
3GPP TSG CN Plenary Meeting #14 NP-010597
Kyoto, Japan, 12-14 December 2001

Source: CN5 (OSA)

Title: Rel-4 CRs 29.198-04

Agenda item: 8.5

Document for: Decision

Doc-1st-
Level

Spec CR R Pha Subject Cat Ver
Cur

Ver
-New

Doc-2nd-
Level

Workit
em

NP-010597 29.198-04 019 Rel-4 Replace Out Parameters with Return Types F 4.1.0 4.2.0 N5-010564 OSA1
NP-010597 29.198-04 020 Rel-4 Removal of time based charging property F 4.1.0 4.2.0 N5-011136 OSA1
NP-010597 29.198-04 021 Rel-4 Make attachMedia() and detachMedia() asynchronous F 4.1.0 4.2.0 N5-011145 OSA1
NP-010597 29.198-04 022 Rel-4 Correction of treatment datatype in superviseReq on call

leg
F 4.1.0 4.2.0 N5-011146 OSA1

NP-010597 29.198-04 023 Rel-4 Corrections to Call Control Data Types F 4.1.0 4.2.0 N5-011246 OSA1
NP-010597 29.198-04 024 Rel-4 Correction to Call Control (CC) F 4.1.0 4.2.0 N5-011250 OSA1
NP-010597 29.198-04 025 Rel-4 Amend the Generic Call Control introductory part F 4.1.0 4.2.0 N5-011258 OSA1
NP-010597 29.198-04 026 Rel-4 Correction in TpCallEventType F 4.1.0 4.2.0 N5-011260 OSA1
NP-010597 29.198-04 027 Rel-4 Addition of missing description of RouteErr() F 4.1.0 4.2.0 N5-011262 OSA1
NP-010597 29.198-04 028 Rel-4 Misleading description of createAndRouteCallLegErr() F 4.1.0 4.2.0 N5-011268 OSA1
NP-010597 29.198-04 029 Rel-4 Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
F 4.1.0 4.2.0 N5-011270 OSA1

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-010564
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 019 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Replacing Out Parameters with Return Types

Source: a CN5

Work item code:a OSA1 Date: a 19/07/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a At CN5 and CN it was agreed that Out-parameters should be removed from
methods as a means of returning information, to be replaced by Return Types, in
line with commonly used programming practice

Summary of change:a For each method, replace the return parameter TpResult with:
’void’ if the method has no out-parameter;
or the type of the out-parameter if the method has an out-parameter, and delete
the out-parameter from the method.

Consequences if a

not approved:
If this particular CR is not agreed, TS 29.198-4 is out of sync. with the other parts
of TS 29.198.
If the related batch of CRs is not agreed, OSA will have a limited acceptance
among the application development community, since it will be more difficult to
implement. This presents a risk to the return on investment in development of
OSA.

Clauses affected: a 5, 6.3, 7.3, Annex B

Other specs a X Other core specifications a All other parts of TS 29.198 Rel-4
affected: Test specifications

 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

ETSI

Error! No text of specified style in document.3Error! No text of specified style in document.

5 The Service Interface Specifications

5.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

ETSI

Error! No text of specified style in document.4Error! No text of specified style in document.

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService
Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpCommonExceptions

Method
setCallbackWithSessionID()

ETSI

Error! No text of specified style in document.5Error! No text of specified style in document.

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Error! No text of specified style in document.6Error! No text of specified style in document.

 ===============================Next changed section===================================

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

For the generic call control service, only a subset of the model is used; the API for generic call control does not give
explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service.
Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is
defined here as 'being routed' or connected.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network.
Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this
way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle

ETSI

Error! No text of specified style in document.7Error! No text of specified style in document.

responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted()

to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call
created.Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

ETSI

Error! No text of specified style in document.8Error! No text of specified style in document.

Returns

TpCallIdentifier

Raises

TpGCCSException,TpGeneralException

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA.The criteria are said to overlap if both originating and terminating ranges overlap
and the same number plan is used and the same CallNotificationType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallBack().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpGCCSException,TpGeneralException

Method
disableCallNotification()

This method is used by the application to disable call notifications.

ETSI

Error! No text of specified style in document.9Error! No text of specified style in document.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpGCCSException,TpGeneralException

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignementID can be
used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpGeneralException,TpGCCSException

Method
changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

ETSI

Error! No text of specified style in document.10Error! No text of specified style in document.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpGeneralException,TpGCCSException

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpCallEventCriteriaResultSet

Raises

TpGeneralException,TpGCCSException

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

ETSI

Error! No text of specified style in document.11Error! No text of specified style in document.

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Raises

TpGCCSException,TpGeneralException

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded()
shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPT, the application writer
should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through an
explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. This parameter will be null if the notification is in NOTIFY mode.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is in NOTIFY mode.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

ETSI

Error! No text of specified style in document.12Error! No text of specified style in document.

Returns

IpAppCallRef

Raises

TpGCCSException,TpGeneralException

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Raises

TpGCCSException,TpGeneralException

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Raises

TpGeneralException,TpGCCSException

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

ETSI

Error! No text of specified style in document.13Error! No text of specified style in document.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

Raises

TpGeneralException,TpGCCSException

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

ETSI

Error! No text of specified style in document.14Error! No text of specified style in document.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID

Raises

TpGCCSException,TpGeneralException

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

ETSI

Error! No text of specified style in document.15Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpGCCSException,TpGeneralException

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of
reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the
originating party is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

ETSI

Error! No text of specified style in document.16Error! No text of specified style in document.

Raises

TpGCCSException,TpGeneralException

Method
setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpGCCSException,TpGeneralException

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

ETSI

Error! No text of specified style in document.17Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpGeneralException, TpGCCSException

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpGCCSException,TpGeneralException

6.3.4 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in

ETSI

Error! No text of specified style in document.18Error! No text of specified style in document.

TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can
be used to correlate the response with the request.

Raises

TpGCCSException,TpGeneralException

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

Error! No text of specified style in document.19Error! No text of specified style in document.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

ETSI

Error! No text of specified style in document.20Error! No text of specified style in document.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Raises

TpGCCSException,TpGeneralException

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

ETSI

Error! No text of specified style in document.21Error! No text of specified style in document.

Raises

TpGCCSException,TpGeneralException

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGeneralException,TpGCCSException

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

ETSI

Error! No text of specified style in document.22Error! No text of specified style in document.

Raises

TpGeneralException,TpGCCSException

ETSI

Error! No text of specified style in document.23Error! No text of specified style in document.

===============================Next changed section===================================

7.3 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

ETSI

Error! No text of specified style in document.24Error! No text of specified style in document.

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives thye
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as

callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

ETSI

Error! No text of specified style in document.25Error! No text of specified style in document.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assigment ID both of them will be disabled.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the nofications that have been requested by the application.

ETSI

Error! No text of specified style in document.26Error! No text of specified style in document.

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignementID can be
used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

ETSI

Error! No text of specified style in document.27Error! No text of specified style in document.

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded()
shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is being given in NOTIFY mode.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on who's behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

ETSI

Error! No text of specified style in document.28Error! No text of specified style in document.

Returns

TpAppMultiPartyCallBack

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporary
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
managerResumed()

This method indicates to the application that event notifications possibleand method invocations are enabled.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Method
callOverloadCeased()

ETSI

Error! No text of specified style in document.29Error! No text of specified style in document.

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

ETSI

Error! No text of specified style in document.30Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit setMedia() operation is needed.
Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through
the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

Error! No text of specified style in document.31Error! No text of specified style in document.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

ETSI

Error! No text of specified style in document.32Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of
reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

ETSI

Error! No text of specified style in document.33Error! No text of specified style in document.

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: IpInterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

ETSI

Error! No text of specified style in document.34Error! No text of specified style in document.

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : void

Method
getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

ETSI

Error! No text of specified style in document.35Error! No text of specified style in document.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

Method
callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

ETSI

Error! No text of specified style in document.36Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an
unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this
operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg

Inherits from: The call leg interface represents the logical call leg associating a call with an address. The call leg tracks
its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the
call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by
defining leg specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

ETSI

Error! No text of specified style in document.37Error! No text of specified style in document.

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMedia (callLegSessionID : in TpSessionID) : void

detachMedia (callLegSessionID : in TpSessionID) : void

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

getMoreDialledDigitsReq (callLegSessionID : in TpSessionID, length : in TpInt32) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddess : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

ETSI

Error! No text of specified style in document.38Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer", "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are
deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

ETSI

Error! No text of specified style in document.39Error! No text of specified style in document.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference:Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

ETSI

Error! No text of specified style in document.40Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Returns redirectedAddress: Specifies the last address where the call leg was redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed it's interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getMoreDialledDigitsReq()

This asynchronous method requests to collect further digits and return them to the application. Depending on the
administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few
digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event
data. The application should then use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

ETSI

Error! No text of specified style in document.41Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target
address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

ETSI

Error! No text of specified style in document.42Error! No text of specified style in document.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call leg when it is finished with the call, leg unless
callFaultDetected is received by the application.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

IpService

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

ETSI

Error! No text of specified style in document.43Error! No text of specified style in document.

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

connectionEnded (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of

the event type.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall
be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getInfoRes()

ETSI

Error! No text of specified style in document.44Error! No text of specified style in document.

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
routeErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

ETSI

Error! No text of specified style in document.45Error! No text of specified style in document.

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Method
superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
connectionEnded()

ETSI

Error! No text of specified style in document.46Error! No text of specified style in document.

This method indicates to the application that the connection has terminated in the network. However, the application
may still receive some results (e.g., getInfoRes) related to the call leg. The application is expected to deassign the call
leg object after having received the connectionEnded.

Note that the event that caused the connection to end might also be received separately if the application was
monitoring for it.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the reason the connection is terminated.

ETSI

Error! No text of specified style in document.47Error! No text of specified style in document.

===============================Next changed section===================================

B.5 All Generic Call Control Interfaces
All methods now return void or the former out parameter.

3GPP

Error! No text of specified style in document.48Error! No text of specified style in document.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011136
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 020 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Removal of time based charging property

Source: a CN5

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a During previous meetings it turned out that time based charging was not
implementable. Therefore this capability has been removed from the API.
However, in the service properties still time based charging was mentioned.

Summary of change:a Removal of time based charging indication in Service property for allowed charge
plans

Consequences if a

not approved:
Capability that has been removed is still referenced in the service properties.

Clauses affected: a 6.5

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP

Error! No text of specified style in document.2Error! No text of specified style in document.

3GPP

Error! No text of specified style in document.3Error! No text of specified style in document.

4.1 Generic Call Control Service Properties

4.1.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by

which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call .

Value = FALSE: User Interaction can be performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type
TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating

notifications it applies to the terminating number, for originating
notifications it applies only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating and/or
terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for
legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_CHARGE_PER_TIME,

P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to a logical network chargeplan indicator. When the
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans
in this mapping are allowed.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011145
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 021 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Make attachMedia() and detachMedia() asynchronous

Source: a CN5 *

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a In the current specification there is no mechanism to return the result of attach-
or detachMedia() to the application. It is, however, crucial to inform the
application of the result. Asynchronous methods are defined as the request to
attach media /detach media can be given already at start of a call setup, but the
result of the request will not be available until call answer, where media channels
or bearer connections are setup.

Summary of change:a Make the attachMedia and detachMedia fully asynchronous methods by adding
new methods attachMediaRes(), attachMediaErr(), detachMediaRes() and
detachMediaErr() to interface IpAppCallLeg and changing method names
attachMedia() and detachMedia() in IpCallLeg to attachMediaReq() and
detachMediaReq().

Consequences if a

not approved:
No support for informing applications when the attachMedia() or detachMedia()
failed. This may result in the application having a wrong assumption of the actual
situation in the network, e.g. a party still being in a conference while the
application requested to detach it from the call.

Clauses affected: a Chapter 6.9.3, 6.9.5, 6.9.6, 6.10.3, 6.11.2 and 6.12.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

* Contact information: Corné Fonken, Ericsson Eurolab Netherlands, tel: +31 161 242639, e-mail: Corne.Fonken@eln.ericsson.se

CR page 2

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.9.3 Interface Class IpMultiPartyCall

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

6.9.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.9.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connections to this leg is now available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

Method
attachMediaErr()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
detachMediaRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer
connections to this leg is no longer available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

Method
detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

6.10.3 State Transition Diagrams for IpCallLeg

6.10.3.1.5 Overview of allowed methods, Originating Call Leg STD

6.9.3.1.1

state methods allowed
Initiating

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

Analysing
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

Active attachMediaReq,
detachMediaReq,
getCall , getLastRedirectedAddress, continueProcessing,
release deassign
eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

Releasing getCall , getLastRedirectedAddress, continueProcessing,
 release
deassign

6.10.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

state methods allowed
Idle routeReq,

getCall , getLastRedirectedAddress,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

Active attachMediaReq
detachMediaReq
getCall , getLastRedirectedAddress, continueProcessing,

release,
deassign
eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

Releasing - getCall , getLastRedirectedAddress, continueProcessing,
 release,
deassign

6.11 Multi-Party Call Control Service Properties

6.11.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.route(), IpCallLeg.attachMediaReq()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMediaReq() is needed when a party answers.

6.12.2 Multi-Party Call Control Data Definitions

TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMediaReq() operation. This

allows e.g. the application to do first user interaction to the party before he/she is placed in the
call.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011146
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 022 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correction of treatment datatype in superviseReq on call leg

Source: a CN5 *

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a In the current specification the datatype of the treatment parameter of
superviseReq() on call leg (IpCallLeg) is incorrect. It is now representing the
treatment of the call and not the call leg.

Summary of change:a Introduction of a new data type describing the treatment of the call leg when the
supervision timer expired.

Consequences if a

not approved:
The treatment of the call leg, after the supervision timer expired, is incorrect. And
may lead to the release of the call (instead of the leg).

Clauses affected: a Chapter 6.9.5 and 6.12.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

* Contact information: Corné Fonken, Ericsson Eurolab Netherlands, tel: +31 161 242639, e-mail: Corne.Fonken@eln.ericsson.se

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.9.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMedia (callLegSessionID : in TpSessionID) : void

detachMedia (callLegSessionID : in TpSessionID) : void

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddess : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer", "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are
deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference:Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMedia()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Returns redirectedAddress: Specifies the last address where the call leg was redirected to.

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target
address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises
TpCommonExceptions, P_INVALID_SESSION_ID

6.12.2 Multi-Party Call Control Data Definitions

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_INFO_UNDEFINED 00h Undefined
P_CALL_LEG_INFO_TIMES 01h Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address
P_CALL_LEG_INFO_APPINFO 08h Call leg application related information

TpCallLegSuperviseTreatment

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_SUPERVISE_RELEASE 01h Release the call leg when the call leg supervision timer expires

P_CALL_LEG_SUPERVISE_RESPOND 02h Notify the application when the call leg supervision timer expires

P_CALL_LEG_SUPERVISE_APPLY_TONE 04h Send a warning tone on the call leg when the call leg supervision timer
expires. If call leg release is requested, then the call leg will be
released following the tone after an administered time period

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011246
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 023 arev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Corrections to Call Control Data Types

Source: a CN5

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a A number of typographical errors were discovered among the call control data
types. They are NOT editorial, in that they change names of elements in
Sequence and Tagged Element types.

Summary of change:a TpAppMultiPartyCallBack and TpAppCallLegCallBack contain elements which use
a lower case first letter, when by convention an upper case first letter is used.

Consequences if a

not approved:
Not correcting this now could lead to future backwards compatibility problems
with early implementations.
Some implementations may correct these errors, leading to interoperability
problems if left unchanged in the specification.
Parlay and ETSI have already corrected these issues - they need to be corrected
in 29.198 to ensure synchronisation between groups and allow development of
common applications across 3 platforms

Clauses affected: a 7.6.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification
just in front of the clause containing the first piece of changed text. Delete those parts of the specification
which are not relevant to the change request.

3GPP

Error! No text of specified style in document.3Error! No text of specified style in document.

The following data types are proposed to be corrected in clause 7.6.2 (incorrectly numbered 6.12.2 in 29.198-
4 V.4.1.0)

TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type
TpAppMultiPartyCallBackRefType

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef AappMultiPartyCall

P_APP_CALL_LEG_CALLBACK IpAppCallLegRef AappCallLeg

P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack AappMultiPartyCallAndCallLe
g

TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
AappMultiPartyCall IpAppMultiPartyCallRef

AappCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call back
references. First in the set is the reference
to the call back of the originating callLeg.
In case there is a call back to a destination

call leg this will be second in the set.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011250
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v5

CHANGE REQUEST

a 29.198-04 CR 024 arev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Corrections to Call Control Sequence Diagrams, State Descriptions and Data Types

Source: a CN5

Work item code:a OSA1 Date: a 30/112001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a We can have a call where the initial routeReq() has failed when no events where
armed and the application is not informed, so the application can loose track of
the call.
It is possible to trigger (statically) on a not reachable event, but not to monitor
(dynamically) on this event, but there will be applications that are interested in
this event
SetCallChargePlan of Generic Call Control was mistakenly agreed in CN5#11
(N5-010306) not to be possible in the active state. SetCallChargePlan was
possible in active state in R99. We see that it is improper to remove it now,
because existing implementations might take advantage of this useful feature.
GetInfoReq should be possible also after notification of a call in MPCC Call level.
The Originating and Terminating Call Leg descriptions in MPCC State Trasnition
Diagrams are inaccurate in several places.
The CR in N5-010614 was not correctly implemented
TpCallAdditionalReportInfo is missing the final (new) tag element value:
P_CALL_REPORT_QUEUED
The serviceTypeName parameter only contains the name of the service type
Errors in naming P_CALL_MONITOR_MODE_INTERRUPT
Sequence diagrams in GCCS misleadingly show objects created by
IpAppCallControlManager
Tp..Ref and Ip..RefRef data types are not used, and should be removed

Summary of change:a Updated routeReq() to recommend arming events for successful and failure
cases.
Add P_CALL_REPORT_NOT_REACHABLE to the TpCallReportType
It has been indicated in the STD of GCC Call that setCallChargePlan is possible
in active state. Reference to R99 is removed.
It has been indicated in the table that setInfoReq is also possible in active state
of the call.
Revision of descriptions of Originating and Terminating Call Leg descriptions in
MPCC State Description Diagrams.
Full implementation of CR in N5-010614
Add the tag element value: P_CALL_REPORT_QUEUED to table

CR page 2

TpCallAdditionalReportInfo
Correct description in registerService()
Use of P_CALL_MONITOR_MODE_INTERRUPT made uniform in specification
GCCS Sequence diagrams revised
Unused data types, such as Tp...Ref and Ip...RefRef, removed.
Various editorial errors corrected.

Consequences if a

not approved:
Potential loss of control of a call by an application.
Sequence Diagrams which show incorrect examples are misleading to
developers.
Incorrect data types make it impossible to correctly implement this specification
correctly
Removal of useful functionality supported already in R99, or functionality which is
believed included will not be implementable.
ETSI and Parlay have already corrected these errors, and 29.198-3 needs to
aligned with these changes to allow development of common applications across
the 3 platforms

Clauses affected: a

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP

Error! No text of specified style in document.3Error! No text of specified style in document.

6 Generic Call Control Service
The Generic Call Control API of 3GPP Rel.4 relies on the CAMEL Service Environment (CSE) and thus some
restrictions exist to the use of the interface. The most significant one is that there is no support for createCall method.
The detailed description of the supported methods and further restrictions is given in the chapter 6.5.

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is
used instead.

fi rst instance : (Lo gical
Vie w::Ip App Logic)

second instance :
(Logical View::IpA...

 : IpAppCallControlManager : IpApp Call ControlMan ager : IpCal lControlManag er

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotfication request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

3GPP

Error! No text of specified style in document.4Error! No text of specified style in document.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

 :
IpCallControlManager

 : IpAppCall : IpCall : IpUICall :
IpAppUIManager

 :
IpAppUICall

 : (Logical
View::IpAppLogic)

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInf oReq()

6: 'f orward ev ent'

: createUICall()

8: new()

10: sendInf oRes()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

3GPP

Error! No text of specified style in document.5Error! No text of specified style in document.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

3GPP

Error! No text of specified style in document.6Error! No text of specified style in document.

 :
IpCallControlManager

 : IpAppCall : IpCall : (Logical
View::IpAppLogic)

5: routeRes()

1: new()

2: createCall()
3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

3GPP

Error! No text of specified style in document.7Error! No text of specified style in document.

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is accepted and the call is routed to the original called party.

3GPP

Error! No text of specified style in document.8Error! No text of specified style in document.

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :
IpUIManager

 :
IpCal lContro lManager

 :
IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall ()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

3GPP

Error! No text of specified style in document.9Error! No text of specified style in document.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

3GPP

Error! No text of specified style in document.10Error! No text of specified style in document.

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager: (Logical
View::IpAppLogic)

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

3GPP

Error! No text of specified style in document.11Error! No text of specified style in document.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

3GPP

Error! No text of specified style in document.12Error! No text of specified style in document.

 :
IpCallControlManager

: IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCal lback()

7 : setCal lb ackWi thSessionID()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3GPP

Error! No text of specified style in document.13Error! No text of specified style in document.

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotification's that do not have
a explicit IpAppCallControlManager reference specified in the enableCallNotification.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically released.

3GPP

Error! No text of specified style in document.14Error! No text of specified style in document.

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'
8: routeRes()

7: routeReq()

10: release()

1: new()

3: cal lEventNot ify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

3GPP

Error! No text of specified style in document.15Error! No text of specified style in document.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

3GPP

Error! No text of specified style in document.16Error! No text of specified style in document.

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

8: routeRes()

6: 'translate number'

7: routeReq()

9 : 'forward event'

10: 'translate number'

11: routeReq()

12: routeRes()

13: 'forward event'

1: new()

: cal lEventNotify()

4: 'forward event'

5: new()

2: enableCallNotifica tion()

4: deass ignCall ()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP

Error! No text of specified style in document.17Error! No text of specified style in document.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. Before the call is routed to the translated number, the application requests for all call related
information to be delivered back to the application on completion of the call.

3GPP

Error! No text of specified style in document.18Error! No text of specified style in document.

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logica l
View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deassignCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

3GPP

Error! No text of specified style in document.19Error! No text of specified style in document.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

6.1.10 Number Translation5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

 : IpAppCall : IpAppCallCont rolManager : IpCallIpAppLogic : IpCallControlManager

1: new()

2: enableCallNotification()

3: callEventNotify()

4: 'forward event '

5: new()

6: 'check status'

7: appropriate release cause

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

3GPP

Error! No text of specified style in document.20Error! No text of specified style in document.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

6.1.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

3GPP

Error! No text of specified style in document.21Error! No text of specified style in document.

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICal l : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

8: superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: s uperviseCal lRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: sendInfoRes()
19: "forward event"

21: superviseCallReq()

22: s uperviseCal lRes()
23: "forward event:

24: release()

16: createUICall()

0: releas e()

5: new()

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager
interface.

3GPP

Error! No text of specified style in document.22Error! No text of specified style in document.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

3GPP

Error! No text of specified style in document.23Error! No text of specified style in document.

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCal lCon tro lManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

1 : s endInfoReq()

18: new()

22: sendInfoRes()
23: "forward event"

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()
26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

5: new()

3GPP

Error! No text of specified style in document.24Error! No text of specified style in document.

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again,
at the tariff switch time,the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

3GPP

Error! No text of specified style in document.25Error! No text of specified style in document.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

IpCallControlManager

createCall()
enableCallNotificatio...
disableCallNotificatio...
setCallLoadControl()
changeCallNotificati...
getCriteria()

(from gccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

<<Interface>>

IpCall

routeReq()
release()
deassignCall()
getCallInfoReq()
setCallChargePlan()
setAdviceOfCharge()
getMoreDialledDigitsR...
superviseCallReq()

(from gccs)

<<Interface>>

1 0..n

Figure: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g., the IpCallControlManager interface uses the IpAppGenericCallControlManager , by
means of calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

3GPP

Error! No text of specified style in document.26Error! No text of specified style in document.

IpAppCall

routeRes()
routeErr()
getCallInfoRes()
getCallInfoErr()
superviseCallRes()
superviseCallErr()
callFaultDetected()
getMoreDialledDigitsR...
getMoreDialledDigitsErr()
callEnded()

(from gccs)

<<Interface>>

IpCall
(from gccs)

<<Interface>>
IpCallControl

Manager
(from gccs)

<<Interface>>

<<uses>>

IpInterface
<Interface>>

1 0..n

IpAppCallControlManager

callAborted()
callEventNotify()
callNotificationInterrupt...
callNotificationContinue...
callOverloadEncountere...
callOverloadCeased()

(from gccs)

<Interface>>

<<uses>>

1 0..n

Figure: Application Interfaces

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

3GPP

Error! No text of specified style in document.27Error! No text of specified style in document.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

For the generic call control service, only a subset of the model is used; the API for generic call control does not give
explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service.
Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is
defined here as 'being routed' or connected.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network.
Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this
way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use

3GPP

Error! No text of specified style in document.28Error! No text of specified style in document.

this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted()

to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

3GPP

Error! No text of specified style in document.29Error! No text of specified style in document.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA.The criteria are said to overlap if both originating and terminating ranges overlap
and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallBack().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of
them will be disabled.

3GPP

Error! No text of specified style in document.30Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

3GPP

Error! No text of specified style in document.31Error! No text of specified style in document.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

3GPP

Error! No text of specified style in document.32Error! No text of specified style in document.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application
writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through
an explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. This parameter will be null if the notification is in NOTIFY mode.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is in NOTIFY mode.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

3GPP

Error! No text of specified style in document.33Error! No text of specified style in document.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

3GPP

Error! No text of specified style in document.34Error! No text of specified style in document.

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

NOTE: In case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

3GPP

Error! No text of specified style in document.35Error! No text of specified style in document.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP

Error! No text of specified style in document.36Error! No text of specified style in document.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setCallChargePlan()

Set an operator specific charge plan for the call.

3GPP

Error! No text of specified style in document.37Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

3GPP

Error! No text of specified style in document.38Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.4 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

3GPP

Error! No text of specified style in document.39Error! No text of specified style in document.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can
be used to correlate the response with the request.

3GPP

Error! No text of specified style in document.40Error! No text of specified style in document.

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP

Error! No text of specified style in document.41Error! No text of specified style in document.

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

3GPP

Error! No text of specified style in document.42Error! No text of specified style in document.

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

3GPP

Error! No text of specified style in document.43Error! No text of specified style in document.

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

Act ive

Creation of
CallControlManager
by Service Instance
Lifecycle Manager

Notification terminated

"new"

enableCallNoti ficat ion

disableCallNotification

"a call object has terminated abnormally" ÎpAppCallControlManager.callAborted

"arrival of call related event"[notification active for this call event] /
create a Call object ÎpAppCallControlManager.callEventNotify

disableCallNotification
"a call object has terminated abnormally"

ÎpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"
 ÎpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 IpAppCallControlManager.callNotificationInterrupted

createCall / create a Call object

Figure : Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

6.4.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

3GPP

Error! No text of specified style in document.44Error! No text of specified style in document.

Network Released

Finished

Applicat ion
Released

release
deassignCall

timeout ĉallFaultDetected("timeout on release")

In state No Parties and Finished, a timer
should prevent the object from occupuing
resources.
Upon expiry of this timer, callEnded() should
be invoked with a release cause of 102
(Recovery on timer expiry). In case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination

Active

2 Parties in
Call

1 Party in
Call

2 Parties in
Call

1 Party in
Call

superviseCallReq

setAdviceOfCharge

deassignCall

release

"call ends : calling party disconnects" ĉallEnded

"call ends: calling party abandoned" ^callEnded
"call ends : called party disconnects"[monitor for this event] ĉallEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ĉallEnded

"requested information ready"
ĝetCallInfoRes, superviseCallRes

[no reports requested with
getCallInfoReq AND
superviseCallReq]

"fault in retrieval of information" ĝetCallInfoErr, superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND
superviseCallReq]

"requested information ready" ^getCallInfoRes,
superviseCallRes

release

"fault in retrieval of information" ĝetCall InfoErr, superviseCallErr

"call supervision event" ŝuperviseCallRes

"network event received for which was monitored[routeRes]

getCal lInfoReq

"answer"

"connection to called party
unsuccessful"[monitor mode = interrupt]

r̂outeRes
"routing aborted or invalid address" r̂outeErr

"disconnect from called party" [monitor mode =
interrupt] r̂outeRes, getCallInfoRes,

superviseCallRes

routeReq

IpAppCallControlManager.callEventNotify setCallChargePlan

Figure : Application view on the IpCall object for 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used.In case the application has not requested additional call related information immediately a transition is made to
state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

3GPP

Error! No text of specified style in document.45Error! No text of specified style in document.

6.4.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan..

6.4.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

3GPP

Error! No text of specified style in document.46Error! No text of specified style in document.

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by

which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call .

Value = FALSE: User Interaction can be performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type
TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating

notifications it applies to the terminating number, for originating
notifications it applies only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating and/or
terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for
legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_CHARGE_PER_TIME,

P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to a logical network chargeplan indicator. When the
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans
in this mapping are allowed.

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE shall have the Service Properties outlined above
set to the indicated values :

3GPP

Error! No text of specified style in document.47Error! No text of specified style in document.

P_OPERATION_SET = {
“IpCallControlManager.enableCallNotification”,
“IpCallControlManager.disableCallNotification”,
“IpCallControlManager.changeCallNotification”,
“IpCallControlManager.getCriteria”,
“IpCallControlManager.setCallLoadControl”,
“IpCall.routeReq”,
“IpCall.release”,
“IpCall.deassignCall”,
“IpCall.getCallInfoReq”,
“IpCall.setCallChargePlan”,
“IpCall.setAdviceOfCharge”,
“IpCall.superviseCallReq”,
}

P_TRIGGERING_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,
P_EVENT_GCCS_CALLED_PARTY_BUSY,
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,
P_EVENT_GCCS_ROUTE_SELECT_FAILURE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_REPORT_ANSWER,
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO_ANSWER,
P_CALL_REPORT_DISCONNECT,
P_CALL_REPORT_ROUTING_FAILURE,
P_CALL_REPORT_NOT_REACHABLE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

3GPP

Error! No text of specified style in document.48Error! No text of specified style in document.

6.6 Generic Call Control Data Definitions
The present document provides the GCC data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a Data Definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

6.6.1 Generic Call Control Event Notification Data Definitions

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event
This can be used for hot-line features. In case this event is set
in the TpCallEventCriteria, only the originating address(es)
may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected
The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigits method on the
call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed
The dialled number is a valid and complete number in the
network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g. the called party has
a mobile telephone that is currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

3GPP

Error! No text of specified style in document.49Error! No text of specified style in document.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 1 Indicates that the notification is related to the originating user in the call.

P_TERMINATING 2 Indicates that the notification is related to the terminating user in the call.

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or a address range for which the notification is
requested.

CallEventName TpCallEventName Name of the event(s)

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the terminating user in the
call.

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a

legal value here.

TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

CallNotificationType TpCallNotificationType

MonitorMode TpCallMonitorMode

6.6.2 Generic Call Control Data Definitions

IpCall

Defines the address of an IpCall Interface.

IpCallRef

Defines a Reference to type IpCall.

IpAppCall

Defines the address of an IpAppCall Interface.

3GPP

Error! No text of specified style in document.50Error! No text of specified style in document.

IpAppCallRef

Defines a Reference to type IpAppCall

IpAppCallRefRef

Defines a Reference to type IpAppCallRef.

TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

Sequence Element
Name

Sequence Element
Type

Sequence Element Description

CallReference IpCallRef This element specifies the interface reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID of the call.

IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

IpCallControlManager

Defines the address of an IpCallControlManager Interface.

IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TpPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

3GPP

Error! No text of specified style in document.51Error! No text of specified style in document.

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element
Name

Sequence Element
Type

Description

CallLegSessionID TpSessionID The leg that initiated the release of the call.
If the call release was not initiated by the leg, then this value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has
been sent to the application, but the application

did not explicitly release or deassign the call
object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

3GPP

Error! No text of specified style in document.52Error! No text of specified style in document.

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element
Name

Sequence Element
Type

Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on call, was
started as a result of a routeReq.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the
resource.

This data element is only valid when information on user
interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the
destination (i.e. when the destination answered the call).

If the destination did not answer, the time is set to an
empty string.

This data element is invalid when information on user
interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on call or user
interaction was terminated.

Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element
Name

Sequence Element
Type

Value TpInt32
Location TpInt32

NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by
Application

Cause Value from
Network

P_CALL_REPORT_BUSY 17 17

P_CALL_REPORT_NO_ANSWER 19 18,19,21

P_CALL_REPORT_DISCONNECT 16 16

P_CALL_REPORT_REDIRECTED 23 23

P_CALL_REPORT_SERVICE_CODE 31 NA

P_CALL_REPORT_NOT_REACHABLE 20 20

P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

3GPP

Error! No text of specified style in document.53Error! No text of specified style in document.

TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

MonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime
CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types
of reports.

Tag Element Type
TpCallReportType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

P_CALL_REPORT_QUEUED TpString QueueStatus

TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType
AdditionalReportCriteria TpCallAdditionalReportCriteria

3GPP

Error! No text of specified style in document.54Error! No text of specified style in document.

TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type
TpCallReportType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_REPORT_UNDEFINED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT_DISCONNECT NULL Undefined
P_CALL_REPORT_REDIRECTED NULL Undefined
P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTING_FAILURE NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFINED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event:an indication from the network that progress has been made in

routing the call to the requested call party. This message may be sent more than once, or
may not be sent at all by the gateway with respect to routing a given call leg to a given

address.
P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.
P_CALL_REPORT_ANSWER 3 Call answered at address.
P_CALL_REPORT_BUSY 4 Called address refused call due to busy.
P_CALL_REPORT_NO_ANSWER 5 No answer at called address.
P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has

ended. When the call is ended, the callEnded method is called. This event can occur both
when the called party hangs up, or when the application explicitly releases the leg using

IpCallLeg::release() This cannot occur when the app explicitly releases the call leg and the
call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network that the call has been
redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received.
P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more than once during the routing
of a call.

P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g., the phone has been switched off or the phone is
outside the coverage area of the network.

3GPP

Error! No text of specified style in document.55Error! No text of specified style in document.

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element
Name

Sequence Element
Type

CallTreatmentType TpCallTreatmentType

ReleaseCause TpCallReleaseCause
AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

TpCallEventCriteriaResultSetRef

Defines a refernce to TpCallEventCriteriaResultSet.

TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

EventCriteria TpCallEventCriteria The event criteria that were specified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

7 MultiParty Call Control Service
The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methods is given in the chapter 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is
created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

3GPP

Error! No text of specified style in document.56Error! No text of specified style in document.

PartyB :
IpCallLeg

 :
IpMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

PartyA :
IpCallLeg

 : (Logical
View::IpAppLogic)

4: setCallback()

1: new()

2: createCall()

3: new()

7: ev entReportReq()

 :
IpAppUICall

 : IpUICall

11: sendInf oReq()

15: eventReportReq()

18: abortAct ionReq()

5: createCallLeg()
6: new()

13: createCallLeg()

14: new()

AppPartyA :
(IpAppMultiPartyCallLeg)

AppPartyB :
(IpAppMultiPartyCallLeg)

9: ev entReportRes ()

17: eventReportRes ()

8: routeR eq()

16: routeReq()

12: sendInf oRes()

 :
IpUIManager

10: createUICall()

19: deassignCall()

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

3GPP

Error! No text of specified style in document.57Error! No text of specified style in document.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is rejected and the call is cleared.

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : I pUICall :
IpUIManager

 : IpMultiPartyCallControlManager :
I pAppUICa ll

8: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oReq()

12: sendInf oRes()

15: release()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: createNotif ication()

7: createUICall()

14: release()

6: getCallLegs()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message

3GPP

Error! No text of specified style in document.58Error! No text of specified style in document.

(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

3GPP

Error! No text of specified style in document.59Error! No text of specified style in document.

App CCM :
IpAppMultiPartyCallControlManager

AppLogic App Leg C :
pAppCal lLeg

App Leg A :
IpAppCallLeg

App Call :
IpAppMultiPartyCall

CCM :
IpMultiPartyCallControlManager

Call :
IpMultiPartyCall

Leg A :
IpCallLeg

Leg B :
IpC allLeg

SCSLeg C :
IpCallLeg

1: "new"

12: "forward event"

15: "new"

14: "new"

13: "new"

2: createNotification()

5: "check if application interested"

11: reportNoti fi cation()

6: "new"

16: createCallLeg()

7: "new"

8: "state transition to Active"

23: continueProcessing()

24: "inform Call object"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"
0: "state transit ion to Releasing"

17: "new"

18: "state transition to Idle"

19: eventReportReq()

20: routeReq()

21: "state transition to Active"

22: "inform Call object"

26: "C-party answer"

27: eventReportRes()

28: "forward event"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

3:

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

9:

10:

11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

3GPP

Error! No text of specified style in document.60Error! No text of specified style in document.

15: A new AppCallLegC is created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

17:

18:

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in the request to route the call leg to the
remote party C.

21:

22:

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for example if it is not interested in possible
requested call leg information (getInfoRes, superviseRes).

 When the terminating call leg is destroyed, the AppLegB is notified and the event is forwarded to the application logic
(not shown).

24:

25: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party B.

26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number translation of the dialed number and
special charging (e.g. a premium rate service) .

Additional call leg related information is requested with the getInfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and

additional call leg related information is requested with the getInfoReq and superviseReq methods in order to illustrate
the information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of
the call object (callEnded).

3GPP

Error! No text of specified style in document.61Error! No text of specified style in document.

AppLogic App Leg B :
IpAppC al lLeg

App Leg A :
IpAppCallLeg

App Call :
IpAppMultiPartyCall

App CCM :
IpAppMultiPartyCallControlManager

CCM :
pMulti PartyCall ControlM anager

Call :
IpMultiPartyCall

Leg A :
IpCallLeg

Leg B :
IpCallLeg

SCS

1: "new"

2: createNoti fi cation()
3: "arm trigger"

4: "trigger event: Analysed Information"

5: "check if application interested"

6: "new"
7: "new"

8: "state transition to Active"

9: reportNotification()
0: "forward event"

11: "new"

12: "new"

13: "new"

14: createCallLeg()
15: "new"

16: "state transi tion to Idle"

7: eventReportR eq()

18: superviseReq()

19: getInfoReq()

20: setChargePlan()

21: routeReq()

22: "state transition to Active"

23: "inform Call object"

24: eventReportReq()

25: getInfoReq()

26: continueProcessing()

27: "inform Call object"

28: "continue call processing"

29: "B party answer"
30: eventReportRes()

31: "forward event"

32: "Disconnect from A- par ty"

33: "state transition to Releasing"

34: eventReportRes()
35: "forward event"

36: getInfoRes()

37: "forward event"

38: callLegEnded()

39: "forward event"
40: "inform Call object"

41: "Disconnect from B-party"

42: "state transition to Releasing"

43: eventReportRes()

45: getInfoRes()

47: superviseRes()

49: callLegEnded()

44: "forward event"

46: "forward event"

48: "forward event"

50: "forward event"

51: "inform Call object"

52: callEnded()
53: "forward event"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

3:

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

3GPP

Error! No text of specified style in document.62Error! No text of specified style in document.

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Active.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calculate charging.

20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Call Leg instance transits to state Active.

23:

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.

26: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party B.

27:

28:

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state".

33:

34: The application IpAppLegA is notified, as the release event has been requested to be reported in Notify mode.

35: The event is forwarded to the application logic

3GPP

Error! No text of specified style in document.63Error! No text of specified style in document.

36: The call leg information is reported.

37: The event is forwarded to the application logic

38: The origination call leg is destroyed, the AppLegA is notified.

39: The event is forwarded to the application logic

40:

41: When the B-party releases the call or the call is released as a result of the release request from party A, i.e. a
"originating release" indication, the terminating call leg is notified and makes a transition to "releasing state".

42:

43: If a network release event is received being a "terminating release" indication from called party B, the application
IpAppLegB is notified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note: No report is sent if the release is caused by propagation of network release event being a "originating release"
indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The call leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLegB is notified.

50: The event is forwarded to the application logic.

51:

52: Assuming the IpCall object has been informed that the legs have been destroyed, the the IpAppMultiPartyCall is
notified that the call is ended .

53: The event is forwarded to the application logic.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN
code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set
on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the
application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which
causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to
which it is then routed.

3GPP

Error! No text of specified style in document.64Error! No text of specified style in document.

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : IpUICallPartyB' :
IpCallLeg

AppParty B' :
IpAppCallLeg

AppPartyB :
IpAppCallLeg

 :
IpUIManager

AppPartyA :
IpAppCallLeg

PartyB :
IpCallLeg

 :
IpMultiPartyCallControlManager

PartyA :
IpCallLeg

 :
IpAppUICa ll

27: createAndR outeCall()

8: sendInf oAndCollectReq()

10: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oAndCollectRes()

13: eventReportReq()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

23: release()

21: eventReportRes()

24: sendInf oAndCollectReq()

25: sendInf oAndCollectRes()

12: setCallbackWithSessionID()

2: createNotif ication()

7: createUICall()

6: getCallLegsf ()

15: createCallLeg()

17: routeReq()

16: eventReportReq()

14: new()

20: attachMedia()

18: eventReportRes()
19: "f orward event"

22: "f orward event"

30: eventReportRes()
31: "f orward event"

32: callEnded()
33: "f orward event"

34: userInteractionFaultDetected()
35: "f orward event"

36: deassignCall()

26: new ()

28: new ()

29: eventReportRes()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

3GPP

Error! No text of specified style in document.65Error! No text of specified style in document.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message retuns the call legs currently in the call. In principle a reference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.

18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.

23: This message releases the called party.

24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.

27: The call is then forward routed to the new destination party.

28: As a result a new Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

3GPP

Error! No text of specified style in document.66Error! No text of specified style in document.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-
defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination
party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
purposes.

Note: This service could be extended as follows:

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

3GPP

Error! No text of specified style in document.67Error! No text of specified style in document.

AppLogic App Leg B :
IpAppCallLeg

App Leg A :
IpAppCallLeg

App Cal l :
IpAppMultiPartyCall

App CCM :
IpAppMultiPartyCallControlManager

CCM :
IpMult iPartyCallControlManager

Call :
IpMultiPartyCall

Leg A :
IpCallLeg

Leg B :
IpCallLeg

SC S

13: "new"

32: "forwar d event"

30: "forwar d event"

12: "new"

37: "forward event"

11: "new"

40: "forwar d event"

1: "new"

10: "forwar d event"

2: createNotification()

5: "check if application interested"

9: reportNot ification()

6: "new"

14: createCallLeg()

39: callEnded()

7: "new"

8: "state transition to Initiating"

21: eventReportReq()

22: continueProcessing()

23: "inform Call object"

35: "state transition to Releasing"

36: callLegEnded()

38: "inform Call object"

15: "new"

16: "state transition to Idle"

17: eventReportReq()

18: routeReq()

19: "state transition to Active"

20: "inform Call object"

28: "state transition to Releasing"

29: eventReportRes()

31: callLegEnded()

33: "inform Call object"

3: "arm trigger"

4: "trig ger event: Originating C all Attempt Authorised"

24: "continue call pr ocessing"

34: "Disconnect from A-party"

27: "Disconnect fr om B-party"

25: event "address_analysed"

26: "state transition to Active"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

3:

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

3GPP

Error! No text of specified style in document.68Error! No text of specified style in document.

8: The new Call Leg instance transits to state Initiating.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.

20:

21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

22: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party as specified by the
application (E.164 number provided by application).

23:

24:

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested
this event to be reported.

26:

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state".

28:

29: The application is notified, as the release event has been requested to be reported in Notify mode.

30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLegB is notified.

32: This answer message is then forwarded.

33:

34: When the call release ("terminating release" indication) is propagated in the network toward the party A, the
originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from
party B) is not reported to the application.

35:

3GPP

Error! No text of specified style in document.69Error! No text of specified style in document.

36: When the originating call leg is destroyed, the AppLegA is notified.

37: The event is forwarded to the application logic

38:

39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

7.1.7 Use of the Redirected event

 : IpAppCallLeg : IpCallLegAppLogic

1: eventReportReq(ANSWER, REDIRECTED - NOTIFY)

2: routeReq()

3: eventReportRes(REDIRECTED)

4: eventReportRes(ANSWER)

The Call and the Leg
have already been
created.

1: The application has already created the call and a call leg. It places an event report request for the ANSWER and
REDIRECTED events in NOTIFY mode.

2: The application routes the call leg.

3: The call is redirected within the network and the application is informed. The new destination address is passed
within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the same call leg is
used so the application does not have to create a new one.

4: The call is answered at its new destination.

3GPP

Error! No text of specified style in document.70Error! No text of specified style in document.

7.2 Class Diagrams
The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

IpAppMultiPartyCallControlManager

reportNotification()
callAborted()
managerInterrupted()
managerResumed()
callOverloadEncountered()
callOverloadCeased()

(from mpccs)

<<Interface>>
IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
callEnded()
createAndRouteCallLegErr()

(f rom mpccs)

<<Interface>>

IpM ulti PartyCall Cont ro lManager

createCall()
createNotification()
destroyNotification()
changeNotification()
getNotification()
setCallLoadControl()

(from mpccs)

<<Interface>>
IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(f rom mpccs)

<<Interface>>
IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddress()
continueProcessing()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

1 0 ..n

<<uses>>

1 0..n

IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
superviseRes()
superviseErr()
callLegEnded()

(from mpccs)

<<Interface>>

1 0..n

<<uses>>

1 0..n

<<uses>>

IpInterface

(from csapi)

<<Interface>>

1 0..n

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

3GPP

Error! No text of specified style in document.71Error! No text of specified style in document.

IpMultiPartyCallContro
Manager

createCall()
createNotification()
destroyNotificatio...
changeNotification()
getNotification()
setCallLoadContro...

(from mpccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSession.. .

(from csapi)

<<Interface>>

IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegRe...
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

1 0..n

IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddre. ..
continueProcessing()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

1 0..n

Figure: Service Interfaces

7.3 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

3GPP

Error! No text of specified style in document.72Error! No text of specified style in document.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

3GPP

Error! No text of specified style in document.73Error! No text of specified style in document.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of
them will be disabled.

3GPP

Error! No text of specified style in document.74Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the nofications that have been requested by the application.

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

3GPP

Error! No text of specified style in document.75Error! No text of specified style in document.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

3GPP

Error! No text of specified style in document.76Error! No text of specified style in document.

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is being given in NOTIFY mode.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on who's behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

3GPP

Error! No text of specified style in document.77Error! No text of specified style in document.

Parameters
No Parameters were identified for this method

Method
managerResumed()

This method indicates to the application that event notifications possibleand method invocations are enabled.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

3GPP

Error! No text of specified style in document.78Error! No text of specified style in document.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

3GPP

Error! No text of specified style in document.79Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed.
Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through
the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

3GPP

Error! No text of specified style in document.80Error! No text of specified style in document.

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

3GPP

Error! No text of specified style in document.81Error! No text of specified style in document.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

3GPP

Error! No text of specified style in document.82Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: IpInterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

3GPP

Error! No text of specified style in document.83Error! No text of specified style in document.

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : void

Method
getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

3GPP

Error! No text of specified style in document.84Error! No text of specified style in document.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an
unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this
operation.

3GPP

Error! No text of specified style in document.85Error! No text of specified style in document.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMedia (callLegSessionID : in TpSessionID) : void

detachMedia (callLegSessionID : in TpSessionID) : void

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

3GPP

Error! No text of specified style in document.86Error! No text of specified style in document.

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddess : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer", "release".

3GPP

Error! No text of specified style in document.87Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are
deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference:Specifies the interface and sessionID of the call associated with this call leg.

3GPP

Error! No text of specified style in document.88Error! No text of specified style in document.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Returns redirectedAddress: Specifies the last address where the call leg was redirected to.

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

3GPP

Error! No text of specified style in document.89Error! No text of specified style in document.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

3GPP

Error! No text of specified style in document.90Error! No text of specified style in document.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

Error! No text of specified style in document.91Error! No text of specified style in document.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

3GPP

Error! No text of specified style in document.92Error! No text of specified style in document.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
routeErr()

3GPP

Error! No text of specified style in document.93Error! No text of specified style in document.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Method
superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this
method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

Error! No text of specified style in document.94Error! No text of specified style in document.

cause : in TpReleaseCause

Specifies the reason the connection is terminated.

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

ActiveInterrupted

'new'

 ^managerResumed

IpAccess.terminateServiceAgreement

 ^managerInterrupted

IpAccess.terminateServiceAgreement

Figure : Application view and the Multi-Party Call Control Manager

7.4.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be
forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause
this: for instance the application receives more notifications from the network than defined in the Service Agreement.
Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.

3GPP

Error! No text of specified style in document.95Error! No text of specified style in document.

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable
Active createCall,

createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted getNotification

7.4.2 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the
case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the
IpAppMultiPartyCallControlManager as this is an abnormal termination.

IDLE

ACTIVE

RELEASED

IpMultiPartyCallManager.createCall

[incoming call]
^IpAppMultiPartyCallControlManager.reportNotification

release

'last leg released'

 ^callEnded

deassignCall

A ti mer mechanisem pre ve nts tha t the obje ct
kee ps occupyin g resources. In case the tim er
expires, callEnde d() is in vo ke d on th e
IpAppM ult iPartyCal l with a rele ase cause o f
P_TIMER_EXPIRY. In the case when no
IpAppM ult iPartyCal l is a va ila bl e on which to invoke
callEnded (), ca llAborted () shall be invoked on the
IpAppM ult iPartyCal lCon tro lManage r a s this is an
abnormal termination.

createCallLeg

createAndRouteCallLeg

de assig n

3GPP

Error! No text of specified style in document.96Error! No text of specified style in document.

Figure : Application view on the MultiParty Call object

7.4.2.1 IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
state.

7.4.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the
requested call information will be collected and returned through getInfoRes() and / or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

7.4.2.4 Overview of allowed methods

Methods applicable Call Control Call
State

Call Control
Manager State

getCallLegs, Idle, Active, Released -

createCallLeg,
createAndRouteCallL
egReq,
setAdviceOfCharge,
superviseReq,

Idle, Active Active

rRelease Active Active
dDeassignCall Idle, Active -
GetInfoReq Idle Active
SetChargePlan,
GetInfoReq

Idle, Active Active

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1) Events in backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Events in forwards direction (downstream), coming from originating leg, are not visible in terminating leg
model.

3) States are as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on
terminating leg do not change state. NOTE 2

3GPP

Error! No text of specified style in document.97Error! No text of specified style in document.

4) The application is to send a request to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode ‘interrupt’. The call processing is resumed
in the network when no leg in the call is left suspended.

5) In case on a leg more than one network event (for example mid-call event ‘service_code’) is to be reported to the
application at quasi the same time, then the events are to be reported one by one to the application in the order
received from the network. When for a leg an event is reported in interrupt mode, a next pending event is not to
be reported to the application until a request to resume call processing for the current reported event has been
received on the leg.

NOTE1: Call processing is suspended if for a leg a network event is met, which was requested to be monitored in
the P_CALL_MONITOR_MODE_INTERRUPT.

NOTE2: Even though there in the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

7.4.3.1 Originating Call Leg

3GPP

Error! No text of specified style in document.98Error! No text of specified style in document.

Initiating

Analysing

Active

Releasing

do/ send reports if requested, or error reports if required

Originating Call Leg.

Transitions/events not shown:
All states:
continueProcessing, getLastRedirectedAddress, getCall: no state change
All states except Releasing:
eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq,
setChargePlan

All States

detachMedia

'Address_Collected'

 IpAppMultiPartyCallControlManager.
reportNotification(originating service code)

'release'

attachMedia

attachMedia

detachMedia

'originating call attempt authori zed'

detachMedia

IpAppMultiPartyCallControlManager.
reportNotification(originatingCallAttempt)

IpAppMultiPartyCallControlManager.
reportNotification(originatingCallAttemptAuthorized)

IpAppMultiPartyCallControlManager.
reportNotification(address_collected)

'Address Collected'

ttachM edia

'originating service_code'

'Address Analysed'

IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

'network release'

'network release'

IpAppMultiPartyCallControlManager.
reportNotification(originating

release)

networkRelease'

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

Figure : Originating Leg

7.4.3.1.1 Initiating State

Entry events:

- Sending of a reportNotification() method by the IpPMultipartyCallControlManager for an
“Originating_Call_Attempt” initial notification criterion.

- Sending of a reportNotification() method by the IpPMultipartyCallControlManager for an
“Originating_Call_Attempt_Authorised” initial notification criterion.

Functions:

3GPP

Error! No text of specified style in document.99Error! No text of specified style in document.

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party’s identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

oCA oCAA AC

See Note1

oREL See
Note2

Initiating
State

Note 1: Event oCA only applicable as an intitial notification .
Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCA Originating Call Attempt; oCAA Originating Call Attempt Authorized; AC Address Collected, oREL Originating

Release.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable:

- The detection of a “Originating_Call_Attempt” initial notification criterion.

- The detection of an “Originating_Call_Attempt_Authorised” initial notification criterion as a result that the call
attempt authorisation is successful.

- The report of the “Originating_Call_Attempt_Authorised” event indication whereby the following functions are
performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported intercepted and call leg
processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- The receipt of destination address information, i.e. initial information package/dialling string as received from
calling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

3GPP

Error! No text of specified style in document.100Error! No text of specified style in document.

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

- Receipt of a deassign() method.

- Receipt of a release() method.

Detection of a “originating release” indication as a result of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State

Entry events:

- Availability of an “Address_Collected” event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Sending of a reportNotification() method by the IpPMultipartyCallControlManager for an “Address_Collected”
initial notification criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action
is recursive, e.g. the application could ask for 3 digits to be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

oCAA AC AA

oREL
Note1 Analysing

State

Note 1: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCAA Originating Call Attempt Authorized; AC Address Collected; AA Address Analysed; oREL Originating Release.

Figure : Application view on event reporting order in Analysing State

In this state the following functions are applicable:

3GPP

Error! No text of specified style in document.101Error! No text of specified style in document.

- The detection of a “Address_Collected“ initial notification criterion.

- On receipt of the “Address_Collected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported intercepted and call leg processing
is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.

- Receipt of a eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.Exit events:

- Detection of an “Address_Analysed” indication as a result of the availability of the routing address and nature
of address.

- Receipt of a deassign() method.

- Receipt of a release() method.

Detection of a “originating release” indication as a result of a premature disconnect from the calling party.

7.4.3.1.3 Active State

Entry events:

- Receipt of an “Address_Analysed” indication as a result of the availability of the routing address and nature of
address.

- Sending of a reportNotification() method by the IpPMultipartyCallControlManager for an “Address_Analysed
initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

Active
State

AA

oSC

 oREL

See Note1
See
Note2

AC

3GPP

Error! No text of specified style in document.102Error! No text of specified style in document.

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
AC Address Collected; AA Address Analysed; oSC Originating Service Code; oREL Originating Release.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:

- The detection of a Address_Analysed initial indication criterion.

- On receipt of the “Address_Analysed” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is reported intercepted and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- In this state the routing information is interpreted, the authority of the calling party to establish this connection is
verified and the call leg connection is set up to the remote party.

- In this state a connection to the call party is established.

- Detection of a “terminating release” indication (not visible to the application) from remote party caused by a
network release event propagated from a terminating party, possibly resulting in an “originating release”
indication and call leg causing the originating call leg STD to transit to Releasing state:

- Detection of a premature disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of an “Answer” indication as a result of the remote party being connected (answered).

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” initial
indication criterion.

- On receipt of the “originating_service code” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported intercepted and call leg
processing is suspended.

 ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues..

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of an “originating release” indication as a result of a disconnect from the calling party and and an
“terminating release” indication as a result of a disconnect from called party.

3GPP

Error! No text of specified style in document.103Error! No text of specified style in document.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

7.4.3.1.4 Releasing State

Entry events:

- Detection of an “Originating_Release” or “Terminating Release” indication as a result of the network release
initiated by calling party of or called party..

- Reception of the release() method from the application.

-Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Originating_Release”
initial indication criterion.

- A transition due to fault detection to this state is made when the Call leg object is in a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the applicationand the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:

i) the network release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:

- The detection of a “originating_release” initial indication criterion..

- On receipt of the “originating_release” indication the following functions are performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

3GPP

Error! No text of specified style in document.104Error! No text of specified style in document.

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLegEnded).

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- After Detection of the sending of the last call leg information to the application the Call Leg object is destroyed
and additionally the application is informed that the call leg connection has ended, by sending the
callLegEnded() method.

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

3GPP

Error! No text of specified style in document.105Error! No text of specified style in document.

state methods allowed
Initiating

attachMedia (as a request),
detachMedia, (as a request)
getCall ,
getLastRedirectedAddress,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing
attachMedia (as a request),
detachMedia, (as a request)
getCall ,
getLastRedirectedAddress,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMedia,
detachMedia,
getCall ,
getLastRedirectedAddress,
continueProcessing,
release
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall ,
getLastRedirectedAddress,
continueProcessing,
 release
deassign

7.4.3.2 Terminating Call Leg

3GPP

Error! No text of specified style in document.106Error! No text of specified style in document.

Idle
(terminating)

Active
(terminating)

Releasing (terminating)

do/ send reports i f requested, or error reports i f required

All States
(terminating)

Terminating Call Leg.

'terminating call attempt authorized',
'alerting', 'answer', 'terminat ing service
code', 'redirec ted', 'queued'

detachMedia

Transitions/events not shown:
All states:
continueProcessing, getLastRedirectedAddress, getCall, sending getInfoRes,
superviseRes: no state change,
All states except Releasing:
eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

attachMedia

routeReq

'network release'

release

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

IpMultiPartyCall.createCallLeg

IpAppMultiPartyCallControlManager.
reportNotification(terminating

release)

IpAppMultiPartyCallControlManager. r
eportNotification("terminating call
attempt", "terminating call attempt
authorised", "alerting", "answer",

"terminating service code",
"redirected", "queued")

IpMultiPartyCall.createAndRouteCallLegReq

Figure : Terminating Leg

7.4.3.2.1 Idle (terminating) State

Entry events:

- Receipt of a createCallLeg() method to start an application initiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection is idled.

The application activity timer is being provided.

In this state the following functions are applicable:

- Invoking routeReq will result in a request to actually route the call leg object.

- Resumption of call leg processing occurs on receipt of a routeReq() method.

3GPP

Error! No text of specified style in document.107Error! No text of specified style in document.

Exit events:

- Receipt of a routeReq() method from the application.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a network release event being an “originating release” indication as a result of a premature disconnect
from the calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

- Receipt of an routeReq will result in actually routing the call leg object.

- Receipt of a createAndRouteCallLeg() method to start an application initiated call leg connection.

- Sending of a reportNotification() method by the IpMultipartyCallControlManager for the following trigger
criteria: “Terminating_Call_Attempt”, “Terminating_Call_Attempt_Authorised”, “Alerting”, “Answer”,
“Terminating service code”, “Redirected” and “Queued”.

-Sending of a reportNotification() method by the IPMultipartyCallControlManager for an
“Terminating_Call_Attempt” trigger criterion.

-Sending of a reportNotification() method by the IPMultipartyCallControlManager for an
“Terminating_Call_Attempt_Authorized” trigger criterion.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

3GPP

Error! No text of specified style in document.108Error! No text of specified style in document.

tCAA

RD

tCA

tSC

AL ANS

Note2

 Q

tREL

Note3

Note 1

Active
State

tCAA

RD

tCA

tSC

AL ANS

Note2

 Q

tREL

Note3

Note 1

Active
State

Note 1: Event tCA applicable as initial notification
Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application
Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.
AAbbreviations used for the events:
tCA Terminating Call Attempt; tCAA Terminating Call Attempt Authorized; AL Alerting; ANS Answer; tREL

Terminating Release; Q Queued; RD Redirected; tSC Terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

-The detection of an “Terminating_Call_Attempt” initial notification criterion as a result that the call attempt.

-The detection of an “Terminating_Call_Attempt_Authorised” initial notification criterion as a result that the call
attempt authorisation is successful.

- The detection and report of the “Terminating_Call_Attempt_Authorised” event indication whereby the following
functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported
intercepted and call leg processing is suspended.

3GPP

Error! No text of specified style in document.109Error! No text of specified style in document.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iv) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is
performed.

- Detection of an “Queued” indication as a result of the terminating call to remote party being queued.

- On receipt of the “Queued” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

-Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Alerting” trigger
criterion.

- On receipt of the “Alerting” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

-Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” trigger
criterion.

- Detection of an “Answer” indication as a result of the remote party being connected (answered).

- On receipt of the “Answer” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iv) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

-Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “service_code” trigger
criterion.

- The detection of a “service_code” trigger criterion suspends call leg processing.

- On receipt of the “service code” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported intercepted and call leg
processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then this is not a valid event (that event is not
notified) and call leg processing continues.

3GPP

Error! No text of specified style in document.110Error! No text of specified style in document.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- On receipt of the “redirected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported intercepted and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continuesthis is not a
valid event (that event is not notified) and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of a network release event being an “terminating release” indication as a result of the following
events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

iv) Detection that the remote party was not reachable.

- Detection of a network release event being an “originating release” indication as a result of the following events:

vi) Detection of a premature disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

- Detection of a netwok release event being an “originating release” indication as a result of a disconnect from the
calling party or a “terminating release” indication as a result of a disconnect from the called party.

7.4.3.2.3 Releasing (terminating) State

Entry events:

- Detection of a network release event being an “originating release” indication as a result of the network release
initiated by calling party or a “terminating release” indication as a result of the network release initiated by
called party..

- Sending of the release() method by the application.

-Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Terminating Release”
trigger criterion.

- A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and this is not received within a certain time period.

- Detection of a network event being a “terminating release” indication as a result of the following events:

3GPP

Error! No text of specified style in document.111Error! No text of specified style in document.

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a network release event being an “originating release” indication as a result of the following events:

vi) Detection of a premature disconnect from the calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:

i) the release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:

- The detection of a “Terminating Release” trigger criterion.

- On receipt of the network release event being a “Terminating Release” indication the following functions are
performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported intercepted and call leg
processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLegEnded).

3GPP

Error! No text of specified style in document.112Error! No text of specified style in document.

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- Detection ofAfter the sending of the last call leg information to the application the Call Leg object is destroyed
and additionally the application is informed that the call leg connection has ended, by sending the
callLegEnded() method.

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

state methods allowed
Idle routeReq,

getCall ,
getLastRedirectedAddress,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMedia
detachMedia
getCall ,
getLastRedirectedAddress,
continueProcessing,

release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing - getCall ,
getLastRedirectedAddress,
continueProcessing,
 release,
deassign

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

3GPP

Error! No text of specified style in document.113Error! No text of specified style in document.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.route(), IpCallLeg.attachMedia()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMedia() is needed when a party answers.

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE shall have the Service Properties outlined
above set to the indicated values :

P_OPERATION_SET = {
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNotification”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReq”,
“IpCallLeg.eventReportReq”,
“IpCallLeg.release”,
“IpCallLeg.getInfoReq”,
“IpCallLeg.getCall”,
“IpCallLeg.continueProcessing”
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_CALL_ATTEMPT,
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_RELEASE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ANSWER,
P_CALL_EVENT_RELEASE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

P_MAX_CALLLEGS_PER_CALL = {
0,

3GPP

Error! No text of specified style in document.114Error! No text of specified style in document.

2
}

P_UI_CALLLEG_BASED = {
FALSE
}

P_MEDIA_ATTACH_EXPLICIT = {
FALSE
}

3GPP

Error! No text of specified style in document.115Error! No text of specified style in document.

7.6 Multi-Party Call Control Data Definitions
The present document provides the MPCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

IpCallLeg

Defines the address of an IpCallLeg Interface.

IpCallLegRef

Defines a Reference to type IpCallLeg.

IpCallLegRefRef

Defines a Reference to type IpCallLegRef.

IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

IpMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

3GPP

Error! No text of specified style in document.116Error! No text of specified style in document.

IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCall.

IpMultiPartyCallControlManager

Defines the address of an IpMultiPartyCallControlManager Interface.

IpMultiPartyCallControlManagerRef

Defines a Reference to type IpMultiPartyCallControlManager.

IpAppMultiPartyCallControlManager

Defines the address of an IpAppMultiPartyCallControlManager Interface.

IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpAppMultiPartyCallControlManager..

TpAppCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppCallLegRef.

IpAppCallLegRef

Defines a Reference to type IpAppCallLegRef.

IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCallRef.

TpMultiPartyCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallReference IpMultiPartyCallRef This element specifies the interface reference for the Multi-party call object.
CallSessionID TpSessionID This element specifies the call session ID.

TpMultiPartyCallIdentifierRef

Defines a Reference to type TpMultiPartyCallIdentifier.

3GPP

Error! No text of specified style in document.117Error! No text of specified style in document.

TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type
TpAppMultiPartyCallBackRefType

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef appMultiPartyCall

P_APP_CALL_LEG_CALLBACK IpAppCallLegRef appCallLeg

P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack appMultiPartyCallAndCallLeg

TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined

P_APP_MULTIPARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced

P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced

P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
appMultiPartyCall IpAppMultiPartyCallRef

appCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call back
references. First in the set is the reference
to the call back of the originating callLeg.
In case there is a call back to a destination

call leg this will be second in the set.

TpMultiPartyCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier.

TpMultiPartyCallIdentifierSetRef

Defines a Reference to type TpMultiPartyCallIdentifierSet.

3GPP

Error! No text of specified style in document.118Error! No text of specified style in document.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTING_MECHANISM TpPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when
launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting.

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallEventRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
CallEventType TpCallEventType

AdditionalCallEventCriteria TpAdditionalCallEventCriteria
CallMonitorMode TpCallMonitorMode

TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

3GPP

Error! No text of specified style in document.119Error! No text of specified style in document.

TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFINED 0 Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 2 An originating call attempt is authorised
P_CALL_EVENT_ADDRESS_COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORIGINATING_RELEASE 6 A originating call/call leg is released
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 8 A terminating call is authorized
P_CALL_EVENT_ALERTING 9 Call is alerting at the call party.
P_CALL_EVENT_ANSWER 10 Call answered at address.
P_CALL_EVENT_TERMINATING_RELEASE 11 A terminating Ccall leg ishas been released or the call could

not be routed.
P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an indication from the network

that the call has been redirected to a new address (no events
disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 Mid call terminating service code received.

P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed as a
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

• If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

• If an event is met that causes the release of the related leg, then all events related to that leg are disarmed .

• When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call
leg may become disarmed (see table below) .

• If a call is released, then all events related to that call are disarmed.

Note: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY..

3GPP

Error! No text of specified style in document.120Error! No text of specified style in document.

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred Events Disarmed
P_CALL_EVENT_UNDEFINED Not Applicable

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Not applicable, can only be armed as trigger

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_ALERTING P_CALL_EVENT_ALERTING

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING

P_CALL_EVENT_ANSWER

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_ORIGINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_TERMINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE
1

P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed.

3GPP

Error! No text of specified style in document.121Error! No text of specified style in document.

TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type
TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength
P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined
P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCode OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCauseSet OriginatingReleaseCauseSet

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined
P_CALL_EVENT_ANSWER NULL Undefined
P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCauseSet TerminatingReleaseCauseSet

P_CALL_EVENT_REDIRECTED NULL Undefined

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCode TerminatingServiceCode

P_CALL_EVENT_QUEUED NULL Undefined

3GPP

Error! No text of specified style in document.122Error! No text of specified style in document.

TpCallEventInfo

Defines the Sequence of Data Elements that specify the event report specific information.

Sequence Element
Name

Sequence Element
Type

CallEventType TpCallEventType
AdditionalCallEventInfo TpCallAdditionalEventInfo

CallMonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime

TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types
of events.

Tag Element Type
TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress

P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress

P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCode OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCause OriginatingReleaseCause

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_QUEUED NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCause TerminatingReleaseCause

P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCode TerminatingServiceCode

TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification

Sequence Element Name Sequence Element Type Description
CallNotificationScope TpCallNotificationScope Defines the scope of the notification request.
CallEventsRequested TpCallEventRequestSet Defines the events which are requested

TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

3GPP

Error! No text of specified style in document.123Error! No text of specified style in document.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or address range for which the notification is
requested.

TpCallNotificationInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call
notification report.

Sequence Element
Name

Sequence Element
Type

Description

CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report.
CallAppInfo TpCallAppInfoSet Contains additonal call info.
CallEventInfo TpCallEventInfo Contains the event which is reported.

TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddress Contains the destination address of the call.
OriginatingAddress TpAddress Contains the origination address of the call
NotificationCallType TpNotificationCallType Indicates if the notification was reported for an originating or terminating call.

TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element
Name

Sequence Element
Type

AppCallNotificationRequest TpCallNotificationRequest
AssignmentID TpInt32

TpNotificationsRequestedSet

Defines a numbered Set of Data Elements of TpNotificationRequested.

TpNotificationsRequestedSetRef

Defines a reference to the type TpNotificationsRequestSet.

3GPP

Error! No text of specified style in document.124Error! No text of specified style in document.

TpReleaseCause

Defines the reason for which a call is released.

Name Value Description
P_UNDEFINED 0 The reason of release isn’t known, because no info was received from the network.

P_USER_NOT_AVAILABLE 1 The user isn’t available in the network. This means that the number isn’t allocated or that the user
isn’t registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal isn’t reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were available.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallLegReference IpCallLegRef This element specifies the interface reference for the callLeg object.
CallLegSessionID TpSessionID This element specifies the callLeg session ID.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.

TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMedia() operation. This

allows e.g. the application to do first user interaction to the party before he/she is placed in the
call.

3GPP

Error! No text of specified style in document.125Error! No text of specified style in document.

TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call.

TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg information requested.

Sequence Element
Name

Sequence Element
Type

Description

CallLegInfoType TpCallLegInfoType The type of the call leg information.
CallLegStartTime TpDateAndTime The time and date when the call leg was started (i.e. the leg was routed).

CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to the resource. If no
resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid,
depending on whether the report is sent as a result of user interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not answer,

the time is set to an empty string.
Either this element is valid or the CallConnectedToResourceTime is

valid, depending on whether the report is sent as a result of user
interaction.

CallLegEndTime TpDateAndTime The date and time when the call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If during the call the

connected address was received from the party then this is returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with
P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with
P_CALL_LEG_INFO_APPINFO was specified.

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_INFO_UNDEFINED 00h Undefined
P_CALL_LEG_INFO_TIMES 01h Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address
P_CALL_LEG_INFO_APPINFO 08h Call leg application related information

8 Common Call Control Data Types

TpCallAlertingMechanism
This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values
of this data type are operator specific.

3GPP

Error! No text of specified style in document.126Error! No text of specified style in document.

TpCallBearerService
This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and 3G TS 22.002)

Name Value Description
P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at this time

P_CALL_BEARER_SERVICE_SPEECH 1 Speech

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO 4 3.1 kHz audio

P_CALL_BEARER_SERVICE_
DIGITALUNRESTRICTEDTONES

5 Unrestricted digital information with tonmes/announcements

P_CALL_BEARER_SERVICE_VIDEO 6 Video

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
ChargeOrderType TpCallChargeOrderCategory Charge order

TransparentCharge TpOctetSet Operator specific charge plan specification,
e.g. charging table name / charging table

entry. The associated charge plan data will be
send transparently to the charging records.

Only applicable when transparent charging is
selected.

ChargePlan TpInt32 Pre-defined charge plan. Example of the
charge plan set from which the application
can choose could be : (0 = normal user, 1 =

silver card user, 2 = gold card user).

Only applicable when transparent charging is
selected.

AdditionalInfo TpOctetSet Descriptive string which is sent to the billing
system without prior evaluation. Could be

included in the ticket.

PartyToCharge TpCallPartyToCharge Identifies the entity or party to be charged for
the call or call leg.

TpCallPartyToCharge

Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

Tag Element Type
TpCallPartyToChargeType

Tag Element Value Choice Element
Type

Choice Element Name

P_CALL_PARTY_ORIGINATING, , NULL Undefined

P_CALL_PARTY_DESTINATION, NULL Undefined

P_CALL_PARTY_SPECIAL TpAddress CallPartySpecial

3GPP

Error! No text of specified style in document.127Error! No text of specified style in document.

TpCallPartyToChargeType

Defines the type of call party to charge

Name Value Description
P_CALL_PARTY_ORIGINATING, , 0 Calling party, i.e. party that initiated the call. For application initiated calls this

indicates the first party of the call

P_CALL_PARTY_DESTINATION, 1 Called party

P_CALL_PARTY_SPECIAL 2 An address identifying e.g. a third party, a service provider

TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type
TpCallChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name
P_CALL_CHARGE_TRANSPARENT TpOctetSet TransparentCharge

P_CALL_CHARGE_PREDEFINED_SET TpInt32 ChargePlan

TpCallChargeOrderCategory

Defines the type of charging to be applied

Name Value Description

P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name /
charging table entry. The associated charge plan data will be send

transparently to the charging records

P_CALL_CHARGE_PREDEFINED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =

gold card user).

TpCallAdditionalChargePlanInfo

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type
TpCallChargeOrderCategory

Tag Element Value Choice Element
Type

Choice Element
Name

Description

P_CALL_CHARGE_TRANSPARENT NULL Undefined

P_CALL_CHARGE_PREDEFINED_SET TpOctetSet SetAdditionalInfo Descriptive string which is sent to
the billing system without prior
evaluation. Could be included in

the ticket.

3GPP

Error! No text of specified style in document.128Error! No text of specified style in document.

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name Sequence Element Type Description
CallLegSessionID TpSessionID The leg that initiated the release of the call.

If the call release was not initiated by the leg,
then this value is set to –1.

Cause TpReleaseCause The cause of the call ending.

TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name Sequence Element Type
ErrorTime TpDateAndTime

ErrorType TpCallErrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific
information. This is also used to specify call leg errors and information errors.

Tag Element Type
TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_ERROR_UNDEFINED NULL Undefined

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE NULL Undefined

P_CALL_ERROR_RESOURCE_UNAVAILABLE NULL Undefined

TpCallErrorType

Defines a specific call error.

Name Value Description
P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or was refused,

but no specific reason can be given.

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an invalid address
was given

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid state for the
requested operation

P_CALL_ERROR_RESOURCE_UNAVAILABLE 3 There are not enough resources to complete the
request successfully

3GPP

Error! No text of specified style in document.129Error! No text of specified style in document.

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type Description
CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or
follow-on call, was started.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was
connected to the destination (i.e., when the

destination answered the call). If the
destination did not answer, the time is set

to an empty string.

This data element is invalid when
information on user interaction is reported

with an intermediate report.

CallEndTime TpDateAndTime The date and time when the call or follow-
on call or user interaction was terminated.

Cause TpReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_INFO_UNDEFINED 00h Undefined

P_CALL_INFO_TIMES 01h Relevant call times

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause

P_CALL_INFO_INTERMEDIATE 04h Send only intermediate reports. When this is
not specified the information report will only

be sent when the call has ended. When
intermediate reports are requested a report will

be generated between follow-on calls, i.e.,
when a party leaves the call.

3GPP

Error! No text of specified style in document.130Error! No text of specified style in document.

TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type
TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval

TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

Name Value Description
P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval

(do not admit any calls)

1 -
60000

Duration in milliseconds

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description
P_CALL_LOAD_CONTROL_PER_INTERVAL 1 admit one call per interval

TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name Value Description
P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call control

service and call processing is interrupted. The
application is notified of the event and call

processing resumes following an appropriate
API call or network event (such as a call

release)

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

3GPP

Error! No text of specified style in document.131Error! No text of specified style in document.

TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this time

P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDSLS

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless

TpCallPartyCategory
This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description
P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English

P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call

P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

TpCallServiceCode
Defines the Sequence of Data Elements that specify the service code and type of service code received during
a call. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
CallServiceCodeType TpCallServiceCodeType

ServiceCodeValue TpString

3GPP

Error! No text of specified style in document.132Error! No text of specified style in document.

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description
P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The corresponding string is

operator specific.

P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the call. The corresponding
string is an ascii representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932

P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string is an ascii representation of the entered

digits.

P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by
some digits. The corresponding string is an ascii representation of the

entered digits.

TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry
or call party release. In case the called party
disconnects but a follow-on call can still be

made also this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning tone has been applied. This is only
sent in combination with

P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_UI_FINISHED 08h The user interaction has finished.

TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by a logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision

timer expires

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call
supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating party
when the call supervision timer expires. If call

release is requested, then the call will be
released following the tone after an

administered time period

3GPP

Error! No text of specified style in document.133Error! No text of specified style in document.

TpCallTeleService
This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compatitibility Information, and 3G TS 22.003)

Name Value Description
P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony

P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via gateways or interworking
units

P_CALL_TELE_SERVICE_TELEX 7 Telex service

P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems

P_CALL_TELE_SERVICE_OSI 9 OSI application

P_CALL_TELE_SERVICE_FTAM 10 FTAM application

P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated with an active 3.1 kHz
audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic.

P_CALL_TELE_SERVICE_EMERGE
NCY_CALLS

19 Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT
_PP

20 Short message MT/PP

P_CALL_TELE_SERVICE_SMS_MO
_PP

21 Short message MO/PP

P_CALL_TELE_SERVICE_CELL_B
ROADCAST

22 Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SP
EECH_FAX_3

23 Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMA
TIC_FAX_3

24 Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_
GROUP_CALL

25 Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_
BROADCAST

26 Voice Broadcast Service

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type
CallTreatmentType TpCallTreatmentType

ReleaseCause TpReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

3GPP

Error! No text of specified style in document.134Error! No text of specified style in document.

TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description
P_CALL_TREATMENT_DEFAULT 0 Default treatment

P_CALL_TREATMENT_RELEASE 1 Release the call

P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the
call (Send Info & Release)

TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

Tag Element Type
TpCallTreatmentType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_TREATMENT_DEFAULT NULL Undefined

P_CALL_TREATMENT_RELEASE NULL Undefined

P_CALL_TREATMENT_SIAR TpUIInfo InformationToSend

TpMediaType

Defines the media type of a media stream. The values may be combined by a logical 'OR' function.

Name Value Description
P_AUDIO 1 Audio stream

P_VIDEO 2 Video stream

P_DATA 4 Data stream (e.g., T120)

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011258
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 025 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Amend the Generic Call Control introductory part

Source: a CN5 *

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a Rel-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a The definitions of call object, call leg object, etc… are not only related to generic
call control service interface classes.

Summary of change:a Make this introductory text appear at the beginning of the document (e.g. at
clause 4)

Consequences if a

not approved:
A reader only interested in Multi Party Call Control Interface may not find those
definitions.

Clauses affected: a Chapter 6.3

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

* Contact information: Pauline Meyer, pauline.meyer@francetelecom.com

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

4 Call Control SCF
Two flavours of Call Control (CC) APIs have been included in Rel.4. These are the Generic Call Control (GCC) and the
Multi-Party Call Control (MPCC). The GCC is the same API as was already present in the Release 99 specification
(TS 29.198 v3.3.0) and is in principle able to satisfy the requirements on CC APIs for Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from
JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are
reflected in this API. For this it was necessary to break the inheritance that previously existed between GCC and
MPCC.

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are
well-defined; either methods specified in the Interface specification or events occurring in the underlying networks
cause state transitions.

• The Data definitions clause show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification (29.198-2).

The adopted call model has the following objects.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call
Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011260
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 026 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correction in TpCallEventType

Source: a CN5 *

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a Rel-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Correction in TpCallEventType Table

Summary of change:a

Consequences if a

not approved:

Clauses affected: a Chapter 6.12.2

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

* Contact information: Pauline Meyer, pauline.meyer@francetelecom.com

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFINED 0 Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 2 An originating call attempt is authorised

P_CALL_EVENT_ADDRESS_COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORIGINATING_RELEASE 6 A originating call/call leg is released
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 8 A terminating call is authorized
P_CALL_EVENT_ALERTING 9 Call is alerting at the call party.
P_CALL_EVENT_ANSWER 10 Call answered at address.
P_CALL_EVENT_TERMINATING_RELEASE 11 A terminating Ccall leg ishas been released or the call could

not be routed.
P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an indication from the network

that the call has been redirected to a new address (no events
disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 Mid call terminating service code received.

P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed as a
result of this)

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011262
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 027 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Addition of missing description of RouteErr()

Source: a CN5 *

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a RouteErr() method for IpAppCallLeg interface description is missing

Summary of change:a Add the description of the method

Consequences if a

not approved:
There may be a misunderstanding on the purpose of the method.

Clauses affected: a Chapter 6.9.6

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

* Contact information: Pauline Meyer, pauline.meyer@francetelecom.com

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Method
routeErr()

 This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011268
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 027 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correction of misleading description of createAndRouteCallLegErr()

Source: a CN5 *

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a Rel-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a CreateAndRouteCallLegErr() method description uses call instead of call leg

Summary of change:a Replace call by call leg

Consequences if a

not approved:
There may be a misunderstanding on the purpose of the method.

Clauses affected: a Chapter 6.9.4

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

* Contact information: Pauline Meyer, pauline.meyer@francetelecom.com

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-011270
Meeting #15, Cancun, MEXICO, 26 – 30 November 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-04 CR 029 a rev - a Current version: 4.1.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Correction to values of TpCallNotificationType, TpCallLoadControlMechanismType

Source: a CN5

Work item code:a OSA1 Date: a 30/11/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a TpCallNotificationType and TpCallLoadControlMechanismType are enumerated
data types in the IDL. By convention, IDL enumerated types start at value 0.
However, these types as documented starts with value 1.

Summary of change:a Correct TpCallNotificationType and TpCallLoadControlMechanismType
enumerations to start at 0.

Consequences if a

not approved:
Serious discrepancy between implementations based on IDL code, and
implementations based on Word document, which will cause interworking
problems.
This change was already performed in Parlay 2.1 and has not been taken into
account in the 3GPP specification set.

Clauses affected: a 6.6.1, 8

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification
just in front of the clause containing the first piece of changed text. Delete those parts of the specification
which are not relevant to the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.6.1 Generic Call Control Event Notification Data Definitions

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event
This can be used for hot-line features. In case this event
is set in the TpCallEventCriteria, only the originating
address(es) may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected
The network has collected the information from the A-
party, but not yet analysed the information. The number
can still be incomplete. Applications might set
notifications for this event when part of the number
analysis needs to be done in the application (see also
the getMoreDialledDigits method on the call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed
The dialled number is a valid and complete number in
the network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g. the called
party has a mobile telephone that is currently switched
off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 10 Indicates that the notification is related to the originating user in the call.
P_TERMINATING 21 Indicates that the notification is related to the terminating user in the call.

*** Next Modification ***

8 Common Call Control Data Types

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description
P_CALL_LOAD_CONTROL_PER_INTERVAL 10 admit one call per interval

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

	NP-010597.doc
	/CR29.198-04-019_N5-010564.doc
	/CR29.198-04-020_N5-011136.doc
	/CR29.198-04-021_N5-011145.doc
	/CR29.198-04-022_N5-011146.doc
	/CR29.198-04-023_N5-011246.doc
	/CR29.198-04-024_N5-011250.doc
	/CR29.198-04-025_N5-011258.doc
	/CR29.198-04-026_N5-011260.doc
	/CR29.198-04-027_N5-011262.doc
	/CR29.198-04-027_N5-011268.doc
	/CR29.198-04-029_N5-011270.doc

