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7.1.3 Call forwarding on Busy Service 

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets up a connection towards a C party. The C party can for instance be a voicemail system. 
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1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. 

4:
When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages  are used to create the call and associated call leg objects. 

6:
A new MultiPartyCall object is created to handle this particular call. 

7:
A new CallLeg object corresponding to Party A is created. 

8:
The new Call Leg instance transits to state Active. 

11:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt" 

12:
This message is used to forward the message to the IpAppLogic. 

13:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the reportNotification. 

14:
A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A. 

15:
A new AppCallLeg C is created to receive callbacks for another leg. 

16:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network. 

19:
The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call. 

20:
The application requests to route the terminating leg to reach the associated party C. 

The application may request information about the original destination address be sent by setting up the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in the request to route the call leg to the remote party C. 

23:
The application requests to resume call processing for the terminating call leg to party B to terminate the leg. Alternative the application could request to deassign the leg to party B for example if it is not interested in possible requested call leg information  (getInfoRes, superviseRes).

  When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the application logic (not shown). 

25:
The application requests to resume call processing for the originating call leg. 

 As a result call processing is resumed in the network that will try to reach the associated party B. 

26:
When the party C answers the call, the termination call leg is notified. 

27:
Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call being answered back to its callback object. 

28:
This answer message is then forwarded to the object implementing the IpAppLogic interface.  

7.1.6 Hotline Service 

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination party. 

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging purposes.  

Note that this service could be extended as follows: 

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed. 
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1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. 

4:
When a new call, that matches the event criteria, arrives a message ("originating call attempt authorised") is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages  are used to create the call and associated call leg object 

6:
A new MultiPartyCall object is created to handle this particular call. 

7:
A new CallLeg object corresponding to Party A is created. 

8:
The new Call Leg instance transits to state Initiating. 

9:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt" 

10:
This message is used to forward message 9 to the IpAppLogic. 

11:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the reportNotification. 

12:
A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A. 

13:
A new AppCallLeg is created to receive callbacks for another leg. 

14:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network. 

15:
A new CallLeg corresponding to party B is created. 

16:
A transition to state Idle is made after the Call leg has been created. 

17:
The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released. 

18:
The application requests to route the terminating leg to reach the associated party as specified by the application ("hot-line  number"). 

19:
The Call Leg instance transits to state Active. 

21:
The application requests to be notified (monitor mode "Notify") when the leg to A-party is released. 

22:
The application requests to resume call processing for the originating call leg. 

 As a result call processing is resumed in the network that will try to reach the associated party as specified by the application (E.164 number provided by application). 

25:
The originating call leg is notified that the number (provided by application) has been analysed by the network and the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested this event to be reported. 

27:
When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a transition to "Releasing state". 

29:
The application is notified, as the release event has been requested to be reported in Notify mode. 

30:
The event is forwarded to the application logic. 

31:
The terminating call leg is destroyed, the AppLeg B is notified. 

32:
This answer message is then forwarded. 

34:
When the call release ("terminating release" indication) is propagated in the network toward the party A, the originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from party B) is not reported to the application. 

36:
When the originating call leg is destroyed, the AppLeg A is notified. 

37:
The event is forwarded to the application logic 

39:
When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended. 

40:
The event is forwarded to the application logic. 
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