDateAndTime : in TpDateAndTime 

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the 
format of the parameter is invalid. 

Returns 

TpDateAndTime 

Raises 

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT 

 

8.3.2.10 Interface Class IpSvcOAM  

Inherits from: IpInterface. 

This interface and itsthe systemDateTimeQuery() method are optional.  

<<Interface>> 

IpSvcOAM 

 

 

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime 

 

  

8.3.2.10.1 Method systemDateTimeQuery() 

This method is used by the framework to send the system date and time to the service.  The service responds with its 
own date and time. 

Returns <clientDateAndTime> : This is the date and time of the client (service).  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 22 

CR page 22 

Parameters 

systemDateAndTime : in TpDateAndTime 

This is the system date and time of the framework.  The error code P_INVALID_DATE_TIME_FORMAT is returned 
if the format of the parameter is invalid. 

Returns 

TpDateAndTime 

Raises 

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT 

 

8.3.3 Service Discovery Interface Classes 

This API complements the Service Registration functionality described in another clause. 

Before a service can be registered in the framework, the service supplier must know what "types" of services the 
Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method 
returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" 
method returns a description of each service type.  The description of service type includes the "service-specific 
properties" that are applicable to each service type.  Then the service supplier can retrieve a specific set of registered 
services that both belong to a given type and possess a specific set of "property values", by using the 
"discoverService()" method. 

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values, 
by using the "listRegisteredServices()" method.  However the scope of the list will depend upon the framework 
implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has 
previously registered. 

 

8.3.3.1 Interface Class IpFwServiceDiscovery  

Inherits from: IpInterface. 

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(), 
describeServiceType() and discoverService() methods.  

<<Interface>> 

IpFwServiceDiscovery 

 

 

listServiceTypes () : TpServiceTypeNameList 

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription 

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in 
TpServicePropertyList, max : in TpInt32) : TpServiceList 

listRegisteredServices () : TpServiceList 

 

 

8.3.3.1.1 Method listServiceTypes() 

This operation returns the names of all service types that are in the repository. The details of the service types can then 
be obtained using the describeServiceType() method. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 23 

CR page 23 

Returns <listTypes> : The names of the requested service types.  

Parameters 
No Parameters were identified for this method 

Returns 

TpServiceTypeNameList 

Raises 

TpCommonExceptions 

 

8.3.3.1.2 Method describeServiceType() 

This operation lets the caller obtain the details for a particular service type. 

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information 
about: the service properties associated with this service type: i.e. a list of service property {name, mode and type} 
tuples,  the names of the super types of this service type, and whether the service type is currently available or 
unavailable.  

Parameters 

name : in TpServiceTypeName 

The name of the service type to be described.  If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE 
exception is raised.  If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE 
exception is raised. 

Returns 

TpServiceTypeDescription 

Raises 

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE 

 

8.3.3.1.3 Method discoverService() 

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered 
services that both belong to a given type and possess a specific set of "property values".  The service supplier passes in 
a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the 
service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept. 
The framework must not return more matches than the specified maximum, but it is up to the discretion of the 
Framework implementation to choose to return less than the specified maximum. The discoverService() operation 
returns a serviceID/Property pair list for those services that match the desired service property list that the service 
supplier provided. 

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID 
and a list of service properties {name and value list} associated with the service.  

Parameters 

serviceTypeName : in TpServiceTypeName 

The name of the required service type. If the string representation of the "type" does not obey the rules for service type 
identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not 
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The 
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the 
properties of its supertypes. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 24 

CR page 24 

desiredPropertyList : in TpServicePropertyList 

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the required services 
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The 
property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the 
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is 
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so 
that desired property values can specify an "enclosing" range of values to help in the selection of desired services. 

max : in TpInt32 

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result. 

Returns 

TpServiceList 

Raises 

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, 
P_INVALID_PROPERTY 

 

8.3.3.1.4 Method listRegisteredServices() 

Returns a list of services so far registered in the framework. 

Returns <serviceList> : The "serviceList" parameter returns a list of registered services.  Each service is characterised 
by its service ID and a list of service properties {name and value list} associated with the service.  

Parameters 
No Parameters were identified for this method 

Returns 

TpServiceList 

Raises 

TpCommonExceptions 

 

8.3.4 Service Instance Lifecycle Manager  Interface Classes 

The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of 
a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the 
application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the 
generic call control service uses the IpCallControlManager interface. 

 

8.3.4.1 Interface Class IpServiceInstanceLifecycleManager  

Inherits from: IpInterface. 

The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager 
Instances.  

This interface and all itsthe createServiceManager() and destroyServiceManager() methods shall be implemented by a 
Service. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 25 

CR page 25 

<<Interface>> 

IpServiceInstanceLifecycleManager 

 

 

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, 
serviceInstanceID : in TpServiceInstanceID) : IpServiceRef 

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void 

 

 

8.3.4.1.1 Method createServiceManager() 

This method returns a new service manager interface reference for the specified application.  The service instance will 
be configured for the client application using the properties agreed in the service level agreement. 

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.   

Parameters 

application : in TpClientAppID 

Specifies the application for which the service manager interface is requested. 

serviceProperties : in TpServicePropertyList 

Specifies the service properties and their values that are to be used to configure the service instance.  These properties 
form a part of the service level agreement.  An example of these properties is a list of methods that the client application 
is allowed to invoke on the service interfaces. 

serviceInstanceID : in TpServiceInstanceID 

Specifies the Service Instance ID that the new Service Manager is to be identified by. 

Returns 

IpServiceRef 

Raises 

TpCommonExceptions, P_INVALID_PROPERTY 

 

8.3.4.1.2 Method destroyServiceManager() 

This method destroys an existing service manager interface reference. This will result in the client application being 
unable to use the service manager any more.   

Parameters 

serviceInstance : in TpServiceInstanceID 

Identifies the Service Instance to be destroyed. 

Raises 

TpCommonExceptions 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 26 

CR page 26 

8.3.5 Service Registration Interface Classes 

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with 
the Framework. Services are registered against a particular service type. Therefore service types are created first, and 
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. 
The framework maintains a repository of service types and registered services. 

In order to register a new service in the framework, the service supplier must select a service type and the "property 
values" for the service.  The service discovery functionality described in the previous clause enables the service supplier 
to obtain a list of all the service types supported by the framework and their associated sets of service property values. 

The Framework service registration-related interfaces are invoked by third party service supplier's administrative 
applications.  They are described below.  Note that these methods cannot be invoked until the authentication methods 
have been invoked successfully. 

 

8.3.5.1 Interface Class IpFwServiceRegistration  

Inherits from: IpInterface. 

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 27 

CR page 27 

This interface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and 
unannounceService() shall be implemented by a Framework. 

<<Interface>> 

IpFwServiceRegistration 

 

 

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) 
: TpServiceID 

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in 
service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void 

unregisterService (serviceID : in TpServiceID) : void 

describeService (serviceID : in TpServiceID) : TpServiceDescription 

unannounceService (serviceID : in TpServiceID) : void 

 

 

8.3.5.1.1 Method registerService() 

The registerService() operation is the means by which a service is registered in the Framework, for subsequent 
discovery by the enterprise applications.  Registration can only succeed when the Service type of the service is known 
to the Framework (ServiceType is 'available').  A service-ID is returned to the service supplier when a service is 
registered in the Framework.  When the service is not registered because the ServiceType is 'unavailable', a 
P_SERVICE_TYPE_UNAVAILABLE is raised.  The service-ID is the handle with which the service supplier can 
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context 
of the Framework that generated it. 

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this 
operation. The Service Supplier can identify the registered service when attempting to access it via other operations 
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to 
discover a service of this type.  

Parameters 

serviceTypeName : in TpServiceTypeName 

The "serviceTypeName" parameter identifies the service type.  If the string representation of the "type" does not obey 
the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised.  If the "type" is correct 
syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a 
P_UNKNOWN_SERVICE_TYPE exception is raised. 

servicePropertyList : in TpServicePropertyList 

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being 
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service. 
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics: 
 a. mandatory - a service associated with this service type must provide an appropriate value for this property when 
registering.                               
 b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may 
not be modified.                             
 Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. 
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service 
suppliers during the life time of service.                       
 If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in 
the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised.  If the "servicePropertyList" 
parameter omits any property declared in the service type with a mode of mandatory, then a 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 28 

CR page 28 

P_MISSING_MANDATORY_PROPERTY exception is raised.  If two or more properties with the same property name 
are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised. 

Returns 

TpServiceID 

Raises 

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, 
P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, 
P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE 

 

8.3.5.1.2 Method announceServiceAvailability() 

The registerService() method described previously does not make the service discoverable. The 
announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle 
manager is instantiated at a particular interface. This method informs the framework of the availability of "service 
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After 
the receipt of this method, the framework makes the corresponding service discoverable.  

There exists a "service manager" instance per service instance. Each service implements the 
IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method 
called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList, 
serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID 
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a 
serviceManager and returns this to the client application.  

Parameters 

serviceID : in TpServiceID 

The service ID of the service that is being announced.  If  the string representation of the "serviceID" does not obey the 
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised.  If the "serviceID" is legal but 
there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised. 

serviceInstanceLifecycleManagerRef : in 
service_lifecycle::IpServiceInstanceLifecycleManagerRef 

The interface reference at which the service instance lifecycle manager of the previously registered service is available. 

Raises 

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID, 
P_INVALID_INTERFACE_TYPE 

 

8.3.5.1.3 Method unregisterService() 

The unregisterService() operation is used by the service suppliers to remove a  registered service from the Framework. 
The service is identified by the "service-ID" which was originally returned by the Framework in response to the 
registerService() operation. The service must be in the SCF Registered state.  All instances of the service will be 
deleted.  

Parameters 

serviceID : in TpServiceID 

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the 
registerService() operation.  If  the string representation of the "serviceID" does not obey the rules for service 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 29 

CR page 29 

identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised.  If the "serviceID" is legal but there is no service 
offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised. 

Raises 

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID 

 

8.3.5.1.4 Method describeService() 

The describeService() operation returns the information about a service that is registered in the framework. It 
comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the 
"service-ID" parameter which was originally returned by the registerService() operation. 

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for 
example), and each getting a different serviceID assigned. 

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. 
It comprises the "type" of the service , and the properties that describe this service.  

Parameters 

serviceID : in TpServiceID 

The service to be described is identified by the "serviceID" parameter which was originally returned by the 
registerService() operation.  If the string representation of the "serviceID" does not obey the rules for object identifiers, 
then an P_ILLEGAL_SERVICE_ID exception is raised.  If the "serviceID" is legal but there is no service offer within 
the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised. 

Returns 

TpServiceDescription 

Raises 

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID 

 

8.3.5.1.5 Method unannounceService() 

This method results in the service no longer being discoverable by applications. It is, however, still registered and  the 
service ID is still associated with it. Applications currently using the service can continue to use the service but  no new 
applications should be able to start using the service.  Also, all unused service tokens relating to the service will be 
expired.  This will prevent anyone who has already performed a selectService() but not yet performed the 
signServiceAgreement() from being able to obtain a new instance of the service.  

Parameters 

serviceID : in TpServiceID 

The service ID of the service that is being unannounced.  If  the string representation of the "serviceID" does not  obey 
the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised.  If the "serviceID" is  legal but 
there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID  exception is raised.  

Raises 

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID 

 



CR page 1 

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020897 
Meeting #20, Miami/ FL, USA, 23 – 27 September 2002 

CR-Form-v7 

CHANGE REQUEST 
 

! 29.198-03 CR 069 ! rev - ! Current version: 5.1.0 
! 

 
For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. 

 
Proposed change affects: UICC apps!  ME  Radio Access Network  Core Network X 
 
Title: ! Correction of status of methods to interfaces in clause 7.3 
  
Source: ! N5 
  
Work item code: ! OSA2  Date: ! 27/09/2002 
     
Category: ! F  Release: ! REL-5 
 Use one of the following categories: 

F  (correction) 
A  (corresponds to a correction in an earlier release) 
B  (addition of feature),  
C  (functional modification of feature) 
D  (editorial modification) 

Detailed explanations of the above categories can 
be found in 3GPP TR 21.900. 

Use one of the following releases: 
2 (GSM Phase 2) 
R96 (Release 1996) 
R97 (Release 1997) 
R98 (Release 1998) 
R99 (Release 1999) 
Rel-4 (Release 4) 
Rel-5 (Release 5) 
Rel-6 (Release 6) 

  
Reason for change: ! There is no requirement in the standard about the necessity to implement all or 

only some of the methods defined for an interface. 
  
Summary of change: ! Clarify which methods are mandatory and which are optional. 
  
Consequences if  ! 
not approved: 

Application developers will not know which methods will actually be available. 

  
Clauses affected: ! 7.3 Interface Classes 
  
 Y N   
Other specs !  X  Other core specifications !  
affected:  X  Test specifications  
  X  O&M Specifications  
  
Other comments: !  
 
How to create CRs using this form: 
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.  
Below is a brief summary: 

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are 
closest to. 

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word 
"revision marks"  feature (also known as "track changes") when making the changes. All 3GPP specifications can be 
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name 
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings. 

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of 
the clause containing the first piece of changed text.  Delete those parts of the specification which are not relevant to 
the change request. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2 

CR page 2 

7.3 Interface Classes 

7.3.1 Event Notification Interface Classes 

7.3.1.1 Interface Class IpAppEventNotification  

Inherits from: IpInterface. 

This interface is used by the services to inform the application of a generic service-related event.  The Event 
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the 
Event Notification interface is obtained.  

<<Interface>> 

IpAppEventNotification 

 

 

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void 

notificationTerminated () : void 

 

  

7.3.1.1.1 Method reportNotification() 

This method notifies the application of the arrival of a generic event.  

Parameters 

eventInfo : in TpFwEventInfo 

Specifies specific data associated with this event.  

assignmentID : in TpAssignmentID 

Specifies the assignment id which was returned by the framework during the createNotification() method. The 
application can use assignment id to associate events with event specific criteria and to act accordingly. 

  

7.3.1.1.2 Method notificationTerminated() 

This method indicates to the application that all generic event notifications have been terminated (for example, due to 
faults detected).  

Parameters 
No Parameters were identified for this method 

 

7.3.1.2 Interface Class IpEventNotification  

Inherits from: IpInterface. 

The event notification mechanism is used to notify the application of generic service related events that have occurred.  

If Event Notifications are supported by a Framework, this interface and all itsthe createNotification() and 
destroyNotification() methods shall be supported. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3 

CR page 3 

<<Interface>> 

IpEventNotification 

 

 

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID 

destroyNotification (assignmentID : in TpAssignmentID) : void 

 

  

7.3.1.2.1 Method createNotification() 

This method is used to enable generic notifications so that events can be sent to the application. 

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed notification.  

Parameters 

eventCriteria : in TpFwEventCriteria 

Specifies the event specific criteria used by the application to define the event required.  

Returns 

TpAssignmentID 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA, 
P_INVALID_EVENT_TYPE 

  

7.3.1.2.2 Method destroyNotification() 

This method is used by the application to delete generic notifications from the framework.   

Parameters 

assignmentID : in TpAssignmentID 

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the 
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code 
P_INVALID_ASSIGNMENTID. 

Raises 

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_ASSIGNMENT_ID 

 

7.3.2 Integrity Management Interface Classes 

7.3.2.1 Interface Class IpAppFaultManager  

Inherits from: IpInterface. 

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client 
Application.  The Fault Management Framework will invoke methods on the Fault Management Application Interface 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4 

CR page 4 

that is specified when the client application obtains the Fault Management interface: i.e. by use of the 
obtainInterfaceWithCallback operation on the IpAccess interface  

<<Interface>> 

IpAppFaultManager 

 

 

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

appActivityTestReq (activityTestID : in TpActivityTestID) : void 

fwFaultReportInd (fault : in TpInterfaceFault) : void 

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void 

svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void 

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void 

fwUnavailableInd (reason : in TpFwUnavailReason) : void 

activityTestErr (activityTestID : in TpActivityTestID) : void 

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : 
void 

appUnavailableInd (serviceID : in TpServiceID) : void 

genFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void 

 

  

7.3.2.1.1 Method activityTestRes() 

The framework uses this method to return the result of a client application-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the client application to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

  

7.3.2.1.2 Method appActivityTestReq() 

The framework invokes this method to test that the client application is operational. On receipt of this request, the 
application must carry out a test on itself, to check that it is operating correctly.  The application reports the test result 
by invoking the appActivityTestRes method on the IpFaultManager interface.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the framework to correlate the response (when it arrives) with this request. 

  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5 

CR page 5 

7.3.2.1.3 Method fwFaultReportInd() 

The framework invokes this method to notify the client application of a failure within the framework. The client 
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).   

Parameters 

fault : in TpInterfaceFault 

Specifies the fault that has been detected by the framework. 

  

7.3.2.1.4 Method fwFaultRecoveryInd() 

The framework invokes this method to notify the client application that a previously reported fault has been rectified.  
The application may then resume using the framework.   

Parameters 

fault : in TpInterfaceFault 

Specifies the fault from which the framework has recovered. 

  

7.3.2.1.5 Method svcUnavailableInd() 

The framework invokes this method to inform the client application that it may experience difficulties using its instance 
of the indicated service.  

Parameters 

serviceID : in TpServiceID 

Identifies the affected service. 

reason : in TpSvcUnavailReason 

Identifies the reason why the service is no longer available 

  

7.3.2.1.6 Method genFaultStatsRecordRes() 

This method is used by the framework to provide fault statistics to a client application in response to a 
genFaultStatsRecordReq method invocation on the IpFaultManager interface.   

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

serviceIDs : in TpServiceIDList 

Specifies the framework or services that are included in the general fault statistics record.  If the serviceIDs parameter is 
an empty list, then the fault statistics are for the framework. 

  

7.3.2.1.7 Method fwUnavailableInd() 

The framework invokes this method to inform the client application that it is no longer available.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6 

CR page 6 

Parameters 

reason : in TpFwUnavailReason 

Identifies the reason why the framework is no longer available 

  

7.3.2.1.8 Method activityTestErr() 

The framework uses this method to indicate that an error occurred during an application-initiated activity test.   

Parameters 

activityTestID : in TpActivityTestID 

Used by the application to correlate this response (when it arrives) with the original request. 

  

7.3.2.1.9 Method genFaultStatsRecordErr() 

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to 
a genFaultStatsRecordReq method invocation on the IpFaultManager interface.  

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

serviceIDs : in TpServiceIDList 

Specifies the framework or services that were included in the general fault statistics record request.  If the serviceIDs 
parameter is an empty list, then the fault statistics were requested for the framework. 

  

7.3.2.1.10 Method appUnavailableInd() 

The framework invokes this method to indicate to the application that the service instance has detected that it is not 
responding.  

Parameters 

serviceID : in TpServiceID 

Specifies the service for which the indication of unavailability was received. 

  

7.3.2.1.11 Method genFaultStatsRecordReq() 

This method is used by the framework to solicit fault statistics from the client application, for example when the 
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the 
IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for 
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes 
operation on the IpFaultManager interface.   

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings 
leaves the time period to the discretion of the client application. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7 

CR page 7 

 

7.3.2.2 Interface Class IpFaultManager  

Inherits from: IpInterface. 

This interface is used by the application to inform the framework of events that affect the integrity of the framework 
and services, and to request information about the integrity of the system.  The fault manager operations do not 
exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback 
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback 
operation on the IpAccess interface.  

If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented.  If 
the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall implement 
appActivityTestRes() and appActivityTestErr() in this interface.  If the Framework is capable of invoking 
IpAppFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and 
genFaultStatsRecordErr() in this interface. 

<<Interface>> 

IpFaultManager 

 

 

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void 

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void 

svcUnavailableInd (serviceID : in TpServiceID) : void 

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void 

appActivityTestErr (activityTestID : in TpActivityTestID) : void 

<<deprecated>> appUnavailableInd (serviceID : in TpServiceID) : void 

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void 

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void 

 

  

7.3.2.2.1 Method activityTestReq() 

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of 
this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check 
that it is operating correctly.  The framework reports the test result by invoking the activityTestRes method on the 
IpAppFaultManager interface.  If the application does not have access to a service instance with the specified serviceID, 
the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the 
exception shall contain the corresponding serviceID. 

For security reasons the client application has access to the service ID rather than the service instance ID. However, as 
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of 
the specified service per client application, it is the obligation of the framework to determine the service instance ID 
from the service ID.  

Parameters 

activityTestID : in TpActivityTestID 

The identifier provided by the client application to correlate the response (when it arrives) with this request. 

svcID : in TpServiceID 

Identifies either the framework or a service for testing. The framework is designated by an empty string. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8 

CR page 8 

Raises 

TpCommonExceptions,P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

  

7.3.2.2.2 Method appActivityTestRes() 

The client application uses this method to return the result of a framework-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 

activityTestResult : in TpActivityTestRes 

The result of the activity test. 

Raises 

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID 

  

7.3.2.2.3 Method svcUnavailableInd() 

This method is used by the client application to inform the framework that it can no longer use its instance of the 
indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this 
request, the framework should take the appropriate corrective action.   

Parameters 

serviceID : in TpServiceID 

Identifies the service that the application can no longer use. 

Raises 

TpCommonExceptions ,P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

  

7.3.2.2.4 Method genFaultStatsRecordReq() 

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the 
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified 
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes 
operation on the IpAppFaultManager interface.  If the application does not have access to a service instance with the 
specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The 
extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters 

timePeriod : in TpTimeInterval 

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings 
leaves the time period to the discretion of the framework. 

serviceIDs : in TpServiceIDList 

Specifies either the framework or services to be included in the general fault statistics record.  If this parameter is not an 
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault 
statistics record of the framework is returned. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9 

CR page 9 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

  

7.3.2.2.5 Method appActivityTestErr() 

The client application uses this method to indicate that an error occurred during a framework-requested activity test.  

Parameters 

activityTestID : in TpActivityTestID 

Used by the framework to correlate this response (when it arrives) with the original request. 

Raises 

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID 

  

7.3.2.2.6 Method <<deprecated>> appUnavailableInd() 

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this 
method.  Applications can indicate they no longer use a particular service instance using 
IpServiceAgreementManagement.terminateServiceAgreement().  Applications can indicate a fault with a particular 
service instance using IpFaultManager.svcUnavailableInd(). 

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This 
may a result of the application detecting a failure.  The framework assumes that the session between this client 
application and service instance is to be closed and updates its own records appropriately as well as attempting to 
inform the service instance and/or its administrator.  

Parameters 

serviceID : in TpServiceID 

Identifies the affected application. 

Raises 

TpCommonExceptions 

  

7.3.2.2.7 Method genFaultStatsRecordRes() 

This method is used by the client application to provide fault statistics to the framework in response to a 
genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.   

Parameters 

faultStatistics : in TpFaultStatsRecord 

The fault statistics record. 

Raises 

TpCommonExceptions 

  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10 

CR page 10 

7.3.2.2.8 Method genFaultStatsRecordErr() 

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in 
response to a genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.   

Parameters 

faultStatisticsError : in TpFaultStatisticsError 

The fault statistics error. 

Raises 

TpCommonExceptions 

 

7.3.2.3 Interface Class IpAppHeartBeatMgmt  

Inherits from: IpInterface. 

This interface allows the initialisation of a heartbeat supervision of the client application by the framework.    

<<Interface>> 

IpAppHeartBeatMgmt 

 

 

enableAppHeartBeat (interval : in TpInt32, fwInterface : in IpHeartBeatRef) : void 

disableAppHeartBeat () : void 

changeInterval (interval : in TpInt32) : void 

 

  

7.3.2.3.1 Method enableAppHeartBeat() 

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface 
at the specified interval.  

Parameters 

interval : in TpInt32 

The time interval in milliseconds between the heartbeats. 

fwInterface : in IpHeartBeatRef 

This parameter refers to the callback interface the heartbeat is calling. 

  

7.3.2.3.2 Method disableAppHeartBeat() 

Instructs the client application to cease the sending of its heartbeat.   

Parameters 
No Parameters were identified for this method 

  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11 

CR page 11 

7.3.2.3.3 Method changeInterval() 

Allows the administrative change of the heartbeat interval.  

Parameters 

interval : in TpInt32 

The time interval in milliseconds between the heartbeats. 

 

7.3.2.4 Interface Class IpAppHeartBeat  

Inherits from: IpInterface. 

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.   

<<Interface>> 

IpAppHeartBeat 

 

 

pulse () : void 

 

  

7.3.2.4.1 Method pulse() 

The framework uses this method to send its heartbeat to the client application.  The application will be expecting a pulse 
at the end of every interval specified in the parameter to the IpHeartBeatMgmt.enableHeartbeat() method.  If the pulse() 
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.  

Parameters 
No Parameters were identified for this method 

 

7.3.2.5 Interface Class IpHeartBeatMgmt  

Inherits from: IpInterface. 

This interface allows the initialisation of a heartbeat supervision of the framework by a client application.  

If the IpHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and 
disableHeartBeat() shall be implemented. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12 

CR page 12 

<<Interface>> 

IpHeartBeatMgmt 

 

 

enableHeartBeat (interval : in TpInt32, appInterface : in IpAppHeartBeatRef) : void 

disableHeartBeat () : void 

changeInterval (interval : in TpInt32) : void 

 

  

7.3.2.5.1 Method enableHeartBeat() 

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface 
at the specified interval.  

Parameters 

interval : in TpInt32 

The time interval  in milliseconds between the heartbeats. 

appInterface : in IpAppHeartBeatRef 

This parameter refers to the callback interface the heartbeat is calling. 

Raises 

TpCommonExceptions 

  

7.3.2.5.2 Method disableHeartBeat() 

Instructs the framework to cease the sending of its heartbeat.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

  

7.3.2.5.3 Method changeInterval() 

Allows the administrative change of the heartbeat interval.  

Parameters 

interval : in TpInt32 

The time interval in milliseconds between the heartbeats. 

Raises 

TpCommonExceptions 

 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13 

CR page 13 

7.3.2.6 Interface Class IpHeartBeat  

Inherits from: IpInterface. 

The Heartbeat Framework interface is used by the client application to send its heartbeat.  

If a Framework is capable of invoking IpAppHeartBeatMgmt.enableHeartBeat(), it shall implement IpHeartBeat and 
the pulse() method. 

<<Interface>> 

IpHeartBeat 

 

 

pulse () : void 

 

  

7.3.2.6.1 Method pulse() 

The client application uses this method to send its heartbeat to the framework.  The framework will be expecting a pulse 
at the end of every interval specified in the parameter to the IpAppHeartBeatMgmt.enableAppHeartbeat() method.  If 
the pulse() is not received within the specified interval, then the client application can be deemed to have failed the 
heartbeat.  

Parameters 
No Parameters were identified for this method 

Raises 

TpCommonExceptions 

 

7.3.2.7 Interface Class IpAppLoadManager  

Inherits from: IpInterface. 

The client application developer supplies the load manager application interface to handle requests, reports and other 
responses from the framework load manager function.  The application supplies the identity of this callback interface at 
the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the 
IpAccess interface.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14 

CR page 14 

<<Interface>> 

IpAppLoadManager 

 

 

queryAppLoadReq (timeInterval : in TpTimeInterval) : void 

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void 

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void 

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void 

resumeNotification () : void 

suspendNotification () : void 

 

  

7.3.2.7.1 Method queryAppLoadReq() 

The framework uses this method to request the application to provide load statistics records for the application.  

Parameters 

timeInterval : in TpTimeInterval 

Specifies the time interval for which load statistic records should be reported. 

  

7.3.2.7.2 Method queryLoadRes() 

The framework uses this method to send load statistic records back to the application that requested the information; i.e. 
in response to an invocation of the queryLoadReq method on the IpLoadManager interface.  

Parameters 

loadStatistics : in TpLoadStatisticList 

Specifies the framework-supplied load statistics 

  

7.3.2.7.3 Method queryLoadErr() 

The framework uses this method to return an error response to the application that requested the framework's load 
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an 
invocation of the queryLoadReq method on the IpLoadManager interface.  

Parameters 

loadStatisticsError : in TpLoadStatisticError 

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics. 

  

7.3.2.7.4 Method loadLevelNotification() 

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework 
which have been registered for load level notifications) this method is invoked on the application.   



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15 

CR page 15 

Parameters 

loadStatistics : in TpLoadStatisticList 

Specifies the framework-supplied load statistics, which include the load level change(s). 

  

7.3.2.7.5 Method resumeNotification() 

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of 
suspension during which the framework handled a temporary overload condition.  

Parameters 
No Parameters were identified for this method 

  

7.3.2.7.6 Method suspendNotification() 

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the 
framework handles a temporary overload condition.  

Parameters 
No Parameters were identified for this method 

 

7.3.2.8 Interface Class IpLoadManager  

Inherits from: IpInterface. 

The framework API should allow the load to be distributed across multiple machines and across multiple component 
processes, according to a load management policy. The separation of the load management mechanism and load 
management policy ensures the flexibility of the load management services. The load management policy identifies 
what load management rules the framework should follow for the specific client application. It might specify what 
action the framework should take as the congestion level changes. For example, some real-time critical applications will 
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services 
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management 
policy is related to the QoS level to which the application is subscribed.  The framework load management function is 
represented by the IpLoadManager interface.  Most methods are asynchronous, in that they do not lock a thread into 
waiting whilst a transaction performs.  To handle responses and reports, the client application developer must 
implement the IpAppLoadManager interface to provide the callback mechanism.  The application supplies the identity 
of this callback interface at the time it obtains the framework's load manager interface, by use of the 
obtainInterfaceWithCallback operation on the IpAccess interface.  

If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a 
minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and 
destroyLoadLevelNotification() methods shall be implemented.  If suspendNotification() is implemented, then 
resumeNotification() shall be implemented also.  If a Framework is capable of invoking the 
IpAppLoadManager.queryAppLoadReq() method, then it shall implement queryAppLoadRes() and queryAppLoadErr() 
methods in this interface. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16 

CR page 16 

<<Interface>> 

IpLoadManager 

 

 

reportLoad (loadLevel : in TpLoadLevel) : void 

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void 

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void 

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void 

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void 

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void 

resumeNotification (serviceIDs : in TpServiceIDList) : void 

suspendNotification (serviceIDs : in TpServiceIDList) : void 

 

  

7.3.2.8.1 Method reportLoad() 

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load 
level on the application has changed.  

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At 
level 1 load, the application is overloaded.  At level 2 load, the application is severely overloaded.   

Parameters 

loadLevel : in TpLoadLevel 

Specifies the application's load level. 

Raises 

TpCommonExceptions 

  

7.3.2.8.2 Method queryLoadReq() 

The client application uses this method to request the framework to provide load statistic records for the framework or 
for its instances of the individual services.   If the application does not have access to a service instance with the 
specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The 
extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters 

serviceIDs : in TpServiceIDList 

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an 
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load 
statistics record of the framework is returned. 

timeInterval : in TpTimeInterval 

Specifies the time interval for which load statistics records should be reported. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17 

CR page 17 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, 
P_UNAUTHORISED_PARAMETER_VALUE 

  

7.3.2.8.3 Method queryAppLoadRes() 

The client application uses this method to send load statistic records back to the framework that requested the 
information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.  

Parameters 

loadStatistics : in TpLoadStatisticList 

Specifies the application-supplied load statistics. 

Raises 

TpCommonExceptions 

  

7.3.2.8.4 Method queryAppLoadErr() 

The client application uses this method to return an error response to the framework that requested the application's load 
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an 
invocation of the queryAppLoadReq method on the IpAppLoadManager interface.  

Parameters 

loadStatisticsError : in TpLoadStatisticError 

Specifies the error code associated with the failed attempt to retrieve the application's load statistics. 

Raises 

TpCommonExceptions 

  

7.3.2.8.5 Method createLoadLevelNotification() 

The client application uses this method to register to receive notifications of load level changes associated with either 
the framework or with its instances of the individual services used by the application.  If the application does not have 
access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception 
shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters 

serviceIDs : in TpServiceIDList 

Specifies the framework or SCFs to be registered for load control.  To register for framework load control, the 
serviceIDs parameter must be an empty list. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

  

7.3.2.8.6 Method destroyLoadLevelNotification() 

The client application uses this method to unregister for notifications of load level changes associated with either the 
framework or with its instances of the individual services used by the application.  If the application does not have 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18 

CR page 18 

access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception 
shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters 

serviceIDs : in TpServiceIDList 

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for 
framework load control, the serviceIDs parameter must be an empty list. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE 

  

7.3.2.8.7 Method resumeNotification() 

The client application uses this method to request the framework to resume sending it load management notifications 
associated with either the framework or with its instances of the individual services used by the application; e.g. after a 
period of suspension during which the application handled a temporary overload condition.  If the application does not 
have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE 
exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters 

serviceIDs : in TpServiceIDList 

Specifies the framework or the services for which the sending of notifications of load level changes by the framework 
should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, 
P_UNAUTHORISED_PARAMETER_VALUE 

  

7.3.2.8.8 Method suspendNotification() 

The client application uses this method to request the framework to suspend sending it load management notifications 
associated with either the framework or with its instances of the individual services used by the application; e.g. while 
the application handles a temporary overload condition.  If the application does not have access to a service instance 
with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The 
extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters 

serviceIDs : in TpServiceIDList 

Specifies the framework or the services for which the sending of notifications by the framework should be suspended. 
To suspend notifications for the framework, the serviceIDs parameter must be an empty list. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, 
P_UNAUTHORISED_PARAMETER_VALUE 

 

7.3.2.9 Interface Class IpOAM  

Inherits from: IpInterface. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19 

CR page 19 

The OAM interface is used to query the system date and time. The application and the framework can synchronise the 
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs.  

This interface and itsthe systemDateTimeQuery() method are optional.  

<<Interface>> 

IpOAM 

 

 

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime 

 

  

7.3.2.9.1 Method systemDateTimeQuery() 

This method is used to query the system date and time. The client application passes in its own date and time to the 
framework. The framework responds with the system date and time. 

Returns <systemDateAndTime> : This is the system date and time of the framework.  

Parameters 

clientDateAndTime : in TpDateAndTime 

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if 
the format of the parameter is invalid. 

Returns 

TpDateAndTime 

Raises 

TpCommonExceptions,P_INVALID_TIME_AND_DATE_FORMAT 

 

7.3.2.10 Interface Class IpAppOAM  

Inherits from: IpInterface. 

The OAM client application interface is used by the Framework to query the application date and time, for 
synchronisation purposes. This method is invoked by the Framework to interchange the framework and client 
application date and time.  

<<Interface>> 

IpAppOAM 

 

 

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime 

 

  

7.3.2.10.1 Method systemDateTimeQuery() 

This method is used to query the system date and time. The framework passes in its own date and time to the 
application.  The application responds with its own date and time. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 20 

CR page 20 

Returns <clientDateAndTime> : This is the date and time of the client (application).  

Parameters 

systemDateAndTime : in TpDateAndTime 

This is the system date and time of the framework. 

Returns 

TpDateAndTime 

 

7.3.3 Service Agreement Management Interface Classes 

7.3.3.1 Interface Class IpAppServiceAgreementManagement  

Inherits from: IpInterface. 

  This interface and all itsthe signServiceAgreement() and terminateServiceAgreement() methods shall be implemented 
by an application. 

<<Interface>> 

IpAppServiceAgreementManagement 

 

 

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : 
in TpSigningAlgorithm) : TpOctetSet 

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, 
digitalSignature : in TpOctetSet) : void 

 

  

7.3.3.1.1 Method signServiceAgreement() 

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the 
framework to request that the client application sign an agreement on the service. The framework provides the service 
agreement text for the client application to sign. The service manager returned will be configured as per the service 
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the 
subscription properties contained in the contract/profile for the client application, which will be a restriction of the 
registered properties.  If the client application agrees, it signs the service agreement, returning its digital signature to the 
framework. 

Returns <digitalSignature> : This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) 
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the 
agreement text given by the framework. The "external signature" construct shall not be used (i.e. the eContent field in 
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as 
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.  If the signature is incorrect the 
serviceToken will be expired immediately.  

Parameters 

serviceToken : in TpServiceToken 

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the 
service instance to which this service agreement corresponds. (If the client application selects many services, it can 
determine which selected service corresponds to the service agreement by matching the service token.)  If the 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 21 

CR page 21 

serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is 
thrown. 

agreementText : in TpString 

This is the agreement text that is to be signed by the client application using the private key of the client application.  If 
the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown. 

signingAlgorithm : in TpSigningAlgorithm 

This is the algorithm used to compute the digital signature.  It shall be identical to the one chosen by the framework in 
response to IpAccess.selectSigningAlgorithm().  If the signingAlgorithm is not the chosen one, is invalid, or unknown 
to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown.  The list of possible 
algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the 
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below). 

Returns 

TpOctetSet 

Raises 

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, 
P_INVALID_SIGNING_ALGORITHM 

  

7.3.3.1.2 Method terminateServiceAgreement() 

This method is used by the framework to terminate an agreement for the service.  

Parameters 

serviceToken : in TpServiceToken 

This is the token passed back from the framework in a previous selectService() method call. This token is used to 
identify the service agreement to be terminated.  If the serviceToken is invalid, or unknown to the client application, the 
P_INVALID_SERVICE_TOKEN exception will be thrown. 

terminationText : in TpString 

This is the termination text that describes the reason for the termination of the service agreement. 

digitalSignature : in TpOctetSet 

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. 
The signature is calculated and created as per section 5 of RFC 2630. The content is the termination text. The "external 
signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and 
contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be 
used to provide replay prevention.  The signing algorithm used is the same as the signing algorithm given when the 
service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the 
client application. The client application can check that the terminationText has been signed by the framework.  If a 
match is made, the service agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be 
thrown. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE 

 

7.3.3.2 Interface Class IpServiceAgreementManagement  

Inherits from: IpInterface. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 22 

CR page 22 

 This interface and all itsthe signServiceAgreement(), terminateServiceAgreement(), selectService() and 
initiateSignServiceAgreement() methods shall be implemented by a Framework. 

<<Interface>> 

IpServiceAgreementManagement 

 

 

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : 
in TpSigningAlgorithm) : TpSignatureAndServiceMgr 

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, 
digitalSignature : in TpOctetSet) : void 

selectService (serviceID : in TpServiceID) : TpServiceToken 

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void 

 

  

7.3.3.2.1 Method signServiceAgreement() 

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement 
interface, this method is used by the client application to request that the framework sign the service agreement, which 
allows the client application to use the service. A reference to the service manager interface of the service is returned to 
the client application.  The service manager returned will be configured as per the service level agreement. If the 
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties 
contained in the contract/profile for the client application, which will be a restriction of the registered properties.  If the 
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is 
returned. 

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, 
and a reference to the service manager interface of the service.                
    structure TpSignatureAndServiceMgr {                  
       digitalSignature:  TpOctetSet;                  
        serviceMgrInterface:  IpServiceRef;               
       };                          
 The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with 
content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the 
agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent 
field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time 
attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.        
                        The serviceMgrInterface is a 
reference to the service manager interface for the selected service.   

Parameters 

serviceToken : in TpServiceToken 

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the 
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code 
(P_INVALID_SERVICE_TOKEN) is returned. 

agreementText : in TpString 

This is the agreement text that is to be signed by the framework using the private key of the framework.  If the 
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned. 

signingAlgorithm : in TpSigningAlgorithm 

This is the algorithm used to compute the digital signature.  It shall be identical to the one chosen by the framework in 
response to IpAccess.selectSigningAlgorithm().  If the signingAlgorithm is not the chosen one, is invalid, or unknown 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 23 

CR page 23 

to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.  The list of possible algorithms 
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the 
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below). 

Returns 

TpSignatureAndServiceMgr 

Raises 

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SER
VICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED 

  

7.3.3.2.2 Method terminateServiceAgreement() 

This method is used by the client application to terminate an agreement for the service.    

Parameters 

serviceToken : in TpServiceToken 

This is the token passed back from the framework in a previous selectService() method call. This token is used to 
identify the service agreement to be terminated.  If the serviceToken is invalid, or has expired, an error code 
(P_INVALID_SERVICE_TOKEN) is returned. 

terminationText : in TpString 

This is the termination text that describes the reason for the termination of the service agreement. 

digitalSignature : in TpOctetSet 

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. 
The signature is calculated and created as per section 5 of RFC 2630. The content is the termination text. The "external 
signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and 
contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be 
used to provide replay prevention.  The signing algorithm used is the same as the signing algorithm given when the 
service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText 
has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error 
code (P_INVALID_SIGNATURE) is returned. 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN, 
P_INVALID_SIGNATURE 

  

7.3.3.2.3 Method selectService() 

This method is used by the client application to identify the service that the client application wishes to use.  If the client 
application is not allowed to access the service, then  the P_SERVICE_ACCESS_DENIED exception is thrown.  The 
P_SERVICE_ACCESS_DENIED exception is also thrown if the client attempts to select a service for which it has 
already signed a service agreement for, and therefore obtained an instance of.  This is because there must be only one 
service instance per client application. 

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a 
service agreement. This will contain operator specific information relating to the service level agreement. The 
serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken 
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client 
application or framework invokes the endAccess method on the other's corresponding access interface.  



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 24 

CR page 24 

Parameters 

serviceID : in TpServiceID 

This identifies the service required. If the serviceID is not recognised by the framework, an error code 
(P_INVALID_SERVICE_ID) is returned. 

Returns 

TpServiceToken 

Raises 

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, 
P_SERVICE_ACCESS_DENIED 

  

7.3.3.2.4 Method initiateSignServiceAgreement() 

This method is used by the client application to initiate the sign service agreement process.  This method shall be 
invoked following the application's call to selectService(), and before the signing of the service agreement can take 
place.  If the client application is not allowed to initiate the sign service agreement process, the exception 
(P_SERVICE_ACCESS_DENIED) is thrown.   

Parameters 

serviceToken : in TpServiceToken 

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the 
service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception 
(P_INVALID_SERVICE_TOKEN) is thrown. 

Raises 

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED 

 

7.3.4 Service Discovery Interface Classes 

7.3.4.1 Interface Class IpServiceDiscovery  

Inherits from: IpInterface. 

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the 
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and 
what service "properties" are applicable to each service type. The listServiceType() method returns a list of all "service 
types" that are currently supported by the framework and the "describeServiceType()" returns a description of each 
service type. The description of service type includes the "service-specific properties" that are applicable to each service 
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both 
belong to a given type and possess the desired "property values", by using the "discoverService() method.  Once the 
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these 
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out 
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()".  The service 
discovery APIs are invoked by the enterprise operators or client applications. They are described below.  

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(), 
describeServiceType() and discoverService() methods. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 25 

CR page 25 

<<Interface>> 

IpServiceDiscovery 

 

 

listServiceTypes () : TpServiceTypeNameList 

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription 

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in 
TpServicePropertyList, max : in TpInt32) : TpServiceList 

listSubscribedServices () : TpServiceList 

 

  

7.3.4.1.1 Method listServiceTypes() 

This operation returns the names of all service types that are in the repository. The details of the service types can then 
be obtained using the describeServiceType() method.  

Returns <listTypes> : The names of the requested service types.  

Parameters 
No Parameters were identified for this method 

Returns 

TpServiceTypeNameList 

Raises 

TpCommonExceptions,P_ACCESS_DENIED 

  

7.3.4.1.2 Method describeServiceType() 

This operation lets the caller obtain the details for a particular service type. 

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information 
about:                                
 · the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples,
 · the names of the super types of this service type, and                  
 · whether the service type is currently available or unavailable.  

Parameters 

name : in TpServiceTypeName 

The name of the service type to be described. 

· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised. 

· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 26 

CR page 26 

Returns 

TpServiceTypeDescription 

Raises 

TpCommonExceptions,P_ACCESS_DENIED,P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVI
CE_TYPE 

  

7.3.4.1.3 Method discoverService() 

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services 
that meet its requirements. The client application passes in a list of desired service properties to describe the service it is 
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the 
maximum number of matched responses it is willing to accept. The framework must not return more matches than the 
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the 
specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match 
the desired service property list that the client application provided.  The service properties returned will form a 
complete view of what the client application will be able to do with the service, as per the service level agreement.  If 
the framework supports  service subscription, the service level agreement will be encapsulated in the subscription 
properties contained in the contract/profile for the client application, which will be a restriction of the registered 
properties. 

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID 
and a list of service properties {name and value list} associated with the service.  

Parameters 

serviceTypeName : in TpServiceTypeName 

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service 
trading". It is the basis for type safe interactions between the service exporters (via registerService) and service 
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of 
discourse for talking about properties of service. 

· If the string representation of the "type" does not obey the rules for service type identifiers, then the 
P_ILLEGAL_SERVICE_TYPE exception is raised. 

· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the 
P_UNKNOWN_SERVICE_TYPE exception is raised. 

The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the 
properties of its supertypes.  

desiredPropertyList : in TpServicePropertyList 

The "desiredPropertyList"parameter is a list of service property {name, mode and value list} tuples that the discovered 
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the 
desired service. The property values in the desired property list must be logically interpreted as "minimum", 
"maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the 
service criterion). It is suggested that, at the time of service registration, each property value be specified as an 
appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the 
selection of desired services. 

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not 
interested in the value of a certain service property, this service property shall not be included in the 
desiredPropertyList. 

P_INVALID_PROPERTY is raised when an application includes an unknown service property name or invalid service 
property value. 



3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 27 

CR page 27 

max : in TpInt32 

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result. 

Returns 

TpServiceList 

Raises 

TpCommonExceptions,P_ACCESS_DENIED,P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVI
CE_TYPE,P_INVALID_PROPERTY 

  

7.3.4.1.4 Method listSubscribedServices() 

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications 
in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.  

Returns <serviceList> : The "serviceList" parameter returns a list of subscribed services.  Each service is characterised 
by its service ID and a list of service properties {name and value list} associated with the service.  

Parameters 
No Parameters were identified for this method 

Returns 

TpServiceList 

Raises 

TpCommonExceptions,P_ACCESS_DENIED 


	NP-030028.doc
	29198-03CR068.doc
	29198-03CR077.doc
	29198-03CR076.doc
	29198-03CR075.doc
	29198-03CR071.doc
	29198-03CR070.doc
	29198-03CR069.doc


