
3GPP TSG CN Plenary Meeting #16 NP-020187
5th - 7th June 2002. Marco Island, USA.

Source: CN5 (OSA)

Title: Rel-5 CRs 29.198-04 OSA API Part 4: Call control

Agenda item: 8.2

Document for: APPROVAL

Doc-1st

-Level
Spec CR R

v
Pha Subject Cat Ver

Curr
Ver
New

Doc-2nd

-Level
Work
item

NP-020187 29.198-04 039 - Rel-5 Addition of support for Emergency Telecommunications
Service

B 4.4.0 5.0.0 N5-020453 OSA2

NP-020187 29.198-04 041 - Rel-5 Changes to getNotification() F 4.4.0 5.0.0 N5-020461 OSA2
NP-020187 29.198-04 042 - Rel-5 Addition of P_UNSUPPORTED_MEDIA release cause to

TpReleaseCause
F 4.4.0 5.0.0 N5-020463 OSA2

NP-020187 29.198-04 043 - Rel-5 Addition of CAMEL Phase 4 Service Property values F 4.4.0 5.0.0 N5-020465 OSA2
NP-020187 29.198-04 044 - Rel-5 Addition of indication whether SCS supports initially

multiple routeReqs in parallel
F 4.4.0 5.0.0 N5-020466 OSA2

NP-020187 29.198-04 045 - Rel-5 Explicit exception for continueProcessing when not in
interrupted mode

F 4.4.0 5.0.0 N5-020474 OSA2

NP-020187 29.198-04 046 - Rel-5 Indication needed that supervision will be ended when call
or callLeg is deassigned

F 4.4.0 5.0.0 N5-020476 OSA2

NP-020187 29.198-04 047 - Rel-5 Clarify ambiguous Supervision duration F 4.4.0 5.0.0 N5-020477 OSA2
NP-020187 29.198-04 048 - Rel-5 Detach/Attach request illegal during pending Attach/Detach

request
F 4.4.0 5.0.0 N5-020478 OSA2

NP-020187 29.198-04 049 - Rel-5 Correction of Multi-Party Call Control properties F 4.4.0 5.0.0 N5-020479 OSA2
NP-020187 29.198-04 050 - Rel-5 Correcting the sequence diagram descriptions in GCC and

MPCC
F 4.4.0 5.0.0 N5-020499 OSA2

NP-020187 29.198-04 051 - Rel-5 Correcting erroneous description of UI behaviour in call
control

F 4.4.0 5.0.0 N5-020500 OSA2

NP-020187 29.198-04 052 - Rel-5 Correcting the descriptions of sequence diagrams that don’t
match the diagram

F 4.4.0 5.0.0 N5-020502 OSA2

NP-020187 29.198-04 053 - Rel-5 Correcting erroneous references to GCC in MPCC F 4.4.0 5.0.0 N5-020503 OSA2
NP-020187 29.198-04 054 - Rel-5 Addition of the Multi-media APIs to Call control SCF

(29.198-4)
B 4.4.0 5.0.0 N5-020515 OSA2

NP-020187 29.198-04 055 - Rel-5 Updating Clause 4 for Release 5 F 4.4.0 5.0.0 N5-020518 OSA2

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020453
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 039 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Addition of support for Emergency Telecommunications Service

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a B Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Addition of support for priority / emergency call indication.

Summary of change:a Addition of element in datatype TpCallAppInfo to indicate priority of a call session
and corresponding Service Property

Consequences if a

not approved:

Clauses affected: a 7.5.1, 7.6.2.19, 7.6.2.20, 7.6.2.43

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIO
NS

BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.route(), IpCallLeg.attachMedia()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMedia() is needed when a party answers.

P_HIGH_PROBABILITY_OF_COMPLETION BOOLEAN_SET Value = TRUE : high probability of call completion field can be set.
Value = FALSE : high probability of call completion field can not be set.
FALSE is the default value.

7.6.2.19 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddre
ss

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

P_CALL_APP_HIGH_PROBABILITY_COMPLETION TpCallHighProbabilityComp
letion

CallHighProbabilityCompletion

7.6.2.20 TpCallAppInfoType

Defines the type of call application-related specific information.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when
launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting.

P_CALL_APP_HIGH_PROBABILITY_COMPLETION 11 Indicates high probability of completion and its priority

7.6.2.43 TpCallHighProbabilityCompletion

This data type is identical to a TpInt32, and defines the probability of completion under network congestion. The
values of this data type are region specific. In general, a value of 0 indicates no special treatment (default), a priority
value between 1, 2, 3, ..., n indicates special treatment, where 1 is the highest priority and n the lowest priority other
than no special treatment.

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020461
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 041 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Changes to getNotification()

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Problem when the result of getNotification() is large. The data may be too large for
the middleware to handle or might take too long to collect and time-outs occur in
the middleware.

Summary of change:a Addition of a method to iterate over the triggers in the database on the gateway.

Consequences if a

not approved:
Under certain circumstances not all triggers can be provided to an application.

Clauses affected: a 7.3.1, 7.4.1.3, 7.5.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at:
http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

Introduction

The synchronous method getNotification() returns all the notifications that an application has set. This can
potentially be a very large set and therefore 2 problems may arise when using it:

1. The size of an IIOP message is limited. Not all notification may fit into it.
2. The time required gathering all notification may exceed the time-out time for an IIOP message.

This CR proposes a solution for this problem.

Proposal

To cater for the problem described above a number of solutions exist:

1. Throw an exception. In this case there is however no means at all for an application to obtain a set of
notification it has stored.

2. Only return a limited set if the number of notifications is very large. In this case an application that has
stored a large set of notifications only gets an incomplete set. It cannot obtain a complete set. Furthermore
it has no means to let the application know the set is incomplete.

3. Make getNotification() asynchronous where the result method may be invoked several times:

getNotificationReq() : void
cancelGetNotification() : void
getNotificationErr(errorIndication : in TpCallError) : void
getNotificationRes(eventNotification : in TpNotificationRequestedSetRef, setComplete : in TpBoolean) :
void

4. Define a kind of iterator for obtaining the event notifications, three variants can be distinguished:

a) getFirstNotification(eventNotification : out TpNotificationRequestedSetRef) : TpBoolean
getNextNotification(eventNotification : out TpNotificationRequestedSetRef) : TpBoolean

The getFirstNotification() method returns the first part of the set event notification. If it returns TRUE,
return subsequent parts can be obtained with getNextNotification() until this method returns FALSE.

b) resetNotificationSet() : void
getNextNotification(eventNotification : out TpNotificationRequestedSetRef) : TpBoolean

resetNotificationSet() resets an internal “pointer” to the beginning of the set and getNextNotification() is
used to obtain subsequent parts until it returns FALSE.

c) getNextNotification(reset : in TpBoolean, eventNotification : out TpNotificationRequestedSetRef) :
TpBoolean

Here resetNotificationSet() and getNextNotification() are combined.

Alternatives 1 and 2 are options to be considered when using the current interface. The 3rd alternative is
relatively complex. From the last alternative, option c is preferred since there is no dependency between the
interaction of two methods.

Since backward compatibility shall be guaranteed, getNotification() shall be marked as deprecated.

Below is an updated version (with revision marks) of the specification.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest :
in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

<<deprecated>> getNotification () : TpNotificationRequestedSet

<<new>> getNextNotification(reset : in TpBoolean) : TpNotificationRequestedSetEntry

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty set is
returned when no notifications exist.

This method is deprecated and replaced by getNextNotification().

Parameters

No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be used
in an iterative way. Each method invocation call may return part of the total set of notifications if the set is too large to
return it at once. The reset parameter permits the application to indicate whether an invocation call to

getNextNotification is requesting more notifications from the total set of notifications or is requesting that the total set of
notifications shall be returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset : in TpBoolean

TRUE: indicates that the application is intended to obtain the full set of notifications starting with this method callat the
beginning.
FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

The first time this method is invokedcalled, reset shall be set to TRUE. Following the receipt of a final indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED
may be thrown if these conditions are not met.

Returns

TpNotificationRequestedSetEntry

Raises

TpCommonExceptions

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable
Active createCall,

createNotification,
destroyNotification,
changeNotification,
getNotification,
getNextNotification,
setCallLoadControl

Interrupted getNotification,
getNextNotification

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE shall have the Service Properties outlined
above set to the indicated values :
P_OPERATION_SET = {
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNotification”,
“IpMultiPartyCallControlManager.getNextNotification”,
 “IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReq”,
“IpCallLeg.eventReportReq”,
“IpCallLeg.release”,
“IpCallLeg.getInfoReq”,

“IpCallLeg.getCall”,
“IpCallLeg.continueProcessing”
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_CALL_ATTEMPT,
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_RELEASE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ANSWER,
P_CALL_EVENT_RELEASE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

P_MAX_CALLLEGS_PER_CALL = {
0,
2
}

P_UI_CALLLEG_BASED = {
FALSE
}

P_MEDIA_ATTACH_EXPLICIT = {
FALSE
}

7.6.2 Multi-Party Call Control Data Definitions

7.6.2.x TpNotificationRequestedSetEntry

Defines the Sequence of Data Elements that specify a set of requested notifications and an indication whether
more notifications can be requested.

Sequence Element
Name

Sequence Element
Type

Description

NotificationRequestSet TpNotificationRequestSet Numbered set of requested
notifications.

Final TpBoolean Indication whether the set of
notifications is the final set
(TRUE)or if there are more

notifications available (FALSE).

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020463
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 042 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Addition of P_UNSUPPORTED_MEDIA release cause to TpReleaseCause

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a A release cause available at the ISC interface has no mapping in OSA.

Summary of change:a A new release cause, P_UNSUPPORTED_MEDIA, is added to TpReleaseCause
in Multi-media Call Control.

Consequences if a

not approved:
It will not be possible to map the release cause to a TpReleaseCause value that
reflects the real reason for release.

Clauses affected: a 6.12.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a During the process of reviewing the current state of the OSA MMCCS to ISC
mappings, it was identified that a certain release cause available in the ISC
interface has no mapping in OSA. Although it is a design decision to abstract
away from protocol specific details, we feel that this particular release cause is
useful the have at the application level. The release cause identified is, specifically
in the SIP protocol, 415 Unsupported Media Type.

From IETF RFC 2543

415 Unsupported Media Type

The server is refusing to service the request because the message
body of the request is in a format not supported by the requested
resource for the requested method.

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

CR page 2

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

TpReleaseCause

Defines the reason for which a call is released.

Name Value Description
P_UNDEFINED 0 The reason of release isn’t known, because no info was received from the network.

P_USER_NOT_AVAILBLE 1 The user isn’t available in the network. This means that the number isn’t allocated or that the user
isn’t registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal isn’t reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were available.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

P_UNSUPPORTED_MEDIA 12 The call / call leg was released either because the message body of the request is in a format not
supported or because the media is not supported.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020465
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 043 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Addition of CAMEL Phase 4 Service Property values

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Alignement in Rel-5 with CAMELv4.

Now that CAMELv4 is ready, also the Service Property values for this service
environment should be added in the spec.

Summary of change:a Service Property values for CAMELv4 are added, few errors in event names are
corrected

Consequences if a

not approved:
Not clear what application developers can expect for SCS based on CSE for
CAMELv4.

Clauses affected: a 6.5.2, 7.5.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATION_SET = {
“IpCallControlManager.createCall”,
“IpCallControlManager.enableCallNotification”,
“IpCallControlManager.disableCallNotification”,
“IpCallControlManager.changeCallNotification”,
“IpCallControlManager.getCriteria”,
“IpCallControlManager.setCallLoadControl”,
“IpCall.routeReq”,
“IpCall.release”,
“IpCall.deassignCall”,
“IpCall.getCallInfoReq”,
“IpCall.setCallChargePlan”,
“IpCall.setAdviceOfCharge”,
“IpCall.superviseCallReq”
}

P_TRIGGERING_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,
P_EVENT_GCCS_CALLED_PARTY_BUSY,
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,
P_EVENT_GCCS_ROUTE_SELECT_FAILURE
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_REPORT_ALERTING,
P_CALL_REPORT_ANSWER,
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO_ANSWER,
P_CALL_REPORT_DISCONNECT,
P_CALL_REPORT_SERVICE_CODE,
P_CALL_REPORT_ROUTING_FAILURE,
P_CALL_REPORT_NOT_REACHABLE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATION_SET = {
“IpMultiPartyCallControlManager.createCall”,
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNotification”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReq”,
“IpCallLeg.eventReportReq”,
“IpCallLeg.release”,
“IpCallLeg.getInfoReq”,
“IpCallLeg.getCall”,
“IpCallLeg.continueProcessing”
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_ORIGINATING_RELEASE,(1)

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED,
P_CALL_EVENT_TERMINATING_RELEASE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ALERTING,
P_CALL_EVENT_ANSWER,
P_CALL_EVENT_ORIGINATING_RELEASE,
P_CALL_EVENT_ORIGINATING_SERVICE_CODE,
P_CALL_EVENT_TERMINATING_RELEASE,
P_CALL_EVENT_TERMINATING_SERVICE_CODE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
TRUE
}

P_MEDIA_TYPE = {
P_AUDIO
}

P_MAX_CALLLEGS_PER_CALL = {
0,
6
}

P_UI_CALLLEG_BASED = {
TRUE
}

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

P_MEDIA_ATTACH_EXPLICIT = {
FALSE
}

(1) Only for the routing failure case, TpReleaseCause = P_ROUTING_FAILURE

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020466
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 044 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Addition of indication whether SCS supports initially multiple routeReqs in parallel

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Not all networks support that at application initiated call setup initially multiple
destinations are probed. Therefore, it would be good to note developers of the
fact whether a certain SCS supports this or not.

Summary of change:a A note is added to the description of the routeReq method and an additional
property is added to the Multi-Party Call Control properties.

Consequences if a

not approved:
Potential interoperability problems.

Clauses affected: a 7.3.3, 7.3.5, 7.5.1

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

First modified section

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() has to be
received before the next createAndRouteCallLegReq() can be invoked. The Service Property
P_PARALLEL_INITIAL_ROUTING_REQUESTS (see section 7.5) indicates how a specific implementation handles the initial
rcreateAndRouteCallLegReq(). This method shall throw P_TASK_REFUSED if an application is not allowed to use
parallel routing requests.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Second modified section

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

Note that for application initiated calls in some networks the result of the first routeReq() has to be received before the
next routeReq() can be invoked. The Service Property P_PARALLEL_INITIAL_ROUTING_REQUESTS (see section 7.5)
indicates how a specific implementation handles the initial routeReq().This method shall throw P_TASK_REFUSED if
an application is not allowed to use parallel routing requests.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Third modified section

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are

the events by which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic
events are the events the application can request for during the context of
a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a
reference to a Call object can be used in the IpUIManager.createUICall()
operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a
call .

Value = FALSE: User Interaction can be performed in case there is only
one party in the call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-
type TpMediaType : P_AUDIO, P_VIDEO, P_DATA

P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_PARALLEL_INITIAL_ROUTING_REQUEST
S

BOOLEAN_SET Indicates whether for application initiated calls it is possible to issue
multiple routing request methods in parallel or that the application has to
wait for the result of the first request before another one can be invoked.
Value = TRUE: Multiple routing requests can be invoked in parallel.
Value = FALSE: Result of first request has to be received before another
request can be issued.

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating

notifications it applies to the terminating number, for originating
notifications it applies only to the originating number. See further
explanation on which events are originating and which are terminating,
below.

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for
legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to a logical network chargeplan indicator. When the
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans
in this mapping are allowed.

The following table explains how the P_TRIGGERING_ADDRESSES property that is inherited via the Generic Call
Control properties should be interpreted with respect to which of the notifications apply to originating numbers and
which of the notifications apply to terminating numbers.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Originating
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED Originating
P_CALL_EVENT_ADDRESS_COLLECTED Originating
P_CALL_EVENT_ADDRESS_ANALYSED Originating
P_CALL_EVENT_ORIGINATING_SERVICE_CODE Originating
P_CALL_EVENT_ORIGINATING_RELEASE Originating
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT Terminating
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED Terminating
P_CALL_EVENT_ALERTING Terminating
P_CALL_EVENT_ANSWER Terminating
P_CALL_EVENT_TERMINATING_RELEASE Terminating
P_CALL_EVENT_REDIRECTED Terminating
P_CALL_EVENT_TERMINATING_SERVICE_CODE Terminating

P_CALL_EVENT_QUEUED N/A

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020474
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 045 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Explicit exception for continueProcessing when not in interrupted mode

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Currently it is not clear in the spec that continueProcessing should only be used
when a call leg is in suspended mode (i.e. an event has been reported to the
application and the call session is waiting for instructions).

Summary of change:a Add additional text in specification that exception “Invalid_Network_state” should
be raisen when application invokes continueProcessing while the network is not
waiting for instructions.

Consequences if a

not approved:
Interoperability problems, due to fact that one has to interpret the spec on what
an SCS has to do when application invokes continueProcessing while the
network is waiting for instructions.

Clauses affected: a 7.3.5.

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call leg processing is not interrupted the exception
P_INVALID_NETWORK_STATE will be raised.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020476
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 046 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Indication needed that supervision will be ended when call or callLeg is deassigned

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Currently it is not clear what will happen with supervision when a call or call leg is
deassigned. When a call / call Leg is deassigned, the relation between the
application and the object is removed and thus also no supervision reports can
be sent to the application. Therefore, it should be clarified in the spec that all
supervision will be ended when a call or call leg is deassigned.

Summary of change:a Additional text is added to indicate that supervision treatment will be stopped
when call or callLeg is deassigned

Consequences if a

not approved:
Unclear specifications, interoperability problems

Clauses affected: a 7.3.3, 7.3.5

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020477
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 047 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Clarify ambiguous Supervision duration

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Currently it is not very clear what granted connection time is when a supervision
request is issued. There is an indication in the description of superviseReq, but it
would improve the specification is it is made more explicit what is meant by
connection time.

Summary of change:a Additional text is added to indicate that supervision connection time will be
started when call is answered.

Consequences if a

not approved:
Unclear specifications, interoperability problems

Clauses affected: a 7.3.3, 7.3.5

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in
the network, e.g. answered by the B-party or the user-interaction system.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the callLeg is
connected in the network..

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020478
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 048 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Detach/Attach request illegal during pending Attach/Detach request

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Currently in the spec it is not clear what an application can expect when it
invokes a detachMediaReq / attachMediaReq while there is still an outstanding
attachMediaReq / detachMediaReq.

Summary of change:a Additional text in the description of the method detachMediaReq and
attachMediaReq that when application invokes these methods while there is still
a request outstanding the exception “P_TASK_REFUSED” is raised.

Consequences if a

not approved:
Interworking problems due to clarity in the specification.

Clauses affected: a 7.3.5

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method is invoked while there is still a request to detach the Media pending, the exception
“P_TASK_REFUSED” will be raised.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method is invoked while there is still a request to attach the Media pending, the exception
“P_TASK_REFUSED” will be raised.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020479
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 049 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correction of Multi-Party Call Control properties

Source: a CN5

Work item code:a OSA2 Date: a 17/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a In Parlay 3 / Rel.4 the inheritance between Multi-Party Call Control and Generic
Call Control was broken in order to freeze Generic Call Control and further
develop Multi-Party Call Control.
The service properties defined for Generic Call Control were still considered to
be valid for the Multi-Party Call Control as well and therefore in the section on
Multi-Party CC service properties only additions to the ones defined for GCC are
listed.
However, the P_NOTIFICATION_TYPE (originating / terminating) of the GCC
service properties does not apply for Multi-Party Call Control as the notification
type is now contained in the event type itself.

Furthermore, for the P_TRIGGERING_ADDRESS service property in Multi-party
Call control it is not strictly defined which of the notifications apply to originating
numbers and which of the notifications apply to terminating numbers.

The property P_MEDIA_ATTACH_EXPLICIT is redundant and was meant to
specify some default, but the connectionProperties parameter in the routeReq is
not optional and the only supported values are explicit/implicit, so there is no
need for a default and in createCallLegAndRouteReq the behaviour is already
defined as implicit attach.

Finally, the P_ROUTING_WITH_CALLLEG_OPERATIONS property indicates
whether createAndRouteCallLeg is supported and/or whether createCallLeg and
routeReq can be used, but this is already expressed as part of the
P_OPERATIONS_SET. Duplicating this info leads to potential inconsistency.

Summary of change:a • It is proposed here to have all properties relevant for Multi-Party Call Control
listed in the section on MPCC service properties and the
P_NOTIFICATION_TYPE is left out.

• A table is added to clarify which of the notifications apply to originating and
which apply to terminating numbers.

CR page 2

• P_MEDIA_ATTACH_EXPLICIT is removed.
• P_ROUTING_WITH_CALLLEG_OPERATIONS is removed.

Consequences if a

not approved:
Unclear specification, Interoperability problems.

Clauses affected: a 7.5.1

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are

the events by which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic
events are the events the application can request for during the context of
a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a
reference to a Call object can be used in the IpUIManager.createUICall()
operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a
call .

Value = FALSE: User Interaction can be performed in case there is only
one party in the call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-
type TpMediaType : P_AUDIO, P_VIDEO, P_DATA

P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.routeReq(), IpCallLeg.attachMediaReq()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMediaReq() is needed when a party answers.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating

notifications it applies to the terminating number, for originating
notifications it applies only to the originating number. See further
explanation on which events are originating and which are terminating,
below.

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for
legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to a logical network chargeplan indicator. When the
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans
in this mapping are allowed.

The following table explains how the P_TRIGGERING_ADDRESSES property that is inherited via the Generic Call
Control properties should be interpreted with respect to which of the notifications apply to originating numbers and
which of the notifications apply to terminating numbers.

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Originating
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED Originating
P_CALL_EVENT_ADDRESS_COLLECTED Originating
P_CALL_EVENT_ADDRESS_ANALYSED Originating
P_CALL_EVENT_ORIGINATING_SERVICE_CODE Originating
P_CALL_EVENT_ORIGINATING_RELEASE Originating
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT Terminating
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED Terminating
P_CALL_EVENT_ALERTING Terminating
P_CALL_EVENT_ANSWER Terminating
P_CALL_EVENT_TERMINATING_RELEASE Terminating
P_CALL_EVENT_REDIRECTED Terminating
P_CALL_EVENT_TERMINATING_SERVICE_CODE Terminating

P_CALL_EVENT_QUEUED N/A

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020499
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 050 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correcting the sequence diagram descriptions in GCC and MPCC

Source: a CN5

Work item code:a OSA2 Date: a 30/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a The descriptions for several sequence diagrams in the Generic and Multi Party
Call Control sections state that “a prearranged event is received by the
framework”, which is incorrect. The Framework plays no part in these scenarios,
and it is the call control service that receives the event.

Summary of change:a Change the incorrect descriptions to reference the appropriate Call Control
service, not the Framework.

Consequences if a

not approved:
The specification will be misleading and this may lead to interoperability
problems.

Clauses affected: a 6.1.4, 6.1.5, 6.1.6, 6.1.7, 6.1.8, 6.1.9, 7.1.2, 7.1.5

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a
prearranged event being received by the frameworkcall control service. Before the
call is routed to the destination number, the calling party is asked for a PIN code. The
code is accepted and the call is routed to the original called party.

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :
IpUIManager

 :
IpCal lContro lManager

 :
IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall ()

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a call barring service, it is likely that all new
call events destined for a particular address or address range prompted for a password
before the call is allowed to progress. When a new call, that matches the event
criteria set, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing
the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.
3: This message is used to pass the new call event to the object implementing the
IpAppCallControlManager interface.

CR page 3

4: This message is used to forward the previous message to the IpAppLogic.
5: This message is used by the application to create an object implementing the
IpAppCall interface. The reference to this object is passed back to the object
implementing the IpCallControlManager using the return parameter of the
callEventNotify.
6: This message is used to create a new UICall object. The reference to the call
object is given when creating the UICall.
7: Provided all the criteria are fulfilled, a new UICall object is created.
8: The call barring service dialogue is invoked.
9: The result of the dialogue, which in this case is the PIN code, is returned to its
callback object.
10: This message is used to forward the previous message to the IpAppLogic.
11: This message releases the UICall object.
12: Assuming the correct PIN is entered, the call is forward routed to the
destination party.
13: This message passes the result of the call being answered to its callback
object.
14: This message is used to forward the previous message to the IpAppLogic
15: When the call is terminated in the network, the application will receive a
notification. This notification will always be received when the call is terminated by
the network in a normal way, the application does not have to request this event
explicitly.
16: The event is forwarded to the application.
17: The application must free the call related resources in the gateway by calling
deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated
as a result of a prearranged event being received by the call control serviceframework.

CR page 4

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View: :IpAppLo. ..

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a number translation service, it is likely that
only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria set in message 2, arrives a message (not shown) is
directed to the object implementing the IpCallControlManager. Assuming that the
criteria for creating an object implementing the IpCall interface (e.g. load control

CR page 5

values not exceeded) is met, other messages (not shown) are used to create the call
and associated call leg object.
3: This message is used to pass the new call event to the object implementing the
IpAppCallControlManager interface.
4: This message is used to forward message 3 to the IpAppLogic.
5: This message is used by the application to create an object implementing the
IpAppCall interface. The reference to this object is passed back to the object
implementing the IpCallControlManager using the return parameter of message 3.
6: This message invokes the number translation function.
7: The returned translated number is used in message 7 to route the call towards
the destination.
8: This message passes the result of the call being answered to its callback object
9: This message is used to forward the previous message to the IpAppLogic.
10: The application is no longer interested in controlling the call and therefore
deassigns the call. The call will continue in the network, but there will be no further
communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated
as a result of a prearranged event being received by the call control serviceframework.
For illustration, in this sequence the callback references are set explicitly. This is
optional. All the callbacks references can also be passed in other methods. From an
efficiency point of view that is also the preferred method. The rest of the sequences
use that mechanism.

CR page 6

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'trans late number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a number translation service, it is likely that
only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria set in message 2, arrives a message (not shown) is
directed to the object implementing the IpCallControlManager. Assuming that the

CR page 7

criteria for creating an object implementing the IpCall interface (e.g. load control
values not exceeded) is met, other messages (not shown) are used to create the call
and associated call leg object.
3: This message sets the reference of the IpAppCallControlManager object in the
CallControlManager. The CallControlManager reports the callEventNotify to
referenced object only for enableCallNotifications that do not have a explicit
IpAppCallControlManager reference specified in the enableCallNotification.
4: This message is used to pass the new call event to the object implementing the
IpAppCallControlManager interface.
5: This message is used to forward message 4 to the IpAppLogic.
6: This message is used by the application to create an object implementing the
IpAppCall interface.
7: This message is used to set the reference to the IpAppCall for this call.
8: This message invokes the number translation function.
9: The returned translated number is used in message 7 to route the call towards
the destination.
10: This message passes the result of the call being answered to its callback object
11: This message is used to forward the previous message to the IpAppLogic.
12: The application is no longer interested in controlling the call and therefore
deassigns the call. The call will continue in the network, but there will be no further
communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a
result of a prearranged event being received by the call control serviceframework. If
the translated number being routed to does not answer or is busy then the call is
automatically released.

CR page 8

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'
8: routeRes()

7: routeReq()

10: release()

1: new()

3: cal lEventNot ify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a number translation service, it is likely that
only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is
met, other messages (not shown) are used to create the call and associated call leg
object.
3: This message is used to pass the new call event to the object implementing the
IpAppCallControlManager interface.
4: This message is used to forward the previous message to the IpAppLogic.
5: This message is used by the application to create an object implementing the
IpAppCall interface. The reference to this object is passed back to the object
implementing the IpCallControlManager using the return parameter of the
callEventNotify.

CR page 9

6: This message invokes the number translation function.
7: The returned translated number is used to route the call towards the
destination.
8: Assuming the called party is busy or does not answer, the object implementing
the IpCall interface sends a callback in this message, indicating the unavailability of
the called party.
9: This message is used to forward the previous message to the IpAppLogic.
10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a
result of a prearranged event being received by the call control serviceframework. If
the translated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

CR page 10

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

8: routeRes()

6: 'translate number'

7: routeReq()

9: 'forward event'

10: 'trans la te number'

11: routeReq()

12: routeRes()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a number translation service, it is likely that
only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is

CR page 11

met, other messages (not shown) are used to create the call and associated call leg
object.
3: This message is used to pass the new call event to the object implementing the
IpAppCallControlManager interface.
4: This message is used to forward the previous message to the IpAppLogic.
5: This message is used by the application to create an object implementing the
IpAppCall interface. The reference to this object is passed back to the object
implementing the IpCallControlManager using the return parameter of the
callEventNotify.
6: This message invokes the number translation function.
7: The returned translated number is used to route the call towards the
destination.
8: Assuming the called party is busy or does not answer, the object implementing
the IpCall interface sends a callback, indicating the unavailability of the called party.
9: This message is used to forward the previous message to the IpAppLogic.
10: The application takes the decision to translate the number, but this time the
number is translated to a number belonging to a voice mailbox system.
11: This message routes the call towards the voice mailbox.
12: This message passes the result of the call being answered to its callback
object.
13: This message is used to forward the previous message to the IpAppLogic.
14: The application is no longer interested in controlling the call and therefore
deassigns the call. The call will continue in the network, but there will be no further
communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a
result of a prearranged event being received by the call control serviceframework.
Before the call is routed to the translated number, the application requests for all call
related information to be delivered back to the application on completion of the call.

CR page 12

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallContro lManager : (Logical
View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10: 'forward event'

1: new()

3: callEventNoti fy()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deas signCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a number translation service, it is likely that
only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is

CR page 13

met, other messages (not shown) are used to create the call and associated call leg
object.
3: This message is used to pass the new call event to the object implementing the
IpAppCallControlManager interface.
4: This message is used to forward the previous message to the IpAppLogic.
5: This message is used by the application to create an object implementing the
IpAppCall interface. The reference to this object is passed back to the object
implementing the IpCallControlManager using the return parameter of the
callEventNotify.
6: This message invokes the number translation function.
7: The application instructs the object implementing the IpCall interface to return
all call related information once the call has been released.
8: The returned translated number is used to route the call towards the
destination.
9: This message passes the result of the call being answered to its callback
object.
10: This message is used to forward the previous message to the IpAppLogic.
11: Towards the end of the call, when one of the parties disconnects, a message
(not shown) is directed to the object implementing the IpCall. This causes an event,
to be passed to the object implementing the IpAppCall object.
12: This message is used to forward the previous message to the IpAppLogic.
13: The application now waits for the call information to be sent. Now that the call
has completed, the object implementing the IpCall interface passes the call
information to its callback object.
14: This message is used to forward the previous message to the IpAppLogic
15: After the last information is received, the application deassigns the call. This
will free the resources related to this call in the gateway.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a
prearranged event being received by the call control serviceframework. Before the
call is routed to the destination number, the calling party is asked for a PIN code. The
code is rejected and the call is cleared.

CR page 14

 : (Logical
V ie w::IpAppL...

 :
IpAppMultiPartyCallCont rolMana ger

 :
IpAppMultiPartyCall

 :
IpMult iPartyCa ll

 : IpUICall :
IpUIManager

 : IpMultiPartyCallControlManager :
IpAppUICall

8: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oReq()

12: sendInf oRes()

15: release()

1: new()

3: reportNoti f ication()

4: 'f orward ev ent'

5: new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: createNotif ication()

7: createUICall()

14: release()

6: getCallLegs()

1: This message is used by the application to create an object implementing the
IpAppMultiPartyCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a call barring service, it is likely that all new
call events destined for a particular address or address range prompted for a password
before the call is allowed to progress. When a new call, that matches the event
criteria, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is
met, other messages (not shown) are used to create the call and associated call leg
object.
3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.
4: This message is used to forward message 3 to the IpAppLogic.
5: This message is used by the application to create an object implementing the
IpAppMultiPartyCall interface. The reference to this object is passed back to the
object implementing the IpMultiPartyCallControlManager using the return parameter
of the callEventNotify.
6: The application requests an list of all the legs currently in the call.
7: This message is used to create a UICall object that is associated with the
incoming leg of the call.
8: The call barring service dialogue is invoked.
9: The result of the dialogue, which in this case is the PIN code, is returned to its
callback object.

CR page 15

10: This message is used to forward the previous message to the IpAppLogic
11: Assuming an incorrect PIN is entered, the calling party is informed using
additional dialogue of the reason why the call cannot be completed.
12: This message passes the indication that the additional dialogue has been sent.
13: This message is used to forward the previous message to the IpAppLogic.
14: No more UI is required, so the UICall object is released.
15: This message is used by the application to clear the call.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result
of a prearranged event being received by the call control serviceframework. Before
the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN
code are accepted, the calling party is prompted to enter the address of the destination
party. A trigger of '#5' is then set on the controlling leg (the calling party's leg) such
that if the calling party enters a '#5' an event will be sent to the application. The call is
then routed to the destination party. Sometime during the call the calling party enters
'#5' which causes the called leg to be released. The calling party is now prompted to
enter the address of a new destination party, to which it is then routed.

CR page 16

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : IpUICallPartyB' :
IpCallLeg

AppParty B' :
IpAppCallLeg

AppPartyB :
IpAppCallLeg

 :
IpUIManager

AppPartyA :
IpAppCallLeg

PartyB :
IpCallLeg

 :
IpMultiPartyCallControlManager

PartyA :
IpCallLeg

 :
IpAppUICal l

27: createAndR outeCall()

8: sendInf oAndCollectReq()

10: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oAndCollectRes()

13: ev entRepo rtReq()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

23: release()

21: ev entRepo rtRes()

24: sendInf oAndCollectReq()

25: sendInf oAndCollectRes()

12: setCallbackWithSessionID()

2: createNotif ication()

7: createUICall()

6: getCallLegsf ()

15: createCallLeg()

17: routeReq()

16: ev entRepo rtReq()

14: new()

20: attachMediaReq()

18: ev entReportRes()
19: "f orward ev ent"

22: "f orward ev ent"

30: ev entReportRes()
31: "f orward ev ent"

32: callEnded()
33: "f orward ev ent"

34: userInteractionFaultDetected()
35: "f orward ev ent"

36: deassignCall()

26: new ()

28: new ()

29: ev entReportRes()

1: This message is used by the application to create an object implementing the
IpAppMultiPartyCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a call barring service, it is likely that all new
call events destined for a particular address or address range result in the caller being
prompted for a password before the call is allowed to progress. When a new call, that
matches the event criteria set in message 2, arrives a message (not shown) is directed
to the object implementing the IpMultiPartyCallControlManager. Assuming that the
criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the
call and associated call leg object.

CR page 17

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.
4: This message is used to forward message 3 to the IpAppLogic.
5: This message is used by the application to create an object implementing the
IpAppMultiPartyCall interface. The reference to this object is passed back to the
object implementing the IpMultiPartyCallControlManager using the return parameter
of message 3.
6: This message returns the call legs currently in the call. In principle a reference
to the call leg of the calling party is already obtained by the application when it was
notified of the new call event.
7: This message is used to associate a user interaction object with the calling
party.
8: The initial card service dialogue is invoked using this message.
9: The result of the dialogue, which in this case is the ID and PIN code, is
returned to its callback object using this message and eventually forwarded via
another message (not shown) to the IpAppLogic.
10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.
11: The result of the dialogue, which in this case is the destination address, is
returned and eventually forwarded via another message (not shown) to the
IpAppLogic.
12: This message is used to forward the address of the callback object.
13: The trigger for follow-on calls is set (on service code).
14: A new AppCallLeg is created to receive callbacks for another leg.
Alternatively, the already existing AppCallLeg object could be passed in the
subsequent createCallLeg(). In that case the application has to use the sessionIDs of
the legs to distinguish between callbacks destined for the A-leg and callbacks destined
for the B-leg.
15: This message is used to create a new call leg object. The object is created in
the idle state and not yet routed in the network.
16: The application requests to be notified when the leg is answered.
17: The application routes the leg. As a result the network will try to reach the
associated party.
18: When the B-party answers the call, the application is notified.
19: The event is forwarded to the application logic.
20: Legs that are created and routed explicitly are by default in state detached.
This means that the media is not connected to the other parties in the call. In order to
allow inband communication between the new party and the other parties in the call
the media have to be explicitly attached.
21: At some time during the call the calling party enters '#5'. This causes this
message to be sent to the object implementing the IpAppCallLeg interface, which
forwards this event as a message (not shown) to the IpAppLogic.
22: The event is forwarded to the application.
23: This message releases the called party.
24: Another user interaction dialogue is invoked.
25: The result of the dialogue, which in this case is the new destination address is
returned and eventually forwarded via another message (not shown) to the
IpAppLogic.
26: A new AppCallLeg is created to receive callbacks for another leg.
27: The call is then forward routed to the new destination party.
28: As a result a new Callleg object is created.
29: This message passes the result of the call being answered to its callback object
and is eventually forwarded via another message (not shown) to the IpAppLogic.

CR page 18

30: When the A-party terminates the application is informed.
31: The event is forwarded to the application logic.
32: Since the release of the A-party will in this case terminate the entire call, the
application is also notified with this message.
33: The event is forwarded to the application logic.
34: Since the user interaction object were not released at the moment that the call
terminated, the application receives this message to indicate that the UI resources are
released in the gateway and no further communication is possible.
35: The event is forwarded to the application logic.
36: The application deassigns the call object.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020500
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 051 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correcting erroneous description of UI behaviour in call control

Source: a CN5

Work item code:a OSA2 Date: a 30/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Sequence flows 6.1.11 and 6.1.12 show examples of user interaction being used
with Generic Call Control. The sequence flow descriptions are incorrect and
misleading in two respects. First, they state that the superviseCallRes method
plays an announcement. This method only indicates that a call supervision
period has ended. Secondly, they state that it is possible in GCC to play
announcements to a specific party. This is incorrect as there is no access to call
legs in GCC.

Summary of change:a Change the descriptions for the sequence diagrams to illustrate the correct
functionality

Consequences if a

not approved:
The specification will be misleading, and this may lead to incorrect
implementations and interoperability problems.

Clauses affected: a 6.1.11, 6.1.12

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 3

6.1.11 Prepaid

This sequence shows a Pre-paid application.
The subscriber is using a pre-paid card or credit card to pay for the call. The
application each time allows a certain timeslice for the call. After the timeslice, a new
timeslice can be started or the application can terminate the call. In the following
sequence the end-user will receive an announcement before his final timeslice.

CR page 4

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

8 : superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: s endInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()
23: "forward event:

24: release()

16: crea teUICa ll ()

20: release()

5: new()

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.

CR page 5

2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a pre-paid service, it is likely that only new
call events within a certain address range will be enabled. When a new call, that
matches the event criteria, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is
met, other messages (not shown) are used to create the call and associated call leg
object.
3: The incoming call triggers the Pre-Paid Application (PPA).
4: The message is forwarded to the application.
5: A new object on the application side for the Generic Call object is created
6: The Pre-Paid Application (PPA) requests to supervise the call. The application
will be informed after the period indicated in the message. This period is related to the
credits left on the account of the pre-paid subscriber.
7: Before continuation of the call, PPA sends all charging information, a possible
tariff switch time and the call duration supervision period, towards the GW which
forwards it to the network.
8: At the end of each supervision period the application is informed and a new
period is started.
9: The message is forwarded to the application.
10: The Pre-Paid Application (PPA) requests to supervise the call for another call
duration.
11: At the end of each supervision period the application is informed and a new
period is started.
12: The message is forwarded to the application.
13: The Pre-Paid Application (PPA) requests to supervise the call for another call
duration. When the timer expires it will indicate that the user is almost out of credit.
14: When the user is almost out of credit an announcement is played to inform
about this. The announcement is played only to the leg of the A-party, the B-party
will not hear the announcementthe application is informed.
15: The message is forwarded to the application.
16: The application decides to play an announcement to the parties in this call. A
new UICall object is created and associated with the controlling legcall.
17: An announcement is played to the controlling leg informing the user about the
near-expiration of his credit limit. The B-subscriber will not hear the announcement.
18: When the announcement is completed the application is informed.
19: The message is forwarded to the application.
20: The application releases the UICall object.
21: The user does not terminate so the application terminates the call after the next
supervision period.
22: The supervision period ends
23: The event is forwarded to the logic.
24: The application terminates the call. Since the user interaction is already
explicitly terminated no userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.
The application will send the charging information before the actual call setup and
when during the call the charging changes new information is sent in order to update
the end-user. Note: the Advice of Charge feature requires an application in the end-

CR page 6

user terminal to display the charges for the call, depending on the information
received from the application.

CR page 7

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCall Cont ro lM anager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEven tNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24 : s upervis eCallReq()

27: release()

21: sendInfoReq()

18 : new()

22: s endInfoRes ()
23: "forward event"

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()
26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

5: new()

CR page 8

1: This message is used by the application to create an object implementing the
IpAppCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events. As this sequence diagram depicts a pre-paid service, it is likely that only new
call events within a certain address range will be enabled. When a new call, that
matches the event criteria, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is
met, other messages (not shown) are used to create the call and associated call leg
object.
3: The incoming call triggers the Pre-Paid Application (PPA).
4: The message is forwarded to the application.
5: A new object on the application side for the Call object is created
6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff
switch time). (it shall be noted the PPA contains ALL the tariff information and
knows how to charge the user).
During this call sequence 2 tariff changes take place. The call starts with tariff 1, and
at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not
informed about this (but the end-user is!)
7: The Pre-Paid Application (PPA) requests to supervise the call. The application
will be informed after the period indicated in the message. This period is related to the
credits left on the account of the pre-paid subscriber.
8: The application requests to route the call to the destination address.
9: At the end of each supervision period the application is informed and a new
period is started.
10: The message is forwarded to the application.
11: The Pre-Paid Application (PPA) requests to supervise the call for another call
duration.
12: At the end of each supervision period the application is informed and a new
period is started.
13: The message is forwarded to the application.
14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new
AOC with the tariff switch time. Again, at the tariff switch time, the network will
send AoC information to the end-user.
15: The Pre-Paid Application (PPA) requests to supervise the call for another call
duration. When the timer expires it will indicate that the user is almost out of credit.
16: When the user is almost out of credit the application is informedan
announcement is played to inform about this (19-21). The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.
17: The message is forwarded to the application.
18: The application creates a new call back interface for the User interaction
messages.
19: A new UI Call object that will handle playing of the announcement needs to
be created
20: The Gateway creates a new UI call object that will handle playing of the
announcement.
21: With this message the announcement is played to the calling partyparties in
the call.
22: The user indicates that the call should continue.
23: The message is forwarded to the application.
24: The user does not terminate so the application terminates the call after the next
supervision period.

CR page 9

25: The user is out of credit and the application is informed.
26: The message is forwarded to the application.
27: With this message the application requests to release the call.
28: Terminating the call which has still a UICall object associated will result in a
userInteractionFaultDetected. The UICall object is terminated in the gateway and no
further communication is possible between the UICall and the application.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020502
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 052 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correcting the descriptions of sequence diagrams that don’t match the diagram

Source: a CN5

Work item code:a OSA2 Date: a 30/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a The descriptions of 7.1.3 and 7.1.6 do not match up with the diagrams
themselves. The incorrect states are mentioned in the text.

Summary of change:a Change the description to reference the correct states.

Consequences if a

not approved:
An inconsistency between the sequence flows, their textual descriptions, and the
State Transition Diagrams will exist which may lead to incorrect implementations
and interoperability problems.

Clauses affected: a 7.1.3, 7.1.6

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding
on busy.
When a call is made from A to B but the B-party is detected to be busy, then the
application is informed of this and sets up a connection towards a C party. The C
party can for instance be a voicemail system.

App CCM :
IpAppMultiPartyCallControlManager

AppLogi c App Leg C :
IpAppCallLeg

App Leg A :
IpAppCallLeg

App Call :
IpAppMultiPartyCall

CCM :
IpMultiPartyCallControlManager

Cal l :
IpM ulti PartyC all

Leg A :
IpCallLeg

Leg B :
IpCallLeg

SCSLeg C :
IpC al lLeg

1: "new"

12: "forward event"

15: "new"

14: "new"

13: "new"

2: createNotification()

5: "check if applicati on interested"

11: reportNotification()

6: "new"

16: createCallLeg()

7: "new"

8: "state transit ion to Active"

23: continueProcessing()

24: "inform Call object"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"
10: "state transition to Releasing"

17: "new"

18: "state transition to Idle"

19: eventReportReq()

20: routeReq()

21: "state transition to Active"

22: "inform Call object"

26: "C-party answer"

27: eventReportRes()

28: "forward event"

1: This message is used by the application to create an object implementing the
IpAppMultiPartyCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events.
4: When a new call, that matches the event criteria, arrives a message ("busy") is
directed to the object implementing the IpMultiPartyCallControlManager. Assuming
that the criteria for creating an object implementing the IpMultiPartyCall interface is
met, other messages are used to create the call and associated call leg objects.
6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: The new Call Leg instance transits to state InitiatingActive.
11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"
12: This message is used to forward the message to the IpAppLogic.
13: This message is used by the application to create an object implementing the
IpAppMultiPartyCall interface. The reference to this object is passed back to the

CR page 3

object implementing the IpMultiPartyCallControlManager using the return parameter
of the reportNotification.
14: A new AppCallLeg is created to receive callbacks for the Leg corresponding
to party A.
15: A new AppCallLeg C is created to receive callbacks for another leg.
16: This message is used to create a new call leg object. The object is created in
the idle state and not yet routed in the network.
19: The application requests to be notified (monitor mode "INTERRUPT") when
party C answers the call.
20: The application requests to route the terminating leg to reach the associated
party C.
The application may request information about the original destination address be sent
by setting up the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of
TpCallAppInfo in the request to route the call leg to the remote party C.
23: The application requests to resume call processing for the terminating call leg
to party B to terminate the leg. Alternative the application could request to deassign
the leg to party B for example if it is not interested in possible requested call leg
information (getInfoRes, superviseRes).
 When the terminating call leg is destroyed, the AppLeg B is notified and the event is
forwarded to the application logic (not shown).
25: The application requests to resume call processing for the originating call leg.
 As a result call processing is resumed in the network that will try to reach the
associated party B.
26: When the party C answers the call, the termination call leg is notified.
27: Assuming the call is answered, the object implementing party C's IpCallLeg
interface passes the result of the call being answered back to its callback object.
28: This answer message is then forwarded to the object implementing the
IpAppLogic interface.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between
party A and pre-arranged party B defined to constitute a hot-line address. The address
of the destination party is provided by the application as the calling party makes a call
attempt (goes off-hook) and do not dial any number within a predefined time. In this
case a pre-defined number (hot-line number) is provided by the application. The call
is then routed to the pre-defined destination party.
The call release is monitored to enable the sending of information to the application at
call release, e.g. for charging purposes.
Note that this service could be extended as follows:
Sometime during the call the calling party enters '#5' which causes the called leg to be
released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

CR page 4

AppLogic App Leg B :
IpAppCallLeg

App Leg A :
IpAppCallLeg

App Call :
IpAppMultiPartyCall

App CCM :
IpAppMultiPartyCallControlManager

CCM :
IpMultiPartyCallControlManager

Call :
IpMultiPartyCall

Leg A :
IpCallLeg

Leg B :
IpC allLeg

SCS

13: "new"

32: "forward event"

30: "forward event"

12: "new"

37: "forwar d event"

11: "new"

40: "forward event"

1: "new"

10: "forward event"

2: createNotification()

5: "check if application interested"

9: reportNotification()

6: "new"

14: createCallLeg()

39: callEnded()

7: "new"

8: "state transition to Initiating"

21: eventReportReq()

22: continueProcessing()

23: "inform Call object"

35: "state transition to Releasing"

36: callLegEnded()

38: "inform Call object"

15: "new"

16: "state transition to Idle"

17: eventReportReq()

18: routeReq()

19: "state transition to Active"

20: "inform Call object"

28: "state transition to Releasing"

29: eventReportR es()

31: cal lLegEnded()

33: "inform Call object"

3: "arm tri gger"

4: "trigger event: Originating Call Attempt Authorised"

24: "continue call processing"

34: "Disconnect from A-party"

27: "Disconnect from B-party"

25: event "address_analysed"

26: "state transition to Active"

1: This message is used by the application to create an object implementing the
IpAppMultiPartyCallControlManager interface.
2: This message is sent by the application to enable notifications on new call
events.
4: When a new call, that matches the event criteria, arrives a message ("analysed
informationoriginating call attempt authorised") is directed to the object implementing
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create
the call and associated call leg object
6: A new MultiPartyCall object is created to handle this particular call.

CR page 5

7: A new CallLeg object corresponding to Party A is created.
8: The new Call Leg instance transits to state Initiating.
9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"
10: This message is used to forward message 9 to the IpAppLogic.
11: This message is used by the application to create an object implementing the
IpAppMultiPartyCall interface. The reference to this object is passed back to the
object implementing the IpMultiPartyCallControlManager using the return parameter
of the reportNotification.
12: A new AppCallLeg is created to receive callbacks for the Leg corresponding
to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.
14: This message is used to create a new call leg object. The object is created in
the idle state and not yet routed in the network.
15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY") when the
leg to party B is released.
18: The application requests to route the terminating leg to reach the associated
party as specified by the application ("hot-line number").
19: The Call Leg instance transits to state Active.
21: The application requests to be notified (monitor mode "Notify") when the leg
to A-party is released.
22: The application requests to resume call processing for the originating call leg.
 As a result call processing is resumed in the network that will try to reach the
associated party as specified by the application (E.164 number provided by
application).
25: The originating call leg is notified that the number (provided by application)
has been analysed by the network and the originating call leg STD makes a transition
to "active" state. The application is not notified as it has not requested this event to be
reported.
27: When the B-party releases the call, the terminating call leg is notified (monitor
mode "NOTIFY") and makes a transition to "Releasing state".
29: The application is notified, as the release event has been requested to be
reported in Notify mode.
30: The event is forwarded to the application logic.
31: The terminating call leg is destroyed, the AppLeg B is notified.
32: This answer message is then forwarded.
34: When the call release ("terminating release" indication) is propagated in the
network toward the party A, the originating call leg is notified and makes a transition
to "releasing state". This release event (being propagated from party B) is not reported
to the application.
36: When the originating call leg is destroyed, the AppLeg A is notified.
37: The event is forwarded to the application logic
39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that
the call is ended.
40: The event is forwarded to the application logic.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020503
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 053 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correcting erroneous references to GCC in MPCC

Source: a CN5

Work item code:a OSA2 Date: a 30/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a In section 7.3.1, every reference to assignment ID incorrectly references Generic
Call Control. This is misleading, as the link between GCC and MPCC has now
been broken.

Summary of change:a Remove the references to GCC

Consequences if a

not approved:
The specification will be misleading, possibly causing implementers to overlook
the fact that GCC has been separated from MPCC and causing interoperability
problems.

Clauses affected: a 7.3.1

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control
Service. The multi-party call control manager interface provides the management
functions to the multi-party call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to
enable or disable call-related event notifications. The action table associated with the
STD shows in what state the IpMultiPartyCallControlManager must be if a method
can successfully complete. In other words, if the IpMultiPartyCallControlManager is
in another state the method will throw an exception immediately.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An
IpAppMultiPartyCallControlManager should already have been passed to the
IpMultiPartyCallControlManager,
otherwise the call control will not be able to report a callAborted() to the application
(the application should invoke setCallback() if it wishes to ensure this).
Returns callReference: Specifies the interface reference and sessionID of the call
created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

CR page 3

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the
application. This is the first step an application has to do to get initial notifications of
calls happening in the network. When such an event happens, the application will be
informed by reportNotification(). In case the application is interested in other events
during the context of a particular call session it has to use the
createAndRouteCallLegReq() method on the call object or the eventReportReq()
method on the call leg object. The application will get access to the call object when it
receives the reportNotification(). (Note that createNotification() is not applicable if
the call is setup by the application).
The createNotification method is purely intended for applications to indicate their
interest to be notified when certain call events take place. It is possible to subscribe to
a certain event for a whole range of addresses, e.g. the application can indicate it
wishes to be informed when a call is made to any number starting with 800.
If some application already requested notifications with criteria that overlap the
specified criteria, the request is refused with P_INVALID_CRITERIA. The criteria
are said to overlap if both originating and terminating ranges overlap and the same
number plan is used.
If a notification is requested by an application with monitor mode set to notify, then
there is no need to check the rest of the criteria for overlapping with any existing
request as the notify mode does not allow control on a call to be passed over. Only
one application can place an interrupt request if the criteria overlaps.
If the same application requests two notifications with exactly the same criteria but
different callback references, the second callback will be treated as an additional
callback. Both notifications will share the same assignmentID. The gateway will
always use the most recent callback. In case this most recent callback fails the second
most recent is used. In case the enableCallcreateNotification contains no callback, at
the moment the application needs to be informed the gateway will use as callback the
callback that has been registered by setCallback().
Returns assignmentID: Specifies the ID assigned by the call control manager interface
for this newly-enabled event notification.

Parameters

appCallControlManager : in
IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface, which is used for callbacks. If set to NULL, the application interface
defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event
required. Only events that meet these criteria are reported. Examples of events are

CR page 4

"incoming call attempt reported by network", "answer", "no answer", "busy".
Individual addresses or address ranges may be specified for destination and/or
origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA,
P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic multi party call control manager
interface when the previous enableNotificationcreateNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered
under this assignment ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
changeNotification()

This method is used by the application to change the event criteria introduced with
createNotification. Any stored criteria associated with the specified assignmentID will
be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi party generic call control manager interface for
the event notification. If two callbacks have been registered under this assignment ID
both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the
event required. Only events that meet these criteria are reported.

CR page 5

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID,
P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with
createNotification or changeNotification.
Returns notificationsRequested: Specifies the notifications that have been requested
by the application.

Parameters

No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address
range within the call control service. The address matching mechanism is similar as
defined for TpCallEventCriteria.
Returns assignmentID: Specifies the assignmentID assigned by the gateway to this
request. This assignmentID can be used to correlate the callOverloadEncountered and
callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval),
and any necessary parameters, such as the call admission rate. The contents of this
parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter
are ignored if the load control duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied
or removed.

CR page 6

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020515
Meeting #17, Sophia Antipolis, FRANCE, 8 – 12 April 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 054 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Addition of the Multi-media APIs to Call control SCF (29.198-04)

Source: a CN5

Work item code:a OSA2 Date: a 24/05/2002

Category: a B Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Fulfilment of 3GPP OSA Rel-5 requirements and alignment with Parlay/ETSI
specs

Summary of change:a The existing APIs for Multi-media call control are added to the 29.198-4 (Call
control SCF).

Consequences if a

not approved:

Clauses affected: a

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

3GPP TS 29.198-4 V4.3.0 (2002-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access (OSA);
Application Programming Interface (API);

Part 4: Call Control
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)4Release 4

Keywords
UMTS, API, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2002, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).
All rights reserved.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)5Release 4

Contents

Foreword .. 7

Introduction.. 7

1 Scope.. 8

2 References.. 8

3 Definitions and abbreviations .. 9
3.1 Definitions ... 9
3.2 Abbreviations .. 9

4 Call Control SCF ... 9

5 The Service Interface Specifications ... 10
5.1 Interface Specification Format .. 10
5.1.1 Interface Class ... 10
5.1.2 Method descriptions... 10
5.1.3 Parameter descriptions... 10
5.1.4 State Model.. 10
5.2 Base Interface .. 11
5.2.1 Interface Class IpInterface ... 11
5.3 Service Interfaces .. 11
5.3.1 Overview.. 11
5.4 Generic Service Interface .. 11
5.4.1 Interface Class IpService ... 11

6 Generic Call Control Service... 12
6.1 Sequence Diagrams ... 12
6.1.1 Additional Callbacks.. 12
6.1.2 Alarm Call ... 14
6.1.3 Application Initiated Call... 15
6.1.4 Call Barring 1 .. 17
6.1.5 Number Translation 1 .. 19
6.1.6 Number Translation 1 (with callbacks).. 21
6.1.7 Number Translation 2 .. 23
6.1.8 Number Translation 3 .. 25
6.1.9 Number Translation 4 .. 27
6.1.10 Number Translation5 ... 29
6.1.11 Prepaid... 30
6.1.12 Pre-Paid with Advice of Charge (AoC) ... 32
6.2 Class Diagrams.. 35
6.3 Generic Call Control Service Interface Classes... 36
6.3.1 Interface Class IpCallControlManager .. 37
6.3.2 Interface Class IpAppCallControlManager ... 41
6.3.3 Interface Class IpCall... 43
6.3.4 Interface Class IpAppCall.. 48
6.4 Generic Call Control Service State Transition Diagrams .. 52
6.4.1 State Transition Diagrams for IpCallControlManager... 52
6.4.1.1 Active State.. 52
6.4.1.2 Notification terminated State ... 53
6.4.2 State Transition Diagrams for IpCall ... 53
6.4.2.1 Network Released State ... 54
6.4.2.2 Finished State... 55
6.4.2.3 Application Released State .. 55
6.4.2.4 Active State.. 55
6.4.2.5 1 Party in Call State ... 55
6.4.2.6 2 Parties in Call State... 55
6.5 Generic Call Control Service Properties ... 56
6.5.1 List of Service Properties... 56

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)6Release 4

6.5.2 Service Property values for the CAMEL Service Environment... 56
6.6 Generic Call Control Data Definitions .. 58
6.6.1 Generic Call Control Event Notification Data Definitions .. 58
6.6.1.1 TpCallEventName ... 58
6.6.1.2 TpCallNotificationType... 59
6.6.1.3 TpCallEventCriteria... 59
6.6.1.4 TpCallEventInfo .. 59
6.6.2 Generic Call Control Data Definitions... 59
6.6.2.1 IpCall .. 59
6.6.2.2 IpCallRef ... 59
6.6.2.3 IpAppCall .. 60
6.6.2.4 IpAppCallRef... 60
6.6.2.5 TpCallIdentifier ... 60
6.6.2.6 IpAppCallControlManager .. 60
6.6.2.7 IpAppCallControlManagerRef .. 60
6.6.2.8 IpCallControlManager ... 60
6.6.2.9 IpCallControlManagerRef ... 60
6.6.2.10 TpCallAppInfo ... 60
6.6.2.11 TpCallAppInfoType ... 61
6.6.2.12 TpCallAppInfoSet .. 61
6.6.2.13 TpCallEndedReport.. 61
6.6.2.14 TpCallFault .. 61
6.6.2.15 TpCallInfoReport ... 62
6.6.2.16 TpCallReleaseCause... 62
6.6.2.17 TpCallReport.. 63
6.6.2.18 TpCallAdditionalReportInfo .. 63
6.6.2.19 TpCallReportRequest ... 63
6.6.2.20 TpCallAdditionalReportCriteria... 64
6.6.2.21 TpCallReportRequestSet .. 64
6.6.2.22 TpCallReportType.. 64
6.6.2.23 TpCallTreatment .. 65
6.6.2.24 TpCallEventCriteriaResultSet .. 65
6.6.2.25 TpCallEventCriteriaResult ... 65

7 MultiParty Call Control Service .. 65
7.1 Sequence Diagrams ... 65
7.1.1 Application initiated call setup .. 65
7.1.2 Call Barring 2 .. 67
7.1.3 Call forwarding on Busy Service... 68
7.1.4 Call Information Collect Service ... 70
7.1.5 Complex Card Service ... 73
7.1.6 Hotline Service .. 76
7.1.7 Use of the Redirected event ... 79
7.2 Class Diagrams.. 79
7.3 MultiParty Call Control Service Interface Classes .. 81
7.3.1 Interface Class IpMultiPartyCallControlManager ... 81
7.3.2 Interface Class IpAppMultiPartyCallControlManager .. 85
7.3.3 Interface Class IpMultiPartyCall ... 88
7.3.4 Interface Class IpAppMultiPartyCall... 93
7.3.5 Interface Class IpCallLeg .. 95
7.3.6 Interface Class IpAppCallLeg.. 102
7.4 MultiParty Call Control Service State Transition Diagrams ... 106
7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager.. 106
7.4.1.1 Active State.. 106
7.4.1.2 Interrupted State... 106
7.4.1.3 Overview of allowed methods ... 107
7.4.2 State Transition Diagrams for IpMultiPartyCall.. 107
7.4.2.1 IDLE State ... 108
7.4.2.2 ACTIVE State.. 108
7.4.2.3 RELEASED State .. 108
7.4.2.4 Overview of allowed methods ... 108
7.4.3 State Transition Diagrams for IpCallLeg... 108

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)7Release 4

7.4.3.1 Originating Call Leg .. 109
7.4.3.1.1 Initiating State .. 110
7.4.3.1.2 Analysing State .. 112
7.4.3.1.3 Active State .. 113
7.4.3.1.4 Releasing State ... 115
7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD .. 116
7.4.3.2 Terminating Call Leg... 117
7.4.3.2.1 Idle (terminating) State... 118
7.4.3.2.2 Active (terminating) State .. 119
7.4.3.2.3 Releasing (terminating) State ... 121
7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD 123
7.5 Multi-Party Call Control Service Properties.. 124
7.5.1 List of Service Properties... 124
7.5.2 Service Property values for the CAMEL Service Environment... 124
7.6 Multi-Party Call Control Data Definitions .. 126
7.6.1 Event Notification Data Definitions .. 126
7.6.2 Multi-Party Call Control Data Definitions... 126
7.6.2.1 IpCallLeg ... 126
7.6.2.2 IpCallLegRef ... 126
7.6.2.3 IpAppCallLeg .. 126
7.6.2.4 IpAppCallLegRef .. 126
7.6.2.5 IpMultiPartyCall .. 126
7.6.2.6 IpMultiPartyCallRef .. 126
7.6.2.7 IpAppMultiPartyCall ... 126
7.6.2.8 IpAppMultiPartyCallRef ... 127
7.6.2.9 IpMultiPartyCallControlManager.. 127
7.6.2.10 IpMultiPartyCallControlManagerRef .. 127
7.6.2.11 IpAppMultiPartyCallControlManager ... 127
7.6.2.12 IpAppMultiPartyCallControlManagerRef.. 127
7.6.2.13 TpAppCallLegRefSet... 127
7.6.2.14 TpMultiPartyCallIdentifier... 127
7.6.2.15 TpAppMultiPartyCallBack .. 127
7.6.2.16 TpAppMultiPartyCallBackRefType .. 128
7.6.2.17 TpAppCallLegCallBack... 128
7.6.2.18 TpMultiPartyCallIdentifierSet.. 128
7.6.2.19 TpCallAppInfo ... 128
7.6.2.20 TpCallAppInfoType ... 129
7.6.2.21 TpCallAppInfoSet .. 129
7.6.2.22 TpCallEventRequest... 129
7.6.2.23 TpCallEventRequestSet ... 129
7.6.2.24 TpCallEventType ... 130
7.6.2.25 TpAdditionalCallEventCriteria .. 132
7.6.2.26 TpCallEventInfo... 132
7.6.2.27 TpCallAdditionalEventInfo.. 133
7.6.2.28 TpCallNotificationRequest... 133
7.6.2.29 TpCallNotificationScope.. 133
7.6.2.30 TpCallNotificationInfo... 134
7.6.2.31 TpCallNotificationReportScope... 134
7.6.2.32 TpNotificationRequested ... 134
7.6.2.33 TpNotificationRequestedSet .. 134
7.6.2.34 TpReleaseCause ... 134
7.6.2.35 TpReleaseCauseSet .. 135
7.6.2.36 TpCallLegIdentifier.. 135
7.6.2.37 TpCallLegIdentifierSet... 135
7.6.2.38 TpCallLegAttachMechanism ... 135
7.6.2.39 TpCallLegConnectionProperties .. 135
7.6.2.40 TpCallLegInfoReport ... 136
7.6.2.41 TpCallLegInfoType.. 136
7.6.2.42 TpCallLegSuperviseTreatment .. 136

8 Common Call Control Data Types .. 136
8.1 TpCallAlertingMechanism .. 137

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)8Release 4

8.2 TpCallBearerService ... 137
8.3 TpCallChargePlan ... 137
8.4 TpCallPartyToCharge.. 138
8.5 TpCallPartyToChargeType ... 138
8.6 TpCallChargeOrder ... 138
8.7 TpCallChargeOrderCategory... 138
8.8 TpCallEndedReport... 139
8.9 TpCallError ... 139
8.10 TpCallAdditionalErrorInfo .. 139
8.11 TpCallErrorType.. 139
8.12 TpCallInfoReport... 140
8.13 TpCallInfoType ... 140
8.14 TpCallLoadControlMechanism ... 140
8.15 TpCallLoadControlIntervalRate .. 141
8.16 TpCallLoadControlMechanismType ... 141
8.17 TpCallMonitorMode.. 141
8.18 TpCallNetworkAccessType... 141
8.19 TpCallPartyCategory ... 142
8.20 TpCallServiceCode.. 142
8.21 TpCallServiceCodeSet... 142
8.22 TpCallServiceCodeType.. 142
8.23 TpCallSuperviseReport.. 143
8.24 TpCallSuperviseTreatment .. 143
8.25 TpCallTeleService ... 144
8.26 TpCallTreatment.. 144
8.27 TpCallTreatmentType.. 145
8.28 TpCallAdditionalTreatmentInfo .. 145
8.29 TpMediaType .. 145

Annex A (normative): OMG IDL Description of Call Control SCF... 146

Annex B (informative): Differences between this draft and 3GPP TS 29.198 R99........................ 147
B.1 Interface IpCallControlManager.. 147
B.2 Interface IpAppCallControlManager... 147
B.3 Interface IpCall.. 147
B.4 Interface IpAppCall ... 147
B.5 All Generic Call Control Interfaces... 147
B.6 IpService.. 147

Annex C (informative): Change history... 148

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)9Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 4 of a multi-part TS covering the 3rd Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview
Part 2: Common Data Definitions
Part 3: Framework
Part 4: Call Control SCF
Part 5: User Interaction SCF
Part 6: Mobility SCF
Part 7: Terminal Capabilities SCF
Part 8: Data Session Control SCF
Part 9: Generic Messaging SCF (not part of 3GPP Release 4)
Part 10: Connectivity Manager SCF (not part of 3GPP Release 4)
Part 11: Account Management SCF
Part 12: Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-1 Part 1: Overview 29.998-1 Part 1: Overview
29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable
29.198-3 Part 3: Framework 29.998-3 Not Applicable

29.998-4-1 Subpart 1: Generic Call Control – CAP mapping29.198-4 Part 4: Call Control SCF
29.998-4-2
29.998-5-1 Subpart 1: User Interaction – CAP mapping
29.998-5-2
29.998-5-3

29.198-5 Part 5: User Interaction SCF

29.998-5-4 Subpart 4: User Interaction – SMS mapping
29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location – MAP mapping
29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable
29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control – CAP mapping
29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable
29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable
29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable
29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)10Release 4

1 Scope
The present document is Part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are
contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with a number of JAIN™ Community member companies.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN".

[5] ISO 4217 (1995): "Codes for the representation of currencies and funds ".

[6] 3GPP TS 24.002: "GSM-UMTS Public Land Mobile Network (PLMN) Access Reference
Configuration".

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)11Release 4

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Call Control SCF
Two flavours of Call Control (CC) APIs have been included in 3GPP Release 4. These are the Generic Call Control
(GCC) and the Multi-Party Call Control (MPCC). The GCC is the same API as was already present in the Release 99
specification (TS 29.198 v3.3.0) and is in principle able to satisfy the requirements on CC APIs for Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from
JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are
reflected in this API. For this it was necessary to break the inheritance that previously existed between GCC and
MPCC.

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are
well-defined; either methods specified in the Interface specification or events occurring in the underlying networks
cause state transitions.

• The Data definitions clause show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification (29.198-2).

The adopted call model has the following objects.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)12Release 4

The call object is used to establish a relation between a number of parties by creating a leg for each party within the call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

5 The Service Interface Specifications

5.1 Interface Specification Format
This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant IpApp<name> or
IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)13Release 4

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)14Release 4

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

6 Generic Call Control Service
The Generic Call Control API of 3GPP Rel.4 relies on the CAMEL Service Environment (CSE) and thus some
restrictions exist to the use of the interface. The most significant one is that there is no support for createCall method.
The detailed description of the supported methods and further restrictions is given in the chapter 6.5.

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is
used instead.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)15Release 4

first instance : (Logical
View::I pAppLogic)

second instance :
(Logic...

 : IpAppCallControlManager : IpAp pCal lCont rolMan ager : IpCallControlManag er

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotification is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)16Release 4

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)17Release 4

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is accepted and the call is routed to the original called party.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)18Release 4

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)19Release 4

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have a
explicit IpAppCallControlManager reference specified in the enableCallNotification.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically released.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)20Release 4

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)21Release 4

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. Before the call is routed to the translated number, the application requests for all call related
information to be delivered back to the application on completion of the call.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

6.1.10 Number Translation5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)22Release 4

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

6.1.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)23Release 4

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)24Release 4

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,
at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)25Release 4

Figure: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g., the IpCallControlManager interface uses the IpAppCallControlManager , by means of
calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

Figure: Application Interfaces

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call
Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)26Release 4

this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted()

to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)27Release 4

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)28Release 4

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)29Release 4

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters

No Parameters were identified for this method

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)30Release 4

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application
writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through
an explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. This parameter will be null if the notification is in NOTIFY mode.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is in NOTIFY mode.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)31Release 4

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)32Release 4

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been ceased

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)33Release 4

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)34Release 4

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)35Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)36Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.4 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)37Release 4

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the response with the request.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)38Release 4

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)39Release 4

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)40Release 4

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)41Release 4

Figure : Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

6.4.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

Figure : Application view on the IpCall object for 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to
state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)42Release 4

6.4.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan..

6.4.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)43Release 4

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by

which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call .

Value = FALSE: User Interaction can be performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type
TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating

notifications it applies to the terminating number, for originating
notifications it applies only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating and/or
terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for
legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to a logical network chargeplan indicator. When the
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans
in this mapping are allowed.

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE shall have the Service Properties outlined above
set to the indicated values :

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)44Release 4

P_OPERATION_SET = {
“IpCallControlManager.enableCallNotification”,
“IpCallControlManager.disableCallNotification”,
“IpCallControlManager.changeCallNotification”,
“IpCallControlManager.getCriteria”,
“IpCallControlManager.setCallLoadControl”,
“IpCall.routeReq”,
“IpCall.release”,
“IpCall.deassignCall”,
“IpCall.getCallInfoReq”,
“IpCall.setCallChargePlan”,
“IpCall.setAdviceOfCharge”,
“IpCall.superviseCallReq”
}

P_TRIGGERING_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,
P_EVENT_GCCS_CALLED_PARTY_BUSY,
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,
P_EVENT_GCCS_ROUTE_SELECT_FAILURE
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_REPORT_ANSWER,
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO_ANSWER,
P_CALL_REPORT_DISCONNECT,
P_CALL_REPORT_ROUTING_FAILURE,
P_CALL_REPORT_NOT_REACHABLE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)45Release 4

6.6 Generic Call Control Data Definitions
This clause provides the GCC data definitions necessary to support the API specification.

The general format of a Data Definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 8) or in the common data definitions which may be found in 3GPP TS 29.198-2.

6.6.1 Generic Call Control Event Notification Data Definitions

6.6.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event
This can be used for hot-line features. In case this event is set
in the TpCallEventCriteria, only the originating address(es)
may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected
The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigitsReq method on
the call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed
The dialled number is a valid and complete number in the
network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g. the called party has
a mobile telephone that is currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)46Release 4

6.6.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 0 Indicates that the notification is related to the originating user in the call.

P_TERMINATING 1 Indicates that the notification is related to the terminating user in the call.

6.6.1.3 TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or a address range for which the notification is
requested.

CallEventName TpCallEventName Name of the event(s)

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the terminating user in the
call.

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a

legal value here.

6.6.1.4 TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

CallNotificationType TpCallNotificationType

MonitorMode TpCallMonitorMode

6.6.2 Generic Call Control Data Definitions

6.6.2.1 IpCall

Defines the address of an IpCall Interface.

6.6.2.2 IpCallRef

Defines a Reference to type IpCall.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)47Release 4

6.6.2.3 IpAppCall

Defines the address of an IpAppCall Interface.

6.6.2.4 IpAppCallRef

Defines a Reference to type IpAppCall

6.6.2.5 TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

Sequence Element
Name

Sequence Element
Type

Sequence Element Description

CallReference IpCallRef This element specifies the interface reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID of the call.

6.6.2.6 IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

6.6.2.7 IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

6.6.2.8 IpCallControlManager

Defines the address of an IpCallControlManager Interface.

6.6.2.9 IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

6.6.2.10 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)48Release 4

6.6.2.11 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

6.6.2.12 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

6.6.2.13 TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element
Name

Sequence Element
Type

Description

CallLegSessionID TpSessionID The leg that initiated the release of the call.
If the call release was not initiated by the leg, then this value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

6.6.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has
been sent to the application, but the application

did not explicitly release or deassign the call
object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)49Release 4

6.6.2.15 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element
Name

Sequence Element
Type

Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on call, was
started as a result of a routeReq.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the
resource.

This data element is only valid when information on user
interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the
destination (i.e. when the destination answered the call).

If the destination did not answer, the time is set to an
empty string.

This data element is invalid when information on user
interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on call or user
interaction was terminated.

Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

6.6.2.16 TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element
Name

Sequence Element
Type

Value TpInt32
Location TpInt32

NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by
Application

Cause Value from
Network

P_CALL_REPORT_BUSY 17 17

P_CALL_REPORT_NO_ANSWER 19 18,19,21

P_CALL_REPORT_DISCONNECT 16 16

P_CALL_REPORT_REDIRECTED 23 23

P_CALL_REPORT_SERVICE_CODE 31 NA

P_CALL_REPORT_NOT_REACHABLE 20 20

P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)50Release 4

6.6.2.17 TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

MonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime
CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

6.6.2.18 TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types
of reports.

Tag Element Type
TpCallReportType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

P_CALL_REPORT_QUEUED TpString QueueStatus

P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

6.6.2.19 TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType
AdditionalReportCriteria TpCallAdditionalReportCriteria

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)51Release 4

6.6.2.20 TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type
TpCallReportType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_REPORT_UNDEFINED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT_DISCONNECT NULL Undefined
P_CALL_REPORT_REDIRECTED NULL Undefined
P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTING_FAILURE NULL Undefined
P_CALL_REPORT_QUEUED NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

6.6.2.21 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

6.6.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFINED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has been made in

routing the call to the requested call party. This message may be sent more than once, or
may not be sent at all by the gateway with respect to routing a given call leg to a given

address.
P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.
P_CALL_REPORT_ANSWER 3 Call answered at address.
P_CALL_REPORT_BUSY 4 Called address refused call due to busy.
P_CALL_REPORT_NO_ANSWER 5 No answer at called address.
P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has

ended. When the call is ended, the callEnded method is called. This event can occur both
when the called party hangs up, or when the application explicitly releases the leg using

IpCallLeg.release() This cannot occur when the app explicitly releases the call leg and the
call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network that the call has been
redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received.
P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more than once during the routing
of a call.

P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g., the phone has been switched off or the phone is
outside the coverage area of the network.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)52Release 4

6.6.2.23 TpCallTreatment

Defines the Sequence of Data Elements that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element
Name

Sequence Element
Type

CallTreatmentType TpCallTreatmentType

ReleaseCause TpCallReleaseCause
AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

6.6.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

6.6.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

EventCriteria TpCallEventCriteria The event criteria that were specified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

7 MultiParty Call Control Service
The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methods is given in the chapter 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is
created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)53Release 4

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is rejected and the call is cleared.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)54Release 4

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)55Release 4

2: This message is sent by the application to enable notifications on new call events.

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

15: A new AppCallLeg C is created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in the request to route the call leg to the
remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for example if it is not interested in possible
requested call leg information (getInfoRes, superviseRes).

 When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the application logic
(not shown).

25: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party B.

26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number translation of the dialled number and
special charging (e.g. a premium rate service) .

Additional call leg related information is requested with the getInfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)56Release 4

additional call leg related information is requested with the getInfoReq and superviseReq methods in order to illustrate
the information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of
the call object (callEnded).

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Active.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calculate charging.

20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Call Leg instance transits to state Active.

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.

26: The application requests to resume call processing for the originating call leg.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)57Release 4

 As a result call processing is resumed in the network that will try to reach the associated party B.

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state".

34: The application IpAppLeg A is notified, as the release event has been requested to be reported in Notify mode.

35: The event is forwarded to the application logic

36: The call leg information is reported.

37: The event is forwarded to the application logic

38: The origination call leg is destroyed, the AppLeg A is notified.

39: The event is forwarded to the application logic

41: When the B-party releases the call or the call is released as a result of the release request from party A, i.e. a
"originating release" indication, the terminating call leg is notified and makes a transition to "releasing state".

43: If a network release event is received being a "terminating release" indication from called party B, the application
IpAppLeg B is notified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being a "originating release"
indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The call leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.

50: The event is forwarded to the application logic.

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call is ended .

53: The event is forwarded to the application logic.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN
code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set
on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the
application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which
causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to
which it is then routed.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)58Release 4

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message returns the call legs currently in the call. In principle a reference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.

18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)59Release 4

22: The event is forwarded to the application.

23: This message releases the called party.

24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.

27: The call is then forward routed to the new destination party.

28: As a result a new Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-
defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination
party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
purposes.

Note that this service could be extended as follows:

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)60Release 4

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.

21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

22: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party as specified by the
application (E.164 number provided by application).

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested
this event to be reported.

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state".

29: The application is notified, as the release event has been requested to be reported in Notify mode.

30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

34: When the call release ("terminating release" indication) is propagated in the network toward the party A, the
originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from
party B) is not reported to the application.

36: When the originating call leg is destroyed, the AppLeg A is notified.

37: The event is forwarded to the application logic

39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)61Release 4

7.1.7 Use of the Redirected event

1: The application has already created the call and a call leg. It places an event report request for the ANSWER and
REDIRECTED events in NOTIFY mode.

2: The application routes the call leg.

3: The call is redirected within the network and the application is informed. The new destination address is passed
within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the same call leg is
used so the application does not have to create a new one.

4: The call is answered at its new destination.

7.2 Class Diagrams
The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

Figure: Service Interfaces

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)62Release 4

7.3 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)63Release 4

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)64Release 4

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)65Release 4

Parameters

No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)66Release 4

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is being given in NOTIFY mode.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)67Release 4

Returns

TpAppMultiPartyCallBack

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)68Release 4

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)69Release 4

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLegInterface parameter.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)70Release 4

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)71Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)72Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)73Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: IpInterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : void

Method
getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)74Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)75Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)76Release 4

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)77Release 4

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)78Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)79Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)80Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)81Release 4

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)82Release 4

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)83Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connections to this leg is now available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

Method
attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
detachMediaRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer
connections to this leg is no longer available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

Method
detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)84Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)85Release 4

Method
superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Method
superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this
method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the reason the connection is terminated.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)86Release 4

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

Figure : Application view and the Multi-Party Call Control Manager

7.4.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be
forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause
this: for instance the application receives more notifications from the network than defined in the Service Agreement.
Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable
Active createCall,

createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted getNotification

7.4.2 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the
case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the
IpAppMultiPartyCallControlManager as this is an abnormal termination.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)87Release 4

Figure : Application view on the MultiParty Call object

7.4.2.1 IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
state.

7.4.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the
requested call information will be collected and returned through getInfoRes() and / or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

7.4.2.4 Overview of allowed methods

Methods applicable Call Control Call
State

Call Control
Manager State

getCallLegs, Idle, Active, Released -

createCallLeg,
createAndRouteCallL
egReq,
setAdviceOfCharge,
superviseReq,

Idle, Active Active

release Active Active
deassignCall Idle, Active -
setChargePlan,
getInfoReq

Idle, Active Active

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1) Events in backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Events in forwards direction (downstream), coming from originating leg, are not visible in terminating leg
model.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)88Release 4

3) States are as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on
terminating leg do not change state. NOTE 2

4) The application is to send a request to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode ‘interrupt’.

5) In case on a leg more than one network event (for example mid-call event ‘service_code’) is to be reported to the
application at quasi the same time, then the events are to be reported one by one to the application in the order
received from the network. When for a leg an event is reported in interrupt mode, a next pending event is not to
be reported to the application until a request to resume call processing for the current reported event has been
received on the leg.

NOTE1: Call processing is suspended if for a leg a network event is met, which was requested to be monitored in
the P_CALL_MONITOR_MODE_INTERRUPT.

NOTE2: Even though there in the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

7.4.3.1 Originating Call Leg

Figure : Originating Leg

7.4.3.1.1 Initiating State

Entry events:

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
“Originating_Call_Attempt” initial notification criterion.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
“Originating_Call_Attempt_Authorised” initial notification criterion.

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party’s identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)89Release 4

Note 1: Event oCA only applicable as an initial notification .
Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCA: originating Call Attempt; oCAA originating Call Attempt Authorized; AC: Address Collected, oREL originating

RELease.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable:

- The detection of a “Originating_Call_Attempt” initial notification criterion.

- The detection of an “Originating_Call_Attempt_Authorised” initial notification criterion as a result that the call
attempt authorisation is successful.

- The report of the “Originating_Call_Attempt_Authorised” event indication whereby the following functions are
performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- The receipt of destination address information, i.e. initial information package/dialling string as received from
calling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a “originating release” indication as a result of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State

Entry events:

- Availability of an “Address_Collected” event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an “Address_Collected”
initial notification criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)90Release 4

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action
is recursive, e.g. the application could ask for 3 digits to be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

Note 1: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCAA: originating Call Attempt Authorized; AC: Address Collected; AA: Address Analysed; oREL: originating

RELease.

Figure : Application view on event reporting order in Analysing State

In this state the following functions are applicable:

- The detection of a “Address_Collected“ initial notification criterion.

- On receipt of the “Address_Collected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.

- Receipt of a eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

- Detection of an “Address_Analysed” indication as a result of the availability of the routing address and nature
of address.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a “originating release” indication as a result of a premature disconnect from the calling party.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)91Release 4

7.4.3.1.3 Active State

Entry events:

- Receipt of an “Address_Analysed” indication as a result of the availability of the routing address and nature of
address.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an “Address_Analysed
initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
AC: Address Collected; AA: Address Analysed; oSC: originating Service Code; oREL: originating RELease.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:

- The detection of a Address_Analysed initial indication criterion.

- On receipt of the “Address_Analysed” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- In this state the routing information is interpreted, the authority of the calling party to establish this connection is
verified and the call leg connection is set up to the remote party.

- In this state a connection to the call party is established.

- Detection of a “terminating release” indication (not visible to the application) from remote party caused by a
network release event propagated from a terminating party, possibly resulting in an “originating release”
indication and causing the originating call leg STD to transit to Releasing state:

- Detection of a disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method.

- On receipt of the “originating_service code” indication the following functions are performed:

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)92Release 4

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

 ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues..

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of an “originating release” indication as a result of a disconnect from the calling party and a
“terminating release” indication as a result of a disconnect from called party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

7.4.3.1.4 Releasing State

Entry events:

- Detection of an “Originating_Release” indication as a result of the network release initiated by calling party or
called party.

- Reception of the release() method from the application.

- A transition due to fault detection to this state is made when the Call leg object is in a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:

i) the network release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable:

- The detection of a “originating_release” initial indication criterion..

- On receipt of the “originating_release” indication the following functions are performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)93Release 4

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLegEnded).

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)94Release 4

State Methods allowed
Initiating

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall ,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall ,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall ,
continueProcessing,
release
deassign

7.4.3.2 Terminating Call Leg

Figure : Terminating Leg

7.4.3.2.1 Idle (terminating) State

Entry events:

- Receipt of a createCallLeg() method to start an application initiated call leg connection.

Functions:

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)95Release 4

In this state the call leg object is created and the interface connection is idled.

The application activity timer is being provided.

In this state the following functions are applicable:

- Invoking routeReq will result in a request to actually route the call leg object.

- Resumption of call leg processing occurs on receipt of a routeReq() method.

Exit events:

- Receipt of a routeReq() method from the application.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a network release event being an “originating release” indication as a result of a premature disconnect
from the calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

- Receipt of an routeReq will result in actually routing the call leg object.

- Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for the following trigger
criteria: “Terminating_Call_Attempt”, “Terminating_Call_Attempt_Authorised”, “Alerting”, “Answer”,
“Terminating service code”, “Redirected” and “Queued”.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)96Release 4

Note 1: Event tCA applicable as initial notification
Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application
Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
tCA: Terminating Call Attempt; tCAA: terminating Call Attempt Authorized; AL: Alerting; ANS: Answer; tREL:

terminating RELease; Q: Queued; RD: ReDirected; tSC: terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection and report of the “Terminating_Call_Attempt_Authorised” event indication whereby the following
functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and call
leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an “Queued” indication as a result of the terminating call being queued.

- On receipt of the “Queued” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

- On receipt of the “Alerting” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

- Detection of an “Answer” indication as a result of the remote party being connected (answered).

- On receipt of the “Answer” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- The detection of a “service_code” trigger criterion suspends call leg processing.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)97Release 4

- On receipt of the “service code” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then this is not a valid event (that event is not
notified) and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- On receipt of the “redirected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of a network release event being an “terminating release” indication as a result of the following
events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a network release event being an “originating release” indication as a result of the following events:

vi) Detection of a premature disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

- Detection of a network release event being an “originating release” indication as a result of a disconnect from
the calling party or a “terminating release” indication as a result of a disconnect from the called party.

7.4.3.2.3 Releasing (terminating) State

Entry events:

- Detection of a network release event being an “originating release” indication as a result of the network release
initiated by calling party or a “terminating release” indication as a result of the network release initiated by
called party..

- Sending of the release() method by the application.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)98Release 4

- A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and this is not received within a certain time period.

- Detection of a network event being a “terminating release” indication as a result of the following events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a network release event being an “originating release” indication as a result of the following events:

vi) Detection of a premature disconnect from the calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:

i) the release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:

- The detection of a “Terminating Release” trigger criterion.

- On receipt of the network release event being a “Terminating Release” indication the following functions are
performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)99Release 4

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLegEnded).

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

State Methods allowed
Idle routeReq,

getCall ,
getCurrentDestinationAddress,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,
deassign

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)100Release 4

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.routeReq(), IpCallLeg.attachMediaReq()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMediaReq() is needed when a party answers.

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE shall have the Service Properties outlined
above set to the indicated values :

P_OPERATION_SET = {
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNotification”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReq”,
“IpCallLeg.eventReportReq”,
“IpCallLeg.release”,
“IpCallLeg.getInfoReq”,
“IpCallLeg.getCall”,
“IpCallLeg.continueProcessing”
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_CALL_ATTEMPT,
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_RELEASE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ANSWER,
P_CALL_EVENT_RELEASE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)101Release 4

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

P_MAX_CALLLEGS_PER_CALL = {
0,
2
}

P_UI_CALLLEG_BASED = {
FALSE
}

P_MEDIA_ATTACH_EXPLICIT = {
FALSE
}

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)102Release 4

7.6 Multi-Party Call Control Data Definitions
This clause provides the MPCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 8) or in the common data definitions which may be found in 3GPP TS 29.198-2.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

7.6.2.1 IpCallLeg

Defines the address of an IpCallLeg Interface.

7.6.2.2 IpCallLegRef

Defines a Reference to type IpCallLeg.

7.6.2.3 IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

7.6.2.4 IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

7.6.2.5 IpMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

7.6.2.6 IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

7.6.2.7 IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)103Release 4

7.6.2.8 IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCall.

7.6.2.9 IpMultiPartyCallControlManager

Defines the address of an IpMultiPartyCallControlManager Interface.

7.6.2.10 IpMultiPartyCallControlManagerRef

Defines a Reference to type IpMultiPartyCallControlManager.

7.6.2.11 IpAppMultiPartyCallControlManager

Defines the address of an IpAppMultiPartyCallControlManager Interface.

7.6.2.12 IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpAppMultiPartyCallControlManager..

7.6.2.13 TpAppCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppCallLegRef.

7.6.2.14 TpMultiPartyCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallReference IpMultiPartyCallRef This element specifies the interface reference for the Multi-party call object.
CallSessionID TpSessionID This element specifies the call session ID.

7.6.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type
TpAppMultiPartyCallBackRefType

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef AppMultiPartyCall

P_APP_CALL_LEG_CALLBACK IpAppCallLegRef AppCallLeg

P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack AppMultiPartyCallAndCallLeg

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)104Release 4

7.6.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined

P_APP_MULTIPARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced

P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced

P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

7.6.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
AppMultiPartyCall IpAppMultiPartyCallRef

AppCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call back
references. First in the set is the reference
to the call back of the originating callLeg.
In case there is a call back to a destination

call leg this will be second in the set.

7.6.2.18 TpMultiPartyCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier.

7.6.2.19 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)105Release 4

7.6.2.20 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when
launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting.

7.6.2.21 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

7.6.2.22 TpCallEventRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
CallEventType TpCallEventType

AdditionalCallEventCriteria TpAdditionalCallEventCriteria
CallMonitorMode TpCallMonitorMode

7.6.2.23 TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)106Release 4

7.6.2.24 TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFINED 0 Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 2 An originating call attempt is authorised
P_CALL_EVENT_ADDRESS_COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORIGINATING_RELEASE 6 A originating call/call leg is released
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 8 A terminating call is authorized
P_CALL_EVENT_ALERTING 9 Call is alerting at the call party.
P_CALL_EVENT_ANSWER 10 Call answered at address.
P_CALL_EVENT_TERMINATING_RELEASE 11 A terminating call leg has been released or the call could not

be routed.
P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an indication from the network

that the call has been redirected to a new address (no events
disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 Mid call terminating service code received.

P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed as a
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

• When the monitor mode is set to P_CALL_MONITOR_MODE_DO_NOT_MONITOR all events armed for that
eventtype are disarmed. The additionalEventCriteria are not taken into account.

• When requesting two events for the same event type with different criteria and/or different monitor mode the last
used criteria and monitor mode apply.

• Events that are not applicable to a leg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
E.g., requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with
exception P_INVALID_CRITERIA.
When P_CALL_EVENT_ORIGINATING_RELEASE is requested with P_BUSY in the criteria the request is
refused with the same exception.

When receiving events:

• If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

• If an event is met that causes the release of the related leg, then all events related to that leg are disarmed .

• When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call
leg may become disarmed (see table below) .

• If a call is released, then all events related to that call are disarmed.

NOTE 1: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY..

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)107Release 4

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred Events Disarmed
P_CALL_EVENT_UNDEFINED Not Applicable

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Not applicable, can only be armed as trigger

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_ALERTING P_CALL_EVENT_ALERTING

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING

P_CALL_EVENT_ANSWER

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_ORIGINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_TERMINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE 2

P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE 2

NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)108Release 4

7.6.2.25 TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type
TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHO
RISED

NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength
P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined
P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCodeSet OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCauseSet OriginatingReleaseCauseSet

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHO
RISED

NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined
P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCauseSet TerminatingReleaseCauseSet

P_CALL_EVENT_REDIRECTED NULL Undefined

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCodeSet TerminatingServiceCode

P_CALL_EVENT_QUEUED NULL Undefined

7.6.2.26 TpCallEventInfo

Defines the Sequence of Data Elements that specify the event report specific information.

Sequence Element
Name

Sequence Element
Type

CallEventType TpCallEventType
AdditionalCallEventInfo TpCallAdditionalEventInfo

CallMonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)109Release 4

7.6.2.27 TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types
of events.

Tag Element Type
TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress

P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress

P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCode OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCause OriginatingReleaseCause

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCause TerminatingReleaseCause

P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCode TerminatingServiceCode

P_CALL_EVENT_QUEUED NULL Undefined

7.6.2.28 TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification

Sequence Element Name Sequence Element Type Description
CallNotificationScope TpCallNotificationScope Defines the scope of the notification request.
CallEventsRequested TpCallEventRequestSet Defines the events which are requested

7.6.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or address range for which the notification is
requested.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)110Release 4

7.6.2.30 TpCallNotificationInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call
notification report.

Sequence Element
Name

Sequence Element
Type

Description

CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report.
CallAppInfo TpCallAppInfoSet Contains additional call info.
CallEventInfo TpCallEventInfo Contains the event which is reported.

7.6.2.31 TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddress Contains the destination address of the call.
OriginatingAddress TpAddress Contains the origination address of the call

7.6.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element
Name

Sequence Element
Type

AppCallNotificationRequest TpCallNotificationRequest
AssignmentID TpInt32

7.6.2.33 TpNotificationRequestedSet

Defines a numbered Set of Data Elements of TpNotificationRequested.

7.6.2.34 TpReleaseCause

Defines the reason for which a call is released.

Name Value Description
P_UNDEFINED 0 The reason of release is not known, because no info was received from the network.

P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal is not reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were available.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)111Release 4

7.6.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

7.6.2.36 TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallLegReference IpCallLegRef This element specifies the interface reference for the callLeg object.
CallLegSessionID TpSessionID This element specifies the callLeg session ID.

7.6.2.37 TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.

7.6.2.38 TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMediaReq() operation. This

allows e.g. the application to do first user interaction to the party before he/she is placed in the
call.

7.6.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)112Release 4

7.6.2.40 TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg information requested.

Sequence Element
Name

Sequence Element
Type

Description

CallLegInfoType TpCallLegInfoType The type of call leg information.
CallLegStartTime TpDateAndTime The time and date when the call leg was started (i.e. the leg was routed).

CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to the resource. If no
resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid,
depending on whether the report is sent as a result of user interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not

answer, the time is set to an empty string.
Either this element is valid or the CallConnectedToResourceTime is

valid, depending on whether the report is sent as a result of user
interaction.

CallLegEndTime TpDateAndTime The date and time when the call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If during the call the

connected address was received from the party then this is returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with
P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with
P_CALL_LEG_INFO_APPINFO was specified.

7.6.2.41 TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_INFO_UNDEFINED 00h Undefined
P_CALL_LEG_INFO_TIMES 01h Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address
P_CALL_LEG_INFO_APPINFO 08h Call leg application related information

7.6.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_SUPERVISE_RELEASE 01h Release the call leg when the call leg supervision timer expires

P_CALL_LEG_SUPERVISE_RESPOND 02h Notify the application when the call leg supervision timer expires

P_CALL_LEG_SUPERVISE_APPLY_TONE 04h Send a warning tone on the call leg when the call leg supervision timer
expires. If call leg release is requested, then the call leg will be
released following the tone after an administered time period

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)113Release 4

8 MultiMedia Call Control Service

8.1 Sequence Diagrams

8.1.1 Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media stream establishment of
one call.

In this sequence there is one application handling both the media barring and the routing of the call.

 : (Logical
View::IpAppLogic)

 :
IpAppMultiMediaCallControlManager

 :
IpMultiMediaCallControlManager

 :
IpMultiMediaCall

 :
IpMultiMediaCallLeg

 :
IpAppMultiMediaCallLeg

1: new()

: createNotification()

3: reportNotification()

4: "forward event"

10: createAndRouteCallLegReq()

6: mediaStreamMonitorReq()

9: mediaStreamAllow()

7: mediaStreamMonitorRes()

5: new()

8: "forward event"

11: mediaStreamMonitorRes()

12: "forward event"

13: mediaStreamAllow()

1: The application creates a AppMultiMediaCallControlManager interface in order to handle callback methods.

2: The application expresses interest in all calls from subscriber A. Since createNotification is used and not
createMediaNotification all calls are reported regardless of the media used.

3: A makes a call with the SIP INVITE with SDP media stream indicating video. The application is notified.

4: The event is forwarded to the application.

5: The application creates a new AppMultiMediaCallLeg interface to receive callbacks.

6: The application sets a monitor on video media streams to be established (added) for the indicated leg.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)114Release 4

7: Since the video media stream was included in the SIP invite, the media streams monitored will be returned in the
monitor result.

8: The event is forwarded to the application.

9: The application denies the video media stream, i.e., it is not included in the allowed media streams. This
corresponds to removing the media stream from the setup.

10: The application requests to reroute the call to a different destination (or the same one...)

11: Later in the call the A party tries to establish a lower bandwidth video media stream. This is again reported with
MediaStreamMonitorRes.

12: The event is forwarded.

13: This time the application allows the establishment of the media stream by including the media stream in the allowed
list.

8.1.2 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one
call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media
control and one for routing. This is also the way that it is shown here, for clarity.

However, an implementation of the application could combine the media logic and call logic in one object.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)115Release 4

callLogic : (Logical
View::IpAppLogic)

callAppLogic :
IpAppMultiMediaCallControlManager

 :
IpMultiMediaCallControlManager

 :
IpMultiMediaCall

PartyA :
IpMultiMediaCallLeg

PartyB :
IpAppCallLeg

PartyB :
IpAppCallLeg

PartyA :
IpMultiMediaC...

 : IpAppMultiMediaCall mediaAppLogic :
IpAppMult iMediaCallControlManager

mediaLogic :
(Logical View::I...

1: new()

2: createNotification()

5: reportNotification()

6: "forward event"

12: createAndRouteCallLegReq()

7: new()

9: reportMediaNotification()

19: reportMediaNotification()

3: new()

4: createMediaNotification()

10: "forward event"

14: mediaStreamAllow()

15: deassignCall()

20: "forward event"

21: medi aStreamAllow()

22: deassignCall()

8: new()

11: new()

13: new()

16: eventReportRes()17: "forward event"

18: deassignCall()

1: The application creates a new AppMultiMediaCallControlManager interface.

2: The application expresses interest in all calls from subscriber A for rerouting purposes.

3: The application creates a new AppMultiMediaCallControlManager interface. This is to be used for the media
control only.

4: Separately the application expresses interest is some media streams for calls from and to A. The request indicates
interrupt mode.

5: Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video. Since the media
establishment is combined with the SIP INVITE message, both applications are triggered (not necessarily in the order
shown).

Here the call application is notified about the call setup.

6: The event is forwarded to the call control application.

7: The call control application creates a new AppMultiMediaCall interface.

8: The call control application creates a new AppMultiMediaCallLeg interface.

9: The media application is notified about the call setup. All media streams from the setup will be indicated.

10: The event is forwarded to the media application.

11: The call control application creates a new AppMultiMediaCallLeg interface.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)116Release 4

12: The call application decides to reroute the call to another address. Included in the request are monitors on answer
and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media streams are
confirmed or rejected.

13:

14: The application allows the audio media stream, but refuses the high bandwidth video, by excluding it from the
allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue (with a
changed SDP parameter reflecting the manipulated media).

15: The Media application is no longer interested in the call.

16: When the B subscriber answers the call application is notified.

17: The event is forwarded to the call application.

18:

19: When later in the call A tries to establish a lower bandwidth video stream the media application is triggered.

20: The triggering is forwarded to the media application.

21: The application now allows the establishment of the media stream by including the media stream in the
mediaStreamAllow list.

22: The media application is no longer interested in the call.

8.1.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

 : (Logical
View::IpAppLogic)

 :
IpAppMultiMediaCallControlManager

 :
IpMultiMediaCallControlMan...

 :
IpMultiMediaCall

 :
pMultiMediaCallLeg

1: new()

2: createMediaNotificat ion()

3: reportMediaNotification()

4: "forward event"

6: deassignCall()

5: mediaStreamAllow()

1: The application starts a new AppMultiMediaCallControlManager interface for reception of callbacks.

2: The application expresses interest in all calls from or to subscriber A that use video. The just created App interface
is given as the callback interface.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)117Release 4

3: Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video.

4: The message is forwarded to the application.

5: The application indicates that the setup of the media stream is not allowed by not including the media streaml in the
allowed list. This has the effect of supressing the video capabilities in the setup.

6: The application is no longer interested in the call.

New attempts to open video streams will again be indicated with a createMediaNotification.

8.1.4 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

 :
IpMultiMediaCallControlManager

 :
IpAppMult iMediaCall

 : (Logic al
iew:: IpAppLogic)

:
IpMultiMediaCall

: IpU ICal l IpUIManager :
IpUIManager

 :
IpAppMultiMediaCallControlManager

 : IpAppUICall

4: createCall()

3 : new()

5: routeReq()

8: routeReq()

9: routeRes()
10: "f orward ev ent"

6: routeRes()
7: "f orward ev ent"

12: superv iseVolumeRes()
13: "f orward ev ent"

15: sendInf oAndCollectReq()

16: sendInf oAndCollectRes()
17: "f orward ev ent"

19: superv iseVolumeReq()

20: release()

11: superv iseVolumeReq()

18: release()

14: createUICall()

1: new()

2: setCa llback()

1: The application creates a new interface to receive callbacks on the call control manager.

2: The created interface is set as the callback interface for the call control manager.

3: The application creates a new interface to receive callback on the call.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)118Release 4

4: The application requests the creation of a call.

5: The application initiates the call by routing to the origination. This will implicitly create a call leg. The application
requests a notification when the party answers.

6: When the A party answers the application is notified.

7: The message is forwarded to the logic.

8: The application also routes the call to the destination. This implicitly creates a call leg. The application requests to
be notified on answer of the B-party.

9: When the B-party answers the application is notified.

10: The message is forwarded to the logic.

11: The application requests to supervise the call. In the request the application specifies a limit on the amount of bytes
that may be transferred. The application specifies that if the limit is reached the application should be notified.

12: When the limit is reached a notification is send to the application.

13: The message is forwarded to the logic.

14:

15: The application plays an announcement to the user, asking whether the user wants to end the call or continue the
call.

16: When the user answers whether the call should continue.

17: The message is forwarded to the logic.

18: The UIcall is released, since no further announcements are needed.

19: In case the user answers that the call should continue, the supervision is reset with a new maximum number of
allowed bytes. (note this might have charging consequences, not shown)

20: If the user answered that the call should not continue, the call is released.

8.2 Class Diagrams

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)119Release 4

pAppMultiMediaCall

superviseVolumeRes()
superviseVolumeErr()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification()

(from mmccs)

<<Interface>>
IpAppMultiMediaCallLeg

mediaStreamMonitorRes()

(from m mccs)

<<Interface>>

IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
superviseRes()
superviseErr()
callLegEnded()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
callEnded()
createAndRouteCallLegErr()

(from mpccs)

<<Interface>>
IpAppMultiPartyCallControlManager

reportNotification()
callAborted()
managerInterrupted()
managerResumed()
callOverloadEncountered()
callOverloadCeased()

(from mpccs)

<<Interface>>

1 0..n1 0..n

IpMultiMediaCallLeg

mediaStreamAllow()
mediaStreamMonitorReq()
getMediaStreams()

(from m mccs)

<<Interface>>

<<uses>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

1 0..n

IpMultiMediaCallControlManager

createMediaNotification()
destroyMediaNotification()
changeMediaNotification()
getMediaNotification()

(from mmccs)

<<Interface>>

1 0..n

<<uses>>

<<uses>>

Figure: Application Interfaces

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)120Release 4

IpMultiMediaCallControlManager

createMediaNoti fi cati on()
destro yMediaNoti fication()
ch angeMediaNoti fication()
getMe dia Not i ficat ion()

(from mmccs)

<<Interface>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>> IpMultiMediaCallLeg

mediaStreamAllow()
mediaStreamMonitorReq()
getMediaStreams()

(from mmccs)

<<Interface>>

IpMultiMediaStream

substract()

(from mmccs)

<<Interface>>

IpCallLeg

ro uteReq()
eventRep ortReq()
re lease()
getInf oReq()
getCa ll()
attachMedia()
detachMe dia()
getLastRe directed Add ress()
co nti nueP roce ssin g()
setCh arge Plan()
setAd vice OfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>
IpMultiPartyCallControlManager

reateCa ll ()
reateNo ti fi ca ti on()
estroyNo ti ficati on()
han geNoti fication()
etNot if icat io n()
etCal lLo adControl ()

(from mpccs)

<<Interface>>

1 0..n 1 ..n 1 0..n

Figure: Service Interfaces

8.3 MultiMedia Call Control Service Interface Classes
The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with multi-
media capabilities.

The MultiMedia Call Control Service is represented by the IpMultiMediaCallControlManager, IpMultiMediaCall,
IpMultiMediaCallLeg and IpMultiMediaStream interfaces that interface to services provided by the network. Some
methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the
client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and
reports, the developer must implement IpAppMultiMediaCallManager, IpAppMutliMediaCall and
IpAppMultiMediaCallLeg to provide the callback mechanism.

To handle the multi-media aspects of a call the concept of media stream is introduced. A media stream is bi-directional
media stream and is associated with a call leg. These media streams are usually negotiated between the terminals in the
call. The multi-party Call Service gives the application control over the media streams associated with the legs in a
multi-media call in the following way:

· the application can be triggered on the establishment of a media stream that meets the application defined
characteristics.

· the application can monitor on the establishment (addition) or release (substraction) of media streams of an ongoing
call.

· the application can allow or deny the establishment of media streams (provided the stream establishment was
monitored/notified in interrupt mode).

· the application can explicitly substract already established media streams.

· the application can request the media streams associated with a specific leg.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)121Release 4

8.3.1 Interface Class IpMultiMediaCallControlManager

Inherits from: IpMultiPartyCallControlManager

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. The multi-media call
control manager interface provides the management functions to the multi-media call control service. The application
programmer can use this interface to create, destroy, change and get media stream related notifications.

<<Interface>>

IpMultiMediaCallControlManager

createMediaNotification (appInterface : in IpAppMultiMediaCallControlManagerRef,
notificationMediaRequest : in TpNotificationMediaRequest) : TpAssignmentID

destroyMediaNotification (assignmentID : in TpAssignmentID) : void

changeMediaNotification (assignmentID : in TpAssignmentID, notificationMediaRequest : in
TpNotificationMediaRequest) : void

getMediaNotification () : TpMediaNotificationRequestedSet

Method
createMediaNotification()

This method is used to create media stream notifications so that events can be sent to the application.

This applies both to callsetup media (e.g., SIP initial INVITE or H.323 with faststart) and for media setup during the
call.

This is the first step an application has to do to get initial notifications of media streams happening in the network.
When such an event happens, the application will be informed by reportMediaNotification(). In case the application is
interested in other events during the context of a particular call session it has to use the mediaStreamMonitorReq()
method on the Multi-Media call leg object.

The createMediaNotification method is purely intended for applications to indicate their interest to be notified when
certain media stream events take place. It is possible to subscribe to a certain media stream event for a whole range of
addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with
800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createMediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the multi-media call control manager interface for this newly-
created notification.

Parameters

appInterface : in IpAppMultiMediaCallControlManagerRef

Specifies a reference to the application interface, which is used for callbacks.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)122Release 4

notificationMediaRequest : in TpNotificationMediaRequest

The mediaMonitorMode is a parameter of TpMediaStreamRequest and can be in interupt or in notify mode. If in
interrupt mode the application has to specify which media streams are allowed by calling mediaStreamAllow on the
callLeg.

The notificationMediaRequest parameter specifies the event specific criteria used by the application to define the event
required. This is the media portion of the criteria. Only events that meet the notificationMediaRequest are reported.

Individual addresses or address ranges may be specified for the destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyMediaNotification()

This method is used by the application to disable Multi Media Channel notifications

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the Multi Media call control manager interface when the previous
enableMediaNotification was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised.

Raises

TpCommonExceptions

Method
changeMediaNotification()

This method is used by the application to change the event criteria introduced with createMediaNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi-media call control manager interface for the media stream notification. If two
callbacks have been registered under this assigment ID both of them will be disabled.

notificationMediaRequest : in TpNotificationMediaRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)123Release 4

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getMediaNotification()

This method is used by the application to query the event criteria set with createMediaNotification or
changeMediaNotification.

Returns notificationsMediaRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

Returns

TpMediaNotificationRequestedSet

Raises

TpCommonExceptions

8.3.2 Interface Class IpAppMultiMediaCallControlManager

Inherits from: IpAppMultiPartyCallControlManager

The Multi Media call control manager application interface provides the application call control management functions
to the multi media call control service.

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification (callReference : in TpMultiMediaCallIdentifier, callLegReferenceSet : in
TpMultiMediaCallLegIdentifierSet, mediaStreams : in TpMediaStreamSet, type : in
TpMediaStreamEventType, assignmentID : in TpAssignmentID) : TpAppMultiMediaCallBack

Method
reportMediaNotification()

This method is used to inform the application about the establishment of media streams.

If the corresponding monitor was in interrupt mode, then the application has to allow or deny the streams using
mediaStreamAllow() method.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)124Release 4

Returns appInterface : Specifies a reference to the application interface which implements the callback interface for the
new call.

Returns appMultiMediaCallBack: Specifies references to the application interface which implements the callback
interface for the new multi-media call and/or new call leg. This parameter may be null if the notification is being given
in NOTIFY mode

Parameters

callReference : in TpMultiMediaCallIdentifier

Specifies the call interface on which the media streams were added or substracted. It also gives the corresponding
sessionID.

callLegReferenceSet : in TpMultiMediaCallLegIdentifierSet

Specifies set of all callLeg references (interface and sessionID) for which the media streams were established or
substracted.

First in the set is the reference to the originating callLeg. It indicates the call leg related to the originating party. In case
there is a destination call leg this will be the second leg in the set. from the notificationInfo can be found on who's
behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode

mediaStreams : in TpMediaStreamSet

Specifies all the media streams that are established. Note that this can be more media streams than requested in the
createMediaNotification, e.g., when faststart is used in H.323 or in SIP when an INVITE method with SDP media
stream parameters is used.

type : in TpMediaStreamEventType

Refers to the type of event on the media stream, i.e., added or substracted.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createMediaNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiMediaCallBack

8.3.3 Interface Class IpMultiMediaCall

Inherits from: IpMultiPartyCall

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)125Release 4

<<Interface>>

IpMultiMediaCall

superviseVolumeReq (callSessionID : in TpSessionID, volume : in TpCallSuperviseVolume, treatment : in
TpCallSuperviseTreatment) : void

Method
superviseVolumeReq()

The application calls this method to supervise a call. The application can set a granted data volume this call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

volume : in TpCallSuperviseVolume

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted volume expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

8.3.4 Interface Class IpAppMultiMediaCall

Inherits from: IpAppMultiPartyCall

The application multi-media call interface contains the callbacks that will be used from the multi-media call interface
for asynchronous results to requests performed by the application. The application should implement this interface.

<<Interface>>

IpAppMultiMediaCall

superviseVolumeRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedVolume : in
TpCallSuperviseVolume) : void

superviseVolumeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)126Release 4

Method
superviseVolumeRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedVolume : in TpCallSuperviseVolume

Specifies the used time for the call supervision (in milliseconds).

Method
superviseVolumeErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

8.3.5 Interface Class IpMultiMediaCallLeg

Inherits from: IpCallLeg

The Multi-Media call leg represents the signalling relationship between the call and an address. Associcated with the
signalling relationship there can be multiple media channels. Media channels can be started and stopped by the
terminals themselves. The application can monitor on these changes and influence them.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)127Release 4

<<Interface>>

IpMultiMediaCallLeg

mediaStreamAllow (callLegSessionID : in TpSessionID, mediaStreamList : in TpSessionIDSet) : void

mediaStreamMonitorReq (callLegSessionID : in TpSessionID, mediaStreamEventCriteria : in
TpMediaStreamRequestSet) : void

getMediaStreams (callLegSessionID : in TpSessionID) : TpMediaStreamSet

Method
mediaStreamAllow()

This method can be used to allow setup of a media stream that was reported by a mediaStreamMonitorRes method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

mediaStreamList : in TpSessionIDSet

Refers to the media streams (sessionIDs) as received in the mediaStreamMonitorRes() or in the
reportMediaNotification() that is allowed to be established.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
mediaStreamMonitorReq()

With this method the application can set monitors on the addition and substraction of media streams. The monitors can
either be general or restricted to certain types of codecs.

Monitoring on addition of media streams can be done in either interrupt of notify mode. In the first case the application
has to allow or deny the establishment of the stream with mediaStreamAllow.

Monitoring on substraction of media streamsis only allowed in notify mode.

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg.

mediaStreamEventCriteria : in TpMediaStreamRequestSet

Specifies the event specific criteria used by the application to define the event required. The mediaMonitorMode .is a
parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in interrupt mode the application has
to respond with mediaStreamAllow().

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)128Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getMediaStreams()

This method is used to return all currently established media streams for the leg.

Parameters

callLegSessionID : in TpSessionID

This method is used to return all currently open media channels for the leg,

Returns

TpMediaStreamSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

8.3.6 Interface Class IpAppMultiMediaCallLeg

Inherits from: IpAppCallLeg

The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for
asynchronous results to requests performed by the application. The application should implement this interface.

<<Interface>>

IpAppMultiMediaCallLeg

mediaStreamMonitorRes (callLegSessionID : in TpSessionID, streams : in TpMediaStreamSet, type : in
TpMediaStreamEventType) : void

Method
mediaStreamMonitorRes()

This method is used to inform the application about the media streams that are being established (added) or substracted.

If the corresponding request was done in interrupt mode, the application has to allow or deny the media streams using
mediaStreamAllow().

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)129Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg for which the media channels are opened or closed.

streams : in TpMediaStreamSet

Specifies all the media streams that are added. Note that this can be more media streams than requested in the
createMediaNotification, e.g., when faststart is used in H.323 or SIP INVITE with SDP media stream parameters is
used.

type : in TpMediaStreamEventType

Refers to the type of event on the media stream, i.e., added or substraced.

8.3.7 Interface Class IpMultiMediaStream

Inherits from: IpService

The Multi Media Streaml Interface represents a bi-directional information stream associated with a call leg. Currently,
the only available method is to substract the media stream.

<<Interface>>

IpMultiMediaStream

substract (mediaStreamSessionID : in TpSessionID) : void

Method
substract()

This method can be used to substract the multi-media stream.

Parameters

mediaStreamSessionID : in TpSessionID

Specifies the sessionID for the media streaml.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

8.4 MultiMedia Call Control Service State Transition Diagrams
There are no State Transition Diagrams for the MultiMedia Call Control Service package

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)130Release 4

8.5 Multi-Media Call Control Data Definitions
This Section provides the Multi-Media call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents
Hypertext links.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

8.5.1 Event Notification Data Definitions

TpMediaStreamRequestSet

Defines a Numbered Set of Data Elements of TpMediaStreamRequest

TpMediaStreamRequest

Defines the Sequence of Data Elements that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMediaStreamDirection

DataTypeRequest TpMediaStreamDataTypeRequest

MediaMonitorMode TpCallMonitorMode

TpMediaStreamDirection

Defines the direction in which the media stream is established (as seen from the leg).

Name Value Description
P_SEND_ONLY 0 Indicates that the offerer is only willing to send

this media stream

P_RECEIVE_ONLY 1 Indicates that the offerer is only willing to
receive this media stream

P_SEND_RECEIVE 2 Indicates that the offerer is willing to send and
receive this media stream

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)131Release 4

TpMediaStreamDataTypeRequest

Defines the Tagged Choice of Data Elements that specify the media type and associated codecs that are of
interest.

Tag Element Type
TpMediaType

Tag Element Value Choice Element Type Choice Element Name
P_AUDIO TpAudioCapabilitiesType Audio

P_VIDEO TpVideoCapabilitiesType Video

P_DATA TpDataCapabilities Data

TpAudioCapabilitiesType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR
function).E.g., 28 indicates interest in all G.722 codes (4+8+16).

Name Value Description
P_G711_64K 1 g.711 on 64k, both alaw and ulaw

P_G711_56K 2 g.711 on 56k, both alaw and ulaw

P_G722_64K 4

P_G722_56K 8

P_G722_48K 16

P_G7231 32

P_G728 64

P_G729 128

P_G729_ANNEX_A 256

P_IS1172 512

P_IS1318 1024

P_G729_ANNEXB 2048

P_G729_ANNEX_A_AND_B 4096

P_G7231_ANNEX_C 8192

P_GSM_FULLRATE 16384

P_GSM_HALFRATE 32768

P_GSM_ENHANCED 65536

TpVideoCapabilitiesType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR
function). E.g., 3 indicates both H.261 and H.262 codecs.

Name Value Description
P_H261 1

P_H262 2

P_H263 4

P_IS11172 8

TpDataCapabilities

A TpInt32 defining the minimum maxBitRate in bit/s. I.e., all data media streamswhose maxBitRate exceeds this
number are reported.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)132Release 4

TpMediaStreamEventType

Defines the action performed on the media stream.

Name Value Description
P_MEDIA_STREAM_ADDED 0 The media stream is added

P_MEDIA_STREAM_SUBTRACTED 1 The media stream is subtracted.

TpMediaStreamSet

Defines a Numbered Set of Data Elements of TpMediaStream

TpMediaStream

Defines the Sequence of Data Elements that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMediaStreamDirection

DataType TpMediaStreamDataType

ChannelSessionID TpSessionID

MediaStream IpMultiMediaStream

TpMediaStreamDataType

Defines the type of the reported media stream. It is identical to TpMediaStreamDataTypeRequest, only now the
values are not used as a mask, but as the actual codec should be indicated for audio and video. For data the actual
maximum bitrate is indicated.

8.5.2 Multi-Media Call Control Data Definitions

IpMultiMediaCall

Defines the address of an IpMultiMediaCall Interface.

IpMultiMediaCallRef

Defines a Reference to type IpMultiMediaCall.

IpAppMultiMediaCall

Defines the address of an IpAppMultiMediaCall Interface.

IpAppMultiMediaCallRef

Defines a Reference to type IpAppMultiMediaCall.

IpMultiMediaCallLeg

Defines the address of an IpMultiMediaCallLeg Interface.

IpMultiMediaCallLegRef

Defines a Reference to type IpMultiMediaCallLeg.

IpAppMultiMediaCallLeg

Defines the address of an IpAppMultiMediaCallLeg Interface.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)133Release 4

IpAppMultiMediaCallLegRef

Defines a Reference to type IpAppMultiMediaCallLeg.

TpAppMultiMediaCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppMultiMediaCallLegRef.

TpMultiMediaCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the MultiMediaCall object

Sequence Element Name Sequence Element Type Sequence Element Description
MMCallReference IpMultiMediaCallRef This element specifies the interface reference for the call object.

MMCallSessionID TpSessionID This element specifies the call session ID of the call created.

TpMultiMediaCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiMediaCallIdendifier

TpMultiMediaCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

Sequence Element Name Sequence Element Type Sequence Element Description
MMCallLegReference IpMultiMediaCallLegRef This element specifies the interface reference for the callLeg

object.

MMCallLegSessionID TpSessionID This element specifies the callLeg session ID of the call created.

IpAppMultiMediaCallControlManager

Defines the address of an IpAppMultiMediaCallControlManager Interface.

IpAppMultiMediaCallControlManagerRef

Defines a Reference to type IpAppMultiMediaCallControlManager.

TpAppMultiMediaCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type
TpAppMultiMediaCallBackRefType

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP MULTIMEDIA-CALL_CALLBACK IpAppMultiMediaCallRef appMultiMediaCall

P_APP_CALL-LEG_CALLBACK IpAppMultiMediaCallLegRef appMultiMediaCallLeg

P_APP_CALL_AND_CALL-LEG_CALLBACK TpAppMultiMediaCallLegCallBack AppMultiMediaCallAndCallLeg

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)134Release 4

TpAppMultiMediaCallBackRefType

Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined

P_APP MULTIMEDIA-CALL_CALLBACK 1 Application Multi-Media Call interface
referenced

P_APP_CALL-LEG_CALLBACK 2 Application Multi-Media CallLeg interface
referenced

P_APP_CALL_AND_CALL-LEG_CALLBACK 3 Application Multi-Media Call and CallLeg
interface referenced

TpAppMultiMediaCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
appMultiMediaCall IpAppMultiMediaCallRef

appCallLegSet TpAppMultiMediaCallLegRefSet Specifies the set of all call leg call back
references. First in the set is the reference
to the call back of the originating callLeg.
In case there is a call back to a destination

call leg this will be second in the set.

TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the
specific connection.

Sequence Element Name Sequence Element Type Sequence Element Description
VolumeQuantity TpInt32 This data type is identical to a TpInt32, and defines the quantity

of the granted volume that can be transmitted for the specific
connection.

VolumeUnit TpInt32 This data type is identical to a TpInt32, and defines the unit of
the granted volume that can be transmitted for the specific

connection.

Unit must be specified as 10^n number of bytes, where

n denotes the power.

When the unit is for example in kilobytes, VolumeUnit must be
set to 3.

TpNotificationMediaRequest

Defines the Sequence of Data Elements that specify the criteria for a media stream notification

Sequence Element Name Sequence Element Type Description
MediaNotificationScope TpCallNoficationScope Defines the scope of the notification request.

MediaStreamsRequested TpMediaStreamRequestSet Defines the media stream events which are requested

TpMediaNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Name Sequence Element Type
AppNotificationMEdiaRequest TpNotificationMediaRequest

AssignmentID TpInt32

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)135Release 4

TpMediaNotificationsRequestedSet

Defines a numbered Set of Data Elements of TpMediaNotificationRequested

89 Common Call Control Data Types

The following data types referenced in this clause are defined in 3GPP TS 29.198-5:

TpUIInfo

All other data types referenced but not defined in this clause are common data definitions which may be found in
3GPP TS 29.198-2.

8.19.1 TpCallAlertingMechanism
This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values
of this data type are operator specific.

8.29.2 TpCallBearerService
This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and 3G TS 22.002)

Name Value Description
P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at this time

P_CALL_BEARER_SERVICE_SPEECH 1 Speech

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO 4 3,1 kHz audio

P_CALL_BEARER_SERVICE_
DIGITALUNRESTRICTEDTONES

5 Unrestricted digital information with tones/announcements

P_CALL_BEARER_SERVICE_VIDEO 6 Video

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)136Release 4

8.39.3 TpCallChargePlan
Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
ChargeOrderType TpCallChargeOrderCategory Charge order

TransparentCharge TpOctetSet Operator specific charge plan specification,
e.g. charging table name / charging table

entry. The associated charge plan data will be
send transparently to the charging records.

Only applicable when transparent charging is
selected.

ChargePlan TpInt32 Pre-defined charge plan. Example of the
charge plan set from which the application
can choose could be : (0 = normal user, 1 =

silver card user, 2 = gold card user).

Only applicable when transparent charging is
selected.

AdditionalInfo TpOctetSet Descriptive string which is sent to the billing
system without prior evaluation. Could be

included in the ticket.

PartyToCharge TpCallPartyToCharge Identifies the entity or party to be charged for
the call or call leg.

8.49.4 TpCallPartyToCharge
Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

Tag Element Type
TpCallPartyToChargeType

Tag Element Value Choice Element
Type

Choice Element Name

P_CALL_PARTY_ORIGINATING, , NULL Undefined

P_CALL_PARTY_DESTINATION, NULL Undefined

P_CALL_PARTY_SPECIAL TpAddress CallPartySpecial

8.59.5 TpCallPartyToChargeType
Defines the type of call party to charge

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated calls this

indicates the first party of the call

P_CALL_PARTY_DESTINATION 1 Called party

P_CALL_PARTY_SPECIAL 2 An address identifying e.g. a third party, a service provider

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)137Release 4

8.69.6 TpCallChargeOrder
Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type
TpCallChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name
P_CALL_CHARGE_TRANSPARENT TpOctetSet TransparentCharge

P_CALL_CHARGE_PREDEFINED_SET TpInt32 ChargePlan

8.79.7 TpCallChargeOrderCategory
Defines the type of charging to be applied

Name Value Description

P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name /
charging table entry. The associated charge plan data will be send

transparently to the charging records

P_CALL_CHARGE_PREDEFINED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =

gold card user).

8.89.8 TpCallEndedReport
Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name Sequence Element Type Description
CallLegSessionID TpSessionID The leg that initiated the release of the call.

If the call release was not initiated by the leg,
then this value is set to –1.

Cause TpReleaseCause The cause of the call ending.

8.99.9 TpCallError
Defines the Sequence of Data Elements that specify the additional information relating to a call error.

Sequence Element Name Sequence Element Type
ErrorTime TpDateAndTime

ErrorType TpCallErrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)138Release 4

8.109.10 TpCallAdditionalErrorInfo
Defines the Tagged Choice of Data Elements that specify additional call error and call error specific
information. This is also used to specify call leg errors and information errors.

Tag Element Type
TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_ERROR_UNDEFINED NULL Undefined

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE NULL Undefined

P_CALL_ERROR_RESOURCE_UNAVAILABLE NULL Undefined

8.119.11 TpCallErrorType
Defines a specific call error.

Name Value Description
P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or was refused,

but no specific reason can be given.

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an invalid address
was given

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid state for the
requested operation

P_CALL_ERROR_RESOURCE_UNAVAILABLE 3 There are not enough resources to complete the
request successfully

8.129.12 TpCallInfoReport
Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type Description
CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or
follow-on call, was started.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was
connected to the destination (i.e., when the

destination answered the call). If the
destination did not answer, the time is set

to an empty string.

This data element is invalid when
information on user interaction is reported

with an intermediate report.

CallEndTime TpDateAndTime The date and time when the call or follow-
on call or user interaction was terminated.

Cause TpReleaseCause The cause of the termination.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)139Release 4

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

8.139.13 TpCallInfoType
Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_INFO_UNDEFINED 00h Undefined

P_CALL_INFO_TIMES 01h Relevant call times

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause

8.149.14 TpCallLoadControlMechanism
Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type
TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval

8.159.15 TpCallLoadControlIntervalRate
Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

Name Value Description
P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval

(do not admit any calls)

1 -
60000

Duration in milliseconds

8.169.16 TpCallLoadControlMechanismType
Defines the type of call load control mechanism to use.

Name Value Description
P_CALL_LOAD_CONTROL_PER_INTERVAL 0 admit one call per interval

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)140Release 4

8.179.17 TpCallMonitorMode
Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name Value Description
P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call control

service and call processing is interrupted. The
application is notified of the event and call

processing resumes following an appropriate
API call or network event (such as a call

release)

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

8.189.18 TpCallNetworkAccessType
This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this time

P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDSL

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless

8.199.19 TpCallPartyCategory
This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description
P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English

P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call

P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)141Release 4

8.209.20 TpCallServiceCode
Defines the Sequence of Data Elements that specify the service code and type of service code received during
a call. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
CallServiceCodeType TpCallServiceCodeType

ServiceCodeValue TpString

8.219.21 TpCallServiceCodeSet
Defines a Numbered Set of Data Elements of TpCallServiceCode.

8.229.22 TpCallServiceCodeType
Defines the different types of service codes that can be received during the call.

Name Value Description
P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The corresponding string is

operator specific.

P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the call. The corresponding
string is an ASCII representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932

P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string is an ASCII representation of the entered

digits.

P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by
some digits. The corresponding string is an ASCII representation of

the entered digits.

8.239.23 TpCallSuperviseReport
Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry
or call party release. In case the called party
disconnects but a follow-on call can still be

made also this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning tone has been applied. This is only
sent in combination with

P_CALL_SUPERVISE_TIMEOUT
P_CALL_SUPERVISE_UI_FINISHED 08h The user interaction has finished.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)142Release 4

8.249.24 TpCallSuperviseTreatment
Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by a logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision

timer expires

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call
supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating party
when the call supervision timer expires. If call

release is requested, then the call will be
released following the tone after an

administered time period

8.259.25 TpCallTeleService
This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compatibility Information, and 3G TS 22.003)

Name Value Description
P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony

P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via gateways or interworking
units

P_CALL_TELE_SERVICE_TELEX 7 Telex service

P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems

P_CALL_TELE_SERVICE_OSI 9 OSI application

P_CALL_TELE_SERVICE_FTAM 10 FTAM application

P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated with an active 3,1 kHz
audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic.

P_CALL_TELE_SERVICE_EMERGENCY_CALLS 19 Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT_PP 20 Short message MT/PP

P_CALL_TELE_SERVICE_SMS_MO_PP 21 Short message MO/PP

P_CALL_TELE_SERVICE_CELL_BROADCAST 22 Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3 23 Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3 24 Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL 25 Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_BROADCAST 26 Voice Broadcast Service

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)143Release 4

8.269.26 TpCallTreatment
Defines the Sequence of Data Elements that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type
CallTreatmentType TpCallTreatmentType

ReleaseCause TpReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

8.279.27 TpCallTreatmentType
Defines the treatment for calls that will be handled only by the network.

Name Value Description
P_CALL_TREATMENT_DEFAULT 0 Default treatment

P_CALL_TREATMENT_RELEASE 1 Release the call

P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the
call (Send Info & Release)

8.289.28 TpCallAdditionalTreatmentInfo
Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

Tag Element Type
TpCallTreatmentType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_TREATMENT_DEFAULT NULL Undefined

P_CALL_TREATMENT_RELEASE NULL Undefined

P_CALL_TREATMENT_SIAR TpUIInfo InformationToSend

8.299.29 TpMediaType
Defines the media type of a media stream. The values may be combined by a logical 'OR' function.

Name Value Description
P_AUDIO 1 Audio stream

P_VIDEO 2 Video stream

P_DATA 4 Data stream (e.g., T.120)

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)144Release 4

Annex A (normative):
OMG IDL Description of Call Control SCF
The OMG IDL representation of this interface specification is contained in text files (contained in archive
2919804IDL.ZIP) which accompany the present document.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)145Release 4

Annex B (informative):
Differences between this draft and 3GPP TS 29.198 R99
The following is a list of the differences between the present document and 3GPP TS 29.198 R99, for those interfaces
which are common to both documents. Any new interfaces with respect to Release 99 are not listed.

B.1 Interface IpCallControlManager
enableCallNotification (appCallControlManagerInterface : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult

B.2 Interface IpAppCallControlManager
callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID, appCallInterface : out IpAppCallRefRef) : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

B.3 Interface IpCall
getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

B.4 Interface IpAppCall
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

B.5 All Generic Call Control Interfaces
All methods now return void or the former out parameter.

B.6 IpService
setCallback() and setCallbackWithSessionID() now both raise P_INVALID_INTERFACE_TYPE.

3GPP

3GPP TS 29.198-4 V4.3.0 (2002-03)146Release 4

Annex C (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0
Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotification and

createNotification
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0
Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0
Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notification Data Type 4.2.0 4.3.0
Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in

IpCallLeg.setAdviceOfCharge()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarification of ambiguous Event handling rules 4.2.0 4.3.0

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020518
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 055 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Updating Clause 4 for Release 5

Source: a CN5

Work item code:a OSA2 Date: a 30/05/2002

Category: a F Release: a REL-5
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Clause 4 makes specific reference to the requiremetns and contents of Release
4 of OSA. This is now out of date with the addition of Release 5 content.

Summary of change:a Update of clause 4 to refer to new material (Multi-Media Call Control) introduced
as a result of Release 5 requirements. Update of the layout of clause 4.

Consequences if a

not approved:
Clause 4 of of 29.198-4 Release 5 will refer to limitations of functionality which
are only applicable for Release 4.

Clauses affected: a 4

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

4 Call Control SCF
Two Three flavours of Call Control (CC) APIs have been included in 3GPP Release 54. These are the Generic Call
Control (GCC), and the Multi-Party Call Control (MPCC) and the Multi-Media Call Control (MMCC). The GCC is the
same API as was already present in the Release 99 specification (TS 29.198 v3.3.0) and is in principle able to satisfy the
requirements on CC APIs for Release 4. Multi-Party Call Contorl was introduced in the Release 4 specifications, and
Multi-Media Call Control is introduced in Release 5.

However, tThe joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration
from JAIN has been focussed on the MPCC and MMCC APIs. A number of improvements on CC functionality have
been made and are reflected in this these APIs. For this it was necessary to break the inheritance that previously existed
between GCC and MPCC.

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Service Capability Feature (SCF).

The order is as follows:

�The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

�The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

�The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

�The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are well-
defined; either methods specified in the Interface specification or events occurring in the underlying networks
cause state transitions.

�The Data definitions clause show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification (29.198-2).

4.1 Call Model Description
The adopted call model used for the Call Control SCFs has the following objects.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

4.2 Structure of Call Control SCF Documentation
Each of the Call Control SCFs is specified under the following headings:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are
well-defined; either methods specified in the Interface specification or events occurring in the underlying networks
cause state transitions.

• The Data definitions clause show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification (29.198-2).

	NP-020187.doc
	29198-04CR039.doc
	29198-04CR041.doc
	29198-04CR042.doc
	29198-04CR043.doc
	29198-04CR044.doc
	29198-04CR045.doc
	29198-04CR046.doc
	29198-04CR047.doc
	29198-04CR048.doc
	29198-04CR049.doc
	29198-04CR050.doc
	29198-04CR051.doc
	29198-04CR052.doc
	29198-04CR053.doc
	29198-04CR054.doc
	29198-04CR055.doc

