
3GPP TSG CN Plenary Meeting #17 NP-020431
4 - 6 September 2002, Biarritz, FRANCE

Source: CN5 (OSA)

Title: Rel-5 CRs 29.198-04-3 OSA API; Multi-Party CC SCF

Agenda item: 8.2

Document for: APPROVAL

Doc-1st-
Level

Spec CR Rev Phase Subject Cat Version
-Current

Doc-2nd-
Level

Workite
m

NP-020431 29.198-04-3 001 - Rel-5 Correction of error in Call Forward on Busy
sequence diagram

F 5.0.0 N5-020605 OSA2

NP-020431 29.198-04-3 002 - Rel-5 Correct inconsistencies in IpCallLeg state transition
diagrams

F 5.0.0 N5-020754 OSA2

NP-020431 29.198-04-3 003 - Rel-5 Clarification of the overlapping criteria definition and
eventType mapping to IN TDPs

F 5.0.0 N5-020756 OSA2

NP-020431 29.198-04-3 004 - Rel-5 Add support for Carrier selection F 5.0.0 N5-020759 OSA2
NP-020431 29.198-04-3 005 - Rel-5 Correction on use of NULL in Call Control API A 5.0.0 N5-020766 OSA2

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020605
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04-3 CR 001 arev - a Current version: 5.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correction of error in Call Forward on Busy sequence diagram

Source: a CN5

Work item code:a OSA2 Date: a 12/07/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a In the Call Forward on Busy the text says that the B-leg is continued, but the
sequence shows the A-leg being continued.

Summary of change:a Changed the sequence to conform with the text.

Consequences if a

not approved:
 Unclear specification. Confusion.

Clauses affected: a 7.1.3

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Proposed Changes
The following changes are proposed to 29.198-04:

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

App CCM :

IpAppMultiPartyCallControlManager AppLogic App Leg C :
IpAppCallLeg App Leg A :

IpAppCallLeg App Call :
IpAppMultiPartyCall CCM :

IpMultiPartyCallControlManager Call :
IpMultiPartyCall Leg A :

IpCallLeg Leg B :
IpCallLeg SCS Leg C :

IpCallLeg
1: "new"

12: "forward event"

15: "new"
14: "new"

13: "new"

2: createNotification()

5: "check if application interested"

11: reportNotification()

6: "new"

16: createCallLeg()

7: "new"
8: "state transition to Active"

23: continueProcessing()
24: "inform Call object"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"
10: "state transition to Releasing"

17: "new"
18: "state transition to Idle"

19: eventReportReq()
20: routeReq()

21: "state transition to Active"
22: "inform Call object"

26: "C-party answer"
27: eventReportRes()

28: "forward event"

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

App CCM :
IpAppMultiPartyCallControlManager

AppLogi c App Leg C :
IpAppCallLeg

App Leg A :
IpAppCallLeg

App Call :
IpAppMultiPartyCall

CCM :
IpMultiPartyCallControlManager

Cal l :
IpM ulti PartyC all

Leg A :
IpCallLeg

Leg B :
IpCallLeg

SCSLeg C :
IpC al lLeg

1: "new"

12: "forward event"

15: "new"

14: "new"

13: "new"

2: createNotification()

5: "check if applicati on interested"

11: reportNotification()

6: "new"

16: createCallLeg()

7: "new"

8: "state transit ion to Active"

23: continueProcessing()

24: "inform Call object"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"
10: "state transition to Releasing"

17: "new"

18: "state transition to Idle"

19: eventReportReq()

20: routeReq()

21: "state transition to Active"

22: "inform Call object"

26: "C-party answer"

27: eventReportRes()

28: "forward event"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

15: A new AppCallLeg C is created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in the request to route the call leg to the
remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for example if it is not interested in possible
requested call leg information (getInfoRes, superviseRes).

 When the terminating call leg is destroyed, the AppLeg B is notified (callLegEnded) and the event is forwarded to the
application logic (not shown).

25: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party BC.

26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020754
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04-3 CR 002 arev - a Current version: 5.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correct inconsistencies in IpCallLeg state transition diagrams

Source: a CN5

Work item code:a OSA2 Date: a 12/07/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a In the descriptions of the state transition diagrams some inconsistencies and
unclarities are found

Summary of change:a Clarifications in the text. Some missing exit events added.

Consequences if a

not approved:
Unclear specification leading to misunderstanding when writing applications.

Clauses affected: a 7.4.3

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Introduction
Some errors were encountered in the legState STDs, specifically that a routeReq in analysing would
continue the processing of the leg and that in active after the address analysed event a connection would be
set up to the remote party.

Some unclarities were found, e.g., the propagated origating release should be detected as a terminating
release on the terminating leg. Also deassign was missing from the releasing states as exit event.

Some inconsistencies were solved; e.g., the timer expiry was only mentioned for some of the states.

Furthermore, various small textual changes are proposed that should make the text more understandable.

Proposed Changes
The following changes are proposed to 29.198-04:

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1) Events in backwards direction (upstream), coming from terminating leg, are not directly visible in originating leg
model. NOTE1

2) Events in forwards direction (downstream), coming from originating leg, are not directly visible in terminating
leg model. NOTE1

3) States are as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on
terminating leg do not change state. NOTE 2

4) Call processing is suspended if for a leg a network event is met, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. The application is tomust send a request to continue processing
(using an appropriate method like continueProcessing, deassign, release or routeReq) for each leg and event
reported in monitor mode ‘interrupt’.
If the event leads to a state transition, the call processing is suspended when entering the state.

5) In case on a leg more than one network event (for example a mid-call event ‘service_code’ and a disconnection
event) is to be reported to the application at quasi the same time, then the events are to be reported one by one to
the application in the order received from the network. When for a leg an event is reported in interrupt mode, a
next pending event is not to be reported to the application until a request to resume call processing for the current
reported event has been received on the leg.

NOTE1: Although events coming from a specific party will always be tied to the callLeg related to that party, these
events might lead to state transitions of other callLegs. Examples of such events are terminating release,
where also the originating leg might transit to the releasing state and originating_release where the
terminating leg might transit to the releasing state.

A terminating_release on the remote party is not directly visible on the originating leg, but the network can
optionally propagate the termination of the remote party. In analog, an originating_release on the calling
leg can optionally be propagated to a terminating leg. In both cases the call leg STD will transit to
Releasing state as a result of the propagated release.
Also when the call is released, all the legs will transit to the releasing state. Call processing is suspended
if for a leg a network event is met, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

NOTE2: Even though there in the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

7.4.3.1 Originating Call Leg

Initiating

Analysing

Active

Releasing

do/ send reports if requested, or error reports if required

Originating Call Leg.

Tr ansitions/events not shown:
All states:
continueProcessing , g etLastRedirectedAddress , getC all: no state change
All states except Releasing :
eventR eportReq, setAdviceOfChar ge, getInfoReq , supervi seReq ,
setChar gePlan

All States

detachMedia

'Address_Collected'

 IpAppMultiPartyCallControlManager.
reportNotification(originating service code)

'release'

attachMedia

attachM edia

detachMedia

'originating call attempt authorized'

detachMedia

IpAppMultiPartyCallControlManager.
reportN otification(originatingCallAttempt)

IpAppMultiPartyCallControlManager.
reportNotification(originatingCallAttemptAuthorized)

IpAppMultiPartyCallControlManager.
reportNotification(address_collected)

'Address Collected'

attachMedia

'originating service_code'

'Address Analysed'

IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

'network release'

'network release'

IpAppMultiPartyCallControlManager.
reportNotification(originating

release)

'networkRelease'

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Figure : Originating Leg

7.4.3.1.1 Initiating State

Entry events:

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
“Originating_Call_Attempt” initial notification criterion.

iii)- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
“Originating_Call_Attempt_Authorised” initial notification criterion.

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party’s identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

oCA oCAA AC

See Note1

oREL See
Note2

Initiating
State

Note 1: Event oCA only applicable as an initial notification .
Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCA: originating Call Attempt; oCAA: originating Call Attempt Authorized; AC: Address Collected, oREL: originating

RELease.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable:

- The detection of a “Originating_Call_Attempt” initial notification criterion.

- The detection of an “Originating_Call_Attempt_Authorised” initial notification criterion as a result that the call
attempt authorisation is successful.

- The report of the “Originating_Call_Attempt_Authorised” event indication whereby the following functions are
performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg processing is
suspended.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- The receipt of destination address information, i.e. initial information package/dialling string as received from
calling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while the processing leg is suspended for the leg.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a “originating release” indication as a result of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State

Entry events:

- Availability of an “Address_Collected” event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Availability of an “Address_Collected” event indication as a result of additional digits received from the calling
party as requested by the application (with eventReportReq).

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an “Address_Collected”
initial notification criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action
is recursivecan be repeated, e.g. the application could ask for 3 digits to be collected and when report request can be
done repeatedly, e.g. the application may for example request first for 3 digits to be collected and when reported request
further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

oCAA AC AA

oREL
Note1 Analysing

State

Note 1: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCAA: originating Call Attempt Authorized; AC: Address Collected; AA: Address Analysed; oREL originating

RELease.

Figure : Application view on event reporting order in Analysing State

In this state the following functions are applicable:

- The detection of a “Address_Collected“ initial notification criterion.

- On receipt of the “Address_Collected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.

- Receipt of a eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

- Detection of an “Address_Analysed” indication as a result of the availability of the routing address and nature
of address.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processingleg is suspended for the leg.

- Detection of a “originating release” indication as a result of a premature disconnect from the calling party.

7.4.3.1.3 Active State

Entry events:

- Receipt of an “Address_Analysed” indication as a result of the availability of the routing address and nature of
address.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an “Address_Analysed
initial indication criterion.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

Active
State

AA

oSC

 oREL

See Note1
See
Note2

AC

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
AC: Address Collected; AA: Address Analysed; oSC: originating Service Code; oREL: originating RELease.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:

- The detection of an Address_Analysed initial indication criterion.

- On receipt of the “Address_Analysed” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- When entering In this state the routing information is interpreted, the authority of the calling party to establish
this connection is verified. Note that and the no call leg connection is set up to the remote party at this point
when the application is still in control. The application explicitly has to create and route the terminating leg,
optionally using the address information from the Address_Analysed event. Only in case the call is deassigned
(the application relinquishes control) in this state, the network will setupcreate the connection to terminating leg
automatically based on the received information.

- In this state a connection to the calling party is established.

- Detection of a “terminating release” indication (not visible to the application) from remote party caused by a
network release event propagated from a terminating party, possibly resulting in an “originating release”
indication and causing the originating call leg STD to transit to Releasing state:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

- Detection of a disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method.

- On receipt of the “originating_service code” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

 ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues..

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of an “originating release” indication as a result of a disconnect from the calling party or a propagated
disconnect from the called party.and a “terminating release” indication as a result of a disconnect from called
party.

- Detection of a propagated disconnect from the called party

Receipt of a deassign() method.

- Receipt of a release() method from the application.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while call processingleg is suspended.

7.4.3.1.4 Releasing State

Entry events:

- Detection of an “Originating_Release” indication as a result of the network release initiated by calling party.

- Propagated release fromor called party (if propagated).

- Release of the entire call (e.g., after invoking IpCall.release())

- Reception of the release() method from the application.

- A transition due to fault detection to this state is made when the Call leg object is in a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:

i) the network release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Note that this handling is not performed for propagated releases from the called party.

In this state the following functions are applicable:

- The detection of a “originating_release” initial indication criterion..

- On receipt of the “originating_release” indication the following functions are performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated releases from the called party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLegEnded) and the leg is released in the
network.

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processingleg is suspended for the leg (re-enter releasing state)

- Receipt of a deassign() method. The leg will be released and call leg object destroyed, but no reports will be sent
to the application anymore. Also no CallLegEnded will be invoked.

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

State Methods allowed
Initiating

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall,
continueProcessing,
release
deassign

7.4.3.2 Terminating Call Leg

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Idle
(terminating)

Active
(terminating)

Releasing (terminating)

do/ send reports if requested, or error reports if require...

All States
(terminating)

Terminating Call Leg.

'terminating call attempt authorized',
'alerting', 'answer', 'terminat ing service
code', 'redirected', 'queued'

detachMedia

Transitions/events not shown:
All states:
continueProcessing, getLastRedirectedAddress, getCall, sending getInfoRes,
superviseRes: no state change,
All states except Releasing:
eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

attachMedia

routeReq

'network release'

release

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

IpMultiPartyCall.createCallLeg

IpAppMultiPartyCallControlManager.
reportNot ification(terminating

release)

IpAppMultiPartyCallControlManager.r
eportNotification("terminating call
attempt", "terminating call attempt
authorised", "alerting", "answer",

"terminating service code",
"redirected", "queued")

IpMultiPartyCall.createAndRouteCallLegReq

Figure : Terminating Leg

7.4.3.2.1 Idle (terminating) State

Entry events:

- Receipt of a createCallLeg() method to start an application initiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection is idled.

The application activity timer is being provided.

In this state the following functions are applicable:

- Invoking routeReq will result in a request to actually route the call leg object and resumption of call processing.

- Resumption of call leg processing occurs on receipt of a routeReq() method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

Exit events:

- Receipt of a routeReq() method from the application.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a Ppropagationed of network release event being an “originating release” indication as a result of a
premature disconnect from the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processingleg is suspended for the leg.

7.4.3.2.2 Active (terminating) State

 Entry events:

- Receipt of an routeReq will result in actually routing the call leg object.

- Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for the following trigger
criteria: “Terminating_Call_Attempt”, “Terminating_Call_Attempt_Authorised”, “Alerting”, “Answer”,
“Terminating service code”, “Redirected” and “Queued”.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

tCAA

RD

tCA

tSC

AL ANS

Note2

 Q

tREL

Note3

Note 1

Active
State

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

Note 1: Event tCA applicable as initial notification
Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application
Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
tCA: terminating Call Attempt; tCAA: terminating Call Attempt Authorized; AL: Alerting; ANS: Answer; tREL:

terminating RELease; Q: Queued; RD: ReDirected; tSC: terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection and report of the “Terminating_Call_Attempt_Authorised” event indication whereby the following
functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and call
leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an “Queued” indication as a result of the terminating call being queued.

- On receipt of the “Queued” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

- On receipt of the “Alerting” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

- Detection of an “Answer” indication as a result of the remote party being connected (answered).

- On receipt of the “Answer” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- The detection of a “service_code” trigger criterion suspends call leg processing.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

- On receipt of the “service code” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then this is not a valid event (that event is not
notified) and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- On receipt of the “redirected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of a network release event being an “terminating release” indication as a result of the following
events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a propagation ofed network release event being an “originating release” indication as a result of the
following events:

-vi) Detection of a premature disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

-- Detection of a propagation ofed network release event being an “originating release” indication as a result of
a disconnect from the calling party .

- Detection of a network release event beingor a “terminating release” indication as a result of a disconnect from
the called party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processingleg is suspended for the leg.

7.4.3.2.3 Releasing (terminating) State

Entry events:

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

- Detection of a Ppropagation ofed network release event being an “originating release” indication as a result of
the network release initiated disconnect by from the calling party.

- Detection of a network release event being or a “terminating release” indication as a result of the network release
initiated by called party..

- Detection of a Rrelease of the entire call (e.g., after invoking IpCall.release())

- Sending of the release() method by the application.

- A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and this is not received within a certain time period.

- Detection of a network event being a “terminating release” indication as a result of the following events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a propagationed of network release event being an “originating release” indication as a result of the
following events:

-vi) Detection of a premature disconnect from the calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:

i) the release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:

- The detection of a “Terminating Release” trigger criterion.

- On receipt of the network release event being a “Terminating Release” indication the following functions are
performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

CR page 16

iii) iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg
event P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated releases from the calling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the application
is informed that the call leg object is destroyed (callLegEnded) and the leg is released in the network.

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processingleg is suspended for the leg (re-enter releasing state)

- Receipt of a deassign() method. The leg will be released and call leg object destroyed, but no reports will be
sent to the application anymore. Also no CallLegEnded will be invoked.

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

CR page 17

State Methods allowed
Idle routeReq,

getCall ,
getCurrentDestinationAddress,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,
deassign

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020756
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04-3 CR 003 arev - a Current version: 5.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Clarification of the overlapping criteria definition and eventType mapping to IN TDPs

Source: a CN5

Work item code:a OSA2 Date: a 12/07/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a The definition of overlapping criteria when requesting for notifications is too
restricted, especially compared to the definition in Generic Call Control. As a
result of this incorrect definition of overlapping criteria, it was found necessary to
clarify that there is no exact mapping from eventypes used in notifications, to IN
TDPs.

Summary of change:a The definition of overlapping criteria in MPCC is generalised.
Clarification note is added on the relation between eventTypes and IN TDPs.

Consequences if a

not approved:
Misunderstanding about the eventTypes used in MPCC,
Limited application provisioning: applications are much more restricted in
requesting notifications (“triggers”) than should be.

Clauses affected: a

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP

Error! No text of specified style in document.3Error! No text of specified style in document.

4.1.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

3GPP

Error! No text of specified style in document.4Error! No text of specified style in document.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application controlling
the call or session at the same point in time during call or session processing.if both originating and terminating ranges
overlap and the same number plan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

3GPP

Error! No text of specified style in document.5Error! No text of specified style in document.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

**
Second Correction

**

4.1.1.1 TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFINED 0 Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 2 An originating call attempt is authorised
P_CALL_EVENT_ADDRESS_COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORIGINATING_RELEASE 6 A originating call/call leg is released
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 8 A terminating call is authorized
P_CALL_EVENT_ALERTING 9 Call is alerting at the call party.
P_CALL_EVENT_ANSWER 10 Call answered at address.
P_CALL_EVENT_TERMINATING_RELEASE 11 A terminating call leg has been released or the call could not

be routed.
P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an indication from the network

that the call has been redirected to a new address (no events
disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 Mid call terminating service code received.

P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed as a
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

• When the monitor mode is set to P_CALL_MONITOR_MODE_DO_NOT_MONITOR all events armed for that
eventtype are disarmed. The additionalEventCriteria are not taken into account.

• When requesting two events for the same event type with different criteria and/or different monitor mode the last
used criteria and monitor mode apply.

• Events that are not applicable to a leg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
E.g., requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with
exception P_INVALID_CRITERIA.
When P_CALL_EVENT_ORIGINATING_RELEASE is requested with P_BUSY in the criteria the request is
refused with the same exception.

When receiving events:

• If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

3GPP

Error! No text of specified style in document.6Error! No text of specified style in document.

• If an event is met that causes the release of the related leg, then all events related to that leg are disarmed .

• When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call
leg may become disarmed (see table below) .

• If a call is released, then all events related to that call are disarmed.

NOTE 1: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY..

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred Events Disarmed
P_CALL_EVENT_UNDEFINED Not Applicable

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Not applicable, can only be armed as trigger

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_ALERTING P_CALL_EVENT_ALERTING

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING

P_CALL_EVENT_ANSWER

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_ORIGINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_TERMINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE 2

P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE 2

NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed.

NOTE ON MAPPING EVENTYPES TO IN TRIGGER DETECTION POINTS (TDPs):

When the eventtypes as defined above are used for requesting the initial notification (with createNotification), not all
events have a one to one correspondence with a Trigger Detection Point (TDP). For instance, when the underlying
network is ITU-T CS2 based, one cannot distinghuish in createNotification whether the
P_CALL_EVENT_ORIGINATING_RELEASE is intended to be on the Originating side (O_BCSM) or the
Terminating side (T_BCSM) of the call. Likewise , the P_CALL_EVENT_ANSWER, P_CALL_EVENT_ALERTING
and the P_CALL_EVENT_TERMINATING_RELEASE.

The basic assumption is that the operator is responsible for provisioning of triggers in the network as in this domain full
awarness exists of all other services and applications.Therefore, createNotification does not automatically lead to

3GPP

Error! No text of specified style in document.7Error! No text of specified style in document.

immediate provisioning of these triggers. And thus in createNotification it is not necessary to indicate whether the
initial notification should be on the originating or terminating side of the call.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020759
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04-3 CR 004 arev - a Current version: 5.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network

Title: a Add support for Carrier selection

Source: a CN5

Work item code:a OSA2 Date: a 19/07/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Addition of support for Carrier selection

Summary of change:a Addition of element in datatype TpCallAppInfo that can be used to provide carrier
related information for a call

Consequences if a

not approved:
Applications are unable to specify alternative carriers.

Clauses affected: a 9.2.19, 9.2.20, 9.2.45 - 9.2.48

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a Companion Rel-5 CR 29.198-01 (N5-020758)

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

9.2.19 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

P_CALL_APP_HIGH_PROBABILITY_COMPLETION TpCallHighProbabilityCompletion CallHighProbabilityCompletion

P_CALL_APP_CARRIER TpCarrierSet CallAppCarrier

9.2.20 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when
launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting.

P_CALL_APP_HIGH_PROBABILITY_COMPLETION 11 Indicates high probability of completion and its priority

P_CALL_APP_CARRIER 12 Indicates the set of Carrier identifications to be used to route the call.

9.2.45 TpCarrierSet

Defines a Numbered Set of Data Elements of TpCarrier. In case the set is empty, the SCF will
assume default processing.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

9.2.46 TpCarrier

Defines the Sequence of Data Elements that indicates carrier information. It consists of the carrier
selection field followed by the Carrier ID information to be used for routing a call to a carrier.

Sequence Element Name Sequence Element Type
CarrierID TpCarrierID

CarrierSelectionField TpCarrierSelectionField

9.2.47 TpCarrierID

This data type is identical to a TpOctetSet. For encoding of the field, depending on the network, either ITU-
T Recommendation Q.763 [32] or ANSI ISUP T.113 [33] applies.

9.2.48 TpCarrierSelectionField

Defines the type of Carrier Selection Field-related specific information. This parameter indicates how the
selected carrier is provided (e.g. pre-subscribed).

Name Value Description
P_CIC_UNDEFINED 0 No indication
P_CIC_NO_INPUT 1 The carrier identification code (CIC) is pre subscribed (not

provided by the calling party).
P_CIC_INPUT 2 The carrier identification code (CIC) is pre subscribed and

provided by the calling party.
P_CIC_UNDETERMINED 3 The selected carrier identification code (CIC) is pre subscribed,

but no indication is present of whether it is provided by the
calling party (undetermined).

P_CIC_NOT_PRESCRIBED 4 The selected carrier identification code (CIC) is provided by
calling party (not pre subscribed).

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020766
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04-3 CR 005 arev - a Current version: 5.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correction on use of NULL in Call Control API

Source: a CN5

Work item code:a OSA2 Date: a 16/08/2002

Category: a A Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a OMG IDL does not support NULL as a valid value for a data type; attempts to
send a null value result in a marshalling exception and a gateway can never
receive the call.

Summary of change:a Occurrences of the use of NULL as a valid setting for Call Control API
parameters have been replaced. Use of null modified to define appropriate
behaviour in NOTIFY mode.

Consequences if a

not approved:
Failure to correct the API shall result in vendor specific interpretation and
interoperability issues.

Clauses affected: a 6.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a Rel-5 equivalent of 762 Rel-4 CR 29.198-04 (Mirror CR).

Split of approved Rel-5 CR N5-020763
into CR for subpart 3 (the present CR) & CR for subpart 2 (N5-020765).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

6.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.2 Method reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode. If the
application has previously explicitly passed a reference to the callback interface using a setCallback() invocation, this
parameter may be set to P_APP_CALLBACK_UNDEFINED, or if supplied must be the same as that provided during
the setCallback().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null iIf the
notification is being given in NOTIFY mode, this parameter shall be ignored by the application client implementation,
and consequently the implementation of the SCS entity invoking reportNotification may populate this parameter as it
chooses.

.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode, this parameter shall be ignored
by the application client implementation, and consequently the implementation of the SCS entity invoking
reportNotification may populate this parameter as it chooses.

.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

	NP-020431.doc
	29.198-04-3CR001.doc
	29.198-04-3CR002.doc
	29.198-04-3CR003.doc
	29.198-04-3CR004.doc
	29.198-04-3CR005.doc

