
3GPP TSG CN Plenary Meeting #14 NP-010594
Kyoto, Japan, 12-14 December 2001

Source: CN5 (OSA)

Title: Rel-4 CRs 29.198-01

Agenda item: 8.5

Document for: Decision

Doc-1st-
Level

Spec CR R Pha Subject Cat Ver
Cur

Ver
-New

Doc-2nd-
Level

Workit
em

NP-010594 29.198-01 003 Rel-4 Replace Out Parameters with Return Types F 4.2.0 4.3.0 N5-010561 OSA1
NP-010594 29.198-01 004 Rel-4 Remove the perception that the OSA API only uses

CORBA for its transport mechanism
F 4.2.0 4.3.0 N5-010702 OSA1

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-010561
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-01 CR 003 a rev - a Current version: 4.2.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Replacing Out Parameters with Return Types

Source: a CN5

Work item code:a OSA1 Date: a 19/07/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a At CN5 and CN it was agreed that Out-parameters should be removed from
methods as a means of returning information, to be replaced by Return Types, in
line with commonly used programming practice

Summary of change:a General references to number of out parameters, and to method return types,
updated to take account of this change.

Consequences if a

not approved:
If this particular CR is not agreed, TS 29.198-1 is out of sync. with the other parts
of TS 29.198.
If the related batch of CRs is not agreed, OSA will have a limited acceptance
among the application development community, since it will be more difficult to
implement. This presents a risk to the return on investment in development of
OSA.

Clauses affected: a 6.6, 6.8

Other specs a X Other core specifications a All other parts of TS 29.198 Rel-4
affected: Test specifications

 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP

Error! No text of specified style in document.3Error! No text of specified style in document.

6.6 Error results
As OMG IDL supports exception handling with high efficiency, OSA methods communicate errors in the form of
CORBA exceptions of type TpGeneralException in the IDLs; the CORBA methods themselves always return void or an
identified return type.
But in the documentation, errors are communicated using a return parameter of type TpGeneralResult.

6.7 References
In the interface specification whenever parameters are to be passed by reference, the "Ref" suffix is appended to their
corresponding data type (e.g. IpAnInterfaceRef anInterface), a reference can also be viewed as a logical indirection.
Therefore, structured or primitive data type passed as out parameters are references. An interface passed as an in
parameter is also a reference but an interface passed as an out parameter is a double indirection (i.e.: RefRef)

Original Data type IN parameter declaration OUT parameter declaration

TpPrimitive parm : IN TpPrimitive parm : OUT TpPrimitiveRef

TpStructured parm : IN TpStructured parm : OUT TpStructuredRef

IpInterface parm : IN IpInterfaceRef parm : OUT IpInterfaceRefRef

In IDL, however, the following rules apply:

- Interfaces are implicitly passed by reference.

- out parameters are also implicitly passed by reference.

This leads to:

- Interface as an in parameter: Passed by Reference.

- Structure or primitive type as an in parameter: Passed by Value.

- Structure or primitive type as an out parameter: Passed by Reference.

- Interface as an out parameter: As reference passed by reference.

To simplify the documentation without adding ambiguities, parameters (interfaces, structures and primitive data types)
are used as is when specified as in or out parameters in the IDL. This means that there will be no "Ref" added after the
data types of parameters in the IDL.

6.8 Number of out parameters
In order to support mapping to as many languages as possible, there are no out is only 1 out parameters allowed per
operation. Each operation which returns a value has a defined return type associated with it.

CR page 1

3GPP TSG_CN5 (Open Service Access – OSA) N5-010702
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

CR-Form-v4

CHANGE REQUEST

a 29.198-01 CR 004 a rev - a Current version: 4.2.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Remove the perception that the OSA API only uses CORBA for its transport
mechanism

Source: a CN5

Work item code:a OSA1 Date: a 19/07/2001

Category: a F Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a Remove the perception that the API only uses CORBA for its transport
mechanism. This change is in line with the SA1 CR S1-010531.

Summary of change:a Move mention of CORBA from generic parts of the spec to the CORBA parts of
the spec

Consequences if a

not approved:
Perception that the specification only uses CORBA becomes stronger, making it
much more difficult to permit other technology mechanisms such as SOAP and
Java in the future. Interoperability with Java and SOAP applications could then
become more problematic. Also, working relationship with the JAIN Community
for the production of common APIs could be jepodised. As these changes have
also been accepted by ETSI and Parlay, non-approval would cause mis-
alignment

Clauses affected: a 6, A (new clause)

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked a contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP

Error! No text of specified style in document.3Error! No text of specified style in document.

6 Methodology
Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages
The Unified Modelling Language (UML) [14] is used as the means to specify class and state transition diagrams.
Additionally, Object Management Group’s (OMG) [15] Interface Definition Language (IDL) is used as the means to
programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML
tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a
CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. [13].

6.2 Packaging
A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.csapi

NOTE: the CORBA module hierarchy defined in the IDLs does not necessarily parallels the logical UML
package hierarchy.

6.3 Colours
For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for all the
others.

6.4 Naming scheme
The following naming scheme is used for both documentation and IDLs.

packages

lowercase.

Using the domain-based naming (For example, org.csapi)

classes, structures and types. Start with T

TpCapitalizedWithInternalWordsAlsoCapitalized

Exception class:

TpClassNameEndsWithException

Interface. Start with Ip:

IpThisIsAnInterface

constants:

P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

methods:

firstWordLowerCaseButInternalWordsCapitalized()

method’s parameters

firstWordLowerCaseButInternalWordsCapitalized

3GPP

Error! No text of specified style in document.4Error! No text of specified style in document.

collections (set, array or list types)

TpCollectionEndsWithSet

class/structure members

FirstWordAndInternalWordsCapitalized

Spaces in-between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitions in the State Transition Diagrams follow the convention:

when_this_event_is_received [guard condition is true] /do_this_action ^send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

6.6 Error Exception handling and passing results
As OMG IDL supports exception handling with high efficiency, OSA methods communicate errors in the form of
CORBA exceptions of type TpGeneralException in the IDLs; the CORBA OSA methods themselves always use the
return parameter to pass results. If no results are to be returned a void is used instead of the return parameter. In order
to support mapping to as many languages as possible, no method out parameters are allowed.
But in the documentation, errors are communicated using a return parameter of type TpGeneralResult.

6.7 References
In the interface specification whenever Interface parameters are to be passed as an in parameter they are done so by
reference, and the "Ref" suffix is appended to their corresponding data type (e.g. IpAnInterfaceRef anInterface), a
reference can also be viewed as a logical indirection. Therefore, structured or primitive data type passed as out
parameters are references. An interface passed as an in parameter is also a reference but an interface passed as an out
parameter is a double indirection (i.e.: RefRef)

Original Data type IN parameter declaration OUT parameter declaration

TpPrimitive parm : IN TpPrimitive parm : OUT TpPrimitiveRef

TpStructured parm : IN TpStructured parm : OUT TpStructuredRef

IpInterface parm : IN IpInterfaceRef parm : OUT IpInterfaceRefRef

In IDL, however, the following rules apply:

- Interfaces are implicitly passed by reference.

- out parameters are also implicitly passed by reference.

This leads to:

- Interface as an in parameter: Passed by Reference.

- Structure or primitive type as an in parameter: Passed by Value.

- Structure or primitive type as an out parameter: Passed by Reference.

- Interface as an out parameter: As reference passed by reference.

To simplify the documentation without adding ambiguities, parameters (interfaces, structures and primitive data types)
are used as is when specified as in or out parameters in the IDL. This means that there will be no "Ref" added after the
data types of parameters in the IDL.

3GPP

Error! No text of specified style in document.5Error! No text of specified style in document.

6.8 Number of out parameters
In order to support mapping to as many languages as possible, there is only 1 out parameter allowed per operation.

6.9 Strings and Collections
For character strings, the String data type is used without regard to the maximum length of the string. In IDL, the data
type String is typedefed (see Note below) from the CORBA primitive string. This CORBA primitive is made up of a
length and a variable array of byte.

NOTE: A typedef is a type definition declaration in IDL.

For homogeneous collections of instances of a particular data type the following naming scheme is used: <datatype>Set.
In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a length and a
variable array of elements of the same type.

Example 1: typedef sequence<TpSessionID> TpSessionIDSet;

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part,
and an array for the data part.

Example 2: The TpAddressSet data type may be defined in C++ as:

typedef struct {
 short number;
 TpAddress address [];
} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on
"number".

6.10 Prefixes
OSA constants and data types are defined in the global name space: org.csapi.

6.11 Naming space across CORBA modules
The following shows the naming space used in this specification.

module org {
module csapi {
/* The fully qualified name of the following constant is
org::csapi::P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;
// Add other OSA global constants and types here
module fw {
/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_FW_CONST= THIS_IS_AN_OSA_GLOBAL_CONST;

};
module mm {
// scoping required to access P_FW_CONST
const long P_M_CONST= fw::P_FW_CONST;

};
};

};

3GPP

Error! No text of specified style in document.6Error! No text of specified style in document.

Annex A (normative): OMG IDL

A.1 Tools and Languages
The Object Management Group’s (OMG) [15] Interface Definition Language (IDL) is used as a means to
programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML
tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a
CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. [13].

A.2 Strings and Collections
In IDL, the data type String is typedefed (see Note below) from the CORBA primitive string. This CORBA primitive is
made up of a length and a variable array of byte.

NOTE: A typedef is a type definition declaration in IDL.

In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a length and a
variable array of elements of the same type.

Example 1: typedef sequence<TpSessionID> TpSessionIDSet;

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part,
and an array for the data part.

Example 2: The TpAddressSet data type may be defined in C++ as:

typedef struct {
 short number;
 TpAddress address [];
} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on
"number".

A.3 Naming space across CORBA modules
The following shows the naming space used in this specification.

module org {
module csapi {
/* The fully qualified name of the following constant is
org::csapi::P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;
// Add other OSA global constants and types here
module fw {
/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_FW_CONST= THIS_IS_AN_OSA_GLOBAL_CONST;

};
module mm {
// scoping required to access P_FW_CONST
const long P_M_CONST= fw::P_FW_CONST;

};
};

};

	NP-010594.doc
	/CR29.198-01-003_N5-010561.doc
	/CR29.198-01-004_N5-010702.doc

