
3GPP TSG CN Plenary Meeting #16 NP-020179
5th - 7th June 2002. Marco Island, USA.

Source: CN5 (OSA)

Title: Rel-4 CRs 29.198-03 OSA API Part 3: Framework

Agenda item: 7.10

Document for: APPROVAL

Doc-1st

-Level
Spec CR R

v
Pha Subject Cat Ver

Curr
Ver
New

Doc-2nd

-Level
Work
item

NP-020179 29.198-03 030 - Rel-4 Solving the problem in the OSA Framework with method
appUnavailableInd() in a scenario with multiple service
sessions per access session

F 4.4.0 4.5.0 N5-020471 OSA1

NP-020179 29.198-03 031 - Rel-4 Adding missing mandatory method
(authenticationSucceeded) to sequence flow

F 4.4.0 4.5.0 N5-020494 OSA1

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020471
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-03 CR 030 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Solving the problem in the OSA Framework with method appUnavailableInd() in a
scenario with multiple service sessions per access session

Source: a CN5

Work item code:a OSA1 Date: a 17/05/2002

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Since the method call IpAppFaultManager:appUnavialableInd() does not pass
any parameters to the client application, there is no way for a client (who has
multiple service sessions) to determine which service session is in jeopardy.

If a client application signs two or more service agreements (different services)
using the same access session, when the framework calls the clients
appUnavailableInd() method, the client will not know which service is at risk.

Summary of change:a Introduce a new serviceID parameter for appUnavailableInd().

Consequences if a

not approved:
When invoking appUnavailableInd(), there is no way for a client (who has
multiple service sessions) to determine which service session is in jeopardy

Clauses affected: a 7.3.3.1

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportInd (fault : in TpInterfaceFault) : void

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) :
void

appUnavailableInd (serviceID: in TpServiceID) : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

Method
activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Method
appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out a test on itself, to check that it is operating correctly. The application reports the test result
by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

Method
fwFaultReportInd()

The framework invokes this method to notify the client application of a failure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

Method
fwFaultRecoveryInd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

Method
svcUnavailableInd()

The framework invokes this method to inform the client application that it can no longer use its instance of the indicated
service. On receipt of this request, the client application must act to reset its use of the specified service (using the
normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin
use of a different service instance).

Parameters

serviceID : in TpServiceID

Identifies the affected service.

reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Method
genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is
an empty list, then the fault statistics are for the framework.

Method
fwUnavailableInd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.

Method
genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

serviceIDs : in TpServiceIDList

Specifies the framework or services that were included in the general fault statistics record request. If the serviceIDs
parameter is an empty list, then the fault statistics were requested for the framework.

Method
appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding. On receipt of this indication, the application must end its current session with the service instance.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.

No Parameters were identified for this method

Method
genFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the
IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes
operation on the IpFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the client
application.

CR page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020494
Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

CR-Form-v5

CHANGE REQUEST

a 29.198-03 CR 031 arev - a Current version: 4.4.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Adding missing mandatory method (authenticationSucceeded) to sequence flow

Source: a CN5

Work item code:a OSA1 Date: a 30/05/2002

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a authenticationSucceeded is mandatory but missing from a sequence diagram

Summary of change:a Add authenticationSucceeded to 6.1.1.4. It is a mandatory method and is
currently missing from the call flow, meaning that readers may get confused about
the actual flow of events required for successful authentication.

Consequences if a

not approved:
A misleading specification leading to possible implementation interoperability
issues.

Clauses affected: a 6.1.1.4

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 2

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework
mutually authenticate one another.
The OSA API supports multiple authentication techniques. The procedure used to select an appropriate
technique for a given situation is described below. The authentication mechanisms may be supported
by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The
inclusion of cryptographic processes and digital signatures in the authentication procedure depends on
the type of authentication technique selected. In some cases strong authentication may need to be
enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define
the minimum encryption key length that can be used to ensure a high degree of confidentiality.
The client must authenticate with the Framework before it is able to use any of the other interfaces
supported by the Framework. Invocations on other interfaces will fail until authentication has been
successfully completed.
1) The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the
client to specify the type of authentication process. This authentication process may be specific to the
provider, or the implementation technology used. The initiateAuthentication method can be used to
specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface
(API Level Authentication), which can be used to perform the authentication process. The
initiateAuthentication method allows the client to pass a reference to its own authentication interface to
the Framework, and receive a reference to the authentication interface preferred by the client, in return.
In this case the API Level Authentication interface.
2) The client invokes the selectEncryptionMethod on the Framework's API Level Authentication
interface. This includes the encryption capabilities of the client. The framework then chooses an
encryption method based on the encryption capabilities of the client and the Framework. If the client is
capable of handling more than one encryption method, then the Framework chooses one option,
defined in the prescribedMethod parameter. In some instances, the encryption capability of the client
may not fulfil the demands of the Framework, in which case, the authentication will fail.
3) The application and Framework interact to authenticate each other. For an authentication
method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response
exchanges. This authentication protocol is performed using the authenticate method on the API Level
Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-
way protocol. Mutual authentication is achieved by the framework invoking the authenticate method
on the client's APILevelAuthentication interface.
Note that at any point during the access session, either side can request re-authentication. Re-
authentication does not have to be mutual.

CR page 3

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: init ia teAuthent icat io n()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

6: authenticate()

IpClientAPILevel Au the nti ca ti on
reference i s passed to f ramework
and IpAPILevel Auth entication
reference i s returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpClientAccess reference is
passed to Fra mework, and
IpAccess reference is
returned.

7: requestAccess()

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

7: authenticate()

IpClientAPILevelAuthentication
reference is passed to framework
and IpAPILevelAuthentication
reference is returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpClientAccess reference is
passed to Framework, and
IpAccess reference is
returned.

9: requestAccess()

8: authenticationSucceeded()

6: authenticationSucceeded()

	NP-020179.doc
	29198-03CR030.doc
	29198-03CR031.doc

