Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020704

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

	CR-Form-v5

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	052
	(

rev
	-
	(

Current version:
	5.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Correct use of electronic signatures

	
	

	Source:
(

	CN5

	
	

	Work item code:
(

	OSA2
	
	Date: (

	12/07/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	This CR proposes an overhaul of the digital signature usage in OSA. The changes in this CR are based on those proposed in contributions N5-020283.

Digital signatures are used in OSA for the signing of service agreements. They are also used for the termination of service agreements, and for the Framework's termination of the client's access session. But they are not used for other methods which result in termination of service agreements: those invoked by a client which terminate a client's access session with the Framework. This is a potential security hole, offering a means to perform denial of service attacks.

There is no negotiation mechanism in the API to enable negotiation of the signing algorithms, yet negotiation is used for such things as encryption capabiltities in Authentication.

The choice of signing algorithms is resticted and should be extended with newer choices.

IpClientAccess.terminateAccess() has had correct digital Signature added, including replay protection. Also, functionality extended to close also all service instances associated with access session.

TpSigningAlgorithm extended with state of the art signing algorithms.

IpAccess.endAccess replaced with terminateAccess: to add digital signature for security, to prevent denial of service attacks on this unprotected method. Also to remove the endAccessProperties which were undefined, but without which the method would throw an exception. This removes possiblity to leave service instances open following close of Framework access session, which was a further security hole.

IpAccess.releaseInterface() replaced with relinquishInterface, to add digital signature parameters for security, to prevent denial of service attacks on this unprotected method.

	
	

	Summary of change:
(

	Add a negotiation mechanism for Signing Algorighms:
selectSigningAlgorithm added to provide negotiation for algorithm to be used for ALL digital signatures (even those in signServiceAgreement).

TpSigningAlgorithm extended with state of the art signing algorithms.

IpClientAccess.terminateAccess() has had correct digital Signature added, including replay protection (timestamp). Also, functionality extended to close also all service instances associated with access session.

IpAccess.endAccess replaced with terminateAccess: to add digital signature for security, to prevent denial of service attacks on this unprotected method. Also to remove the endAccessProperties which were undefined, but without which the method would throw an exception. This removes possiblity to leave service instances open following close of Framework access session, which was a further security hole.

IpAccess.releaseInterface() replaced with relinquishInterface, to add digital signature parameters for security, to prevent denial of service attacks on this unprotected method.

Methods signServiceAgreement() and terminateServiceAgreement clarified to use the signing algorithm negotiated earlier, and to include replay protection using timestamping.

	
	

	Consequences if
(

not approved:
	Security weaknesses will remain in the OSA specifications, which will limit their adoption and use.
Lack of clear instructions for implementors will lead to interoperability difficulties.

	
	

	Clauses affected:
(

	6.3, 7.3, 10.3, 11

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA Framework for the first time. Trusted parties do not need to be authenticated and after contacting the Initial interface the Framework will indicate that no further authentication is needed and that the application can immediately gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method.

[image: image1.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

 :

IpAPILevelAuthentication

 : IpAccess

Framework

1: initiateAuthentication()

2: authenticationSucceeded()

3: requestAccess()

1:
The Client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Based on the domainID information that was supplied in the Initiate Authentication step, the Framework knows it deals with a trusted party and no further authentication is needed. Therefore the Framework provides the authentication succeeded indication.

3:
The Client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

6.1.1.2 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

[image: image2.wmf]Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

1:
Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the encryption methods it supports. The Framework prescribes the method to be used.

3:
Authenticate

4:
The client provides an indication if authentication succeeded.

5:
The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the client using the authenticate method on the client's API Level Authentication interface.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

8:
The client and framework negotiate the signing algorithm to be used for any signed exchanges.
9:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another using an underlying distribution technology mechanism.

[image: image4.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthentication()

2: requestAccess()

4: obtainInterface()

Underlying Distribution Technology

Mechanism is used for client

identification and authentication.

3: selectSigningAlgorithm()

1:
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the client.

3:
If the authentication was successful, the client and the framework can negotiate, on the framework's Access interface, the signing algorithm to be used for any signed exchanges.
4:
The client can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the encryption capabilities of the client. The framework then chooses an encryption method based on the encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the client's APILevelAuthentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.

[image: image6.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

7: authenticate()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

6.3.1.2 Interface Class IpClientAccess

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session.

	<<Interface>>

IpClientAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void

Method

terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated. If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString
This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm
This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
digitalSignature : in TpOctetSet
This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
6.3.1.6 Interface Class IpAccess

Inherits from: IpInterface.
	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : IpInterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

<<deprecated>> releaseInterface (interfaceName : in TpInterfaceName) : void
<<new>> selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm
<<new>> terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

<<new>> relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

Method

obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName
The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
Returns

IpInterfaceRef
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME
Method

obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName
The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
clientInterface : in IpInterfaceRef
This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, P_INVALID_INTERFACE_TYPE
Method

<<deprecated>> endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties
 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY
Method

listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework makes available.

Parameters

No Parameters were identified for this method

Returns

TpInterfaceNameList
Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

<<deprecated>> releaseInterface()

The client uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName
This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
Method

<<new>> selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method remains valid for an instance of IpAccess and until this method is re-invoked by the client. If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be taken from the list proposed by the Client.
Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList
The list of signing algorithms supported by the client.

Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM
Method

<<new>> terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated.
Parameters

terminationText : in TpString
This is the termination text describes the reason for the termination of the access session.
digitalSignature : in TpOctetSet
This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE
Method

<<new>> relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName
This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
terminationText : in TpString
This is the termination text describes the reason for the release of the interface. This text is required simply because the digitalSignature parameter requires a terminationText to sign.
digitalSignature : in TpOctetSet
This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the interface is released, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

7.3.3 Service Agreement Management Interface Classes
7.3.3.1 Interface Class IpAppServiceAgreementManagement

Inherits from: IpInterface.
	<<Interface>>

IpAppServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

7.3.3.1.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the framework to request that the client application sign an agreement on the service. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Returns <digitalSignature> : This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the service token and agreement text given by the framework. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the service token and agreement text). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the serviceToken will be expired immediately.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.) If the serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is thrown.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpOctetSet

Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM
7.3.3.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the P_INVALID_SERVICE_TOKEN exception will be thrown.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the service token and the termination text. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the service token and the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework. If a match is made, the service agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
7.3.3.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.
	<<Interface>>

IpServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.3.2.1 Method signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the service token and agreement text given by the client application. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the service token and agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED
7.3.3.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the service token and the termination text. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the service token and the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
7.3.3.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown. The P_SERVICE_ACCESS_DENIED exception is also thrown if the client attempts to select a service for which it has already signed a service agreement for, and therefore obtained an instance of. This is because there must be only one service instance per client application.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_SERVICE_ACCESS_DENIED
7.3.3.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. If the client application is not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS_DENIED) is thrown.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception (P_INVALID_SERVICE_TOKEN) is thrown.
Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED
10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit modulus. The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_RSASSA_PKCS1_v1_5_SHA1_1024
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is then used to generate the signature value, following the process defined in section 8 of RFC 2437 and format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit modulus.

	P_SHA1_DSA
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is then used to generate the signature value. The signature generation follows the process and format defined in section 7.2.2 of RFC 2459.

10.3.12 TpSigningAlgorithmList

This data type is identical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)as the separation character.

11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ACCESS_DENIED
	The client is not currently authenticated with the framework

	P_APPLICATION_NOT_ACTIVATED
	An application is unauthorised to access information and request services with regards to users that have deactivated that particular application.

	P_DUPLICATE_PROPERTY_NAME
	A duplicate property name has been received

	P_ILLEGAL_SERVICE_ID
	Illegal Service ID

	P_ILLEGAL_SERVICE_TYPE
	Illegal Service Type

	P_INVALID_ACCESS_TYPE
	The framework does not support the type of access interface requested by the client.

	P_INVALID_ACTIVITY_TEST_ID
	ID does not correspond to a valid activity test request

	P_INVALID_AGREEMENT_TEXT
	Invalid agreement text

	P_INVALID_ENCRYPTION_CAPABILITY
	Invalid encryption capability

	P_INVALID_AUTH_TYPE
	Invalid type of authentication mechanism

	P_INVALID_CLIENT_APP_ID
	Invalid Client Application ID

	P_INVALID_DOMAIN_ID
	Invalid client ID

	P_INVALID_ENT_OP_ID
	Invalid Enterprise Operator ID

	P_INVALID_PROPERTY
	The framework does not recognise the property supplied by the client

	P_INVALID_SAG_ID
	Invalid Subscription Assignment Group ID

	P_INVALID_SERVICE_CONTRACT_ID
	Invalid Service Contract ID

	P_INVALID_SERVICE_ID
	Invalid service ID

	P_INVALID_SERVICE_PROFILE_ID
	Invalid service profile ID

	P_INVALID_SERVICE_TOKEN
	The service token has not been issued, or it has expired.

	P_INVALID_SERVICE_TYPE
	Invalid Service Type

	P_INVALID_SIGNATURE
	Invalid digital signature

	P_INVALID_SIGNING_ALGORITHM
	Invalid signing algorithm

	P_MISSING_MANDATORY_PROPERTY
	Mandatory Property Missing

	P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
	No encryption mechanism, which is acceptable to the framework, is supported by the client

	P_NO_ACCEPTABLE_SIGNING_ALGORITHM
	No signing algorithm, which is acceptable to the framework, is supported by the client

	P_PROPERTY_TYPE_MISMATCH
	Property Type Mismatch

	P_SERVICE_ACCESS_DENIED
	The client application is not allowed to access this service.

	P_SERVICE_NOT_ENABLED
	The service ID does not correspond to a service that has been enabled

	P_SERVICE_TYPE_UNAVAILABLE
	The service type is not available according to the Framework.

	P_UNKNOWN_SERVICE_ID
	Unknown Service ID

	P_UNKNOWN_SERVICE_TYPE
	Unknown Service Type

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

