
3GPP TSG CN Plenary Meeting #17 NP-020421
4 - 6 September 2002, Biarritz, FRANCE

Source: CN5 (OSA)

Title: LSs outgoing from CN5 between CN#16 and CN#17

Agenda item: 6.5.1

Document for: Information

Doc. Name Title
N5-020564LS reply to S1, S2 (cc: S3) on enhanced user privacy and new security requirements for LCS

N5-020565LS to S5 : Joint Meeting SA5/CN5/T2 on MMS charging

N5-020569LS from N5 to S3 : OSA Security

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020564
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Title: LS back to SA1 and SA2 on enhanced user privacy and new security requirements
for LCS.

Response to: Response LS from SA1 to SA3 on new security requirements for LCS,

LS from SA2 back to SA1and SA3 on enhanced user privacy and new security
requirements for LCS.

Release:

Work Item:

Source: CN5

To: SA1, SA2

Cc: SA3, LIF

Contact Person:
Name: Ard-Jan Moerdijk
Tel. Number: +31 161242777
E-mail Address: Ard.Jan.Moerdijk@eln.ericsson.se

Attachments: None

1. Overall Description:

CN5 thanks SA1 and SA2 for including us in the loop of Liaison Statements on the new security requirements
for LCS.

After looking into the security and privacy aspects of the TS22.071 and the further items put forward between
SA3 and SA1, CN5 believes that OSA already today is able to satisfy most of these aspects:

1. Client Authentication. Before Clients get access to Servers (Service Capability Features), authentication
needs to take place between Clients and the OSA Framework. The OSA authentication mechanisms
recently have been reviewed by SA3 and CN5 made improvements based on SA3’s suggestions.

2. Client and Requestor Authorisation. Once Clients are authenticated, they can request to instantiate a
Service Capability Feature (e.g. User Location or Presence and Availability Management). The OSA
Framework will then contact the Service Capability Server and also forward the necessary Service Level
Agreement data. In this Service Level Agreement data it could for instance be specified that the client is
only allowed to query locations of specific subscribers, or that only specific requestors are authorised to
request locations of specific users. The SCS then instantiates an SCF instance specifically for the client.
During runtime this SCF instance will check that all Service Level Agreement aspects are guaranteed.

3. Privacy control. The Presence and Availability Management SCF (see TS29.198-14, v5.0.0) furthermore
also allows subscribers to set their preferences. This could include information about which requestors are
allowed to obtain presence and availability information about the subscriber.

However, we suggest that according to the workflow, SA1 (OSA adhoc) further studies whether new
requirements on OSA are needed in order to fullfill all aspects related to security and privacy for LCS. Of
course, CN5 is happy to assist SA1 in this matter.

2. Actions:

To SA1 (OSA Adhoc) group.

ACTION: CN5 requests SA1 (OSA Adhoc) to investigate whether new requirements on OSA are needed in
order to fullfill all aspects related to security and privacy for LCS. SA1 is welcome to request help on
this matter from CN5.

3. Date of Next CN5 Meetings:

Meeting Date Location Host
CN5#20 23-27 Sept 2002 US east coast CN
CN5#21 28 Oct – 1 Nov

2002
Dublin Parlay

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020565
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Title: LS- on Joint Meeting SA5/CN5/T2 on MMS charging

Response to: LS-reply on Joint Meeting SA5/CN5/T2 on MMS charging (T2-020513/N5-020334)

Release:

Work Item:

Source: CN5

To: SA5, T2

Cc: SA1, SA2

Contact Person:
Name: Ard-Jan Moerdijk
Tel. Number: +31 161242777
E-mail Address: Ard.Jan.Moerdijk@eln.ericsson.se

Attachments: None

1. Overall Description:

CN5 thanks SA5 and T2 for the initiative on a joint meeting on REL-6 MMS charging aspects.

Based on previous discussions between SA5, T2 and CN5 we believe that the solutions CN5 is and has been
working on, play a role to provide Value Added Service Provider (VASP) solutions for MMS: CN5 is responsible
for the stage 3 of the OSA APIs and within our solution set we have support for authentication, authorisation,
messaging and content based charging.

Therefore, in case discussions around cases as described above are within the current scope of the joint
session at the SA5#30 meeting, OSA experts from CN5 are happy to participate in this session.

If this is not within the scope of the joint session at the SA5#30 meeting, CN5 proposes that another joint
session on VASP solutions for MMS will be organised in the timeframe around September. CN5 is furthermore
willing to organise such a session.

2. Actions:

To SA5/T2 group.

ACTION: CN5 asks SA5/T2 group to indicate to CN5 whether the joint session at the SA5#30 meeting will
cover topics around MMS support for Value Added Service Providers (VASPs). If this is the case
CN5 will send a few key OSA experts to join the session. If this is not the case CN5 proposes that
another joint session between the three groups on MMS support for VASPs will be organised in the
timeframe around September.

3. Date of Next CN5 Meetings:

Meeting Date Location Host
CN5#20 23-27 Sept 2002 US east coast CN
CN5#21 28 Oct – 1 Nov

2002
Dublin Parlay

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020569
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Title: LS on OSA Security

Response to: n. a.

Release: Rel-5

Work Item: OSA2

Source: CN5

To: SA3

Cc:

Contact Person:
Name: Chelo Abarca (joint API group co-chair), Alcatel
Tel. Number: +33 1 30 77 04 69
E-mail Address: Chelo.Abarca@alcatel.fr

Attachments: N5-020703, N5-020704

1. Overall Description:

CN5 would like to thank SA3 for having made a thorough review of the support of security by the OSA API,
which has started during the SA3 Bristol meeting, where two CN5 OSA experts were invited to the discussion.
As SA3 knows, this kicked-off a detailed discussion on how to solve the OSA security flaws identified by the
SA3 experts.

CN5 would like to inform SA3 that this discussion has finally resulted in two CRs to OSA Rel-5, that have been
agreed at the current CN5 meeting in Montreal, 8-12 July 2002. These CRs contain changes that are fully in line
with the results of the discussion in Bristol. They are attached to this LS for information.

CN5 would like to thank SA3 again for providing the expertise that has allowed improving security support by the
OSA API. Security is key for the market acceptance of the OSA API, and we are confident that after this
discussion our specification meets our requirements in this area.

2. Actions:

ACTION: No action required.

3. Date of Next CN5 Meetings:

TITLE TYPE DATES LOCATION CTRY

3GPPCN5#20 WG 23 - 27 Sep 2002 Miami, FLORIDA US

3GPPCN5#21 WG 28 - 31 Oct 2002 Dublin IE

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020703
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-03 CR CRNum arev - a Current version: 5.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Add Negotiation of Authentication Mechanism for OSA level Authentication

Source: a Chelo Abarca, Alcatel
Ultan Mulligan, ETSI

Work item code:a OSA2 Date: a 12/07/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a TS 29.198-3 relies on the use of a challenge-based mechanism (CHAP as per
IETF RFC 1994) for authentication of the client application by the framework, and
vice-versa. CHAP is chosen as the authentication scheme when the
authentication type in the initiateAuthenticate() method is set to
P_OSA_AUTHENTICATION.

CHAP requires the support of the MD5 hashing algorithm, as a minimum, with an
allowance for support of other algorithms, but no other algorithm is specifically
referred to in RFC 1994.

However, since RFC 1994 has been issued, newer, more secure, hashing
algorithms have been made available. A mechanism needs to be added to the
API to permit negotiation of the hashing algorithm used, in order to take
advantage of these newer algorithms.

This CR results in from a lengthy communication with SA3 and certain SA3
security experts, who were instrumental in developing the proposals contained in
this CR.
TS 29.198-3 relies on the use of a challenge-based mechanism (CHAP as per
IETF RFC 1994) for authentication of the client application by the framework, and
vice-versa. CHAP is chosen as the authentication scheme when the
authentication type in the initiateAuthenticate() method is set to
P_OSA_AUTHENTICATION.

Because of the lack of detailed reference to RFC 1994 in TS 29.198-3, it is not
clear whether CHAP-based OSA authentication must format the challenge and
response in packets as described in RFC 1994 or must merely follow the rule
given for MD5 processing.

If the Challenge and Response packets as defined in RFC 1994 must be used to
format the challenge and the response values, then it is not clear as to what the
Name field of the Challenge packet must contain. The Name field must indeed

CR page 2

be used to identify the sending system. There is no information in the TS as to
which value must be put in there.

OSA requires that the challenge be encrypted, but this is acknowledged to be of
no real value regarding the authentication process. Furthermore, use of
encryption introduces complication in that OSA contains no procedures for key
exchange, and no instruction as to the use of initialisation vectors and padding
algorithms etc.

This CR results in from a lengthy communication with SA3 and certain SA3
security experts, who were instrumental in developing the proposals contained in
this CR.

Summary of change:a Add selectAuthenticationMechanism() to IpAPILevelAuthentication interface to
permit the client to offer a choice of mechanisms to the Framework.
Furthermore deprecate authenticate() and replace it by the a new method
challenge(), which does not require encryption of the challenge string.
Properly describe the format of the challenge string in the challenge() method.
Deprecate selectEncryptionMethod() as encryption of the challenge string will no
longer be required.
Add extensible types TpAuthMechanism and TpAuthMechanismList to contain
the choice of authentication mechanisms.
Add an exception in case no acceptable mechanism is available to the
Framework.

Consequences if a

not approved:
OSA Authentication will be forced to rely on the old MD5 algorithm, which dates
from 1992, when newer, more secure alternatives are available.
Interoperability problems will result: The format of the challenge and response in
the OSA authentication exchange will remain undefined and open to
interpretation.
Different vendors will implement their own interpretation, forcing application
developers to tailor their applications for each vendor's equipement.
Since the interoperability problems will be related to the first contact between an
application and the Framework, these problems will have a serious impact on the
adoption and success of OSA.

Clauses affected: a 6.1.1, 6.3.1.5, 10.3, 11

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA
Framework for the first time. Trusted parties do not need to be authenticated and after contacting the Initial interface the
Framework will indicate that no further authentication is needed and that the application can immediately gain access to
other framework interfaces and SCFs. This is done by invoking the requestAccess method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

 : IpClientAPILevelAuthentication Client : IpInitial :

IpAPILevelAuthentication
 : IpAccess Framework

1: initiateAuthenticationWithVersion ()

3: authenticationSucceeded()

4: requestAccess()

2: selectAuthenticationMechanism()

 : IpClientAPILevelAuthentication Client : IpInitial :
IpAPILevelAuthentication

 : IpAccess Framework

1: initiateAuthentication()

3: authenticationSucceeded()

4: requestAccess()

2: selectAuthenticationMechanism()

 : IpClientAPILevelAuthentication Client : IpInitial :
IpAPILevelAuthentication

 : IpAccess Framework

1: initiateAuthentication()

2: authenticationSucceeded()

3: requestAccess()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

1: The Client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to
initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework
returns a reference to its authentication interface.

2: Before authentication can begin, the client shall invoke selectAuthenticationMechanism. Although authentication
will not take place this time, failure to invoke this method may prevent the Framework from ever re-authenticating the
Client, if it wishes to at a later stage.

232: Based on the domainID information that was supplied in the Initiate Authentication step, the Framework knows
it deals with a trusted party and no further authentication is needed. Therefore the Framework provides the
authentication succeeded indication.

343: The Client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a
reference to its own access interface. The Framework returns a reference to its access interface.

6.1.1.2 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateAuthenticationWithVersion method to allow the
authentication process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Client : IpInitial : IpAPILevelAuthentication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion ()

2: selectEncryptionMethod()

4: authenticatechallenge()

8: requestAccess()

6: authenticatechallenge()

9: obtainInterface()

5: authenticationSucceeded()

7: authenticationSucceeded()

3: selectAuthenticationMechanism()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Client : IpInitial : IpAPILevelAuthentication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

4: authenticate()

8: requestAccess()

6: authenticate()

9: obtainInterface()

5: authenticationSucceeded()

7: authenticationSucceeded()

3: selectAuthenticat ionMechanism()

Cl ient : IpInitial : IpAPILevelAuthent ication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

1: Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate
the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the
encryption methods it supports. The Framework prescribes the method to be used.

3: Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying
the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be
used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be
supported. Note however that the framework need not accept this algorithm.

34: AuthenticateChallenge

45: The client provides an indication if authentication succeeded. CHAP prescribes the MD5 hashing algorithm as the
minimum to be supported. Note however that the client need not accept this algorithm.

56: The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more
invocations of the authenticate challenge method on the Framework's API Level Authentication interface. In each
invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or additionally
the Framework may issue its own challenges to the client using the authenticate method on the client's API Level
Authentication interface.

67: The Framework provides an indication if authentication succeeded.

78: Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level
Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference
to its access interface.

89: The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery
interface.

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution technology mechanism.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Client : IpInitial Framework : IpAuthentication : IpAccess

1: initiateAuthenticationWithVersion()

2: requestAccess()

3: obtainInterface()

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

Client : IpInitial Framework : IpAuthentication : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

1: The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication.

2: The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now
uses the underlying distribution technology mechanism for identification and authentication of the client.

3: If the authentication was successful, the client can now invoke obtainInterface on the framework's Access interface
to obtain a reference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific
process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can
be used to perform the authentication process. The initiateAuthenticationWithVersion method allows the client to pass a
reference to its own authentication interface to the Framework, and receive a reference to the authentication interface
preferred by the client, in return. In this case the API Level Authentication interface.

2) The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This
includes the encryption capabilities of the client. The framework then chooses an encryption method based on the
encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption
method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the
encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will
fail.

3) The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This
includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the
capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the
Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication
mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for
example. CHAP prescribes the MD5 hashing algorithm as the minimum to be supported, however the framework need
not accept this algorithm.

43)The application and Framework interact to authenticate each other by usinhg the challenge method. For an
authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response
exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication
interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual
authentication is achieved by the framework invoking the authenticate method on the client's APILevelAuthentication
interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not
have to be mutual.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: initiateAuthenticationWithVersion()

2: selectEncryptionMethod()

4: authenticatechallenge()

5: authenticatechallenge()

6: authenticatechallenge()

7: authenticatechallenge()

IpClientAPILevelAuthentication
reference is passed to framework
and IpAPILevelAuthentication
reference is returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpClientAccess reference is
passed to Framework, and
IpAccess reference is
returned.

8: requestAccess()

3: selectAuthenticationMechanism()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

 : IpCli entAPILeve lAuthent icat ion Client : IpInit ial Framework : IpAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

4: a uthenticate()

5: authenticate()

6: a uthenticate()

7: authenticate()

IpClientAPILevelAuthentication
reference is passed to framework
and IpAPILevelAuthentication
reference is returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpClientAccess reference is
passed to Framework, and
IpAccess reference is
returned.

8: requestAccess()

3: selectAuthenticationMechanism()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: init ia teAuthent icat ion()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

7: authenticate()

IpClientA PILevel Au thenti ca ti on
reference i s passed to f ramework
and IpAP IL evel Auth entication
reference i s returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpClientA ccess reference is
passed to Fram ework, and
IpAccess reference is
returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

6.1.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet

Method
authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method
initiateAuthentication() is used on the IpInitial interface instead of initiateAuthenticationWithVersion). This method
will be removed in a later release of the specification.

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication
process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may
be interleaved with authenticate() calls by the client on the IpAPILevelAuthentication interface.

Returns <response> : This is the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

Method
abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to
abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on
IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

Parameters
No Parameters were identified for this method

Method
authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

Method
challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The
whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The
invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication
interface.

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method
initiateAuthenticationWithVersioninitiateAuthentication() is used on the IpInitial interface instead of
initiateAuthenticationWithVersion).

Returns <response> : This is the response of the client application to the challenge of the framework in the current
sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response
packet shall be used to carry the response string. The Response packet shall make the contents of this returned
parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

The challenge shall be formatted in order to include the Initialisation Vector, its length in bytes, and the challenge
string, as well as any required padding at the end. The order shall be:
1 byte indicating the InitialisationVector length
The Initialisation Vector itself
The CHAP Request Packet containing the challenge value

The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet
shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain
any useful value.

Returns

TpOctetSet

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

CR page 16

6.1.1.3 Interface Class IpInitial

Inherits from: IpInterface.

The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) :
TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

6.1.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of this
specification.

This method is invoked by the client to start the process of mutual authentication with the framework, and request the
use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainID: TpDomainID;
authInterface: IpInterfaceRef;
};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the
framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this
interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {
domainID: TpDomainID;
authInterface: IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise

operator (i.e. TpEntOpID), or for an instance of a registered service (i.e. TpServiceInstanceID) or for a service supplier
(i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on
IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code
(P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface
is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

CR page 17

authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE

6.1.1.3.2 Method <<new>> initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the
use of a specific authentication method using the new method with support for backward compatibility in the
framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the
Framework response. If the Framework can't work with the proposed framework version the framework returns an error
code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainID: TpDomainID;
authInterface: IpInterfaceRef;
};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the
framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this
interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {
domainID: TpDomainID;
authInterface: IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise

operator (i.e. TpEntOpID), or for an instance of a registered service (i.e. TpServiceInstanceID) or for a service supplier
(i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticatechallenge() on
IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code
(P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface
is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18

CR page 18

P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE, P_INVALID_VERSION

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19

CR page 19

6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication
process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) :
TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

<<new>> selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) :
TpAuthMechanism

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet

Method
selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the
IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 20

CR page 20

Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED,
P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

Method
authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevelAuthentication
interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateAuthenticationWithVersion() on the IpInitial interfacein combination with selectEncryptionMethod. This
method will be removed in a later release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed
successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved
with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED

Method
abortAuthentication()

The client uses this method to abort the authentication process. This method is invoked if the client no longer wishes to
continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on
IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 21

CR page 21

Raises

TpCommonExceptions,P_ACCESS_DENIED

Method
authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED

Method
selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanism shall be used for authentication by both Framework and Client. This method shall be invoked by the client
when it receives the interface reference to IpAPILevelAuthentication from the Framework, since until this method is
invoked, authentication challenges by the Framework or the client might not be possible. The authentication
mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication
and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the
capability of the client cannot be found, the framework throws the
P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using
initiateAuthenticationWithVersion() on the IpInitial interface.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.

Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED,
P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM

Method
challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion()
can be used by the framework to reference the correct public key for the client (the key management system is currently

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 22

CR page 22

outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The whole
authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of
this method may be interleaved with challenge() calls by the framework on the client's APILevelAuthentication
interface.

This method shall only be used in combination with selectAuthenticationMechanism()when the
IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() on the IpInitial interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The
formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be
used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name
field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

The challenge shall be formatted in order to include the Initialisation Vector, its length in bytes, and the challenge
string, as well as any required padding at the end. The order shall be:
1 byte indicating the InitialisationVector length
The Initialisation Vector itself
The CHAP Request Packet containing the challenge value

The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet
shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain
any useful value.

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 23

CR page 23

10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description
P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string “SP_”. The following values are defined:

String Value Description
P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and

IpClientAPILevelAuthentication

P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

10.3.3 TpEncryptionCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.

P_DES_56 A simple transfer of secret information that is shared between the client application and the Framework with protection
against interception on the link provided by the DES algorithm with a 56-bit shared secret key.

P_DES_128 A simple transfer of secret information that is shared between the client entity and the Framework with protection against
interception on the link provided by the DES algorithm with a 128-bit shared secret key.

P_RSA_512 A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.

P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of secrets using 1 024-bit keys.

10.3.4 TpEncryptionCapabilityList

This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma
(,)as the separation character.

10.3.5 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the Framework should perform when an
application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 24

CR page 24

10.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain

Sequence Element
Name

Sequence Element
Type

Description

DomainID TpDomainID Identifies the domain for authentication. This identifier is assigned to the domain during
the initial contractual agreements, and is valid during the lifetime of the contract.

AuthInterface IpInterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle a new interface reference

can be provided each time a domain intends to access another.

10.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value Description
P_DISCOVERY The name for the Discovery interface.

P_EVENT_NOTIFICATION The name for the Event Notification interface.

P_OAM The name for the OA&M interface.

P_LOAD_MANAGER The name for the Load Manager interface.

P_FAULT_MANAGER The name for the Fault Manager interface.

P_HEARTBEAT_MANAGEMENT The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT_MANAGEMENT The name of the Service Agreement Management interface.

P_REGISTRATION The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator Account Management
interface.

P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator Account Information Query
interface.

P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract Information Query interface.

P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application Management interface.

P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile Management interface.

P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile Information Query interface.

10.3.8 TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will
automatically expire if the client or Framework invokes the endAccess method on the other's corresponding access
interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 25

CR page 25

10.3.10 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element
Name

Sequence Element
Type

DigitalSignature TpOctetSet

ServiceMgrInterface IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit key.

P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA public- key cryptography system using a 1 024-bit key

10.3.12 TpAuthMechanism

This data type is identical to a TpString. It identifies an authentication mechanism to be used for API Level
Authentication. The following values are defined:

String Value Description
P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a

shared secret and a challenge received via authenticate() method. The capability to use this algorithm is
required to be supported when using CHAP (RFC 1994) but its use is not recommended.

P_OSA_HMAC_SHA1_96 Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response
based on a shared secret and a challenge received via authenticate() method.

P_OSA_HMAC_MD5_96 Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response
based on a shared secret and a challenge received via authenticate() method.

10.3.13 TpAuthMechanismList

This data type is identical to a TpString. It is a string of multiple TpAuthMechanism concatenated using a comma (,)as
the separation character.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 26

CR page 26

11 Exception Classes
The following are the list of exception classes which are used in this interface of the API.

Name Description
P_ACCESS_DENIED The client is not currently authenticated with the framework

P_APPLICATION_NOT_ACTIVATED An application is unauthorised to access information and request
services with regards to users that have deactivated that particular

application.

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been received

P_ILLEGAL_SERVICE_ID Illegal Service ID

P_ILLEGAL_SERVICE_TYPE Illegal Service Type

P_INVALID_ACCESS_TYPE The framework does not support the type of access interface requested
by the client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity test request

P_INVALID_AGREEMENT_TEXT Invalid agreement text

P_INVALID_ENCRYPTION_CAPABILITY Invalid encryption capability

P_INVALID_AUTH_TYPE Invalid type of authentication mechanism

P_INVALID_CLIENT_APP_ID Invalid Client Application ID

P_INVALID_DOMAIN_ID Invalid client ID

P_INVALID_ENT_OP_ID Invalid Enterprise Operator ID

P_INVALID_PROPERTY The framework does not recognise the property supplied by the client

P_INVALID_SAG_ID Invalid Subscription Assignment Group ID

P_INVALID_SERVICE_CONTRACT_ID Invalid Service Contract ID

P_INVALID_SERVICE_ID Invalid service ID

P_INVALID_SERVICE_PROFILE_ID Invalid service profile ID

P_INVALID_SERVICE_TOKEN The service token has not been issued, or it has expired.

P_INVALID_SERVICE_TYPE Invalid Service Type

P_INVALID_SIGNATURE Invalid digital signature

P_INVALID_SIGNING_ALGORITHM Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILIT
Y

An No encryption mechanism, which is acceptable to the framework,
is not supported by the client

P_NO_ACCEPTABLE_AUTHENTICATION_MECHA
NISM

No authentication mechanism, which is acceptable to the framework,
is supported by the client

P_PROPERTY_TYPE_MISMATCH Property Type Mismatch

P_SERVICE_ACCESS_DENIED The client application is not allowed to access this service.

P_SERVICE_NOT_ENABLED The service ID does not correspond to a service that has been enabled

P_SERVICE_TYPE_UNAVAILABLE The service type is not available according to the Framework.

P_UNKNOWN_SERVICE_ID Unknown Service ID

P_UNKNOWN_SERVICE_TYPE Unknown Service Type

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description
ExtraInformation TpString Carries extra information to help identify the source of the

exception, e.g. a parameter name

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-0207041
Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-03 CR CRNum arev - a Current version: 5.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correct use of electronic signatures

Source: a Chelo Abarca, Alcatel
Ultan Mulligan, ETSI

Work item code:a OSA2 Date: a 12/07/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a This CR proposes an overhaul of the digital signature usage in OSA. The
changes in this CR are based on those proposed in contributions N5-020283.

Digital signatures are used in OSA for the signing of service agreements. They
are also used for the termination of service agreements, and for the Framework's
termination of the client's access session. But they are not used for other
methods which result in termination of service agreements: those invoked by a
client which terminate a client's access session with the Framework. This is a
potential security hole, offering a means to perform denial of service attacks.

There is no negotiation mechanism in the API to enable negotiation of the
signing algorithms, yet negotiation is used for such things as encryption
capabiltities in Authentication.

The choice of signing algorithms is resticted and should be extended with newer
choices.

IpClientAccess.terminateAccess() has had correct digital Signature added,
including replay protection. Also, functionality extended to close also all service
instances associated with access session.

TpSigningAlgorithm extended with state of the art signing algorithms.

IpAccess.endAccess replaced with terminateAccess: to add digital signature for
security, to prevent denial of service attacks on this unprotected method. Also to
remove the endAccessProperties which were undefined, but without which the
method would throw an exception. This removes possiblity to leave service
instances open following close of Framework access session, which was a
further security hole.

IpAccess.releaseInterface() replaced with relinquishInterface, to add digital
signature parameters for security, to prevent denial of service attacks on this

CR page 2

unprotected method.

Summary of change:a Add a negotiation mechanism for Signing Algorighms:
selectSigningAlgorithm added to provide negotiation for algorithm to be used for
ALL digital signatures (even those in signServiceAgreement).

TpSigningAlgorithm extended with state of the art signing algorithms.

IpClientAccess.terminateAccess() has had correct digital Signature added,
including replay protection (timestamp). Also, functionality extended to close
also all service instances associated with access session.

IpAccess.endAccess replaced with terminateAccess: to add digital signature for
security, to prevent denial of service attacks on this unprotected method. Also to
remove the endAccessProperties which were undefined, but without which the
method would throw an exception. This removes possiblity to leave service
instances open following close of Framework access session, which was a
further security hole.

IpAccess.releaseInterface() replaced with relinquishInterface, to add digital
signature parameters for security, to prevent denial of service attacks on this
unprotected method.

Methods signServiceAgreement() and terminateServiceAgreement clarified to
use the signing algorithm negotiated earlier, and to include replay protection
using timestamping.

Consequences if a

not approved:
Security weaknesses will remain in the OSA specifications, which will limit their
adoption and use.
Lack of clear instructions for implementors will lead to interoperability difficulties.

Clauses affected: a 6.3, 7.3, 10.3, 11

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA
Framework for the first time. Trusted parties do not need to be authenticated and after contacting the Initial interface the
Framework will indicate that no further authentication is needed and that the application can immediately gain access to
other framework interfaces and SCFs. This is done by invoking the requestAccess method.

 : IpClientAPILevelAuthentication Client : IpInitial :
IpAPILevelAuthentication

 : IpAccess Framework

1: initiateAuthentication()

2: authenticationSucceeded()

3: requestAccess()

1: The Client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Based on the domainID information that was supplied in the Initiate Authentication step, the Framework knows it
deals with a trusted party and no further authentication is needed. Therefore the Framework provides the authentication
succeeded indication.

3: The Client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a
reference to its own access interface. The Framework returns a reference to its access interface.

6.1.1.2 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication
process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Client : IpInitial : IpAPILevelAuthentication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

Cl ient : IpInitial : IpAPILevelAuthent ication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

1: Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the
encryption methods it supports. The Framework prescribes the method to be used.

3: Authenticate

4: The client provides an indication if authentication succeeded.

5: The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more
invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the
client supplies a challenge and the Framework returns the correct response. Alternatively or additionally the
Framework may issue its own challenges to the client using the authenticate method on the client's API Level
Authentication interface.

6: The Framework provides an indication if authentication succeeded.

7: Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level
Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference
to its access interface.

8: The client and framework negotiate the signing algorithm to be used for any signed exchanges.

89: The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery
interface.

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution technology mechanism.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Client : IpInitial Framework : IpAuthentication : IpAccess

1: initiateAuthentication()

2: requestAccess()

4: obtainInterface()

Underlying Distribution Technology
Mechanism is used for client
identification and authentication.

3: selectSigningAlgorithm()

Client : IpInitial Framework : IpAuthentication : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

1: The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the
type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism
for identification and authentication.

2: The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now
uses the underlying distribution technology mechanism for identification and authentication of the client.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

34: If the authentication was successful, tThe client can now invoke obtainInterface on the framework's Access interface
to obtain a reference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the
type of authentication process. This authentication process may be specific to the provider, or the implementation
technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security).
OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the
authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication
interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In
this case the API Level Authentication interface.

2) The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This
includes the encryption capabilities of the client. The framework then chooses an encryption method based on the
encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption
method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the
encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will
fail.

3) The application and Framework interact to authenticate each other. For an authentication method of
P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This
authentication protocol is performed using the authenticate method on the API Level Authentication interface.
P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual authentication is
achieved by the framework invoking the authenticate method on the client's APILevelAuthentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not
have to be mutual.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: init ia teAuthent icat ion()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

7: authenticate()

IpClientA PILevel Au thenti ca ti on
reference i s passed to f ramework
and IpAP IL evel Auth entication
reference i s returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpClientA ccess reference is
passed to Fram ework, and
IpAccess reference is
returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

6.3.1.2 Interface Class IpClientAccess

Inherits from: IpInterface.

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access
session.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

Method
terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session
or on behalf of the client during this access session shall be terminated. If at any point the framework's level of
confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should
terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session
WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the
framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. This is a signed version of a hash of the termination text. The
framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed
by the framework. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE
exception will be thrown.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

6.3.1.6 Interface Class IpAccess

Inherits from: IpInterface.

<<Interface>>

IpAccess

obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) :
IpInterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

<<deprecated>> releaseInterface (interfaceName : in TpInterfaceName) : void

<<new>> selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) :
TpSigningAlgorithm

<<new>> terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

<<new>> relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

Method
obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns

IpInterfaceRef

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

Method
obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface
method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainInterface method should be used when no callback interface needs to be
supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME,
P_INVALID_INTERFACE_TYPE

Method
<<deprecated>> endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is
invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references
to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session
(e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY

Method
listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework
makes available.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

Parameters
No Parameters were identified for this method

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED

Method
<<deprecated>> releaseInterface()

The client uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework
throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME

Method
<<new>> selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases
where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall
be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method
remains valid for an instance of IpAccess and until this method is re-invoked by the client. If an algorithm that is
acceptable to the framework within the capability of the client cannot be found, the framework throws the
P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be
taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.

Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

Method
<<new>> terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After
it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.
Also, all remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The
framework can check that the terminationText has been signed by the client. If a match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNATURE

Method
<<new>> relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework
throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the
digitalSignature parameter requires a terminationText to sign.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The
framework can check that the terminationText has been signed by the client. If a match is made, the interface is
released, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

7.3.3 Service Agreement Management Interface Classes

7.3.3.1 Interface Class IpAppServiceAgreementManagement

Inherits from: IpInterface.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

7.3.3.1.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be a restriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digitalSignature> : This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630])
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is
made of the service token and agreement text given by the framework. The "external signature" construct shall not be
used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the service token and
agreement text). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The digitalSignature is the signed version of a hash of the service token and agreement text given by the
framework. If the signature is incorrect the serviceToken will be expired immediately.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown. The list of possible

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

CR page 16

algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

Returns

TpOctetSet

Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN,
P_INVALID_SIGNING_ALGORITHM

7.3.3.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the service token and the
termination text. The "external signature" construct shall not be used (ie the eContent field in the
EncapsulatedContentInfo field shall be present and contain the service token and the termination text string). The
signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. This is a
signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the
signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses
this to confirm its identity to the client application. The client application can check that the terminationText has been
signed by the framework. If a match is made, the service agreement is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE

7.3.3.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

CR page 17

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.3.2.1 Method signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which
allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the service is returned to the client application. The service manager
returned will be configured as per the service level agreement. If the framework uses service subscription, the service
level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client
application, which will be a restriction of the registered properties. If the client application is not allowed to access the
service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {
digitalSignature: TpOctetSet;

serviceMgrInterface: IpServiceRef;
};

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with
content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of
the service token and agreement text given by the client application. The "external signature" construct shall not be used
(ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the service token and agreement
text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. is the signed version of a hash of the service token and agreement text given by the client application.

 The
serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18

CR page 18

Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SER
VICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED

7.3.3.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the service token and the
termination text. The "external signature" construct shall not be used (ie the eContent field in the
EncapsulatedContentInfo field shall be present and contain the service token and the termination text string). The
signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. This is a
signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the
signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this
to check that the terminationText has been signed by the client application. If a match is made, the service agreement is
terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN,
P_INVALID_SIGNATURE

7.3.3.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown. The
P_SERVICE_ACCESS_DENIED exception is also thrown if the client attempts to select a service for which it has
already signed a service agreement for, and therefore obtained an instance of. This is because there must be only one
service instance per client application.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a
service agreement. This will contain operator specific information relating to the service level agreement. The
serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the endAccess method on the other's corresponding access interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19

CR page 19

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID,
P_SERVICE_ACCESS_DENIED

7.3.3.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. If the client application is
not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS_DENIED) is thrown.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) is thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 20

CR page 20

10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the
input. This is then encrypted with the private key under the RSA public-key cryptography system
using a 512-bit modulus. The signature generation follows the process and format defined in RFC

2313 (PKCS#1 v1.5). The use of this signing method is deprecated.MD5 takes an input message of
arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted

with the private key under the RSA public-key cryptography system using a 512-bit key.

P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the
input. This is then encrypted with the private key under the RSA public- key cryptography system

using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC
2313 (PKCS#1 v1.5). The use of this signing method is deprecated.MD5 takes an input message of
arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted

with the private key under the RSA public- key cryptography system using a 1 024-bit key

P_RSASSA-PKCS1-
v1_5_SHA1_1024P_RSASSA
_PKCS1_v1_5_SHA1_1024

SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is
then used to generate the signature value, following the process defined in section 8 of RFC 2437 and
format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit
modulus.

P_SHA1_DSA SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is
then used to generate the signature value. The signature generation follows the process and format
defined in section 7.2.2 of RFC 2459.

10.3.12 TpSigningAlgorithmList

This data type is identical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)as
the separation character.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 21

CR page 21

11 Exception Classes
The following are the list of exception classes which are used in this interface of the API.

Name Description
P_ACCESS_DENIED The client is not currently authenticated with the framework

P_APPLICATION_NOT_ACTIVATED An application is unauthorised to access information and request
services with regards to users that have deactivated that particular

application.

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been received

P_ILLEGAL_SERVICE_ID Illegal Service ID

P_ILLEGAL_SERVICE_TYPE Illegal Service Type

P_INVALID_ACCESS_TYPE The framework does not support the type of access interface requested
by the client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity test request

P_INVALID_AGREEMENT_TEXT Invalid agreement text

P_INVALID_ENCRYPTION_CAPABILITY Invalid encryption capability

P_INVALID_AUTH_TYPE Invalid type of authentication mechanism

P_INVALID_CLIENT_APP_ID Invalid Client Application ID

P_INVALID_DOMAIN_ID Invalid client ID

P_INVALID_ENT_OP_ID Invalid Enterprise Operator ID

P_INVALID_PROPERTY The framework does not recognise the property supplied by the client

P_INVALID_SAG_ID Invalid Subscription Assignment Group ID

P_INVALID_SERVICE_CONTRACT_ID Invalid Service Contract ID

P_INVALID_SERVICE_ID Invalid service ID

P_INVALID_SERVICE_PROFILE_ID Invalid service profile ID

P_INVALID_SERVICE_TOKEN The service token has not been issued, or it has expired.

P_INVALID_SERVICE_TYPE Invalid Service Type

P_INVALID_SIGNATURE Invalid digital signature

P_INVALID_SIGNING_ALGORITHM Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILIT
Y

No encryption mechanism, which is acceptable to the framework, is
supported by the client

P_NO_ACCEPTABLE_SIGNING_ALGORITHM No signing algorithm, which is acceptable to the framework, is
supported by the client

P_PROPERTY_TYPE_MISMATCH Property Type Mismatch

P_SERVICE_ACCESS_DENIED The client application is not allowed to access this service.

P_SERVICE_NOT_ENABLED The service ID does not correspond to a service that has been enabled

P_SERVICE_TYPE_UNAVAILABLE The service type is not available according to the Framework.

P_UNKNOWN_SERVICE_ID Unknown Service ID

P_UNKNOWN_SERVICE_TYPE Unknown Service Type

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description
ExtraInformation TpString Carries extra information to help identify the source of the

exception, e.g. a parameter name

	NP-020421.doc
	N5-020564 LS_response to SA1 SA2 SA3 ON LCS Security.doc
	N5-020565 LS_response to SA5 and TS on Joint session for MMS charging.doc
	[N5-020569_LS_SA3.DIR]
	N5-020569 LS_SA3.doc
	N5-020703 CR29.198-03 selectAuthenticationMechanism.doc
	N5-020704 CR29.198-03 terminateAccessProtection.doc

