Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020502

Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

	CR-Form-v5

	CHANGE REQUEST

	

	(

	29.198-04
	CR
	052
	(

rev
	-
	(

Current version:
	4.4.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Correcting the descriptions of sequence diagrams that don’t match the diagram

	
	

	Source:
(

	CN5

	
	

	Work item code:
(

	OSA2
	
	Date: (

	30/05/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The descriptions of 7.1.3 and 7.1.6 do not match up with the diagrams themselves. The incorrect states are mentioned in the text.

	
	

	Summary of change:
(

	Change the description to reference the correct states.

	
	

	Consequences if
(

not approved:
	An inconsistency between the sequence flows, their textual descriptions, and the State Transition Diagrams will exist which may lead to incorrect implementations and interoperability problems.

	
	

	Clauses affected:
(

	7.1.3, 7.1.6

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets up a connection towards a C party. The C party can for instance be a voicemail system.

[image: image1.wmf]App CCM :

IpAppMultiPartyCallControlManager

AppLogic

App Leg C :

IpAppCallLeg

App Leg A :

IpAppCallLeg

App Call :

IpAppMultiPartyCall

CCM :

IpMultiPartyCallControlManager

Call :

IpMultiPartyCall

Leg A :

IpCallLeg

Leg B :

IpCallLeg

SCS

Leg C :

IpCallLeg

1: "new"

12: "forward event"

15: "new"

14: "new"

13: "new"

2: createNotification()

5: "check if application interested"

11: reportNotification()

6: "new"

16: createCallLeg()

7: "new"

8: "state transition to Active"

23: continueProcessing()

24: "inform Call object"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"

10: "state transition to Releasing"

17: "new"

18: "state transition to Idle"

19: eventReportReq()

20: routeReq()

21: "state transition to Active"

22: "inform Call object"

26: "C-party answer"

27: eventReportRes()

28: "forward event"

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events.

4:
When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

6:
A new MultiPartyCall object is created to handle this particular call.

7:
A new CallLeg object corresponding to Party A is created.

8:
The new Call Leg instance transits to state Active.

11:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

12:
This message is used to forward the message to the IpAppLogic.

13:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the reportNotification.

14:
A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

15:
A new AppCallLeg C is created to receive callbacks for another leg.

16:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

19:
The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20:
The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in the request to route the call leg to the remote party C.

23:
The application requests to resume call processing for the terminating call leg to party B to terminate the leg. Alternative the application could request to deassign the leg to party B for example if it is not interested in possible requested call leg information (getInfoRes, superviseRes).

 When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the application logic (not shown).

25:
The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party B.

26:
When the party C answers the call, the termination call leg is notified.

27:
Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call being answered back to its callback object.

28:
This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging purposes.

Note that this service could be extended as follows:

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.

[image: image2.wmf]AppLogic

App Leg B :

IpAppCallLeg

App Leg A :

IpAppCallLeg

App Call :

IpAppMultiPartyCall

App CCM :

IpAppMultiPartyCallControlManager

CCM :

IpMultiPartyCallControlManager

Call :

IpMultiPartyCall

Leg A :

IpCallLeg

Leg B :

IpCallLeg

SCS

13: "new"

32: "forward event"

30: "forward event"

12: "new"

37: "forward event"

11: "new"

40: "forward event"

1: "new"

10: "forward event"

2: createNotification()

5: "check if application interested"

9: reportNotification()

6: "new"

14: createCallLeg()

39: callEnded()

7: "new"

8: "state transition to Initiating"

21: eventReportReq()

22: continueProcessing()

23: "inform Call object"

35: "state transition to Releasing"

36: callLegEnded()

38: "inform Call object"

15: "new"

16: "state transition to Idle"

17: eventReportReq()

18: routeReq()

19: "state transition to Active"

20: "inform Call object"

28: "state transition to Releasing"

29: eventReportRes()

31: callLegEnded()

33: "inform Call object"

3: "arm trigger"

4: "trigger event: Originating Call Attempt Authorised"

24: "continue call processing"

34: "Disconnect from A-party"

27: "Disconnect from B-party"

25: event "address_analysed"

26: "state transition to Active"

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events.

4:
When a new call, that matches the event criteria, arrives a message ("originating call attempt authorised") is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

6:
A new MultiPartyCall object is created to handle this particular call.

7:
A new CallLeg object corresponding to Party A is created.

8:
The new Call Leg instance transits to state Initiating.

9:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10:
This message is used to forward message 9 to the IpAppLogic.

11:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the reportNotification.

12:
A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13:
A new AppCallLeg is created to receive callbacks for another leg.

14:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

15:
A new CallLeg corresponding to party B is created.

16:
A transition to state Idle is made after the Call leg has been created.

17:
The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18:
The application requests to route the terminating leg to reach the associated party as specified by the application ("hot-line number").

19:
The Call Leg instance transits to state Active.

21:
The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

22:
The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party as specified by the application (E.164 number provided by application).

25:
The originating call leg is notified that the number (provided by application) has been analysed by the network and the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested this event to be reported.

27:
When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a transition to "Releasing state".

29:
The application is notified, as the release event has been requested to be reported in Notify mode.

30:
The event is forwarded to the application logic.

31:
The terminating call leg is destroyed, the AppLeg B is notified.

32:
This answer message is then forwarded.

34:
When the call release ("terminating release" indication) is propagated in the network toward the party A, the originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from party B) is not reported to the application.

36:
When the originating call leg is destroyed, the AppLeg A is notified.

37:
The event is forwarded to the application logic

39:
When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40:
The event is forwarded to the application logic.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

