
3GPP TSG CN Plenary Meeting #12  Tdoc NP-010326 
Stockholm, Sweden, 13th - 15th June 2001 
 

Source: CN5 

Title: Draft 3GPP TS 29.198-4 V2.0.0 (2001-06): Open Service Access (OSA); Application 
Programming Interface (API); Part 4: Call Control (Release 4) 

Agenda item: 8.5 OSA enhancements [OSA1] 

Document for: APPROVAL 

 
 
This draft was submitted at the last CN plenary (CN#11) for INFORMATION and it is now submitted to CN#12 
for APPROVAL and placement under TSG change control (CR regime). 
 
 

3GPP Release 4 deliverables from CN5 (OSA) are highlighted in yellow 
 

OSA API specifications 29.198-family OSA API Mapping -  29.998-family 
29.198-1 Part 1: Overview 29.998-1 Part 1: Overview 
29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable 
29.198-3 Part 3: Framework 29.998-3 Not Applicable 

29.998-4-1 Subpart 1: Generic Call Control – CAP 
mapping 

29.198-4 Part 4: Call Control SCF 

29.998-4-2  
29.998-5-1 Subpart 1: User Interaction – CAP mapping 
29.998-5-2  
29.998-5-3  

29.198-5 Part 5: User Interaction SCF 

29.998-5-4 Subpart 4: User Interaction – SMS mapping 
29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location – MAP mapping 
29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable 
29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control – CAP mapping 
29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable 
29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable 
29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable 
29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable 
NOTE: The blinking background shows the parts which were submitted at the last CN plenary (CN#11) 
 for INFORMATION and are now submitted to CN#12  
 for APPROVAL and placement under TSG change control (CR regime). 

 
 



3GPP TS 29.198-4 V2.0.0 (2001-06)
Technical Specification 

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access (OSA);
Application Programming Interface (API);

Part 4: Call Control
(Release 4)

 

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
   
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.   
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners’ Publications Offices. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)2Release 4

 

 

 

 

Keywords 
UMTS, API, OSA 

3GPP 

Postal address 
 

3GPP support office address 
650 Route des Lucioles - Sophia Antipolis 

Valbonne - FRANCE 
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 

Internet 
http://www.3gpp.org 

Copyright Notification 

No part may be reproduced except as authorized by written permission. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC). 

All rights reserved. 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)3Release 4

Contents 

Foreword............................................................................................................................................................ 6 

Introduction ....................................................................................................................................................... 6 

1 Scope ....................................................................................................................................................... 7 

2 References ............................................................................................................................................... 7 

3 Definitions and abbreviations.................................................................................................................. 8 
3.1 Definitions................................................................................................................................................................8 
3.2 Abbreviations ...........................................................................................................................................................8 

4 Call Control SCF..................................................................................................................................... 8 

5 The Service Interface Specifications ....................................................................................................... 8 
5.1 Interface Specification Format .................................................................................................................................8 
5.1.1 Interface Class ....................................................................................................................................................8 
5.1.2 Method descriptions ...........................................................................................................................................9 
5.1.3 Parameter descriptions........................................................................................................................................9 
5.1.4 State Model.........................................................................................................................................................9 
5.2 Base Interface...........................................................................................................................................................9 
5.2.1 Interface Class IpInterface..................................................................................................................................9 
5.3 Service Interfaces .....................................................................................................................................................9 
5.3.1 Overview ............................................................................................................................................................9 
5.4 Generic Service Interface .........................................................................................................................................9 

5.4.1 Interface Class IpService...........................................................................................................................9 

6 Generic Call Control Service................................................................................................................. 11 
6.1 Sequence Diagrams............................................................................................................................................11 
6.1.1 Additional Callbacks ........................................................................................................................................11 
6.1.2 Alarm Call ........................................................................................................................................................12 
6.1.3 Application Initiated Call .................................................................................................................................14 
6.1.4 Call Barring 1 ...................................................................................................................................................16 
6.1.5 Number Translation 1.......................................................................................................................................18 
6.1.6 Number Translation 1 (with callbacks) ............................................................................................................20 
6.1.7 Number Translation 2.......................................................................................................................................22 
6.1.8 Number Translation 3.......................................................................................................................................24 
6.1.9 Number Translation 4.......................................................................................................................................26 
6.1.10 Number Translation5........................................................................................................................................28 
6.1.11 Prepaid..............................................................................................................................................................29 
6.1.12 Pre-Paid with Advice of Charge (AoC)............................................................................................................31 
6.2 Class Diagrams ......................................................................................................................................................34 
6.3 Generic Call Control Service Interface Classes ................................................................................................36 
6.3.1 Interface Class IpCallControlManager .............................................................................................................37 
6.3.2 Interface Class IpAppCallControlManager ......................................................................................................41 
6.3.3 Interface Class IpCall .......................................................................................................................................43 
6.3.4 Interface Class IpAppCall ................................................................................................................................48 
6.4 Generic Call Control Service State Transition Diagrams.......................................................................................53 
6.4.1 State Transition Diagrams for IpCallControlManager ...................................................................................53 
6.4.1.1 Active State ......................................................................................................................................................53 
6.4.1.2 Notification terminated State............................................................................................................................54 
6.4.2 State Transition Diagrams for IpCall ...............................................................................................................54 
6.4.2.1 Network Released State....................................................................................................................................54 
6.4.2.2 Finished State ...................................................................................................................................................55 
6.4.2.3 Application Released State...............................................................................................................................55 
6.4.2.4 No Parties State ................................................................................................................................................55 
6.4.2.5 Active State ......................................................................................................................................................55 
6.4.2.6 1 Party in Call State ..........................................................................................................................................55 
6.4.2.7 2 Parties in Call State .......................................................................................................................................55 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)4Release 4

6.4.2.8 Routing to Destination(s) State.........................................................................................................................56 
6.5 Generic Call Control Service Properties ................................................................................................................57 
6.5.1 List of Service Properties .................................................................................................................................57 
6.5.2 Service Property values for the CAMEL Service Environment. ......................................................................57 
6.6 Generic Call Control Data Definitions...................................................................................................................59 
6.6.1 Generic Call Control Event Notification Data Definitions...............................................................................59 
6.6.2 Generic Call Control Data Definitions .............................................................................................................61 

7 MultiParty Call Control Service............................................................................................................ 75 
7.1 Sequence Diagrams............................................................................................................................................75 
7.1.1 Application initiated call setup .........................................................................................................................75 
7.1.2 Call Barring 2 ...................................................................................................................................................76 
7.1.3 Complex Card Service......................................................................................................................................78 
7.2 Class Diagrams ......................................................................................................................................................81 
7.3 MultiParty Call Control Service Interface Classes ............................................................................................83 
7.3.1 Interface Class IpMultiPartyCallControlManager............................................................................................83 
7.3.2 Interface Class IpAppMultiPartyCallControlManager .....................................................................................87 
7.3.3 Interface Class IpMultiPartyCall ......................................................................................................................89 
7.3.4 Interface Class IpAppMultiPartyCall ...............................................................................................................94 
7.3.5 Interface Class IpCallLeg .................................................................................................................................97 
7.3.6 Interface Class IpAppCallLeg ........................................................................................................................104 
7.4 MultiParty Call Control Service State Transition Diagrams ................................................................................108 
7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager ...............................................................108 
7.4.1.1 Active State ....................................................................................................................................................108 
7.4.1.2 Interrupted State .............................................................................................................................................108 
7.4.1.3 Overview of allowed methods........................................................................................................................108 
Active 109 
7.4.2 State Transition Diagrams for IpMultiPartyCall............................................................................................109 
7.4.2.1 IDLE State ......................................................................................................................................................109 
7.4.2.2 ACTIVE State ................................................................................................................................................109 
7.4.2.3 FAULTY State ...............................................................................................................................................110 
7.4.2.4 RELEASED State...........................................................................................................................................110 
7.4.2.5 Overview of allowed methods........................................................................................................................110 
7.4.3 State Transition Diagrams for IpCallLeg.......................................................................................................110 
7.4.3.1 Idle State.........................................................................................................................................................111 
7.4.3.2 Routing State ..................................................................................................................................................111 
7.4.3.3 Connected State ..............................................................................................................................................111 
7.4.3.4 Failed or Disconnected State ..........................................................................................................................111 
7.4.3.5 Incoming State................................................................................................................................................112 
7.4.3.6 Progress State .................................................................................................................................................112 
7.4.3.7 Alerting State..................................................................................................................................................112 
7.4.3.8 Redirected State..............................................................................................................................................112 
7.4.3.9 Attached State.................................................................................................................................................112 
7.4.3.10 Detached State ..........................................................................................................................................112 
7.4.3.11 Overview of allowed methods ..................................................................................................................112 
7.5 Multi-Party Call Control Service Properties ........................................................................................................114 
7.5.1 List of Service Properties ...............................................................................................................................114 
7.5.2 Service Property values for the CAMEL Service Environment. ....................................................................114 
7.6 Multi-Party Call Control Data Definitions ...........................................................................................................116 
7.6.1 Event Notification Data Definitions ...............................................................................................................116 
7.6.2 Multi-Party Call Control Data Definitions .....................................................................................................116 

8 Common Call Control Data Types ...................................................................................................... 126 

Annex A (normative): OMG IDL Description of Call Control SCF....................................................... 137 

Annex B (informative): Differences between this draft and 3GPP TS 29.198 R99 ............................... 138 
B.1 Interface IpCallControlManager ..........................................................................................................................138 
B.2 Interface IpAppCallControlManager ...................................................................................................................138 
B.3 Interface IpCall ....................................................................................................................................................138 
B.4 Interface IpAppCall..............................................................................................................................................138 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)5Release 4

Annex C (informative): Change history .................................................................................................... 140 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)6Release 4

Foreword 
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP). 

The contents of the present document are subject to continuing work within the TSG and may change following formal 
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an 
identifying change of release date and an increase in version number as follows: 

Version x.y.z 

where: 

x the first digit: 

1 presented to TSG for information; 

2 presented to TSG for approval; 

3 or greater indicates TSG approved document under change control. 

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, 
updates, etc. 

z the third digit is incremented when editorial only changes have been incorporated in the document. 

Introduction 
The present document is part 4 of a multi-part TS covering the 3rd Generation Partnership Project: Technical 
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as 
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts: 

Part 1:  Overview 
Part 2:  Common Data Definitions 
Part 3:  Framework 
Part 4:  Call Control SCF 
Part 5:  User Interaction SCF 
Part 6:  Mobility SCF 
Part 7:  Terminal Capabilities SCF 
Part 8:  Data Session Control SCF 
Part 9:  Generic Messaging SCF (not part of 3GPP Release 4) 
Part 10:  Connectivity Manager SCF (not part of 3GPP Release 4) 
Part 11:  Account Management SCF 
Part 12:  Charging SCF 

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above. 
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.  
Also in case a Part is not supported in a Release, the numbering of the parts is maintained. 

OSA API specifications 29.198-family OSA API Mapping -  29.998-family 
29.198-1 Part 1: Overview 29.998-1 Part 1: Overview 
29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable 
29.198-3 Part 3: Framework 29.998-3 Not Applicable 

29.998-4-1 Subpart 1: Generic Call Control – CAP mapping 29.198-4 Part 4: Call Control SCF 
29.998-4-2  
29.998-5-1 Subpart 1: User Interaction – CAP mapping 
29.998-5-2  
29.998-5-3  

29.198-5 Part 5: User Interaction SCF 

29.998-5-4 Subpart 4: User Interaction – SMS mapping 
29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location – MAP mapping 
29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable 
29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control – CAP mapping 
29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable 
29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable 
29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable 
29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)7Release 4

1 Scope 
The present document is Part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open 
Service Access (OSA).  

The OSA specifications define an architecture that enables application developers to make use of network functionality 
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are 
contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2]. 

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects 
of the Call Control SCF are defined here, these being: 

• Sequence Diagrams 

• Class Diagrams 

• Interface specification plus detailed method descriptions 

• State Transition diagrams 

• Data definitions 

• IDL Description of the interfaces 

The process by which this task is accomplished is through the use of object modelling techniques described by the 
Unified Modelling Language (UML).  

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, 
in co-operation with the JAIN consortium.  

2 References 
The following documents contain provisions which, through reference in this text, constitute provisions of the present 
document. 

• References are either specific (identified by date of publication, edition number, version number, etc.) or 
non-specific. 

• For a specific reference, subsequent revisions do not apply. 

• For a non-specific reference, the latest version applies.  In the case of a reference to a 3GPP document (including 
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same 
Release as the present document. 

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1: 
Overview". 

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)". 

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)". 

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN". 

[5] ISO-4217:1995: "". 

[6] 3GPP TS 24.002: "GSM-UMTS Public Land Mobile Network (PLMN) Access Reference 
Configuration". 

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)". 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)8Release 4

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply. 

3.2 Abbreviations 
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply. 

4 Call Control SCF 
Two flavours of Call Control (CC) APIs have been included in Rel.4. These are the Generic Call Control (GCC) and the 
Multi-Party Call Control (MPCC). The GCC is the same API as was already present in the Release 99 specification 
(TS 29.198 v3.3.0) and is in principle able to satisfy the requirements on CC APIs for Release 4.  

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from 
JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are 
reflected in this API. For this it was necessary to break the inheritance that previously existed between GCC and 
MPCC. 

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the 
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected. 

The following clauses describe each aspect of the CC Service Capability Feature (SCF).  

The order is as follows: 

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.  

• The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another. 

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part. 

• The State Transition Diagrams (STD) show transition between states in the SCF.  The states and transitions are 
well-defined; either methods specified in the Interface specification or events occurring in the underlying networks 
cause state transitions.the progression of internal processes either in the application, or Gateway. 

• The Data definitions clause show a detailed expansion of each of the data types associated with the methods within 
the classes.  Note that some data types are used in other methods and classes and are therefore defined within the 
Common Data types part of this specification (29.198-2).  

5 The Service Interface Specifications 

5.1 Interface Specification Format 
This section defines the interfaces, methods and parameters that form a part of the  API specification. The Unified 
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is 
described below. 

5.1.1 Interface Class 

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters 
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with 
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>.  For 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)9Release 4

the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name 
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name> 

5.1.2 Method descriptions 

Each method (API method “call”) is described. All methods in the  API return a value of type TpResult, indicating, 
amongst other things, if the method invocation was sucessfully executed or not. 

Both synchronous and asynchronous methods are used in the  API. Asynchronous methods are identified by a 'Req' 
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' 
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer 
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism. 

5.1.3 Parameter descriptions 

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have 
a value when the method is called. Those described as 'out' are those that contain the return result of the method when 
the method returns. 

5.1.4 State Model 

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface. 

5.2 Base Interface 

5.2.1 Interface Class IpInterface 

All application, framework and service interfaces inherit from the following interface. This API Base  Interface does not 
provide any additional methods. 

<<Interface>> 

IpInterface 

 

 

5.3 Service Interfaces 

5.3.1 Overview 

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user 
interaction, messaging, mobility and connectivity management. 

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that 
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'. 

5.4 Generic Service Interface 

5.4.1 Interface Class IpService  

Inherits from: IpInterface  

All service interfaces inherit from the following interface.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)10Release 4

<<Interface>> 

IpService 

 

 

setCallback (appInterface : in IpInterfaceRef) : TpResult 

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult 

 

 

 

Method 
setCallback() 

This method specifies the reference address of the callback interface that a service uses to invoke methods on the 
application.  It is not allowed to invoke this method on an interface that uses SessionID’s.  

Parameters 

appInterface : in IpInterfaceRef 

Specifies a reference to the application interface, which is used for callbacks 

Raises 

TpCommonExceptions 

 

 

 

Method 
setCallbackWithSessionID() 

This method specifies the reference address of the application’s callback interface that a service uses for interactions 
associated with a specific session ID: e.g. a specific call, or call leg.  It is not allowed to invoke this method on an 
interface that does not uses SessionID’s.  

Parameters 

appInterface : in IpInterfaceRef 

Specifies a reference to the application interface, which is used for callbacks 

sessionID : in TpSessionID 

Specifies the session for which the service can invoke the application’s callback interface. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 

   



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)11Release 4

6 Generic Call Control Service 

6.1 Sequence Diagrams 

6.1.1 Additional Callbacks  

The following sequence diagram shows how an application can register two call back interfaces for the same set of 
events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is 
used instead.  

first  insta nce : 
(Logical View...

second instance : 
(L ogical V iew::IpA ...

 : IpAppCallControlManager  : IpAp pCal lCon trolMan ager  : IpCallControlManager

: new()

2: enableCallNotificat ion(   )

3: new()

4: enableCallNotification(   )

8: callEventNotify(    )

9: "forward event"

5: callEventNotify(    )

7: "call Notify result: failure"

6:  ’forward event’

  

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to 
handle callbacks for this first instance of the logic.  

2: The enableCallNotfication is associated with an applicationID.  The call control manager uses the applicationID to 
decide whether this is the same application.  

3: The second instance of the application is started on node 2. The application creates a new 
IpAppCallControlManager to handle callbacks for this second instance of the logic.  

4: The same enableCallNotfication request is sent as for the first instance of the logic.  Because both requests are 
associated with the same application, the second request is not rejected, but the specified callback object is stored as an 
additional callback.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)12Release 4

5: When the trigger occurs one of the first instance of the application is notified.  The gateway may have different 
policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of  round robin 
scheme.  

6: The event is forwarded to the first instance of the logic.  

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the 
call control manager.  

8: Based on this exception the call control manager will notify another instance of the application (if available).  

9: The event is forwarded to the second instance of the logic.  

 

6.1.2 Alarm Call  

The following sequence diagram shows a ’reminder message’, in the form of an alarm, being delivered to a customer as 
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the 
application could also trigger on events.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)13Release 4

 : 
IpCallControlManager

 : IpAppCall  : IpCall  : IpUICall : 
IpAppUIManager

 : 
IpAppUICall

 : (Logical 
View::IpA...

1: new()

2: createCall(  )

3: new()

4: routeReq(        )

5: routeRes(    )

9: sendInf oReq(      )

6: ’f orward ev ent’

7: createUICall()

8: new()

10: sendInf oRes(   )

11: ’f orward ev ent’

12: release( )

13: release(  )

  

1: This message is used to create an object implementing the IpAppCall interface.  

2: This message requests the object implementing the IpCallControlManager interface to create an object 
implementing the IpCall interface.  

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not 
exceeded) is met it is created.  

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to 
receive the ’reminder message’  

5: This message passes the result of the call being answered to its callback object.  

6: This message is used to forward the previous message to the IpAppLogic.  

7: The application requests a new UICall object that is associated with the call object.  

8: Assuming all criteria are met, a new UICall object is created by the service.  

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer’s call.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)14Release 4

10: When the announcement ends this is reported to the call back interface.  

11: The event is forwarded to the application logic.  

12: The application releases the UICall object, since no further announcements are required. Alternatively, the 
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have 
been implicitly released after the announcement was played.  

13: The application releases the call and all associated parties.  

 

6.1.3 Application Initiated Call  

The following sequence diagram shows an application creating a call between party A and party B. This sequence could 
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk 
to.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)15Release 4

 : 
IpCallControlManager

 : IpAppCall  : IpCall : (Logical 
View::IpA...

5: routeRes(   )

1: new()

2: createCall(  )
3: new()

4: routeReq(        )

7: routeReq(        )

8: routeRes(   )

6: ’forward event’

9: ’forward event’

10: deassignCall( )

  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)16Release 4

1: This message is used to create an object implementing the IpAppCall interface.  

2: This message requests the object implementing the IpCallControlManager interface to create an object 
implementing the IpCall interface.  

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not 
exceeded) is met, it is created.  

4: This message is used to route the call to the A subscriber (origination). In the message the application request 
response when the A party answers.  

5: This message indicates that the A party answered the call.  

6: This message forwards the previous message to the application logic.  

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or 
failure.  

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is 
automatically established between them.  

9: This message is used to forward the previous message to the IpAppLogic.  

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will 
continue in the network, but there will be no further communication between the call object and the application.  

 

6.1.4 Call Barring 1  

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received 
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The 
code is accepted and the call is routed to the original called party.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)17Release 4

 : (Logical 
iew::Ip...

 : IpAppCallContro lManager  : IpAppCall  : IpCall  : IpUICall : 
IpUIManager

 : 
IpCallControlManager

 : 
IpAppUICall

13: routeRes(   )

12: routeReq(        )

8: sendIn foAndCollectReq(      )

9: sendInfoAndCollectRes(    )

3: callEventNotify(    )

4: ’forward event’

: new()

1: new()

14: ’forward event’

10: ’forward event’

2: enableCallNotification(   )

6: createUICall(    ) 7: new()

11: release( )

15: ca llEnded(  )16: "forward event"

17: deassignCall( )

  

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for 
a password before the call is allowed to progress.  When a new call, that matches the event criteria set, arrives a 
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for 
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not 
shown) are used to create the call and associated call leg object.  

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.  

4: This message is used to forward the previous message to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to 
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the 
callEventNotify.  

6: This message is used to create a new UICall object. The reference to the call object is given when creating the 
UICall.  

7: Provided all the criteria are fulfilled, a new UICall object is created.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)18Release 4

8: The call barring service dialogue is invoked.  

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.  

10: This message is used to forward the previous message to the IpAppLogic.  

11: This message releases the UICall object.  

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.  

13: This message passes the result of the call being answered to its callback object.  

14: This message is used to forward the previous message  to the IpAppLogic  

15: When the call is terminated in the network, the application will receive a notification. This notification will always 
be received when the call is terminated by the network in a normal way, the application does not have to request this 
event explicitly.  

16: The event is forwarded to the application.  

17: The application must free the call related resources in the gateway by calling deassignCall.  

 

6.1.5 Number Translation 1  

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event 
being received by the framework.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)19Release 4

 : 
IpCallControlManager

 : IpAppCall  : IpCall : IpAppCallControlManager : (Logical 
View::IpA...

6: ’translate number’

7: routeReq(        )

8: routeRes(   )

3: callEventNot ify(    )

4: ’forward event’

5: new()

9: ’forward event’

1: new()

2: enableCallNotification(   )

10: deassignCall( )

  

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a number translation service, it is likely that only new call events within a certain address range will be enabled.  When 
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object 
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall 
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and 
associated call leg object.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)20Release 4

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.  

4: This message is used to forward message 3 to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to 
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 
3.  

6: This message invokes the number translation function.  

7: The returned translated number is used in message 7 to route the call towards the destination.  

8: This message passes the result of the call being answered to its callback object  

9: This message is used to forward the previous message to the IpAppLogic.  

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue 
in the network, but there will be no further communication between the call object and the application.  

 

6.1.6 Number Translation 1 (with callbacks)  

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event 
being received by the framework. 

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references 
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the 
sequences use that mechanism.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)21Release 4

 : 
IpCallControlManager

 : IpAppCall  : IpCall : IpAppCallControlManager : (Logical 
View::IpA...

10: routeRes(   )

4: callEventNot ify(    )

8: ’translate number’

9: routeReq(        )

5: ’forward event’

6: new()

11: ’forward event’

1: new()

2: enableCallNotification(   )

12: deassignCall( )

3: setCallback( )

7: setCallbackWithSessionID(  )

  

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a number translation service, it is likely that only new call events within a certain address range will be enabled.  When 
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object 
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)22Release 4

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and 
associated call leg object.  

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The 
CallControlManager reports the callEventNotify to referenced object only for enableCallNotification’s that do not have 
a explicit IpAppCallControlManager reference specified in the enableCallNotification.  

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.  

5: This message is used to forward message 4 to the IpAppLogic.  

6: This message is used by the application to create an object implementing the IpAppCall interface.  

7: This message is used to set the reference to the IpAppCall for this call.  

8: This message invokes the number translation function.  

9: The returned translated number is used in message 7 to route the call towards the destination.  

10: This message passes the result of the call being answered to its callback object  

11: This message is used to forward the previous message to the IpAppLogic.  

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue 
in the network, but there will be no further communication between the call object and the application.  

 

6.1.7 Number Translation 2  

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being 
received by the framework. If the translated number being routed to does not answer or is busy then the call is 
automatically released.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)23Release 4

 : (Logical 
View::IpA...

 : IpAppCallControlManager  :  IpAppCall  : IpCallControlManager  : IpCall

6: ’translate number’

9: ’forward event’
8:  routeRes(   )

:  routeReq(        )

10: release(  )

1: new()

3: callEventNotify(    )

4:  ’forward event ’

5: new()

2: enableCallNotification(   )

  

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a number translation service, it is likely that only new call events within a certain address range will be enabled.  When 
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the 
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load 
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg 
object.  

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.  

4: This message is used to forward the previous message to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to 
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the 
callEventNotify.  

6: This message invokes the number translation function.  

7: The returned translated number is used  to route the call towards the destination.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)24Release 4

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback 
in this message, indicating the unavailability of the called party.  

9: This message is used to forward the previous message to the IpAppLogic.  

10: The application takes the decision to release the call.  

 

6.1.8 Number Translation 3  

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being 
received by the framework. If the translated number being routed to does not answer or is busy then the call is 
automatically routed to a voice mailbox.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)25Release 4

 : IpCallControlManager : IpAppCall  : IpCall : IpAppCallControlManager : (Logical 
View::IpA...

8: routeRes(   )

6: ’translate number’

7: routeReq(        )

9: ’forward event’

10: ’translate number’

11: routeReq(        )

12: rou teRes(   )

13: ’forward event’

1 : new()

3: callEventNotify(    )

4: ’forward event’

5: new()

2: enableCallNotification(   )

14: deassignCall( )

  

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2:  This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a number translation service, it is likely that only new call events within a certain address range will be enabled.  When 
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the 
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)26Release 4

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg 
object.  

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.  

4: This message is used to forward the previous message to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to 
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the 
callEventNotify.  

6: This message invokes the number translation function.  

7: The returned translated number is used  to route the call towards the destination.  

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback, 
indicating the unavailability of the called party.  

9: This message is used to forward the previous message to the IpAppLogic.  

10: The application takes the decision to translate the number, but this time the number is translated to a number 
belonging to a voice mailbox system.  

11: This message routes the call towards the voice mailbox.  

12: This message passes the result of the call being answered to its callback object.  

13: This message is used to forward the previous message to the IpAppLogic.  

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue 
in the network, but there will be no further communication between the call object and the application.  

 

6.1.9 Number Translation 4  

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being 
received by the framework. Before the call is routed to the translated number, the application requests for all call related 
information to be delivered back to the application on completion of the call.   



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)27Release 4

 : IpCallControlManager: IpAppCall  : IpCall : IpAppCallControlManager: (Log ical 
iew::IpA...

6: ’translate number’

7: getCallInfoReq(  )

8: routeReq(        )

9: routeRes(   )

13: getCallInfoRes(  )
14: ’forward event’

10: ’forward event’

1: new()

3: callEventNotify(    )

: ’forward event’

5: new()

2: enableCallNotification(   )

5: deas signCall( )

11: callEnded(  )
12: "forward event"

  

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a number translation service, it is likely that only new call events within a certain address range will be enabled.  When 
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the 
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)28Release 4

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg 
object.  

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.  

4: This message is used to forward the previous message to the IpAppLogic.  

5:  This message is used by the application to create an object implementing the IpAppCall interface. The reference to 
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the 
callEventNotify.  

6:  This message invokes the number translation function.  

7: The application instructs the object implementing the IpCall interface to return all call related information once the 
call has been released.  

8: The returned translated number is used  to route the call towards the destination.  

9: This message passes the result of the call being answered to its callback object.  

10: This message is used to forward the previous message to the IpAppLogic.  

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object 
implementing the IpCall. This causes an event,  to be passed to the object implementing the IpAppCall object.  

12: This message is used to forward the previous message to the IpAppLogic.  

13: The application now waits for the call information to be sent. Now that the call has completed, the object 
implementing the IpCall interface passes the call information to its callback object.  

14: This message is used to forward the previous message to the IpAppLogic  

15: After the last information is received, the application deassigns the call. This will free the resources related to this 
call in the gateway.  

 

6.1.10 Number Translation5  

The following sequence diagram shows a simple number translation service which contains a status check function, 
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an 
incoming call, it checks the status of the user, and returns a busy code to the calling party.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)29Release 4

 : IpAppCall : 
IpAppCallControlManager

: IpCallIpAppLogic  : 
IpCallControlManager

1: new()

2: enableCallNotification(   )

3: callEventNotify(    )

4: ’forward event ’

5: new()

6: ’check status’

7: appropriate release cause

  

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a number translation service, it is likely that only new call events within a certain address range will be enabled. 

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object 
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall 
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and 
associated call leg object.   

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.   

4: This message is used to forward message 3 to the IpAppLogic.   

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to 
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 
3.   

6: This message invokes the status checking function.   

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is 
busy.  

 

6.1.11 Prepaid  

This sequence shows a Pre-paid application. 

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain 
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the 
following sequence the end-user will received an announcement before his final timeslice.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)30Release 4

Prepaid : 
(Logi cal View. ..

 : IpAppCallControlManager  : 
IpCallControlManager

:  I pCal l  : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification(   )

3: cal lEventNotify(    )4: "forward event"

5: new()

7: routeReq(        )

8: superviseCallRes(   )
9: "forward event"

10: superviseCallReq(   )

11: superviseCallRes(   )
12: "forward event"

13: superviseCallReq(   )

14: superviseCallRes(   )

15: "forward event"

6: superviseCallReq(   )

17: sendInfoReq(      )

18: sendInfoRes(   )
19: "forward event"

21: superviseCallReq(   )

22: superviseCallRes(   )23: "forward event:

24: release(  )

16: createUICall(    )

20: release( )

  

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager 
interface.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)31Release 4

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a pre-paid service, it is likely that only new call events within a certain address range will be enabled.  When a new call, 
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the 
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load 
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg 
object.  

3: The incoming call triggers the Pre-Paid Application (PPA).  

4: The message is forwarded to the application.  

5: A new object on the application side for the Generic Call object is created  

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period 
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.  

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call 
duration supervision period, towards the GW which forwards it to the network.   

8: At the end of each supervision period the application is informed and a new period is started.  

9: The message is forwarded to the application.  

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.  

11: At the end of each supervision period the application is informed and a new period is started.  

12: The message is forwarded to the application.  

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.  

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played 
only to the leg of the A-party, the B-party will not hear the announcement.  

15: The message is forwarded to the application.  

16: A new UICall object is created and associated with the controlling leg.  

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit. 
The B-subscriber will not hear the announcement.  

18: When the announcement is completed the application is informed.  

19: The message is forwarded to the application.  

20: The application releases the UICall object.  

21: The user does not terminate so the application terminates the call after the next supervision period.  

22: The supervision period ends  

23: The event is forwarded to the logic.  

24: The application terminates the call. Since the user interaction is already explicitly terminated no 
userInteractionFaultDetected is sent to the application.  

 

6.1.12 Pre-Paid with Advice of Charge (AoC)  

This sequence shows a Pre-paid application that uses the Advice of Charge feature. 

The application will send the charging information before the actual call setup and when during the call the charging 
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an 
application in the end-user terminal to display the charges for the call, depending on the information received from the 
application.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)32Release 4

Prepaid : 
(Logical Vie...

 : IpAppCallControlManager  : 
pCal lCon trolManage r

 : IpCall  : IpUICall : IpUIManager : IpAppUICal l : IpAppCall

1: new()

2: enableCallNotification(   )

3: callEventNotify(    )4: "forward event"

8: routeReq(        )

11: superviseCallReq(   )

15: superviseCallReq(   )

7: superviseCal lReq(   )

24: superviseCallReq(   )

27: release(  )

21: sendInfoReq(      )

18: new()

22: sendInfoRes(   )
23: "forward event"

5: new()

9: superviseCallRes(   )
10: "forward event"

12: superviseCallRes(   )
13: "forward event"

14: setAdviceOfCharge(   )

16: superviseCallRes(   )
17: "forward event"

25: superviseCallRes(   )
26: "forward event:

6: setAdviceOfCharge(   )

19: createUICall(    ) 20: new()

28: userInteractionFaultDetected(  )

  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)33Release 4

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a pre-paid service, it is likely that only new call events within a certain address range will be enabled.  When a new call, 
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the 
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load 
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg 
object.  

3: The incoming call triggers the Pre-Paid Application (PPA).  

4: The message is forwarded to the application.  

5: A new object on the application side for the Call object is created  

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA 
contains ALL the tariff information and knows how to charge the user).  

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)  

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period 
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.  

8: The application requests to route the call to the destination address.  

9: At the end of each supervision period the application is informed and a new period is started.  

10: The message is forwarded to the application.  

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.  

12: At the end of each supervision period the application is informed and a new period is started.  

13: The message is forwarded to the application.  

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again, 
at the tariff  switch time,the  network will send AoC information to the end-user.  

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.  

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is 
played only to the leg of the A-party, the B-party will not hear the announcement.  

17: The message is forwarded to the application.  

18: The application creates a new call back interface for the User interaction messages.  

19: A new UI Call object that will handle playing of the announcement needs to be created  

20: The Gateway creates a new UI call object that will handle playing of the announcement.  

21: With this message the announcement is played to the calling party.  

22: The user indicates that the call should continue.  

23: The message is forwarded to the application.  

24: The user does not terminate so the application terminates the call after the next supervision period.  

25: The user is out of credit and the application is informed.  

26: The message is forwarded to the application.  

27: With this message the application requests to release the call.  

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The 
UICall object is terminated in the gateway and no further communication is possible between the UICall and the 
application.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)34Release 4

 

 

 

6.2 Class Diagrams 
The generic call control service consists of two packages, one for the interfaces on the application side and one for 
interfaces on the service side. 

The class diagrams in the following figures show the interfaces that make up the generic call control application 
package and the generic call control service package. Communication between these packages is indicated with the 
<<uses>> associations; e.g.,  the IpCallControlManager interface uses the IpAppGenericCallControlManager , by 
means of calling callback methods. 

This class diagram shows the interfaces of the generic call control application package and their relations to the 
interfaces of the generic call control service package.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)35Release 4

IpAppCall

routeRes()
routeErr()
getCallInfoRes()
getCallInfoErr()
superviseCallRes()
superviseCallErr()
callFaultDetected()
getMoreDialledDigitsRes()
getMoreDialledDigitsErr()
callEnded()

(from gccs)

<<Interface>>

IpCal l
(from gccs)

<<Interface>>
IpCallControlManager

(from gccs)

<Interface>>

<<uses>>

IpInterface
<Interface>>

1 0..n

IpAppCallControlManager

callAborted()
callEventNotify()
callNoti ficationInterrupted()
callNoti ficationContinued()
callOverloadEncountered()
callOverloadCeased()

(from gccs)

<Interface>>

<<uses>>

1 0..n

  

Figure: Application Interfaces  

 

 

 

This class diagram shows the interfaces of the generic call control service package.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)36Release 4

IpCallControlManager

createCall()
enableCallNotification()
disableCallNotification()
setCallLoadControl()
changeCallNotification()
getCriteria()

(from gccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

<<Interface>>

IpCall

routeReq()
release()
deassignCall()
getCal lInfoReq()
setCal lChargePlan()
setAdviceOfCharge()
getMoreDial ledDigitsReq()
superviseCallReq()

(from gccs)

<<Interface>>

1 0..n

  

Figure: Service Interfaces  

 

 

6.3 Generic Call Control Service Interface Classes 
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third 
party model, which allows calls to be instantiated from the network and routed through the network. 

The GCCS supports enough functionality to allow call routing and call management for today’s Intelligent Network 
(IN) services in the case of a switched telephony network, or equivalent for packet based networks. 

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T 
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation 
Protocol, or any other call control technology.  

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call. 

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the 
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can 
have different views on the same physical call, e.g., one application for the originating side and another application for 
the terminating side. The applications will not be aware of each other, all ’communication’ between the applications will 
be by means of network signalling. The API currently does not specify any feature interaction mechanisms. 

* a call leg object. The leg object represents a logical association between a call and an address. The relationship 
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed. 
Before that the leg object is IDLE and not yet associated with the address.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)37Release 4

* an address. The address logically represents a party in the call. 

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not 
addressed. 

The call object is used to establish a relation between a number of parties by creating a leg for each party within the 
call. 

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the 
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks). 

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer 
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same 
call. I.e., only legs that are attached can ’speak’ to each other. A leg can have a number of states, depending on the 
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that 
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established). 
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call. 

Some networks distinguish between controlling and passive legs. By definition the call will be released when the 
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call. 
However, there is currently no way the application can influence whether a Leg is controlling or not. 

There are two ways for an application to get the control of a call. The application can request to be notified of calls that 
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can 
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from 
the application. 

For the generic call control service, only a subset of the model is used; the API for generic call control does not give 
explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service. 
Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is 
defined here as ’being routed’ or connected. 

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network. 
Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this 
way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle 
responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback 
mechanism. 

 

6.3.1 Interface Class IpCallControlManager  

Inherits from: IpService  

This interface is the ’service manager’ interface for the Generic Call Control Service.  The generic call control manager 
interface provides the management functions to the generic call control service. The application programmer can use 
this interface to provide overload control functionality, create call objects and to enable or disable call-related event 
notifications.  

<<Interface>> 

IpCallControlManager 

 

 

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult 

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in 
TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult 

disableCallNotification (assignmentID : in TpAssignmentID) : TpResult 

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in 
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)38Release 4

TpResult 

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : 
TpResult 

getCriteria (eventCriteria : out TpCallEventCriteriaResultSetRef) : TpResult 

 

 

 

Method 
createCall() 

This method is used to create a new  call object. An IpAppCallControlManager should already have been passed to the 
IpCallControlManager, otherwise the call control will not be able to report a callAborted() 

to the application (the application should invoke setCallback() if it wishes to ensure this). 

  

Parameters  

appCall : in IpAppCallRef 

Specifies the application interface for callbacks from the call created. 

callReference : out TpCallIdentifierRef 

Specifies the interface reference and sessionID of the call created. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
enableCallNotification() 

This method is used to enable call notifications so that events can be sent to the application. This is the first step an 
application has to do to get initial notification of calls happening in the network. When such an event happens, the 
application will be informed by callEventNotify(). In case the application is interested in other events during the context 
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the 
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is 
setup by the application).  

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when 
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the 
application can indicate it wishes to be informed when a call is made to any number starting with 800. 

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused 
with P_GCCS_INVALID_CRITERIA.The criteria are said to overlap if both originating and terminating ranges overlap 
and the same number plan is used and the same CallNotificationType is used. 

If the same application requests two notifications with exactly the same criteria but different callback references, the 
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The 
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used. 
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway 
will use as callback the callback that has been registered by setCallBack().  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)39Release 4

Parameters  

appCallControlManager : in IpAppCallControlManagerRef 

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If 
set to NULL, the application interface defaults to the interface specified via the setCallback() method. 

eventCriteria : in TpCallEventCriteria 

Specifies the event specific criteria used by the application to define the event required. Only events that meet these 
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", 
"busy". Individual addresses or address ranges may be specified for destination and/or origination.  

assignmentID : out TpAssignmentIDRef 

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
disableCallNotification() 

This method is used by the application to disable call notifications.   

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() 
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the 
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of 
them will be disabled. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
setCallLoadControl() 

This method imposes or removes load control on calls made to a particular address range within the generic call control 
service. The address matching mechanism is similar as defined for TpCallEventCriteria.  

Parameters  

duration : in TpDuration 

Specifies the duration for which the load control should be set. 

A duration of 0 indicates that the load control should be removed. 

A duration of -1 indicates an infinite duration (i.e., until disabled by the application) 

A duration of -2 indicates the network default duration. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)40Release 4

mechanism : in TpCallLoadControlMechanism 

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, 
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero. 

treatment : in TpCallTreatment 

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control 
duration is set to zero. 

addressRange : in TpAddressRange 

Specifies the address or address range to which the overload control should be applied or removed. 

assignmentID : out TpAssignmentIDRef 

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the 
callOverlloadEncountered and callOverloadCeased methods with the request. 

Raises 

TpGeneralException,TpGCCSException 

 
 

Method 
changeCallNotification() 

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored 
criteria associated with the specified assignementID will be replaced with the specified criteria.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have 
been registered under this assignment ID both of them will be changed. 

eventCriteria : in TpCallEventCriteria 

Specifies the new set of event specific criteria used by the application to define the event required. Only events that 
meet these criteria are reported. 

Raises 

TpGeneralException,TpGCCSException 

 
 

Method 
getCriteria() 

This method is used by the application to query the event criteria set with enableCallNotification or 
changeCallNotification.  

Parameters  

eventCriteria : out TpCallEventCriteriaResultSetRef 

Specifies the event specific criteria used by the application to define the event required. Only events that meet these 
criteria are reported. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)41Release 4

Raises 

TpGeneralException,TpGCCSException 

 

 
 

 

6.3.2 Interface Class IpAppCallControlManager  

Inherits from: IpInterface  

The generic call control manager application interface provides the application call control management functions to the 
generic call control service.  

<<Interface>> 

IpAppCallControlManager 

 

 

callAborted (callReference : in TpSessionID) : TpResult 

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in 
TpAssignmentID, appCall : out IpAppCallRefRef) : TpResult 

callNotificationInterrupted () : TpResult 

callNotificationContinued () : TpResult 

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult 

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult 

 

 

 

Method 
callAborted() 

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No 
further communication will be possible between the call and application.  

Parameters  

callReference : in TpSessionID 

Specifies the sessionID of call  that has aborted or terminated abnormally. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
callEventNotify() 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)42Release 4

This method notifies the application of the arrival of a call-related event.  

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of 
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration 
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded() 
shall be invoked, giving a release cause of 102 (Recovery on timer expiry). 

When this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPT, the application writer 
should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through an 
explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.  

Parameters  

callReference : in TpCallIdentifier 

Specifies the reference to the call interface to which the notification relates.  This parameter will be null if the 
notification is in NOTIFY mode. 

eventInfo : in TpCallEventInfo 

Specifies data associated with this event. 

assignmentID : in TpAssignmentID 

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment 
id to associate events with event specific criteria and to act accordingly. 

appCall : out IpAppCallRefRef 

Specifies a reference to the application interface which implements the callback interface for the new call. This 
parameter will be null if the notification is in NOTIFY mode. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
callNotificationInterrupted() 

This method indicates to the application that all event notifications have been temporary interrupted (for example, due 
to faults detected). 

Note that more permanent failures are reported via the Framework (integrity management).  

Parameters  
No Parameters were identified for this method 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
callNotificationContinued() 

This method indicates to the application that event notifications will again be possible.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)43Release 4

Parameters  
No Parameters were identified for this method 

 
 

Method 
callOverloadEncountered() 

This method indicates that the network has detected overload and may have automatically imposed load control on calls 
requested to a particular address range or calls made to a particular destination within the call control service.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for 
within which the overload has been encountered. 

Raises 

TpGeneralException,TpGCCSException 

 
 

Method 
callOverloadCeased() 

This method indicates that the network has detected that the overload has ceased and has automatically removed any 
load controls on calls requested to a particular address range or calls made to a particular destination within the call 
control service.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for 
within which the overload has been ceased 

Raises 

TpGeneralException,TpGCCSException 

 

 
 

 

6.3.3 Interface Class IpCall  

Inherits from: IpService  

The generic Call provides the possibility to control the call routing, to request information from the call, control the 
charging of the call, to release the call and to supervise the call.  It does not give the possibility to control the legs 
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the 
latter as well by the multi-media call.  The call is limited to two party calls, although it is possible to provide ’follow-on’ 
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating 
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)44Release 4

<<Interface>> 

IpCall 

 

 

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress 
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, 
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLegSessionID : out 
TpSessionIDRef) : TpResult 

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult 

deassignCall (callSessionID : in TpSessionID) : TpResult 

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult 

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult 

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : 
TpResult 

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult 

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in 
TpCallSuperviseTreatment) : TpResult 

 

 

 

Method 
routeReq() 

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.  

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to 
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, 
otherwise the network or gateway provided numbers will be used. 

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this 
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

responseRequested : in TpCallReportRequestSet 

Specifies the set of observed events that will result in zero or more  routeRes() being generated. 

E.g., when both answer and disconnect is monitored the result can be received two times.  

If the application wants to control the call (in whatever sense) it shall enable event reports 

         

targetAddress : in TpAddress 

Specifies the destination party to which the call leg should be routed. 

originatingAddress : in TpAddress 

Specifies the address of the originating (calling) party. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)45Release 4

originalDestinationAddress : in TpAddress 

Specifies the original destination address of the call. 

redirectingAddress : in TpAddress 

Specifies the address from which the call was last redirected. 

appInfo : in TpCallAppInfoSet 

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service 
identities and interaction indicators).     

callLegSessionID : out TpSessionIDRef 

Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID 
will be returned in the routeRes or Err. This allows the application to correlate the request and the result. 

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call 
control service. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
release() 

This method requests the release of the call object and associated objects. The call will also be terminated in the 
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these 
reports will still be sent to the application. 

The application should always either release or deassign the call when it is finished with the call, unless a 
callFaultDetected is received by the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

cause : in TpCallReleaseCause 

Specifies the cause of the release. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
deassignCall() 

This method requests that the relationship between the application and the call and associated objects be de-assigned. It 
leaves the call in progress, however, it purges the specified call object so that the application has no further control of 
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports 
requested, then these reports will be disabled and any related information discarded. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)46Release 4

The application should always either release or deassign the call when it is finished with the call, unless 
callFaultDetected is received by the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
getCallInfoReq() 

This asynchronous method requests information associated with the call to be provided at the appropriate time (for 
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of 
reports can be requested; a final report or intermediate reports. 

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is 
required to be sent to the application at the end of the call. The call information will be sent after any call event reports. 

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the 
originating party is still available the application can still initiate a follow-on call using routeReq.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callInfoRequested : in TpCallInfoType 

Specifies the call information that is requested. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
setCallChargePlan() 

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. 
Depending on the operator the method can also be used to change the charge plan for ongoing calls.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callChargePlan : in TpCallChargePlan 

Specifies the charge plan to use. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)47Release 4

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
setAdviceOfCharge() 

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this 
information.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call.  

aOCInfo : in TpAoCInfo 

Specifies two sets of Advice of Charge parameter. 

tariffSwitch : in TpDuration 

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid. 

Raises 

TpGeneralException,TpGCCSException 

 
 

Method 
getMoreDialledDigitsReq() 

This asynchronous method requests the call control service to collect further digits and return them to the application. 
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or 
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled 
digits in the event data.  

The application should use this method if it requires more dialled digits, e.g. to perform screening.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

length : in TpInt32 

Specifies the maximum number of digits to collect.  

Raises 

TpGeneralException, TpGCCSException 

 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)48Release 4

Method 
superviseCallReq() 

The application calls this method to supervise a call. The application can set a granted connection time for this call. If 
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will 
start as soon as the call is answered by the B-party or the user interaction system.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

time : in TpDuration 

Specifies the granted time in milliseconds for the connection. 

treatment : in TpCallSuperviseTreatment 

Specifies how the network should react after the granted connection time expired. 

Raises 

TpGCCSException,TpGeneralException 

 

 
 

 

6.3.4 Interface Class IpAppCall  

Inherits from: IpInterface  

The generic call application interface is implemented by the client application developer and is used to handle call 
request responses and state reports.  

<<Interface>> 

IpAppCall 

 

 

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in 
TpSessionID) : TpResult 

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in 
TpSessionID) : TpResult 

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult 

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in 
TpDuration) : TpResult 

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult 

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult 

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)49Release 4

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult 

 

 

 

Method 
routeRes() 

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the 
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.). 

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED,  

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a 
specified time period (the duration of which forms a part of the service level agreement), then the call in the network 
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

eventReport : in TpCallReport 

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and 
time, monitoring mode and event specific information such as release cause. 

callLegSessionID : in TpSessionID 

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can 
be used to correlate the response with the request. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
routeErr() 

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call 
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were 
incorrect, the request was refused, etc.).  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

callLegSessionID : in TpSessionID 

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can 
be used to correlate the error with the request. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)50Release 4

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
getCallInfoRes() 

This asynchronous method reports time information of the finished call or call attempt as well as release cause 
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging 
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has 
been disconnected or a routing failure has been encountered.     

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callInfoReport : in TpCallInfoReport 

Specifies the call information requested. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
getCallInfoErr() 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
superviseCallRes() 

This asynchronous method reports a call supervision event to the application when it has indicated it’s interest in these 
kind of events. 

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is 
invoked as a response to the request also when a tariff switch happens in the network during an active call.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)51Release 4

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call 

report : in TpCallSuperviseReport 

Specifies the situation which triggered the sending of the call supervision response. 

usedTime : in TpDuration 

Specifies the used time for the call supervision (in milliseconds). 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
superviseCallErr() 

This asynchronous method reports a call supervision error to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
callFaultDetected() 

This method indicates to the application that a fault in the network has been detected. The call may or may not have 
been terminated. 

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be 
forwarded to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call in which the fault has been detected. 

fault : in TpCallFault 

Specifies the fault that has been detected. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)52Release 4

Raises 

TpGCCSException,TpGeneralException 

 
 

Method 
getMoreDialledDigitsRes() 

This asynchronous method returns the collected digits to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

digits : in TpString 

Specifies the additional dialled digits if the string length is greater than zero. 

Raises 

TpGeneralException,TpGCCSException 

 
 

Method 
getMoreDialledDigitsErr() 

This asynchronous method reports an error in collecting digits to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

Raises 

TpGeneralException,TpGCCSException 

 
 

Method 
callEnded() 

This method indicates to the application that the call has terminated in the network. However, the application may still 
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object 
after having received the callEnded. 

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)53Release 4

Parameters  

callSessionID : in TpSessionID 

Specifies the call sessionID. 

report : in TpCallEndedReport 

Specifies the reason the call is terminated. 

Raises 

TpGeneralException,TpGCCSException 

 
 

6.4 Generic Call Control Service State Transition Diagrams 
 

6.4.1 State Transition Diagrams for IpCallControlManager  

The state transition diagram shows the application view on the Call Control Manager object.  

Act ive

Creat ion of 
CallControlManager 
by Service Factory

Notification terminated

"new"

enableCallNotificat ion

disableCallNotification

"a call object has terminated abnormally" ÎpAppCallControlManager.callAborted

"arrival  of call related event"[ noti fication active for this call event ] / 
create a Call object ÎpAppCallControlManager.callEventNotify

disableCallNotification
"a call object has terminated abnormally" 

ÎpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"
 ÎpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 IpAppCallControlManager.callNotificationInterrupted

createCall / create a Call object

  

Figure : Application view on the Call Control Manager  

6.4.1.1 Active State 

In this state a relation between the Application and the Generic Call Control Service has been established. The state 
allows the applicatoin to indicate that it is interested in call related events. In case such an event occurs, the Call Control 
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the 
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related 
events by calling disableCallNotification(). 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)54Release 4

6.4.1.2 Notification terminated State 

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification() 
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the 
application receives more notifications from the network than defined in the Service Level Agreement. Another 
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this 
state no requests for new notifications will be accepted. 

 

6.4.2 State Transition Diagrams for IpCall  

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state 
transition diagram valid for 3GPP (UMTS) release 99.  

Network Released

Finished

Applicat ion 
Released

release
deassignCall

timeout ĉallFaultDetected("timeout on release")

In state No Parties and Finished, a timer 
should prevent the object from occupuing 
resources.
Upon expiry of this timer, callEnded() should 
be invoked with a release cause of 102 
(Recovery on timer expiry ).  In case when no 
IpAppCall is available on which to invoke 
callEnded(), callAborted() shall be invoked 
on the IpAppCallControlManager as this is 
an abnormal termination

Active

2 Parties in 
Call

1 Party in 
Call

2 Parties in 
Call

1 Party in 
Call

etCal lChargePlan
superviseCallReq

getCallInfoReq

setAdviceOfCharge

IpAppCallControlManager.callEventNotify

routeReq[ number of routing requests < 2 ]

"disconnect from called party"[ monitor mode = 
nterrupt ]  ̂ routeRes, getCall InfoRes,  

superviseCallRes

"answer"

"connection to called party unsuccessful"[ monitor mode = interrupt ] r̂outeRes

"routing aborted or invalid address" r̂outeErr

deassignCall

release

"call ends : calling party disconnects" ^callEnded
"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects"[ monitor for this event ] ^callEnded, routeRes(party disconnect)

"fault detected"[ fault cannot be communicated with network event ] ĉallFaultDetected
"call ends: calling party disconnects"[ no monitor for this event ] ^callEnded

"requested information ready" 
ĝetCallInfoRes, superviseCallRes

[ no reports  requested with 
getCallInfoReq AND 
superviseCallReq ]

"fault in retrieval of information" ĝetCallInfoErr, superviseCallErr

deassignCall

[ no reports requested with getCallInfoReq AND 
superviseCallReq ]

"requested information ready" ĝetCallInfoRes, 
superviseCallRes

release

"fault in retrieval of information" ĝetCallInfoErr, superviseCallErr

"call supervision event" ŝuperviseCallRes

"network event received for which was monitored[ routeRes ]

  

Figure : 3GPP  

6.4.2.1 Network Released State 

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() 
and / or superviseCallReq().  The information will be returned to the application by invoking the methods 
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are 
used.In case the application has not requested additional call related information immediately a transition is made to 
state No Parties. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)55Release 4

6.4.2.2 Finished State 

In this state the call has ended and no call related information is to be send to the application. The application can only 
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release 
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is 
also responsible for destroying it when the object is no longer needed. 

6.4.2.3 Application Released State 

In this state the application has requested to release the Call object and the Gateway collects the possilbe call 
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested 
additional call related information the Call object is destroyed immediately. 

6.4.2.4 No Parties State 

In this state the Call object has been created. The application can request the gateway for a certain type of charging of 
the call by calling setCallChargePlan(). The application can request for charging related information by calling 
getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is 
also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge(). 

6.4.2.5 Active State 

In this state a call between two parties is being setup or present. Refer to the substates for more details.  The application 
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge 
information by calling setAdviceOfCharge(). 

6.4.2.6 1 Party in Call State 

When the Call is in this state a calling party is present. The application can now request that a connection to a called 
party be established by calling the method routeReq().  

In this state the application can also request the gateway for a certain type of charging of the call by calling 
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The 
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of 
routeReq(). 

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway 
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the 
calling party abandons the call after the application has invoked routeReq() but before the call has actually been 
established, the gateway informs the application by invoking callEnded(). 

When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not 
be established because the application supplied an invalid address or the connection to the called party was unsuccessful 
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state   

In this state user interaction is possible unless there is an outstanding routing request. 

6.4.2.7 2 Parties in Call State 

A connection between two parties has been established. 

In case the calling party disconnects, the gateway informs the application by invoking callEnded(). 

When the called party disconnects different situations apply: 

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the 
application is informed with routeRes with indication that the called party has disconnected and all requested reports are 
sent to the application. The application now again has control of the call. 

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network 
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded(). 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)56Release 4

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the 
callEnded() operation and a transition is made to the Network Released state. 

In this state user interaction is possible, depending on the underlying network. 

6.4.2.8 Routing to Destination(s) State 

In this state there is at least one outstanding routeReq. 

 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)57Release 4

6.5 Generic Call Control Service Properties 

6.5.1 List of Service Properties 

The following table lists properties relevant for the GCC API.   

Property Type Description / Interpretation 
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by 

which applications are initiated. 

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events 
the application can request for during the context of a call. 

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g. 
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP}) 

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call 
object can be used in the IpUIManager.createUICall() operation. 

Value = FALSE: No User interaction on call level is supported. 

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call . 

Value = FALSE: User Interaction can be performed in case there is only one party in the 
call. 

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type 
TpMediaType : P_AUDIO, P_VIDEO, P_DATA 

 

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are 
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the 
SCS. 

Property Type Description 
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating 

notifications it applies to the terminating number, for originating 
notifications it applies only to the originating number. 

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating and/or 
terminating triggers in the ECN. Set is: 

P_ORIGINATING 

P_TERMINATING 

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or 
notify mode. Set is: 

P_INTERRUPT 

P_NOTIFY 

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for 
legs in an incoming call. Allowed value set: 

{P_ORIGINAL_CALLED_PARTY_NUMBER, 

P_REDIRECTING_NUMBER, 

P_TARGET_NUMBER, 

P_CALLING_PARTY_NUMBER}. 

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator. 
Allowed values: 

{P_CHARGE_PER_TIME, 

P_TRANSPARANT_CHARGING, 

P_CHARGE_PLAN} 

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated 
with integers) to a logical network chargeplan indicator. When the 
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans 
in this mapping are allowed. 

 

6.5.2 Service Property values for the CAMEL Service Environment. 

Implementations of the Generic Call Control API relying on the CSE  shall have the Service Properties outlined above 
set to the indicated values : 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)58Release 4

 

P_OPERATION_SET = { 
“IpCallControlManager.enableCallNotification”, 
“IpCallControlManager.disableCallNotification”, 
“IpCallControlManager.changeCallNotification”, 
“IpCallControlManager.getCriteria”, 
“IpCallControlManager.setCallLoadControl”, 
“IpCall.routeReq”, 
“IpCall.release”, 
“IpCall.deassignCall”, 
“IpCall.getCallInfoReq”, 
“IpCall.setCallChargePlan”, 
“IpCall.setAdviceOfCharge”, 
“IpCall.superviseCallReq”, 
} 
 
P_TRIGGERING_EVENT_TYPES = { 
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT, 
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT, 
P_EVENT_GCCS_CALLED_PARTY_BUSY, 
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE, 
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY, 
P_EVENT_GCCS_ROUTE_SELECT_FAILURE, 
} 
 
P_DYNAMIC_EVENT_TYPES = { 
P_CALL_REPORT_ANSWER, 
P_CALL_REPORT_BUSY, 
P_CALL_REPORT_NO_ANSWER, 
P_CALL_REPORT_DISCONNECT, 
P_CALL_REPORT_ROUTING_FAILURE 
} 
 
P_ADDRESS_PLAN = { 
P_ADDRESS_PLAN_E164 
} 
 
P_UI_CALL_BASED = { 
TRUE 
} 
 
P_UI_AT_ALL_STAGES = { 
FALSE 
} 
 
P_MEDIA_TYPE = { 
P_AUDIO 
} 

 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)59Release 4

6.6 Generic Call Control Data Definitions 
The present document provides the GCC data definitions necessary to support the  API specification. 

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text 
represents Hypertext links. 

The general format of a  Data Definition specification is described below. 

• Data Type 

This shows the name of the data type. 

• Description 

This describes the data type. 

• Tabular Specification 

This specifies the data types and values of the data type. 

• Example 

If relevant, an example is shown to illustrate the data type. 

6.6.1 Generic Call Control Event Notification Data Definitions 

TpCallEventName 

Defines the names of event being notified. The following events are supported. The values may be combined by a 
logical ’OR’ function when requesting the notifications. Additional events that can be requested / received during the 
call process are found in the TpCallReportType data-type.  

Name Value Description 
P_EVENT_NAME_UNDEFINED 0 Undefined 

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event 
This can be used for hot-line features. In case this event is set 
in the TpCallEventCriteria, only the originating address(es) 
may be specified in the criteria. 

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected 
The network has collected the information from the A-party, 
but not yet analysed the information. The number can still be 
incomplete. Applications might set notifications for this event 
when part of the number analysis needs to be done in the 
application (see also the getMoreDialledDigits method on the 
call class). 

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed 
The dialled number is a valid and complete number in the 
network. 

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy 

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable  (e.g. the called party has 
a mobile telephone that is currently switched off). 

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party 

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call 

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call. 

 

TpCallNotificationType 

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call. 

Name Value Description 
P_ORIGINATING 1 Indicates that the notification is related to the originating user in the call. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)60Release 4

P_TERMINATING 2 Indicates that the notification is related to the terminating user in the call. 

 

TpCallMonitorMode 

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. 

Name Value Description 
P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the CC service and call processing is 

interrupted.  The application is notified of the event and call processing 
resumes following an appropriate API call or network event (such as a 

call release). 
P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the CC service but not intercepted. 

The application is notified of the event and call processing continues. 
P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event. 

 

TpCallEventCriteria 

 

Defines the Sequence of Data Elements that specify the criteria for a event notification. 

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the 
criteria. 

Sequence Element 
Name 

Sequence Element 
Type 

Description 

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is 
requested. 

OriginatingAddress TpAddressRange Defines the origination address or a address range for which the notification is 
requested. 

CallEventName TpCallEventName Name of the event(s) 

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the terminating user in the 
call. 

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification. 
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a 

legal value here. 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)61Release 4

TpCallEventInfo 

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event 
notification. 

Sequence Element Name Sequence Element Type 
DestinationAddress TpAddress 

OriginatingAddress TpAddress 

OriginalDestinationAddress TpAddress 

RedirectingAddress TpAddress 

CallAppInfo TpCallAppInfoSet 

CallEventName TpCallEventName 

CallNotificationType TpCallNotificationType 

MonitorMode TpCallMonitorMode 

 

6.6.2 Generic Call Control Data Definitions 

IpCall 

Defines the address of an IpCall Interface. 

IpCallRef 

Defines a Reference to type IpCall. 

IpAppCall 

Defines the address of an IpAppCall Interface. 

IpAppCallRef 

Defines a Reference to type IpAppCall 

IpAppCallRefRef 

Defines a Reference to type IpAppCallRef. 

TpCallIdentifierRef 

Defines a Reference to type TpCallIdentifier. 

TpCallIdentifier 

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object  

Sequence Element 
Name 

Sequence Element 
Type 

Sequence Element Description 

CallReference IpCallRef This element specifies the interface reference for the call object. 

CallSessionID TpSessionID This element specifies the call session ID of the call. 

 

IpAppCallControlManager 

Defines the address of an IpAppCallControlManager Interface. 

IpAppCallControlManagerRef 

Defines a Reference to type IpAppCallControlManager. 

IpCallControlManager 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)62Release 4

Defines the address of an IpCallControlManager Interface. 

IpCallControlManagerRef 

Defines a Reference to type IpCallControlManager. 

TpCallAlertingMechanism 
This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values 
of this data type are operator specific. 

TpCallAppInfo 

Defines the Tagged Choice of Data Elements that specify application-related call information. 

 Tag Element Type  
 TpCallAppInfoType  

 

Tag Element 
Value 

Choice Element 
Type 

Choice Element Name 

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism 

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType 

   

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService 

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService 

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory 

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress 

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo 

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress 

   

   

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)63Release 4

TpCallAppInfoType 

Defines the type of call application-related specific information. 

Name Value Description 
P_CALL_APP_UNDEFINED 0 Undefined 

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use 

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN) 

   

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)  

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s unrestricted data). 

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party 

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties 

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information 

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address 

   

   

 

TpCallAppInfoSet 

Defines a Numbered Set of Data Elements of TpCallAppInfo. 

TpCallBearerService 
This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, 
and 3GPP TS 22.002 [4]). 

Name Value Description 
P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at this time 

P_CALL_BEARER_SERVICE_SPEECH 1 Speech 

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information 

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information 

P_CALL_BEARER_SERVICE_AUDIO 4 3.1 kHz audio 

P_CALL_BEARER_SERVICE_ 
DIGITALUNRESTRICTEDTONES 

5 Unrestricted digital information with tomes/announcements 

P_CALL_BEARER_SERVICE_VIDEO 6 Video 

 

TpCallChargePlan 

Defines the Sequence of Data Elements that specify the charge plan for the call. 

Sequence Element Name Sequence Element Type Description 
ChargeOrderType TpCallChargeOrderCategory Type of charging to be 

performed: time based charging 
or transparent charging or pre-

defined charge plan. 

ChargePerTime TpChargePerTime Charge per time.  

Only applicable when time based 
charging is selected. 

TransparentCharge TpOctetSet Operator specific charge plan 
specification, e.g. charging 
table name / charging table 
entry. The associated charge 

plan data will be send 
transparently to the charging 

records.  

Only applicable when 
transparent charging is 

selected. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)64Release 4

ChargePlan TpInt32 Pre-defined charge plan. 
Example of the charge plan set 
from which the application can 
choose could be : (0 = normal 
user, 1 = silver card user, 2 = 

gold card user). 

Only applicable when 
transparent charging is 

selected. 

Currency TpString 

 

Currency unit according to ISO-
4217:1995 

AdditionalInfo TpOctetSet Descriptive string which is 
sent to the billing system 

without prior evaluation. Could 
be included in the ticket. 

PartyToCharge TpCallPartyToCharge Party to be charged. 

Sequence Element 
Name 

Sequence Element 
Type 

Description 

ChargeOrderType TpCallChargeOrder Charge order 

Currency TpString Currency unit according to ISO-4217:1995 [5] 

AdditionalInfo TpString Descriptive string which is sent to the billing system without prior 
evaluation. Could be included in the ticket. 

 

Valid Currencies are: 

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,  

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,  

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,  

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,  

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,  

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,  

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,  

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,  

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,  

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,  

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,  

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,  

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,  

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,  

YUM, ZAL, ZAR, ZMK, ZRN, ZWD. 

 

XXX is used for transactions where no currency is involved.  

 

TpCallPartyToCharge 

Defines the party to be charged 

Name  Value Description 
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. 

For application initiated calls this indicates that 
the first party requested to be in the call will be 

charged. 

P_CALL_PARTY_DESTINATION 1 Called party, i.e. destination party 

 

TpCallChargeOrder 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)65Release 4

Defines the Tagged Choice of Data Elements that specify the charge plan for the call. 

 Tag Element Type  
 TpCallChargeOrderCategory  

 

Tag Element Value Choice Element Type Choice Element Name 
P_CALL_CHARGE_PER_TIME TpChargePerTime ChargePerTime 

P_CALL_CHARGE_NETWORK TpString NetworkCharge 

 

TpCallChargeOrderCategory 

Defines the type of charging to be applied 

Name  Value Description 
P_CALL_CHARGE_PER_TIME 0 Charge per time 

P_CALL_CHARGE_NETWORK 1 Operator specific charge plan specification, e.g. charging table name / charging table entry. 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)66Release 4

TpCallError 

Defines the Sequence of Data Elements that specify the additional information relating to a call error.  

Sequence Element 
Name 

Sequence Element 
Type 

ErrorTime TpDateAndTime 

ErrorType TpCallErrorType 

AdditionalErrorInfo TpCallAdditionalErrorInfo 

 

TpCallAdditionalErrorInfo 

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific 
information. This is also used to specify call leg errors and information errors. 

 Tag Element Type  
 TpCallErrorType  

 

Tag Element 
Value 

Choice Element 
Type 

Choice Element 
Name 

P_CALL_ERROR_UNDEFINED NULL Undefined 

   

   

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress 

P_CALL_ERROR_INVALID_STATE NULL Undefined 

   

 

TpCallErrorType 

Defines a specific call error. 

Name Value Description 
P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or was refused, but no specific reason can be given. 

   

   

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an invalid address was given 

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid state for the requested operation 

   

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)67Release 4

TpCallFault 

Defines the cause of the call fault detected. 

Name Value Description 
P_CALL_FAULT_UNDEFINED 0 Undefined 

   

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has been sent to the application, but the 
application did not explicitly release or deassign the call object, within a 

specified time. 
The timer value is operator specific. 

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not instruct the gateway how to 
handle the call within a specified time, after the gateway reported an event that 

was requested by the application in interrupt mode. 
The timer value is operator specific. 

 

 

TpCallEndedReport 

Defines the Sequence of Data Elements that specify the reason for the call ending. 

Sequence Element 
Name 

Sequence Element 
Type 

 

CallLegSessionID TpSessionID The leg that initiated the release of the call. 
If the call release was not initiated by the leg, then this value is set to –1. 

Cause TpCallReleaseCause The cause of  the call ending. 

 

 

TpCallInfoReport 

Defines the Sequence of Data Elements that specify the call information requested. Information that was not 
requested is invalid.  

Sequence Element 
Name 

Sequence Element 
Type 

Description 

CallInfoType TpCallInfoType The type of call report. 

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on call, was 
started. 

CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the 
resource. 

This data element is only valid when information on user 
interaction is reported. 

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the 
destination (i.e. when the destination answered the call).  

If the destination did not answer, the time is set to an 
empty string. 

This data element is invalid when information on user 
interaction is reported with an intermediate report. 

CallEndTime TpDateAndTime The date and time when the call or follow-on call or user 
interaction was terminated. 

Cause TpCallReleaseCause The cause of the termination. 

 

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated 
address. This means that either the destination related information is present or the resource related information, but not 
both. 

TpCallInfoType 

Defines the type of call  information requested and reported. The values may be combined by a logical ’OR’ function. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)68Release 4

Name Value Description 
P_CALL_INFO_UNDEFINED 00h Undefined 

P_CALL_INFO_TIMES 01h Relevant call times 

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause 

P_CALL_INFO_INTERMEDIATE 04h Send only intermediate reports. When this is not specified the information report will only be sent 
when the call has ended. When intermediate reports are requested a report will be generated 

between follow-on calls, i.e. when a party leaves the call. 

 

 

TpCallNetworkAccessType 

This data defines the bearer capabilities associated with the call. (3GPP TS 24.002 [6]) This information is network 
operator specific and may not always be available because there is no standard protocol to retrieve the information. 

 

Name Value Description 
P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this time 
P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS 
P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN 
P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet 
P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDLS 
P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless 

 

TpCallPartyCategory 
This data type defines the category of a calling party (Q.763: Calling Party Category / Called Party Category). 

Name Value Description 
P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party’s category unknown at this time 
P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French 
P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English 
P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German 
P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian 
P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish 
P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber 
P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority 
P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data) 
P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call 
P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone 

 

TpCallReleaseCause 

Defines the Sequence of Data Elements that specify the cause of the release of a call.  

Sequence Element 
Name 

Sequence Element 
Type 

Value TpInt32 
Location TpInt32 

NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850. 
 

The following example was taken from Q.850 to aid understanding: 

Equivalent Call Report Cause Value Set by 
Application 

Cause Value from 
Network 

P_CALL_REPORT_BUSY 17 17 

P_CALL_REPORT_NO_ANSWER 19 18,19,21 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)69Release 4

P_CALL_REPORT_DISCONNECT 16 16 

P_CALL_REPORT_REDIRECTED 23 23 

P_CALL_REPORT_SERVICE_CODE 31 NA 

P_CALL_REPORT_ROUTING_FAILURE 3 Any other value 

 

TpCallServiceCode 
Defines the Sequence of Data Elements that specify the service code and type of service code received during 
a call. The service code type defines how the value string should be interpreted.  

Sequence Element 
Name 

Sequence Element 
Type 

CallServiceCodeType TpCallServiceCodeType 
ServiceCodeValue TpString 

TpCallServiceCodeType 

Defines the different types of service codes that can be received during the call. 

Name Value Description 
P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The corresponding string is operator specific. 
P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the call.  

The corresponding string is an ascii representation of the received digits. 
P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received. The corresponding string contains the facility 

information element as defined in ITU Q.932. 
P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The associated string contains the content of the user-

to-user information element. 
P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.  

The corresponding string is an ascii representation of the entered digits. 
P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by some digits.  

The corresponding string is an ascii representation of the entered digits. 

 

TpCallTeleService 
This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High 
Layer Compatibility Information, and 3GPP TS 22.003 [7]). 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)70Release 4

Name Value Description 
P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time 
P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony 
P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3 
P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I 
P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III 
P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex 
P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via gateways or interworking units 
P_CALL_TELE_SERVICE_TELEX 7 Telex service 
P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems 
P_CALL_TELE_SERVICE_OSI 9 OSI application 
P_CALL_TELE_SERVICE_FTAM 10 FTAM application 
P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony 
P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing 
P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing 
P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services 
P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221 
P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221 
P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated with an active 3.1 kHz audio or speech 

call. 
P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic. 
P_CALL_TELE_SERVICE_EMERGENCY_CALLS 19 Emergency Calls 
P_CALL_TELE_SERVICE_SMS_MT_PP 20 Short message MT/PP 
P_CALL_TELE_SERVICE_SMS_MO_PP 21 Short message MO/PP 
P_CALL_TELE_SERVICE_CELL_BROADCAST 22 Cell Broadcast Service 
P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3 23 Alternate speech and facsimile group 3 
P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3 24 Automatic Facsimile group 3 
P_CALL_TELE_SERVICE_VOICE_GROUP_CALL 25 Voice Group Call Service 
P_CALL_TELE_SERVICE_VOICE_BROADCAST 26 Voice Broadcast Service 

 

TpCallSuperviseReport 

Defines the responses from the CC service for calls that are supervised. The values may be combined by a logical ’OR’ 
function. 

Name Value Description 
P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired 

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry or call party release. In case the called 
party disconnects but a follow-on call can still be made also this indication is used. 

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning  tone has been applied.  

This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT 

P_CALL_SUPERVISE_UI_FINISHED 08h The user interaction has finished. 

 

TpCallSuperviseTreatment 

Defines the treatment of the call by the CC service when the call supervision timer expires. The values may be 
combined by a logical ’OR’ function. 

Name Value Description 
P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision timer expires. 
P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call supervision timer expires. 
P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating  party when the call supervision timer expires.  

If call release is requested, then the call will be released following the tone after an 
administered time period. 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)71Release 4

TpCallReport 

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.  

Sequence Element 
Name 

Sequence Element 
Type 

MonitorMode TpCallMonitorMode 
CallEventTime TpDateAndTime 
CallReportType TpCallReportType 

AdditionalReportInfo TpCallAdditionalReportInfo 

 

TpCallAdditionalReportInfo 

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types 
of reports. 

 Tag Element Type  
 TpCallReportType  

 

Tag Element Value Choice Element Type Choice Element Name 
P_CALL_REPORT_UNDEFINED NULL Undefined 

P_CALL_REPORT_PROGRESS NULL Undefined 

P_CALL_REPORT_ALERTING NULL Undefined 

P_CALL_REPORT_ANSWER NULL Undefined 

P_CALL_REPORT_BUSY TpCallReleaseCause Busy 

P_CALL_REPORT_NO_ANSWER NULL Undefined 

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect 

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress 

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode 

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure 

   

 

TpCallReportRequest 

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.  

Sequence Element Name Sequence Element Type 
MonitorMode TpCallMonitorMode 

CallReportType TpCallReportType 
AdditionalReportCriteria TpCallAdditionalReportCriteria 

 

TpCallAdditionalReportCriteria 

Defines the Tagged Choice of Data Elements that specify specific criteria.  

 Tag Element Type  
 TpCallReportType  

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)72Release 4

Tag Element 
Value 

Choice Element 
Type 

Choice Element 
Name 

P_CALL_REPORT_UNDEFINED NULL Undefined 
P_CALL_REPORT_PROGRESS NULL Undefined 
P_CALL_REPORT_ALERTING NULL Undefined 
P_CALL_REPORT_ANSWER NULL Undefined 
P_CALL_REPORT_BUSY NULL Undefined 
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration 
P_CALL_REPORT_DISCONNECT NULL Undefined 
P_CALL_REPORT_REDIRECTED NULL Undefined 
P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode 
P_CALL_REPORT_ROUTING_FAILURE NULL Undefined 
   

 

TpCallReportRequestSet 

Defines a Numbered Set of Data Elements of TpCallReportRequest. 

TpCallReportType 

Defines a specific call event report type. 

Name Value Description 
P_CALL_REPORT_UNDEFINED 0 Undefined. 
P_CALL_REPORT_PROGRESS 1 Call routing progress event:an indication from the network that progress has been made in 

routing the call to the requested call party.  This message may be sent more than once, or 
may not be sent at all by the gateway with respect to routing a given call leg to a given 

address. 
P_CALL_REPORT_ALERTING 2 Call is alerting at the call party. 
P_CALL_REPORT_ANSWER 3 Call answered at address. 
P_CALL_REPORT_BUSY 4 Called address refused call due to busy. 
P_CALL_REPORT_NO_ANSWER 5 No answer at called address. 
P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has 

ended. When the call is ended, the callEnded method is called. This event can occur both 
when the called party hangs up, or when the application explicitly releases the leg using 

IpCallLeg::release() This cannot occur when the app explicitly releases the call leg and the 
call.The call party has disconnected. 

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network that the call has been 
redirected to a new address. 

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received. 
P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible. 

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more than once during the routing 
of a call. 

 

TpCallLoadControlMechanism 

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters. 

 Tag Element Type  
 TpCallLoadControlMechanismType  

 

Tag Element 
Value 

Choice Element 
Type 

Choice Element 
Name 

P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval 

 

TpCallLoadControlIntervalRate 

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in 
milliseconds) between calls that are admitted.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)73Release 4

Name Value Description 
P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval 

(do not admit any calls) 
 1 - 60000 Duration in milliseconds 

 

TpCallLoadControlMechanismType 

Defines the type of call load control mechanism to use. 

Name Value Description 
P_CALL_LOAD_CONTROL_PER_INTERVAL 1 admit one call per interval 

 

TpCallTreatment 

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the 
network (for example, call which are not admitted by the call load control mechanism). 

Sequence Element 
Name 

Sequence Element 
Type 

ReleaseCause TpCallReleaseCause 
AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo 

 

TpCallAdditionalTreatmentInfo 

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party. 

 Tag Element Type  
 TpCallTreatmentType  

 

Tag Element 
Value 

Choice Element 
Type 

Choice Element 
Name 

P_CALL_TREATMENT_DEFAULT NULL Undefined 
P_CALL_TREATMENT_RELEASE NULL Undefined 
P_CALL_TREATMENT_SIAR TpUICallInfoID InformationToSend 

 

TpCallTreatmentType 

Defines the treatment for calls that will be handled only by the network. 

Name Value Description 
P_CALL_TREATMENT_DEFAULT 0 Default treatment 
P_CALL_TREATMENT_RELEASE 1 Release the call 
P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the call (Send Info & Release) 

 

TpCallEventCriteriaResultSetRef 

Defines a refernce to TpCallEventCriteriaResultSet. 

TpCallEventCriteriaResultSet 

Defines a set of TpCallEventCriteriaResult. 

TpCallEventCriteriaResult 

Defines a sequence of data elements that specify a requested call event notification criteria with the associated 
assignmentID.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)74Release 4

Sequence Element 
Name 

Sequence Element 
Type 

Sequence Element 
Description 

EventCriteria TpCallEventCriteria The event criteria that were specified by the application. 
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification. 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)75Release 4

  

7 MultiParty Call Control Service 
The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted 
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations. 
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported 
methods is given in the chapter 7.5. 

7.1 Sequence Diagrams 

7.1.1 Application initiated call setup  

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is 
created first. Then party A’s call leg is created before triggers are set on it for answer and then routed to the call. On 
answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being 
played, party B’s call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled 
and party B is routed to the call.  

PartyB : 
IpCallLeg

 : IpMultiPartyCallControlManager : 
IpAppMultiPartyCall

: 
IpMultiPartyCall

PartyA : 
IpCal lLeg

 : (Logical 
View::Ip...

4: setCallback( )

1: new()

2: createCall(in IpAppMultiParty CallRef )

3: new()

7: ev entReportReq(  )

 : 
IpAppUICall

 : IpUICall

1: sendI nf oReq(      )

15: ev entReportReq(  )

18: abortActionReq(  )

5: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionProperties)
6: new()

13: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionProperties)

14: new()

AppPartyA : 
(IpAppMultiPartyCallLeg)

AppPartyB : 
IpAppMultiPartyCal lLeg)

9: ev entReportRes ()

7: ev ent Repor tR es ()

8: routeReq( )

16: routeReq( )

12: sendInf oRes(   )

 : 
IpUIManager

10: createUICall(    )

19: deassignCall( )

  

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.  

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object 
implementing the IpMultiPartyCall interface.  

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control 
values not exceeded) is met it is created.  

4: Once the object implementing the IpMultiPartyCall interface is created it  is used to pass the reference of the object 
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)76Release 4

IpMultiPartyCall interface.  Note that the reference to the callback interface could already have been passed in the 
createCall.  

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.  

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to 
create it.  

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.  

8: The call is then routed to the originating call leg.  

9: Assuming the call is answered, the object implementing party A’s IpCallLeg interface passes the result of the call 
being answered back to its callback object. This message is then forwarded via another message (not shown) to the 
object implementing the IpAppLogic interface.  

10: A UICall object is created and associated with the just created call leg.  

11: This message is used to inform party A that the call is being routed to party B.  

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded 
via another message (not shown) to the object implementing the IpAppLogic interface.  

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.  

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.  

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.  

16: The call is then routed to the call leg.  

17: Assuming the call is answered, the object implementing party B’s IpCallLeg interface passes the result of the call 
being answered back to its callback object. This message is then forwarded via another message (not shown) to the 
object implementing the IpAppLogic interface.  

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party 
A.  

19: The application deassigns the call. This will also deassign the associated user interaction.  

 

7.1.2 Call Barring 2  

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received 
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The 
code is rejected and the call is cleared.   



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)77Release 4

 : (Logical 
View::IpA...

 : 
IpAppMultiPartyCallControlManager

: 
IpAppMultiPartyCall

 : 
IpMultiPartyCall

 : IpUICall : 
IpUIManager

 : IpMultiPartyCallControlManager : 
IpAppUICall

8: sendInf oAndCollectReq(      )

9: s endInf oAndCollectRes(    )

11: sendInf oReq(      )

12: sendInf oRes(   )

5: release(  )

1: new()

3: reportNotif ication (    )

4: ’f orward ev ent’

5: new()

10: ’f orward ev ent’

13: ’f orward ev ent’

2: c reateN otif ic ation (   )

7: c reateU ICal l(    )

14: release( )

6: getCallLegs(  )

  

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager 
interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for 
a password before the call is allowed to progress.  When a new call, that matches the event criteria, arrives a message 
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for 
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other 
messages (not shown) are used to create the call and associated call leg object.  

3: This message is used to pass the new call event to the object implementing the 
IpAppMultiPartyCallControlManager interface.  

4: This message is used to forward message 3 to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The 
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return 
parameter of the callEventNotify.  

6: The application requests an list of all the legs currently in the call.  

7: This message is used to create a UICall object that is associated with the incoming  leg of the call.  

8: The call barring service dialogue is invoked.  

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.  

10: This message is used to forward the previous message to the IpAppLogic  

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the 
call cannot be completed.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)78Release 4

12: This message passes the indication that the additional dialogue has been sent.  

13: This message is used to forward the previous message to the IpAppLogic.  

14: No more UI is required, so the UICall object is released.  

15: This message is used by the application to clear the call.  

 

7.1.3 Complex Card Service  

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being 
received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN 
code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of ’#5’ is then set 
on the controlling leg (the calling party’s leg) such that if the calling party enters a ’#5’ an event will be sent to the 
application. The call is then routed to the destination party. Sometime during the call the calling party enters ’#5’ which 
causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to 
which it is then routed.   



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)79Release 4

 : (Logical 
View::IpAppLogic)

 : 
IpAppMultiPartyCallControlManager

 : 
IpAppMultiPartyCall

 : 
IpMultiPartyCall

 : IpUICallPartyB’ : 
IpCallLeg

AppParty B’ : 
IpAppCallLeg

AppPartyB : 
IpAppCallLeg

 : 
IpUIManager

AppPartyA : 
IpAppCallLeg

PartyB : 
IpCallLeg

: 
IpMultiPartyCallControlManager

PartyA : 
IpCallLeg

 : 
IpAppUICall

27: createAndRouteCall( )

8: sendInf oAndCollectReq(      )

10: sendInf oAndCollectReq(      )

9: sendInfoAndC ollectRes(    )

11: sendInf oAndCollectRes(    )

13: ev entReportReq(  )

1: new()

3: reportNotif ication (    )

4: ’f orward ev ent’

5: new()

23: release(  )

21: ev entReportRes(in TpSessionID)

24: sendInf oAndCollectReq(      )

25: sendInf oAndCollectRes(    )

12: setCallbackWithSessionID(  )

: createNotif icat ion (   )

7: createUICall(    )

6: getCallLegsf ()

15: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInfoSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionProperties)

17: routeReq( )

16: ev entReportReq(  )

14: new()

20: attachMedia(  )

18: ev entReportRes(in TpSessionID)
19: "f orward ev ent"

22: "f orward ev ent"

30: ev entReport Res(in TpSessionID)
31: "f orward ev ent"

32: callEnded( )
33: "f orward ev ent"

34: userInteracti onFaultDetected( )
35: "f orward ev ent"

36: deassignCall( )

26: new ()

28: new ()

29: ev entReportRes( )

  

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager 
interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a call barring service, it is likely that all new call events destined for a particular address or address range result in the 
caller being prompted for a password before the call is allowed to progress.  When a new call, that matches the event 
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the 
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)80Release 4

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and 
associated call leg object.  

3: This message is used to pass the new call event to the object implementing the 
IpAppMultiPartyCallControlManager interface.  

4: This message is used to forward message 3 to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The 
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return 
parameter of message 3.  

6: This message retuns the call legs currently in the call. In principle a reference to the call leg of the calling party is 
already obtained by the application when it was notified of the new call event.  

7: This message is used to associate a user interaction object with the calling party.  

8: The initial card service dialogue is invoked using this message.  

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this 
message and eventually forwarded via another message (not shown) to the IpAppLogic.  

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.  

11: The result of the dialogue, which in this case is the destination address, is returned  and eventually forwarded via 
another message (not shown) to the IpAppLogic.  

12: This message is used to forward the address of the callback object.  

13: The trigger for follow-on calls is set (on service code).  

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg 
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the 
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.  

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the 
network.  

16: The application requests to be notified when the leg is answered.  

17: The application routes the leg. As a result the network will try to reach the associated party.  

18: When the B-party answers the call, the application is notified.  

19: The event is forwarded to the application logic.  

20: Legs that are created and routed explicitly  are by default in state detached. This means that the media is not 
connected to the other parties in the call. In order to allow inband communication between the new party and the other 
parties in the call the media have to be explicitly attached.  

21: At some time during the call the calling party enters ’#5’. This causes this message to be sent to the object 
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.  

22: The event is forwarded to the application.  

23: This message releases the called party.  

24: Another user interaction dialogue is invoked.  

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via 
another message (not shown) to the IpAppLogic.  

26: A new AppCallLeg is created to receive callbacks for another leg.  

27: The call is then forward routed to the new destination party.  

28: As a result a new Callleg object is created.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)81Release 4

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via 
another message (not shown) to the IpAppLogic.  

30: When the A-party terminates the application is informed.  

31: The event is forwarded to the application logic.  

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this 
message.  

33: The event is forwarded to the application logic.  

34: Since the user interaction object were not released at the moment that the call terminated, the application receives 
this message to indicate that the UI resources are released in the gateway and no further communication is possible.  

35: The event is forwarded to the application logic.  

36: The application deassigns the call object.  

 

 

 

7.2 Class Diagrams 
The multiparty call control service consists of two packages, one for the interfaces on the application side and one for 
interfaces on the service side. 

The class diagrams in the following figures show the interfaces that make up the multi party call control application 
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call 
control application package and their relations to the interfaces of the multi-party call control service package.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)82Release 4

IpAppMultiPartyCallControlManager

reportNotification()
cal lAborted()
managerInterrupted()
managerResumed()
cal lOverloadEncountered()
cal lOverloadCeased()

(from mpccs)

<<Interface>>
IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
cal lFaultDetected()
cal lEnded()
createAndRouteCallLegErr()

(f rom  mpccs)

<<Interface>>

pM ulti PartyCall Cont rolM anager

createCall()
createNotification()
destroyNotification()
changeNotification()
getNotification()
setCallLoadControl()

(from mpccs)

<<Interface>>
IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

IpCallLe g

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddress()
continueProcessing()
getMoreDial ledDigitsReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

1 ..n

<<uses>>

1 0..n

IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
getMoreDial ledDigitsRes()
getMoreDial ledDigitsErr()
superviseRes()
superviseErr()
connectionEnded()

(from mpccs)

<<Interface>>

1 0..n

<<uses>>

1 0..n

<<uses>>

pInte rface

(from csapi)

<<Interface>>

1 0..n

  

Figure: Application Interfaces  

 

 

 

This class diagram shows the interfaces of the multi-party call control service package.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)83Release 4

IpMultiPartyCallContro
lManager

createCall()
createNotification()
destroyNotificatio...
changeNotificatio...
getNotification()
setCallLoadContro...

(from mpccs)

<<Interface>> IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
getMoreDialledDigitsR...
getMoreDialledDigitsErr()
superviseRes()
superviseErr()
connectionEnded()

(from mpccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessio...

(from csapi)

<<Interface>>

IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegRe...
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

1 ..n 1 0..n

  

Figure: Service Interfaces  

 

 

7.3 MultiParty Call Control Service Interface Classes 
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg 
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be 
connected simultaneously to the same call. 

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, 
IpCallLeg  interfaces that interface to services provided by the network. Some methods are asynchronous, in that they 
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more 
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement 
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism. 

 

7.3.1 Interface Class IpMultiPartyCallControlManager  

Inherits from: IpService  

This interface is the ’service manager’ interface for the Multi-party Call Control Service.  The multi-party call control 
manager interface provides the management functions to the multi-party call control service. The application 
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable 
call-related event notifications.  The action table associated with the STD shows in what state the 
IpMultiPartyCallControlManager must be if a method can successfully complete.  In other words, if the 
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)84Release 4

<<Interface>> 

IpMultiPartyCallControlManager 

 

 

createCall (appCall : in IpAppMultiPartyCallRef, callReference : out TpMultiPartyCallIdentifierRef) : TpResult 

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest 
: in TpCallNotificationRequest, assignmentID : out TpAssignmentIDRef) : TpResult 

destroyNotification (assignmentID : in TpAssignmentID) : TpResult 

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : 
TpResult 

getNotification (notificationsRequested : out TpNotificationRequestedSetRef) : TpResult 

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in 
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : 
TpResult 

 

 

 

Method 
createCall() 

This method is used to create a new  call object. An IpAppMultiPartyCallControlManager should already have been 
passed to the IpMultiPartyCallControlManager, 

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke 
setCallback() if it wishes to ensure this).  

Parameters  

appCall : in IpAppMultiPartyCallRef 

Specifies the application interface for callbacks from the call created. 

callReference : out TpMultiPartyCallIdentifierRef 

Specifies the interface reference and sessionID of the call created. 

Raises 

TpCommonExceptions 

 
 

Method 
createNotification() 

This method is used to enable call notifications so that events can be sent to the application. This is the first step an 
application has to do to get initial notifications of calls happening in the network. When such an event happens, the 
application will be informed by reportNotification(). In case the application is interested in other events during the 
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the 
eventReportReq() method on the call leg object. The application will get access to the call object when it receives thye 
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application). 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)85Release 4

The createNotification method is purely intended for applications to indicate their interest to be notified when certain 
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application 
can indicate it wishes to be informed when a call is made to any number starting with 800.  

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused 
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges 
overlap and the same number plan is used and the same NotificationCallType is used. 

If the same application requests two notifications with exactly the same criteria but different callback references, the 
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The 
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used. 
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway 
will use as 

callback the callback that has been registered by setCallback().  

Parameters  

appCallControlManager : in IpAppMultiPartyCallControlManagerRef 

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If 
set to NULL, the application interface defaults to the interface specified via the setCallback() method. 

notificationRequest : in TpCallNotificationRequest 

Specifies the event specific criteria used by the application to define the event required. Only events that meet these 
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", 
"busy". Individual addresses or address ranges may be specified for destination and/or origination.  

assignmentID : out TpAssignmentIDRef 

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification. 

Raises 

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, 
P_INVALID_EVENT_TYPE 

 
 

Method 
destroyNotification() 

This method is used by the application to disable call notifications.   

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() 
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the 
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of 
them will be disabled. 

Raises 

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID 

 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)86Release 4

Method 
changeNotification() 

This method is used by the application to change the event criteria introduced with createNotification. Any stored 
criteria associated with the specified assignementID will be replaced with the specified criteria.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have 
been registered under this assigment ID both of them will be disabled. 

notificationRequest : in TpCallNotificationRequest 

Specifies the new set of event specific criteria used by the application to define the event required. Only events that 
meet these criteria are reported. 

Raises 

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, 
P_INVALID_EVENT_TYPE 

 
 

Method 
getNotification() 

This method is used by the application to query the event criteria set with createNotification or changeNotification.  

Parameters  

notificationsRequested : out TpNotificationRequestedSetRef 

Specifies the nofications that have been requested by the application. 

Raises 

TpCommonExceptions 

 
 

Method 
setCallLoadControl() 

This method imposes or removes load control on calls made to a particular address range within the call control service. 
The address matching mechanism is similar as defined for TpCallEventCriteria.  

Parameters  

duration : in TpDuration 

Specifies the duration for which the load control should be set. 

A duration of 0 indicates that the load control should be removed. 

A duration of -1 indicates an infinite duration (i.e., until disabled by the application) 

A duration of -2 indicates the network default duration. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)87Release 4

mechanism : in TpCallLoadControlMechanism 

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, 
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero. 

treatment : in TpCallTreatment 

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control 
duration is set to zero. 

addressRange : in TpAddressRange 

Specifies the address or address range to which the overload control should be applied or removed. 

assignmentID : out TpAssignmentIDRef 

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the 
callOverlloadEncountered and callOverloadCeased methods with the request. 

Raises 

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN 

 

 
 

 

7.3.2 Interface Class IpAppMultiPartyCallControlManager  

Inherits from: IpInterface  

The Multi-Party call control manager application interface provides the application call control management functions 
to the Multi-Party call control service.  

<<Interface>> 

IpAppMultiPartyCallControlManager 

 

 

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in 
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID, 
appCallBack : out TpAppMultiPartyCallBackRef) : TpResult 

callAborted (callReference : in TpSessionID) : TpResult 

managerInterrupted () : TpResult 

managerResumed () : TpResult 

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult 

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult 

 

 

 

Method 
reportNotification() 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)88Release 4

This method notifies the application of the arrival of a call-related event. 

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of 
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration 
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded() 
shall be invoked, giving a release cause of P_TIMER_EXPIRY.  

Parameters  

callReference : in TpMultiPartyCallIdentifier 

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the 
notification is being given in NOTIFY mode. 

callLegReferenceSet : in TpCallLegIdentifierSet 

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call 
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the 
notificationInfo can be found on who’s behalf the notification was sent. 

However, this parameter will be null if the notification is being given in NOTIFY mode.  

notificationInfo : in TpCallNotificationInfo 

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification ). 

assignmentID : in TpAssignmentID 

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment 
id to associate events with event specific criteria and to act accordingly. 

appCallBack : out TpAppMultiPartyCallBackRef 

Specifies references to the application interface which implements the callback interface for the new call and/or new 
call leg.  This parameter may be null if the notification is being given in NOTIFY mode. 

 
 

Method 
callAborted() 

This method indicates to the application that the call object has aborted or terminated abnormally. No further 
communication will be possible between the call and application.  

Parameters  

callReference : in TpSessionID 

Specifies the sessionID of call  that has aborted or terminated abnormally. 

 
 

Method 
managerInterrupted() 

This method indicates to the application that event notifications and method invocations have been temporary 
interrupted (for example, due to network resources unavailable). 

Note that more permanent failures are reported via the Framework (integrity management).  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)89Release 4

Parameters  
No Parameters were identified for this method 

 
 

Method 
managerResumed() 

This method indicates to the application that event notifications possibleand method invocations are enabled.  

Parameters  
No Parameters were identified for this method 

 
 

Method 
callOverloadEncountered() 

This method indicates that the network has detected overload and may have automatically imposed load control on calls 
requested to a particular address range or calls made to a particular destination within the call control service.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for 
within which the overload has been encountered. 

 
 

Method 
callOverloadCeased() 

This method indicates that the network has detected that the overload has ceased and has automatically removed any 
load controls on calls requested to a particular address range or calls made to a particular destination within the call 
control service.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for 
within which the overload has been ceased 

 

 
 

 

7.3.3 Interface Class IpMultiPartyCall  

Inherits from: IpService  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)90Release 4

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the 
charging of the call, to release the call and to supervise the call.  It also gives the possibility to manage call legs 
explicitly.  An application may create more then one call leg.   

<<Interface>> 

IpMultiPartyCall 

 

 

getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult 

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, callLeg : out 
TpCallLegIdentifierRef) : TpResult 

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in 
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in 
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) 
: TpResult 

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult 

deassignCall (callSessionID : in TpSessionID) : TpResult 

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult 

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult 

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : 
TpResult 

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in 
TpCallSuperviseTreatment) : TpResult 

 

 

 

Method 
getCallLegs() 

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the 
order of creation.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callLegList : out TpCallLegIdentifierSetRef 

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
createCallLeg() 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)91Release 4

This method requests the creation of a new call leg object.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

appCallLeg : in IpAppCallLegRef 

Specifies the application interface for callbacks from the call leg created. 

callLeg : out TpCallLegIdentifierRef 

Specifies the interface and sessionID of the call leg created. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, 
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN 

 
 

Method 
createAndRouteCallLegReq() 

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination 
party is established successfully the CallLeg is attached to the call, i.e. no explicit setMedia() operation is needed. 
Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through 
the appLegInterface parameter.  

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to 
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, 
otherwise the network or gateway provided numbers will be used. 

If this method in invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this 
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

eventsRequested : in TpCallEventRequestSet 

Specifies the event specific criteria used by the application to define the events required. Only events that meet these 
criteria are reported. Examples of events are "adress analysed", "answer", "release".  

targetAddress : in TpAddress 

Specifies the destination party to which the call should be routed. 

originatingAddress : in TpAddress 

Specifies the address of the originating (calling) party. 

appInfo : in TpCallAppInfoSet 

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service 
identities and interaction indicators).     



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)92Release 4

appLegInterface : in IpAppCallLegRef 

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested 
events will be reported by the eventReportRes() operation on this interface. 

callLegReference : out TpCallLegIdentifierRef 

Specifies the reference to the CallLeg interface that was created. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, 
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, 
P_INVALID_CRITERIA 

 
 

Method 
release() 

This method requests the release of the call object and associated objects. The call will also be terminated in the 
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports 
will still be sent to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

cause : in TpCallReleaseCause 

Specifies the cause of the release. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

 
 

Method 
deassignCall() 

This method requests that the relationship between the application and the call and associated objects be de-assigned. It 
leaves the call in progress, however, it purges the specified call object so that the application has no further control of 
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information 
reports requested, then these reports will be disabled and any related information discarded.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)93Release 4

Method 
getInfoReq() 

This asynchronous method requests information associated with the call to be provided at the appropriate time (for 
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of 
reports can be requested; a final report or intermediate reports. 

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is 
required to be sent to the application at the end of the call. The call information will be sent after any call event reports. 

Intermediate reports are received when the destination leg or party terminates or when the call ends.   

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callInfoRequested : in TpCallInfoType 

Specifies the call information that is requested. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
setChargePlan() 

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. 
Depending on the operator the method can also be used to change the charge plan for ongoing calls.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callChargePlan : in TpCallChargePlan 

Specifies the charge plan to use. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
setAdviceOfCharge() 

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this 
information.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)94Release 4

aOCInfo : in TpAoCInfo 

Specifies two sets of Advice of Charge parameter. 

tariffSwitch : in TpDuration 

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
superviseReq() 

The application calls this method to supervise a call. The application can set a granted connection time for this call. If 
an application calls this operation before it routes a call or a user interaction operation the time measurement will start 
as soon as the call is answered by the B-party or the user interaction system.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

time : in TpDuration 

Specifies the granted time in milliseconds for the connection. 

treatment : in TpCallSuperviseTreatment 

Specifies how the network should react after the granted connection time expired. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 

 
 

 

7.3.4 Interface Class IpAppMultiPartyCall  

Inherits from: IpInterface  

The Multi-Party call application interface is implemented by the client application developer and is used to handle call 
request responses and state reports.  

<<Interface>> 

IpAppMultiPartyCall 

 

 

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult 

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)95Release 4

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in 
TpDuration) : TpResult 

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult 

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult 

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, 
errorIndication : in TpCallError) : TpResult 

 

 

 

Method 
getInfoRes() 

This asynchronous method reports time information of the finished call or call attempt as well as release cause 
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging 
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has 
been disconnected or a routing failure has been encountered.     

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callInfoReport : in TpCallInfoReport 

Specifies the call information requested. 

 
 

Method 
getInfoErr() 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 
 

Method 
superviseRes() 

This asynchronous method reports a call supervision event to the application when it has indicated it’s interest in these 
kind of events. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)96Release 4

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is 
invoked as a response to the request also when a tariff switch happens in the network during an active call.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call 

report : in TpCallSuperviseReport 

Specifies the situation which triggered the sending of the call supervision response. 

usedTime : in TpDuration 

Specifies the used time for the call supervision (in milliseconds). 

 
 

Method 
superviseErr() 

This asynchronous method reports a call supervision error to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 
 

Method 
callFaultDetected() 

This method indicates to the application that a fault in the network has been detected. The call may or may not have 
been terminated. 

The system deletes the call object. Therefore, the application has no further control of call processing.   

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call in which the fault has been detected. 

fault : in TpCallFault 

Specifies the fault that has been detected. 

 
 

Method 
callEnded() 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)97Release 4

This method indicates to the application that the call has terminated in the network.  

Note that the event that caused the call to end might have been received separately if the application was monitoring for 
it.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call sessionID. 

report : in TpCallEndedReport 

Specifies the reason the call is terminated. 

 
 

Method 
createAndRouteCallLegErr() 

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call 
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were 
incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an 
unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this 
operation.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callLegReference : in TpCallLegIdentifier 

Specifies the reference to the CallLeg interface that was created. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 

 
 

 

7.3.5 Interface Class IpCallLeg  

Inherits from: The call leg interface represents the logical call leg associating a call with an address. The call leg tracks 
its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the 
call and an address.  An application that uses the IpCallLeg interface to set up connections has more control, e.g. by 
defining leg specific event request and can obtain call leg specific report and events.  

<<Interface>> 

IpCallLeg 

 

 

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)98Release 4

TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : 
TpResult 

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : 
TpResult 

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult 

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult 

getCall (callLegSessionID : in TpSessionID, callReference : out TpMultiPartyCallIdentifierRef) : TpResult 

attachMedia (callLegSessionID : in TpSessionID) : TpResult 

detachMedia (callLegSessionID : in TpSessionID) : TpResult 

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectedAddress : out TpAddressRef) : 
TpResult 

continueProcessing (callLegSessionID : in TpSessionID) : TpResult 

getMoreDialledDigitsReq (callLegSessionID : in TpSessionID, length : in TpInt32) : TpResult 

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult 

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in 
TpDuration) : TpResult 

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in 
TpCallSuperviseTreatment) : TpResult 

deassign (callLegSessionID : in TpSessionID) : TpResult 

 

 

 

Method 
routeReq() 

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress. 

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached 
to the call based on the attach Mechanism values specified in the connectionProperties parameter. 

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to 
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is 
used, otherwise network or gateway provided addresses will be used.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

targetAddess : in TpAddress 

Specifies the destination party to which the call leg should be routed 

originatingAddress : in TpAddress 

Specifies the address of the originating (calling) party. 

appInfo : in TpCallAppInfoSet 

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service 
identities and interaction indicators). 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)99Release 4

connectionProperties : in TpCallLegConnectionProperties 

Specifies the properties of the connection. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

 
 

Method 
eventReportReq() 

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to 
observe.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

eventsRequested : in TpCallEventRequestSet 

Specifies the event specific criteria used by the application to define the events required. Only events that meet these 
criteria are reported. Examples of events are "address analysed", "answer", "release". 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE, 
P_INVALID_CRITERIA 

 
 

Method 
release() 

This method requests the release of the call leg. If successful, the associated address (party) will be released from the 
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the 
network. The application will be informed of this with callEnded().  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

cause : in TpCallReleaseCause 

Specifies the cause of the release. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

 
 

Method 
getInfoReq() 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)100Release 4

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for 
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are 
deleted.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

callLegInfoRequested : in TpCallLegInfoType 

Specifies the call leg information that is requested. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
getCall() 

This method requests the call associated with this call leg.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

callReference : out TpMultiPartyCallIdentifierRef 

Specifies the interface and sessionID of the call associated with this call leg. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
attachMedia() 

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer 
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this 
method to complete successfully.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the sessionID of the call leg to attach to the call. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)101Release 4

Method 
detachMedia() 

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer 
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this 
method to complete successfully.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the sessionID of the call leg to detach from the call. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

 
 

Method 
getLastRedirectedAddress() 

Queries the last address the leg has been redirected to.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call session ID of the call leg. 

redirectedAddress : out TpAddressRef 

Specifies the last address where the call leg was redirected to. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
continueProcessing() 

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was 
interrupted due to detection of a notification or event the application subscribed it’s interest in.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)102Release 4

Method 
getMoreDialledDigitsReq() 

This asynchronous method requests to collect further digits and return them to the application. Depending on the 
administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few 
digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event 
data. The application should then use this method if it requires more dialled digits, e.g. to perform screening.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call. 

length : in TpInt32 

Specifies the maximum number of digits to collect.  

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
setChargePlan() 

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target 
address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call party. 

callChargePlan : in TpCallChargePlan 

Specifies the charge plan to use. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
setAdviceOfCharge() 

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this 
information.   

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call party. 

aOCInfo : in TpAoCInfo 

Specifies two sets of Advice of Charge parameter. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)103Release 4

tarrifSwitch : in TpDuration 

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
superviseReq() 

The application calls this method to supervise a call leg. The application can set a granted connection time for this call. 
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will 
start as soon as the call is answered by the B-party or the user interaction system.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call party. 

time : in TpDuration 

Specifies the granted time in milliseconds for the connection. 

treatment : in TpCallSuperviseTreatment 

Specifies how the network should react after the granted connection time expired. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 
 

Method 
deassign() 

This method requests that the relationship between the application and the call leg  and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no 
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports 
requested, then these reports will be disabled and any related information discarded. 

The application should always either release or deassign the call leg when it is finished with the call, leg  unless 
callFaultDetected is received by the application.   

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

 

 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)104Release 4

 

7.3.6 Interface Class IpAppCallLeg  

Inherits from: IpInterface  

IpService  

The application call leg interface is implemented by the client application developer and is used to handle responses and 
errors associated with requests on the call leg in order to be able to receive leg specific information and events.  

<<Interface>> 

IpAppCallLeg 

 

 

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : TpResult 

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult 

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult 

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in 
TpDuration) : TpResult 

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 

connectionEnded (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult 

 

 

 

Method 
eventReportRes() 

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call 
event, the party has requested to disconnect, etc.). 

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of  

the event type. 

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of 
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration 
which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall 
be invoked, giving a release cause of P_TIMER_EXPIRY.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg on which the event was detected. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)105Release 4

eventInfo : in TpCallEventInfo 

Specifies data associated with this event. 

 
 

Method 
eventReportErr() 

This asynchronous method indicates that the request to manage call leg event reports  was unsuccessful, and the reason 
(for example, the parameters were incorrect, the request was refused, etc.).  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 
 

Method 
getInfoRes() 

This asynchronous method reports all the necessary information requested by the application, for example to calculate 
charging.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg to which the information relates. 

callLegInfoReport : in TpCallLegInfoReport 

Specifies the call leg information requested. 

 
 

Method 
getInfoErr() 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 
 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)106Release 4

Method 
routeErr() 

  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 
 

Method 
getMoreDialledDigitsRes() 

This asynchronous method returns the collected digits to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

digits : in TpString 

Specifies the additional dialled digits if the string length is greater than zero. 

 
 

Method 
getMoreDialledDigitsErr() 

This asynchronous method reports an error in collecting digits to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 
 

Method 
superviseRes() 

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in 
these kind of events. 

It is also called when the connection to a party  is terminated before the supervision event occurs. Furthermore, this 
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)107Release 4

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg 

report : in TpCallSuperviseReport 

Specifies the situation which triggered the sending of the call leg supervision response. 

usedTime : in TpDuration 

Specifies the used time for the call leg supervision (in milliseconds). 

 
 

Method 
superviseErr() 

  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

 
 

Method 
connectionEnded() 

This method indicates to the application that the connection has terminated in the network. However, the application 
may still receive some results (e.g., getInfoRes) related to the call leg. The application is expected to deassign the call 
leg object after having received the connectionEnded. 

Note that the event that caused the connection to end might also be received separately if the application was 
monitoring for it.   

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

cause : in TpCallReleaseCause 

Specifies the reason the connection is terminated. 

 

 
 

 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)108Release 4

7.4 MultiParty Call Control Service State Transition Diagrams 

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager  

  

ActiveInterrupted

’new’

 ^managerResumed

IpAccess.terminateServiceAgreement

 ^managerInterrupted

IpAccess.terminateServiceAgreement

  

Figure : Application view and the Multi-Party Call Control Manager   

7.4.1.1 Active State 

In this state a relation between the Application and the Service has been established. The state allows the application to 
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object 
with the appropriate number of Call Leg objects and inform the application.  The application can also indicate it is no 
longer interested in certain call related events by calling destroyNotification(). 

7.4.1.2 Interrupted State 

When the Manager is in the Interrupted state it is temporarily unavailable for use.  Events requested cannot be 
forwarded to the application and methods in the API cannot successfully be executed.  A number of reasons can cause 
this: for instance the application receives more notifications from the network than defined in the Service Agreement. 
Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.  

7.4.1.3 Overview of allowed methods 

Call Control Manager State Methods applicable 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)109Release 4

Active 
createCall, 

createNotification, 

destroyNotification, 

changeNotification, 

getNotification, 

setCallLoadControl 

Interrupted getNotification 

 

7.4.2 State Transition Diagrams for IpMultiPartyCall  

The state transition diagram shows the application view on the MultiParty Call object.  

IDLE

ACTIVE

FA ULTYRELEASED

IpMultiPartyCallManager.createCall

’fault detected’

[ incoming cal l ] 
^IpAppMultiPartyCallControlManager.reportNotification

release
’l ast leg re leased’

 ^cal l e nd ed

deassign

 ^callFaultDetected

createCal lLeg

createAndRouteCallLeg

’timer expires’

deassign

A ti mer mechanisem prevents that the object 
kee ps occupying resources.  In case the tim er 
expires, callEnde d() is invoked on the 
IpAppMultiPartyCal l wi th a release cause of 
P_TIMER_EXPIRY.  In the case when no 
IpAppMultiPartyCal l is ava ilable on which to invoke 
callEnded(), callAborted () shall be invoked on the 
IpAppMultiPartyCal lCon trolManage r as this is an 
abnormal termination.

  

Figure : Application view on the MultiParty Call object  

7.4.2.1 IDLE State 

In this state the Call object has no Call Leg object associated to it. 

The application can request for charging related information reports, call supervision, set the charge plan and set Advice 
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active 
state. 

7.4.2.2 ACTIVE State 

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create 
additional Call Leg objects. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)110Release 4

Furthermore, the application can request for call supervision. The Application can request charging related information 
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment. 

7.4.2.3 FAULTY State 

A transition to this state is made when the Call object is in state IDLE and no requests from the application have been 
received during a certain period or when a non-recoverable fault was detected during the ACTIVE state. 

In case the application requested for call related information previously, the application will be informed that this 
information is not available through getInfoError or SuperviseError and additionally the application is informed that the 
call object is transitioning to end state. 

7.4.2.4 RELEASED State 

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the 
requested call information will be collected and returned through getInfoReq() and / or superviseReq(). As soon as all 
information is returned, the application will be informed that the call has ended and Call object transition to the end 
state. 

7.4.2.5 Overview of allowed methods 

Methods applicable Call Control Call 
State 

Call Control 
Manager State 

Call Control Call 
Leg state 

getCallLegs, 

 

Idle, Active, 
Released 

-  

createCallLegs, 

createAndRouteCall
LegReq, 
setAdviceOfCharge, 
superviseReq,  

Idle, Active Active  

Release Active Active  

Deassign Idle, Active -  

GetInfoReq Idle Active  

SetChargePlan Idle, Active Active Alerting, Connected 

 

7.4.3 State Transition Diagrams for IpCallLeg  

  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)111Release 4

Idle

Routing

Pro gress

Alerting

Redirected

Connected

Attached

Detached

Failed or 
Disconnected

All  States

Attached

Detached

EventReportReq

getInfoReq

"call  progress event" 
^EventReportRes

"answer" 
^EventReportRes

"midcall event" ^EventReportRes

"inval id add ress" 
^EventReportErr

"disconnect" ^EventReportRes

"routing fai led, refused busy or 
no answer" ^EventReportRes

"last report"

"call object is destructed"

releasege tCal l

d eta chMedia
a tt achMe dia

[ when routed with createAndRouteCallLeg ]

[ when routed with route() ]

ncom ing

"answer from other party"

Pro gress

Alerting

Redirected

route

only send result  
when  m oni to r fo r 
thi s even t was 
requested

getLastRedirectedAddress

eventReportReq

getInfoReq

IpMultiPartyCall .createAndRouteCal lLeg

IpMultiPartyCal l.createCallLeg

"incoming call  event" ^IpAppMultiPartyCallControlManager.callEventNotify

  

Figure : Application view on the CallLeg object  

7.4.3.1 Idle State 

In this state a new CallLeg object has been created and the application has not yet issued a routing request. 

7.4.3.2 Routing State 

In this state a connection to the call party is being established. 

7.4.3.3 Connected State 

In this state a connection to the call party is established.  

In case the request for the connection was made by createAndRouteCallLeg on the Call object, the call party is also 
attached to the Call. 

In case the request was made by route() the call party still needs to be attached to the Call. 

7.4.3.4 Failed or Disconnected State 

In this state no connection to the call party could be established or the call party has disconnected. 

The reason that no connection could be established can be that an invalid address was specified, the network aborted 
routing or the call party was busy. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)112Release 4

7.4.3.5 Incoming State 

This state is only valid for an incoming Call Leg in case and there is no call established to another party. 

7.4.3.6 Progress State 

In this sub-state the network has indicated there is progress in routing the CallLeg. 

7.4.3.7 Alerting State 

In this sub-state the network has indicated there the terminal of the party is alerting. 

7.4.3.8 Redirected State 

In this sub-state the network has indicated the call party has redirected calls to another address. 

7.4.3.9 Attached State 

In this sub-state the media of the Call Leg object is attached to a Call object.  

7.4.3.10 Detached State 

In this sub-state the media of the Call Leg object is not attached to a Call object.  

7.4.3.11 Overview of allowed methods 

State methods applicable 

Idle routeReq, 

eventReportReq, 

release, 

getInfoReq, 

getCall, 

setChargePlan, 

setAdviceOfCharge, 

superviseReq, 

deassign, 

Collect_Address eventReportReq, 

release, 

getInfoReq, 

getCall, 

continueProcessing, 

setChargePlan, 

setAdviceOfCharge, 

superviseReq, 

deassign, 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)113Release 4

Analyse_Address eventReportReq, 

release, 

getInfoReq, 

getCall, 

continueProcessing, 

getMoreDialledDigitsReq, 

setChargePlan, 

setAdviceOfCharge, 

superviseReq, 

deassign, 

Progressing eventReportReq, 

release, 

getInfoReq, 

getCall, 

continueProcessing, 

setChargePlan, 

setAdviceOfCharge, 

superviseReq, 

deassign, 

Alerting eventReportReq, 

release, 

getInfoReq, 

getCall, 

continueProcessing, 

setChargePlan, 

setAdviceOfCharge, 

superviseReq, 

deassign, 

Active eventReportReq, 

release, 

getInfoReq, 

getCall, 

attachMedia, 

detachMedia, 

getLastRedirectedAddress, 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)114Release 4

continueProcessing, 

setChargePlan, 

setAdviceOfCharge, 

superviseReq, 

deassign, 

Released getCall, 

deassign, 

Faulty deassign 

 

 

 

7.5 Multi-Party Call Control Service Properties 

7.5.1 List of Service Properties 

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the 
GCC, from which the MPCC is an extension. 

 
Property Type Description 

P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call. 

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a 
reference to a CallLeg object can be used in the 
IpUIManager.createUICall() operation. 
Value = FALSE : No user interaction on leg level is supported. 

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported 
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(), 
IpCallLeg.route(), IpCallLeg.attachMedia()}  
Value = FALSE : the convenience function has to be used for routing a 
CallLeg. 

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call. 
Value = FALSE : the CallLeg is automatically attached to a Call, no 
IpCallLeg.attachMedia() is needed when a party answers. 

 

7.5.2 Service Property values for the CAMEL Service Environment. 

Implementations of the MultiParty Call Control API relying on the CSE  shall have the Service Properties outlined 
above set to the indicated values : 

P_OPERATION_SET = { 
“IpMultiPartyCallControlManager.createNotification”, 
“IpMultiPartyCallControlManager.destroyNotification”, 
“IpMultiPartyCallControlManager.changeNotification”, 
“IpMultiPartyCallControlManager.getNotification”, 
“IpMultiPartyCallControlManager.setCallLoadControl” 
“IpMultiPartyCall.getCallLegs”, 
“IpMultiPartyCall.createCallLeg”, 
“IpMultiPartyCall.createAndRouteCallLegReq”, 
“IpMultiPartyCall.release”, 
“IpMultiPartyCall.deassignCall”, 
“IpMultiPartyCall.getInfoReq”, 
“IpMultiPartyCall.setChargePlan”, 
“IpMultiPartyCall.setAdviceOfCharge”, 
“IpMultiPartyCall.superviseReq”, 
“IpCallLeg.routeReq”, 
“IpCallLeg.eventReportReq”, 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)115Release 4

“IpCallLeg.release”, 
“IpCallLeg.getInfoReq”, 
“IpCallLeg.getCall”, 
“IpCallLeg.continueProcessing” 
} 

 
P_TRIGGERING_EVENT_TYPES = { 
P_CALL_EVENT_CALL_ATTEMPT, 
P_CALL_EVENT_ADDRESS_COLLECTED, 
P_CALL_EVENT_ADDRESS_ANALYSED, 
P_CALL_EVENT_RELEASE, 
} 

 
P_DYNAMIC_EVENT_TYPES = { 
P_CALL_EVENT_ANSWER, 
P_CALL_EVENT_RELEASE 
} 

 
P_ADDRESS_PLAN = { 
P_ADDRESS_PLAN_E164 
} 

 
P_UI_CALL_BASED = { 
TRUE 
} 
 
P_UI_AT_ALL_STAGES = { 
FALSE 
} 

 
P_MEDIA_TYPE = { 
P_AUDIO 
} 

 
P_MAX_CALLLEGS_PER_CALL = { 
0, 
2 
} 

 
P_UI_CALLLEG_BASED = { 
FALSE 
} 

 
P_MEDIA_ATTACH_EXPLICIT = { 
FALSE 
} 
 

 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)116Release 4

7.6 Multi-Party Call Control Data Definitions 
The present document provides the GCC data definitions necessary to support the  API specification. 

The general format of a  data definition specification is described below. 

• Data Type 

This shows the name of the data type. 

• Description 

This describes the data type. 

• Tabular Specification 

This specifies the data types and values of the data type. 

• Example 

If relevant, an example is shown to illustrate the data type. 

7.6.1 Event Notification Data Definitions 

No specific event notification data defined. 

7.6.2 Multi-Party Call Control Data Definitions 

IpCallLeg 

Defines the address of an IpCallLeg Interface. 

IpCallLegRef 

Defines a Reference to type IpCallLeg. 

IpCallLegRefRef 

Defines a Reference to type IpCallLegRef. 

IpAppCallLeg 

Defines the address of an IpAppCallLeg Interface.  

IpAppCallLegRef 

Defines a Reference to type IpAppCallLeg. 

IpMultiPartyCall 

Defines the address of an IpMultiPartyCall Interface. 

IpMultiPartyCallRef 

Defines a Reference to type IpMultiPartyCall. 

 

IpAppMultiPartyCall 

Defines the address of an IpAppMultiPartyCall Interface. 

IpAppMultiPartyCallRef 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)117Release 4

Defines a Reference to type IpAppMultiPartyCall. 

 

IpMultiPartyCallControlManager 

Defines the address of an IpMultiPartyCallControlManager Interface. 

IpMultiPartyCallControlManagerRef 

Defines a Reference to type IpMultiPartyCallControlManagerCall. 

 

IpAppMultiPartyCallControlManager 

Defines the address of an IpAppMultiPartyCallControlManager Interface. 

IpAppMultiPartyCallControlManagerRef 

Defines a Reference to type IpAppMultiPartyCall ControlManager.. 

TpAppCallLegRefSet 

Defines a Numbered Set of Data Elements  of  IpAppCallLegRef. 

IpAppCallLegRef 

Defines a Reference to type IpAppCallLegRef. 

IpAppMultiPartyCallRef 

Defines a Reference to type IpAppMultiPartyCallRef. 

 

TpMultiPartyCallIdentifier 

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object  

Sequence Element 
Name 

Sequence Element 
Type 

Sequence Element 
Description 

CallReference IpMultiPartyCallRef This element specifies the interface reference for the Multi-party call object. 
CallSessionID TpSessionID This element specifies the call session ID. 

 

TpMultiPartyCallIdentifierRef 

Defines a Reference to type TpMultiPartyCallLegIdentifier. 

 

TpAppMultiPartyCallBack 

Defines the Tagged Choice of Data Elements that references the application callback  interfaces 

 Tag Element Type  

 TpAppMultiPartyCallBackRefType  

 

Tag Element Value Choice Element Type Choice Element Name 

P_APP_CALLBACK_UNDEFINED NULL Undefined 

P_APP MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef appMultiPartyCall 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)118Release 4

P_APP_CALL_LEG_CALLBACK IpAppCallLegRef appCallLeg 

P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack appMultiPartyCallAndCallLeg 

 

TpAppMultiPartyCallBackRefType 

Defines the type application call back interface.  

Name Value Description 

P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined 

P_APP MULTIPARTY-CALL_CALLBACK 1 Application Multi-Party Call interface 
referenced 

P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced 

P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg 
interface referenced 

   

 

TpAppCallLegCallBack 

Defines the Sequence of Data Elements that references a call and  a call leg application interface.   

Sequence Element Name Sequence Element Type  

appMultiPartyCall IpAppMultiPartyCallRef  

appCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call back 
references. First in the set is the reference 
to the call back of the originating callLeg.  
In case there is a call back to a destination 

call leg this will be second in the set. 

   

   

 

TpMultiPartyCallIdentifierSet 

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier. 

TpMultiPartyCallIdentifierSetRef 

Defines a Reference to type TpMultiPartyCallIdentifierSet. 

 

TpCallAppInfo 

Defines the Tagged Choice of Data Elements that specify application-related call information. 

 Tag Element Type  
 TpCallAppInfoType  

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)119Release 4

Tag Element 
Value 

Choice Element 
Type 

Choice Element 
Name 

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism 

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType 

   

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService 

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService 

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory 

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress 

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo 

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress 

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress 

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)120Release 4

TpCallAppInfoType 

Defines the type of call application-related specific information. 

Name Value Description 
P_CALL_APP_UNDEFINED 0 Undefined 

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use 

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN) 

   

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony) 

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data). 

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party 

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties 

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information 

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address 

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when 
launching the call. 

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting. 

 

TpCallEventRequest 

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.  

Sequence Element Name Sequence Element Type 
CallEventType TpCallEventType 

AdditionalCallEventCriteria TpAdditionalCallEventCriteria 
CallMonitorMode TpCallMonitorMode 

 

TpCallEventRequestSet 

Defines a Numbered Set of Data Elements of TpCallEventRequest. 

 

TpCallEventType 

Defines a specific call event report type. 

Name Value Description 
P_CALL_EVENT_UNDEFINED 0 Undefined 
P_CALL_EVENT_CALL_ATTEMPT 1 A Call attempt takes place (e.g. Off-hook event). 
P_CALL_EVENT_ADDRESS_COLLECTED 2 The destination address has been collected. 
P_CALL_EVENT_ADDRESS_ANALYSED 3 The destination address has been analysed. 
P_CALL_EVENT_PROGRESS 4 Call routing progress event:an indication from the network that progress has been made 

in routing the call to the requested call party. 
P_CALL_EVENT_ALERTING 5 Call is alerting at the call party. 
P_CALL_EVENT_ANSWER 6 Call answered at address. 
P_CALL_EVENT_RELEASE 7 A Call has been released or the call could not be routed. 
P_CALL_EVENT_REDIRECTED 8 Call redirected to new address: an indication from the network that the call has been 

redirected to a new address. 
P_CALL_EVENT_SERVICE_CODE 9 Mid-call service code received. 

P_CALL_EVENT_QUEUED 10 The Call Event has been queued.  (no events are disarmed as a result of this) 

 

The table below defines the disarming rules for dynamic events. In case such an event occurs the table shows which 
events are disarmed (are not monitored anymore) and should be re-armed by eventReportReq() in case the application is 
still interested in these events. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)121Release 4

Event Occurred Events Disarmed 
P_CALL_EVENT_UNDEFINED Not Applicable 

P_CALL_EVENT_CALL_ATTEMPT Not applicable, can only be armed as trigger 

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED 

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED 

P_CALL_EVENT_ADDRESS_ANALYSED 

P_CALL_EVENT_PROGRESS P_CALL_EVENT_ADDRESS_COLLECTED 

P_CALL_EVENT_ADDRESS_ANALYSED 

P_CALL_EVENT_PROGRESS 

P_CALL_EVENT_ALERTING P_CALL_EVENT_ADDRESS_COLLECTED 

P_CALL_EVENT_ADDRESS_ANALYSED 

P_CALL_EVENT_PROGRESS 

P_CALL_EVENT_ALERTING 

P_CALL_EVENT_RELEASE with criteria: 

P_USER_NOT_AVAILABLE 

P_BUSY 

P_NOT_REACHABLE 

P_ROUTING_FAILURE 

P_CALL_RESTRICTED 

P_UNAVAILABLE_RESOURCES 

P_CALL_EVENT_ANSWER P_CALL_EVENT_ADDRESS_COLLECTED 

P_CALL_EVENT_ADDRESS_ANALYSED 

P_CALL_EVENT_PROGRESS P_CALL_EVENT_ALERTING 

P_CALL_EVENT_RELEASE with criteria: 

P_USER_NOT_AVAILABLE 

P_BUSY 

P_NOT_REACHABLE 

P_ROUTING_FAILURE 

P_CALL_RESTRICTED 

P_UNAVAILABLE_RESOURCES 

P_NO_ANSWER 

P_PREMATURE_DISCONNECT 

P_CALL_EVENT_ANSWER 

P_CALL_EVENT_RELEASE All pending events are disarmed 

P_CALL_EVENT_REDIRECTED P_CALL_EVENT_REDIRECTED 

P_CALL_EVENT_SERVICE_CODE P_CALL_EVENT_SERVICE_CODE 

 

 

TpAdditionalCallEventCriteria 

Defines the Tagged Choice of Data Elements that specify specific criteria.  

 Tag Element Type  
 TpCallEventType  

 

Tag Element 
Value 

Choice Element 
Type 

Choice Element 
Name 

P_CALL_EVENT_UNDEFINED NULL Undefined 
P_CALL_EVENT_CALL_ATTEMPT NULL Undefined 
P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength 
P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined 
P_CALL_EVENT_PROGRESS NULL Undefined 
P_CALL_EVENT_ALERTING NULL Undefined 
P_CALL_EVENT_ANSWER NULL Undefined 
P_CALL_EVENT_RELEASE TpCallReleaseCauseSet ReleaseCauseSet 

P_CALL_EVENT_REDIRECTED NULL Undefined 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)122Release 4

P_CALL_EVENT_SERVICE_CODE TpCallServiceCode ServiceCode 

 

TpCallReleaseCauseSet 

Defines a Numbered Set of Data  Elements of TpCallReleaseCause. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)123Release 4

TpCallEventInfo 

Defines the Sequence of Data Elements that specify the event report specific information.  

Sequence Element 
Name 

Sequence Element 
Type 

CallEventType TpCallEventType 
AdditionalCallEventInfo TpCallAdditionalEventInfoTpAdditionalCallEventInfo 

CallMonitorMode TpCallMonitorMode 
CallEventTime TpDateAndTime 

 

TpCallAdditionalEventInfo 

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types 
of events.  

 Tag Element Type  
 TpCallEventType  

 

Tag Element 
Value 

Choice Element 
Type 

Choice Element 
Name 

P_CALL_EVENT_UNDEFINED NULL Undefined 

P_CALL_EVENT_CALL_ATTEMPT NULL Undefined 

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress 

P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress 

P_CALL_EVENT_PROGRESS NULL Undefined 

P_CALL_EVENT_ALERTING NULL Undefined 

P_CALL_EVENT_ANSWER NULL Undefined 

P_CALL_EVENT_RELEASE TpCallReleaseCause ReleaseCause 

P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress 

P_CALL_EVENT_SERVICE_CODE TpCallServiceCode ServiceCode 

 

TpCallNotificationRequest 

Defines the Sequence of Data Elements that specify the criteria for an event notification 

Sequence Element Name Sequence Element Type Description 
CallNotificationScope TpCallNotificationScope Defines the scope of the notification request. 
CallEventsRequested TpCallEventRequestSet Defines the events which are requested 

 

TpCallNotificationScope  

Defines a the sequence of Data elements that specify the scope of a notification request.  

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the 
criteria. 

Sequence Element 
Name 

Sequence Element 
Type 

Description 

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is 
requested. 

OriginatingAddress TpAddressRange Defines the origination address or address range for which the notification is 
requested. 

NotificationCallType TpNotificationCallType Defines wheter the notification is requested for a originating or terminating 
call. 

 

TpNotificationCallType 

Defines the type of call for which the notification is requested or reported. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)124Release 4

Name Value Description 
P_ORIGINATING 1 Indicates that the notification is related to the originating user in the call. 

P_TERMINATING 2 Indicates that the notification is related to the terminating user in the call. 

 

TpCallNotificationInfo 

Defines the Sequence of Data Elements that specify the information returned to the application in a Call 
notification report. 

Sequence Element 
Name 

Sequence Element 
Type 

Description 

CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report. 
CallAppInfo TpCallAppInfoSet Contains additonal call info. 
CallEventInfo TpCallEventInfo Contains the event which is reported. 

 

TpCallNotificationReportScope 

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent. 

Sequence Element 
Name 

Sequence Element 
Type 

Description 

DestinationAddress TpAddress Contains the destination address of the call. 
OriginatingAddress TpAddress Contains the origination address of the call 
NotificationCallType TpNotificationCallType Indicates if the notification was reported for an originating or terminating call. 

 

TpNotificationRequested  

Defines the Sequence of Data Elements that specify the criteria relating to event requests. 

Sequence Element 
Name 

Sequence Element 
Type 

AppCallNotificationRequest TpCallNotificationRequest 
AssignmentID TpInt32 

 

TpNotificationsRequestedSet  

Defines a numbered Set of Data Elements of TpNotificationRequested. 

 

TpNotificationsRequestedSetRef  

Defines a reference to the type TpNotificationsRequestSet. 

 

TpCallReleaseCause 

Defines the reason for which a call is released. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)125Release 4

Name Value Description 
P_UNDEFINED 0 The reason of release isn’t known, because no info was received from the network. 

P_USER_NOT_AVAILBLE 1 The user isn’t available in the network. This means that the number isn’t allocated or that the user 
isn’t registered. 

P_BUSY 2 The user is busy. 

P_NO_ANSWER 3 No answer was received 

P_NOT_REACHABLE 4 The user terminal isn’t reachable 

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received 

P_PREMATURE_DISCONNECT 6 The user disconnected the call during setup phase. 

P_DISCONNECTED 7 Call disconnect by the end user. 

P_CALL_RESTRICTED 8 The call was subject of restrictions 

P_UNAVAILABLE_RESOURCE 9 No resources where available to establisch the call. 

P_GENERAL_FAILURE 10 A general network failure occurred. 

P_TIMER_EXPIRY 11 The call was released because an activity timer expired. 

 

TpCallLegIdentifier 

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object. 

Sequence Element 
Name 

Sequence Element 
Type 

Sequence Element 
Description 

CallLegReference IpCallLegRef This element specifies the interface reference for the callLeg object. 
CallLegSessionID TpSessionID This element specifies the callLeg session ID. 

 

TpCallLegIdentifierRef 

Defines a Reference to type TpCallLegIdentifier. 

TpCallLegIdentifierSet 

Defines a Numbered Set of Data Elements of TpCallLegIdentifier. 

TpCallLegIdentifierSetRef 

Defines a Reference to type TpCallLegIdentifierSet. 

TpCallLegAttachMechanism 

Defines how a CallLeg should be attached to the call. 

Name Value Description 
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call. 
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMedia() operation. This 

allows e.g. the application to do first user interaction to the party before he/she is placed in the 
call. 

 

TpCallLegConnectionProperties 

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object  

Sequence Element 
Name 

Sequence Element 
Type 

Sequence Element 
Description 

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call. 

 

 

TpCallLegInfoReport 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)126Release 4

Defines the Sequence of Data Elements that specify the call leg information requested.  

Sequence Element 
Name 

Sequence Element 
Type 

Description 

CallLegInfoType TpCallLegInfoType The type of the call leg. 
CallLegStartTime TpDateAndTime The time and date when the call leg was started (i.e. the leg was routed).   

CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to the resource. If no 
resource was connected the time is set to an empty string. 

Either this element is valid or the CallConnectedToAddressTime is valid, 
depending on whether the report is sent as a result of user interaction. 

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to the destination (i.e. 
when the destination answered the call). If the destination did not answer, 

the time is set to an empty string. 
Either this element is valid or the CallConnectedToResourceTime is 

valid, depending on whether the report is sent as a result of user 
interaction. 

CallLegEndTime TpDateAndTime The date and time when the call leg was released.   
ConnectedAddress TpAddress The address of the party associated with the leg. If during the call the 

connected address was received from the party then this is returned, 
otherwise the destination address (for legs connected to a destination) or 
the originating address (for legs connected to the origination) is returned.  

CallLegReleaseCause TpCallReleaseCause The cause of the termination. May be present with 
P_CALL_LEG_INFO_RELEASE_CAUSE was specified. 

CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with 
P_CALL_LEG_INFO_APPINFO was specified. 

 

 

TpCallLegInfoType 

Defines the type of call leg information requested and reported. The values may be combined by a logical ’OR’ function. 

Name Value Description 
P_CALL_LEG_INFO_UNDEFINED 00h Undefined 
P_CALL_LEG_INFO_TIMES 01h Relevant call times 
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause 
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address 
P_CALL_LEG_INFO_APPINFO 08h Call leg application related information 

 

  

8 Common Call Control Data Types 
 

TpCallAlertingMechanism 
This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values 
of this data type are operator specific. 

 

TpCallBearerService 
This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, 
and 3G TS 22.002) 

Name Value Description 

P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at 
this time 

P_CALL_BEARER_SERVICE_SPEECH 1 Speech 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)127Release 4

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information 

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information 

P_CALL_BEARER_SERVICE_AUDIO 4 3.1 kHz audio 

P_CALL_BEARER_SERVICE_ 
DIGITALUNRESTRICTEDTONES 

5 Unrestricted digital information with 
tomes/announcements 

P_CALL_BEARER_SERVICE_VIDEO 6 Video 

 

TpCallChargePlan 

Defines the Sequence of Data Elements that specify the charge plan for the call. 

Sequence Element Name Sequence Element Type Description 

ChargeOrderType TpCallChargeOrderCategory Charge order 

ChargePerTime TpChargePerTime Charge per time. 

Only applicable when time 
based charging is selected. 

TransparentCharge TpOctetSet Operator specific charge plan 
specification, e.g. charging 
table name / charging table 
entry. The associated charge 

plan data will be send 
transparently to the charging 

records. 

Only applicable when 
transparent charging is 

selected. 

ChargePlan TpInt32 Pre-defined charge plan. 
Example of the charge plan set 
from which the application can 
choose could be : (0 = normal 
user, 1 = silver card user, 2 

= gold card user). 

Only applicable when 
transparent charging is 

selected. 

Currency TpString 

 

Currency unit according to 
ISO-4217:1995 

AdditionalInfo TpOctetSet Descriptive string which is 
sent to the billing system 
without prior evaluation. 
Could be included in the 

ticket. 

 

Valid Currencies are: 

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,  

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,  

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,  

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,  

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,  

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,  

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,  

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,  

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,  

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,  

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,  

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,  



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)128Release 4

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,  

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,  

YUM, ZAL, ZAR, ZMK, ZRN, ZWD. 

 

XXX is used for transactions where no currency is involved.  

 

TpCallChargeOrder 

Defines the Tagged Choice of Data Elements that specify the charge plan for the call. 

 Tag Element Type  

 TpCallChargeOrderCategory  

 

Tag Element Value Choice Element Type Choice Element Name 

P_CALL_CHARGE_PER_TIME TpChargePerTime ChargePerTime 

P_CALL_CHARGE_TRANSPARENT TpOctetSet TransparentCharge 

P_CALL_CHARGE_PREDEFINED_SET TpInt32 ChargePlan 

 

TpCallChargeOrderCategory 

Defines the type of charging to be applied 

Name  Value Description 

P_CALL_CHARGE_PER_TIME 0 Charge per time 

P_CALL_CHARGE_TRANSPARENT 1 Operator specific charge plan specification, e.g. 
charging table name / charging table entry. The 

associated charge plan data will be send 
transparently to the charging records 

P_CALL_CHARGE_PREDEFINED_SET 2 Pre-defined charge plan. Example of the charge plan 
set from which the application can choose could be : 
(0 = normal user, 1 = silver card user, 2 = gold 

card user). 

 

TpCallAdditionalChargePlanInfo 

Defines the Tagged Choice of Data Elements that specify the charge plan for the call. 

 Tag Element Type  

 TpCallChargeOrderCategory  

 

Tag Element Value Choice Element 
Type 

Choice Element 
Name 

Description 

P_CALL_CHARGE_PER_TIME TpOctetSet TimeAdditionalInfo Descriptive string which is sent to 
the billing system without prior 
evaluation. Could be included in 

the ticket. 

P_CALL_CHARGE_TRANSPARENT NULL Undefined  

P_CALL_CHARGE_PREDEFINED_SET TpOctetSet SetAdditionalInfo Descriptive string which is sent to 
the billing system without prior 
evaluation. Could be included in 

the ticket. 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)129Release 4

TpCallEndedReport 

Defines the Sequence of Data Elements that specify the reason for the call ending. 

Sequence Element Name Sequence Element Type  

CallLegSessionID TpSessionID The leg that initiated the 
release of the call. 

If the call release was not 
initiated by the leg, then this 

value is set to –1. 

Cause TpCallReleaseCause The cause of  the call ending. 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)130Release 4

TpCallError 

Defines the Sequence of Data Elements that specify the additional information relating to acall error.  

Sequence Element Name Sequence Element Type 

ErrorTime TpDateAndTime 

ErrorType TpCallErrorType 

AdditionalErrorInfo TpCallAdditionalErrorInfo 

 

TpCallAdditionalErrorInfo 

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific 
information. This is also used to specify call leg errors and information errors. 

 Tag Element Type  

 TpCallErrorType  

 

Tag Element Value Choice Element Type Choice Element Name 

P_CALL_ERROR_UNDEFINED NULL Undefined 

   

   

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress 

P_CALL_ERROR_INVALID_STATE NULL Undefined 

   

 

TpCallErrorType 

Defines a specific call error. 

Name Value Description 

P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or 
was refused, but no specific 

reason can be given. 

   

   

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an 
invalid address was given 

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid 
state for the requested 

operation 

   

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)131Release 4

TpCallFault 

Defines the cause of the call fault detected. 

Name Value Description 

P_CALL_FAULT_UNDEFINED 0 Undefined 

   

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has 
been sent to the application, but the application 

did not explicitly release or deassign the call 
object, within a specified time. 

The timer value is operator specific. 

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not 
instruct the gateway how to handle the call 
within a specified time, after the gateway 

reported an event that was requested by the 
application in interrupt mode. 

The timer value is operator specific. 

 TpCallInfoReport 

Defines the Sequence of Data Elements that specify the call information requested. Information that was not 
requested is invalid.  

Sequence Element Name Sequence Element Type Description 

CallInfoType TpCallInfoType The type of call report. 

CallInitiationStartTime TpDateAndTime The time and date when the 
call, or follow-on call, was 

started.   

CallConnectedToResourceTime TpDateAndTime The date and time when the 
call was connected to the 

resource.   

This data element is only 
valid when information on 

user interaction is 
reported. 

CallConnectedToDestinationTime TpDateAndTime The date and time when the 
call was connected to the 
destination (i.e., when the 
destination answered the 
call). If the destination 
did not answer, the time is 
set to an empty string. 

This data element is invalid 
when information on user 

interaction is reported with 
an intermediate report. 

CallEndTime TpDateAndTime The date and time when the 
call or follow-on call or 

user interaction was 
terminated.   

Cause TpCallReleaseCause The cause of the 
termination.   

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated 
address. This means that either the destination related information is present or the resource related information, but not 
both. 

 

TpCallInfoType 

Defines the type of call  information requested and reported. The values may be combined by a logical ’OR’ function. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)132Release 4

Name Value Description 

P_CALL_INFO_UNDEFINED 00h Undefined 

P_CALL_INFO_TIMES 01h Relevant call times 

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause 

P_CALL_INFO_INTERMEDIATE 04h Send only intermediate reports. When this is 
not specified the information report will only 

be sent when the call has ended. When 
intermediate reports are requested a report will 

be generated between follow-on calls, i.e., 
when a party leaves the call. 

 

TpCallLoadControlMechanism 

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters. 

 Tag Element Type  

 TpCallLoadControlMechanismType  

 

Tag Element Value Choice Element Type Choice Element Name 

P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval 

 

TpCallLoadControlIntervalRate 

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in 
milliseconds) between calls that are admitted.  

Name Value Description 

P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval 

(do not admit any calls) 

 1 - 
60000 

Duration in milliseconds 

 

TpCallLoadControlMechanismType 

Defines the type of call load control mechanism to use. 

Name Value Description 

P_CALL_LOAD_CONTROL_PER_INTERVAL 1 admit one call per interval 

 

TpCallMonitorMode 

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. 

Name Value Description 

P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call control 
service and call processing is interrupted. The 

application is notified of the event and call 
processing resumes following an appropriate 

API call or network event (such as a call 
release) 

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control 
service but not intercepted. The application is 
notified of the event and call processing 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)133Release 4

continues 

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event 

 

TpCallNetworkAccessType 

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator 
specific and may not always be available because there is no standard protocol to retrieve the information. 

 

Name Value Description 

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this 
time 

P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS 

P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN 

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet 

P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDLS 

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless 

 

TpCallPartyCategory 
This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category) 

 

Name Value Description 

P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party’s category unknown at this time 

P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French 

P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English 

P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German 

P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian 

P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish 

P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber 

P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority 

P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data) 

P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call 

P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone 

 

TpCallServiceCode 
Defines the Sequence of Data Elements that specify the service code and type of service code received during 
a call. The service code type defines how the value string should be interpreted.  

Sequence Element Name Sequence Element Type 

CallServiceCodeType TpCallServiceCodeType 

ServiceCodeValue TpString 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)134Release 4

TpCallServiceCodeType 

Defines the different types of service codes that can be received during the call. 

Name Value Description 

P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The 
corresponding string is operator specific. 

P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the 
call. The corresponding string is an ascii 
representation of the received digits. 

P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received. 
The corresponding string contains the facility 
information element as defined in ITU Q.932 

P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The 
associated string contains the content of the 
user-to-user information element. 

P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally 
followed by some digits. The corresponding 
string is an ascii representation of the 
entered digits. 

P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button, 
optionally followed by some digits. The 
corresponding string is an ascii 
representation of the entered digits. 

 

TpCallSuperviseReport 

Defines the responses from the call control service for calls that are supervised. The values may be combined by a 
logical ’OR’ function. 

Name Value Description 

P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired 

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry 
or call party release. In case the called 
party disconnects but a follow-
on call can still be made also 

this indication is used. 

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning  tone has been applied. This is only 
sent in combination with 

P_CALL_SUPERVISE_TIMEOUT 

P_CALL_SUPERVISE_UI_FINISHED 0 The user interaction 
has 

finished. 

 

TpCallSuperviseTreatment 

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be 
combined by a logical ’OR’ function. 

Name Value Description 

P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision 
timer expires 

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call 
supervision timer expires 

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating  party 
when the call supervision timer expires. If call 

release is requested, then the call will be 
released following the tone after an 

administered time period  

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)135Release 4

TpCallTeleService 
This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High 
Layer Compatitibility Information, and 3G TS 22.003) 

Name Valu
e 

Description 

P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time 

P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony 

P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3 

P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I 

P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III 

P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex 

P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via 
gateways or interworking units 

P_CALL_TELE_SERVICE_TELEX 7 Telex service 

P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems 

P_CALL_TELE_SERVICE_OSI 9 OSI application 

P_CALL_TELE_SERVICE_FTAM 10 FTAM application 

P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony 

P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing 

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing 

P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services 

P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221 

P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221 

P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated 
with an active 3.1 kHz audio or speech call. 

P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic. 

P_CALL_TELE_SERVICE_EMERGE
NCY_CALLS 

1 Emergency Calls 

P_CALL_TELE_SERVICE_SMS_MT
_PP 

2 Short message MT/PP 

P_CALL_TELE_SERVICE_SMS_MO
_PP 

2 Short message MO/PP 

P_CALL_TELE_SERVICE_CELL_B
ROADCAST 

2 Cell Broadcast Service 

P_CALL_TELE_SERVICE_ALT_SP
EECH_FAX_3 

2 Alternate speech and facsimile group 3 

P_CALL_TELE_SERVICE_AUTOMA
TIC_FAX_3 

2 Automatic Facsimile group 3 

P_CALL_TELE_SERVICE_VOICE_
GROUP_CALL 

2 Voice Group Call Service 

P_CALL_TELE_SERVICE_VOICE_
BROADCAST 

2 Voice Broadcast Service 

 

TpCallTreatment 

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the 
network (for example, call which are not admitted by the call load control mechanism). 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)136Release 4

Sequence Element Name Sequence Element Type 

ReleaseCause TpCallReleaseCause 

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo 

 

TpCallTreatmentType 

Defines the treatment for calls that will be handled only by the network. 

Name Value Description 

P_CALL_TREATMENT_DEFAULT 0 Default treatment 

P_CALL_TREATMENT_RELEASE 1 Release the call 

P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the 
call (Send Info & Release) 

 

TpCallAdditionalTreatmentInfo 

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party. 

 Tag Element Type  

 TpCallTreatmentType  

 

Tag Element Value Choice Element Type Choice Element Name 

P_CALL_TREATMENT_DEFAULT NULL Undefined 

P_CALL_TREATMENT_RELEASE NULL Undefined 

P_CALL_TREATMENT_SIAR TpUIInfo InformationToSend 

 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)137Release 4

Annex A (normative): 
OMG IDL Description of Call Control SCF 
The OMG IDL representation of this interface specification is contained in files contained in archive 2919804IDL.ZIP 
which accompanies the present document. 



 

ETSI 

3GPP TS 29.198-4 V2.0.0 (2001-06)138Release 4

Annex B (informative): 
Differences between this draft and 3GPP TS 29.198 R99 
The following is a list of the differences between the present document and 3GPP TS 29.198 R99, for those interfaces 
which are common to both documents.  Any new interfaces with respect to Release 99 are not listed. 

B.1 Interface IpCallControlManager 
enableCallNotification (appCallControlManagerInterface : in IpAppCallControlManagerRef, eventCriteria : in 
TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult 

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult 

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in 
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult 

B.2 Interface IpAppCallControlManager 
callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in 
TpAssignmentID, appCallInterface : out IpAppCallRefRef) : TpResult 

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult 

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult 

B.3 Interface IpCall 
getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult 

B.4 Interface IpAppCall 
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult 

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult 



 

3GPP 

3GPP TS 29.198-4 V2.0.0 (2001-06)139Release 4



 

3GPP 

3GPP TS 29.198-4 V2.0.0 (2001-06)140Release 4

Annex C (informative): 
Change history 

Change history 
Date TSG # TSG Doc. CR Rev Subject/Comment Old New 
Mar 2001 CN_11 NP-010134 047 -- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0 
Jun 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0 
        
        
        
        

 

 



//Source file: common_cc_data.idl 
//Date:  12 June 2001 
 
 
#ifndef __COMMON_CC_DATA_DEFINED 
#define __COMMON_CC_DATA_DEFINED 
 
 
 
#include "ui_data.idl" 
#include "osa.idl" 
 
module org { 
  
 module csapi { 
   
  module cc { 
    
   module gccs { 
     
     
    exception TpGCCSException { 
     TpInt32 exceptionType; 
    }; 
     
   }; 
    
    
    
   enum TpCallReleaseCause { 
    P_UNDEFINED, 
    P_USER_NOT_AVAILABLE, 
    P_BUSY, 
    P_NO_ANSWER, 
    P_NOT_REACHABLE, 
    P_ROUTING_FAILURE, 
    P_PREMATURE_DISCONNECT, 
    P_DISCONNECTED, 
    P_CALL_RESTRICTED, 
    P_UNAVAILABLE_RESOURCE, 
    P_GENERAL_FAILURE, 
    P_TIMER_EXPIRY     
   }; 
    
    
    
   enum TpCallMonitorMode { 
    P_CALL_MONITOR_MODE_INTERRUPT,     
    P_CALL_MONITOR_MODE_NOTIFY,     
    P_CALL_MONITOR_MODE_DO_NOT_MONITOR     
   }; 
    
    
    
   typedef TpInt32 TpCallAlertingMechanism; 
    
    
    
   enum TpCallBearerService { 
    P_CALL_BEARER_SERVICE_UNKNOWN,     
    P_CALL_BEARER_SERVICE_SPEECH,     



    P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED,  
   
    P_CALL_BEARER_SERVICE_DIGITALRESTRICTED,   
  
    P_CALL_BEARER_SERVICE_AUDIO,     
    P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTEDTONES,  
   
    P_CALL_BEARER_SERVICE_VIDEO     
   }; 
    
    
    
   enum TpCallChargeOrderCategory { 
    P_CALL_CHARGE_PER_TIME,     
    P_CALL_CHARGE_TRANSPARENT,     
    P_CALL_CHARGE_PREDEFINED_SET 
   }; 
    
    
    
   struct TpCallChargePlan { 
    TpCallChargeOrderCategory ChargeOrderType; 
    TpChargePerTime ChargePerTime; 
    TpOctetSet TransparentCharge; 
    TpInt32 ChargePlan; 
    TpString Currency; 
    TpOctetSet AdditionalInfo; 
   }; 
    
    
    
   union TpCallChargeOrder switch(TpCallChargeOrderCategory) { 
    case P_CALL_CHARGE_PER_TIME: TpChargePerTime 
ChargePerTime; 
    case P_CALL_CHARGE_TRANSPARENT: TpOctetSet 
TransparentCharge; 
    case P_CALL_CHARGE_PREDEFINED_SET: TpInt32 ChargePlan; 
   }; 
    
    
    
   enum TpCallErrorType { 
    P_CALL_ERROR_UNDEFINED,     
    P_CALL_ERROR_INVALID_ADDRESS,     
    P_CALL_ERROR_INVALID_STATE     
   }; 
    
    
    
   union TpCallAdditionalErrorInfo switch(TpCallErrorType) { 
    case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError 
CallErrorInvalidAddress; 
    default: short Dummy;  
   }; 
    
    
    
   struct TpCallError { 
    TpDateAndTime ErrorTime; 
    TpCallErrorType ErrorType; 
    TpCallAdditionalErrorInfo AdditionalErorInfo; 



   }; 
    
    
    
   struct TpCallEndedReport { 
    TpSessionID CallLegSessionID; 
    TpCallReleaseCause Cause; 
   }; 
    
    
    
   enum TpCallFault { 
    P_CALL_FAULT_UNDEFINED,     
    P_CALL_TIMEOUT_ON_RELEASE,     
    P_CALL_TIMEOUT_ON_INTERRUPT     
   }; 
    
    
    
   const TpInt32 P_CALL_INFO_UNDEFINED = 0; 
    
    
   const TpInt32 P_CALL_INFO_TIMES = 1; 
    
    
   const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2; 
    
    
   const TpInt32 P_CALL_INFO_INTERMEDIATE = 4; 
    
    
   typedef TpInt32 TpCallInfoType; 
    
    
    
   struct TpCallInfoReport { 
    TpCallInfoType CallInfoType; 
    TpDateAndTime CallInitiationStartTime; 
    TpDateAndTime CallConnectedToResourceTime; 
    TpDateAndTime CallConnectedToDestinationTime; 
    TpDateAndTime CallEndTime; 
    TpCallReleaseCause Cause; 
   }; 
    
    
    
   const TpInt32 P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS = 0; 
    
    
   enum TpCallLoadControlMechanismType { 
    P_CALL_LOAD_CONTROL_PER_INTERVAL     
   }; 
    
    
    
   typedef TpInt32 TpCallLoadControlIntervalRate; 
    
    
    
   union TpCallLoadControlMechanism 
switch(TpCallLoadControlMechanismType) { 



    case P_CALL_LOAD_CONTROL_PER_INTERVAL: 
TpCallLoadControlIntervalRate CallLoadControlPerInterval; 
   }; 
    
    
    
   enum TpCallNetworkAccessType { 
    P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN,     
    P_CALL_NETWORK_ACCESS_TYPE_POT,     
    P_CALL_NETWORK_ACCESS_TYPE_ISDN,     
    P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET,  
   
    P_CALL_NETWORK_ACCESS_TYPE_XDSL,     
    P_CALL_NETWORK_ACCESS_TYPE_WIRELESS     
   }; 
    
    
    
   enum TpCallPartyCategory { 
    P_CALL_PARTY_CATEGORY_UNKNOWN,     
    P_CALL_PARTY_CATEGORY_OPERATOR_F,     
    P_CALL_PARTY_CATEGORY_OPERATOR_E,     
    P_CALL_PARTY_CATEGORY_OPERATOR_G,     
    P_CALL_PARTY_CATEGORY_OPERATOR_R,     
    P_CALL_PARTY_CATEGORY_OPERATOR_S,     
    P_CALL_PARTY_CATEGORY_ORDINARY_SUB,     
    P_CALL_PARTY_CATEGORY_PRIORITY_SUB,     
    P_CALL_PARTY_CATEGORY_DATA_CALL,     
    P_CALL_PARTY_CATEGORY_TEST_CALL,     
    P_CALL_PARTY_CATEGORY_PAYPHONE     
   }; 
    
    
    
   enum TpCallServiceCodeType { 
    P_CALL_SERVICE_CODE_UNDEFINED,     
    P_CALL_SERVICE_CODE_DIGITS,     
    P_CALL_SERVICE_CODE_FACILITY,     
    P_CALL_SERVICE_CODE_U2U,     
    P_CALL_SERVICE_CODE_HOOKFLASH,     
    P_CALL_SERVICE_CODE_RECALL     
   }; 
    
    
    
   struct TpCallServiceCode { 
    TpCallServiceCodeType CallServiceCodeType; 
    TpString ServiceCodeValue; 
   }; 
    
    
    
   enum TpCallTeleService { 
    P_CALL_TELE_SERVICE_UNKNOWN,     
    P_CALL_TELE_SERVICE_TELEPHONY,     
    P_CALL_TELE_SERVICE_FAX_2_3,     
    P_CALL_TELE_SERVICE_FAX_4_I,     
    P_CALL_TELE_SERVICE_FAX_4_II_III,     
    P_CALL_TELE_SERVICE_VIDEOTEX_SYN,     
    P_CALL_TELE_SERVICE_VIDEOTEX_INT,     
    P_CALL_TELE_SERVICE_TELEX,     



    P_CALL_TELE_SERVICE_MHS,     
    P_CALL_TELE_SERVICE_OSI,     
    P_CALL_TELE_SERVICE_FTAM,     
    P_CALL_TELE_SERVICE_VIDEO,     
    P_CALL_TELE_SERVICE_VIDEO_CONF,     
    P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF,   
  
    P_CALL_TELE_SERVICE_MULTIMEDIA,     
    P_CALL_TELE_SERVICE_CS_INI_H221,     
    P_CALL_TELE_SERVICE_CS_SUB_H221,     
    P_CALL_TELE_SERVICE_CS_INI_CALL,     
    P_CALL_TELE_SERVICE_DATATRAFFIC,     
    P_CALL_TELE_SERVICE_EMERGENCY_CALLS,   
  
    P_CALL_TELE_SERVICE_SMS_MT_PP,     
    P_CALL_TELE_SERVICE_SMS_MO_PP,     
    P_CALL_TELE_SERVICE_CELL_BROADCAST,     
    P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3,   
  
    P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3,   
  
    P_CALL_TELE_SERVICE_VOICE_GROUP_CALL,   
  
    P_CALL_TELE_SERVICE_VOICE_BROADCAST     
   }; 
    
    
    
   const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1; 
    
    
   const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2; 
    
    
   const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4; 
    
    
   const TpInt32 P_CALL_SUPERVISE_UI_FINISHED = 8; 
    
    
   typedef TpInt32 TpCallSuperviseReport; 
    
    
    
   const TpInt32 P_CALL_SUPERVISE_RELEASE = 1; 
    
    
   const TpInt32 P_CALL_SUPERVISE_RESPOND = 2; 
    
    
   const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4; 
    
    
   typedef TpInt32 TpCallSuperviseTreatment; 
    
    
    
   enum TpCallTreatmentType { 
    P_CALL_TREATMENT_DEFAULT,     
    P_CALL_TREATMENT_RELEASE,     
    P_CALL_TREATMENT_SIAR     



   }; 
    
    
    
   union TpCallAdditionalTreatmentInfo 
switch(TpCallTreatmentType) { 
    case P_CALL_TREATMENT_SIAR: ui::TpUIInfo 
InformationToSend; 
    default: short Dummy;  
   }; 
    
    
    
   struct TpCallTreatment { 
    TpCallTreatmentType CallTreatmentType; 
    TpCallReleaseCause ReleaseCause; 
    TpCallAdditionalTreatmentInfo AdditionalTreatmentInfo; 
   }; 
    
   union TpCallAdditionalChargePlanInfo 
switch(TpCallChargeOrderCategory) { 
    case P_CALL_CHARGE_PER_TIME: TpOctetSet 
TimeAdditionalInfo; 
    case P_CALL_CHARGE_PREDEFINED_SET: TpOctetSet 
SetAdditionalInfo; 
    default: any Dummy; 
   }; 
    
  }; 
   
 }; 
  
}; 
 
#endif 



//Source file: gcc_data.idl 
//Date:  12 June 2001 
 
#ifndef __GCC_DATA_DEFINED 
#define __GCC_DATA_DEFINED 
 
 
 
#include "common_cc_data.idl" 
#include "osa.idl" 
 
module org { 
  
 module csapi { 
   
   
   
  
  module cc { 
    
   module gccs { 
     
     
    const TpInt32 P_EVENT_NAME_UNDEFINED = 0; 
     
     
    const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1; 
     
     
    const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2; 
     
     
    const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4; 
     
     
    const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8; 
     
     
    const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 
16; 
     
     
    const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 
32; 
     
     
    const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64; 
     
     
    const TpInt32 P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY = 128; 
     
     
     
    typedef TpInt32 TpCallEventName; 
     
     
     
    enum TpCallNotificationType { 
     P_ORIGINATING,      
     P_TERMINATING      
    }; 



     
     
     
    struct TpCallEventCriteria { 
     TpAddressRange DestinationAddress; 
     TpAddressRange OriginatingAddress; 
     TpCallEventName CallEventName; 
     TpCallNotificationType CallNotificationType; 
      
     TpCallMonitorMode MonitorMode; 
    }; 
     
    struct TpCallEventCriteriaResult { 
     TpCallEventCriteria CallEventCriteria; 
     TpInt32 AssignmentID; 
    }; 
     
     
     
    typedef sequence <TpCallEventCriteriaResult> 
TpCallEventCriteriaResultSet; 
     
    enum TpCallAppInfoType { 
     P_CALL_APP_UNDEFINED, 
     P_CALL_APP_ALERTING_MECHANISM, 
     P_CALL_APP_NETWORK_ACCESS_TYPE, 
     P_CALL_APP_TELE_SERVICE, 
     P_CALL_APP_BEARER_SERVICE, 
     P_CALL_APP_PARTY_CATEGORY, 
     P_CALL_APP_PRESENTATION_ADDRESS, 
     P_CALL_APP_GENERIC_INFO, 
     P_CALL_APP_ADDITIONAL_ADDRESS 
    }; 
     
    union TpCallAppInfo switch(TpCallAppInfoType) { 
     case P_CALL_APP_ALERTING_MECHANISM: 
TpCallAlertingMechanism CallAppAlertingMechanism; 
     case P_CALL_APP_NETWORK_ACCESS_TYPE: 
TpCallNetworkAccessType CallAppNetworkAccessType; 
     case P_CALL_APP_TELE_SERVICE: TpCallTeleService 
CallAppTeleService; 
     case P_CALL_APP_BEARER_SERVICE: 
TpCallBearerService CallAppBearerService; 
     case P_CALL_APP_PARTY_CATEGORY: 
TpCallPartyCategory CallAppPartyCategory; 
     case P_CALL_APP_PRESENTATION_ADDRESS: TpAddress 
CallAppPresentationAddress; 
     case P_CALL_APP_GENERIC_INFO: TpString 
CallAppGenericInfo; 
     case P_CALL_APP_ADDITIONAL_ADDRESS: TpAddress 
CallAppAdditionalAddress; 
     default: short Dummy; 
    }; 
     
    typedef sequence<TpCallAppInfo> TpCallAppInfoSet; 
     
     
     
    struct TpCallReleaseCause { 
     TpInt32 Value; 
     TpInt32 Location; 



    }; 
     
     
     
    enum TpCallReportType { 
     P_CALL_REPORT_UNDEFINED,    
  
     P_CALL_REPORT_PROGRESS,      
     P_CALL_REPORT_ALERTING,      
     P_CALL_REPORT_ANSWER,      
     P_CALL_REPORT_BUSY,      
     P_CALL_REPORT_NO_ANSWER,    
  
     P_CALL_REPORT_DISCONNECT,    
  
     P_CALL_REPORT_REDIRECTED,    
  
     P_CALL_REPORT_SERVICE_CODE,    
  
     P_CALL_REPORT_ROUTING_FAILURE,   
   
     P_CALL_REPORT_QUEUED      
    }; 
     
     
     
    union TpCallAdditionalReportInfo 
switch(TpCallReportType) { 
     case P_CALL_REPORT_BUSY: TpCallReleaseCause Busy; 
     case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause 
CallDisconnect; 
     case P_CALL_REPORT_REDIRECTED: TpAddress 
ForwardAddress; 
     case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode 
ServiceCode; 
     case P_CALL_REPORT_ROUTING_FAILURE: 
TpCallReleaseCause RoutingFailure; 
     default: short Dummy;  
    }; 
     
     
     
    struct TpCallReport { 
     TpCallMonitorMode MonitorMode; 
     TpDateAndTime CallEventTime; 
      
     TpCallReportType CallReportType; 
     TpCallAdditionalReportInfo AdditionalReportInfo; 
    }; 
     
     
     
    union TpCallAdditionalReportCriteria 
switch(TpCallReportType) { 
     case P_CALL_REPORT_NO_ANSWER: TpDuration 
NoAnswerDuration; 
     case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode 
ServiceCode; 
     default: short Dummy;  
    }; 
     



     
     
    struct TpCallReportRequest { 
     TpCallMonitorMode MonitorMode; 
     TpCallReportType CallReportType; 
     TpCallAdditionalReportCriteria 
AdditionalReportCriteria; 
    }; 
     
     
     
    typedef sequence <TpCallReportRequest> 
TpCallReportRequestSet; 
     
     
     
    const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256; 
     
     
    const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257; 
     
     
    const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258; 
     
     
    const TpInt32 P_GCCS_INVALID_ADDDRESS = 259; 
     
     
    const TpInt32 P_GCCS_INVALID_CRITERIA = 260; 
     
     
    const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 261; 
    struct TpCallEventInfo { 
     TpAddress DestinationAddress; 
     TpAddress OriginatingAddress; 
     TpAddress OriginalDestinationAddress; 
     TpAddress RedirectingAddress; 
     TpCallAppInfoSet CallAppInfo; 
     TpCallEventName CallEventName; 
     TpCallNotificationType CallNotificationType; 
     TpCallMonitorMode MonitorMode; 
    }; 
     
    enum TpCallPartyToCharge { 
     P_CALL_PARTY_ORIGINATING, 
     P_CALL_PARTY_DESTINATION 
    }; 
     
    struct TpCallChargePlan { 
     TpCallChargeOrderCategory ChargeOrderType; 
     TpChargePerTime ChargePerTime; 
     TpCallPartyToCharge PartyToCharge; 
     TpOctetSet TransparentCharge; 
     TpInt32 ChargePlan; 
     TpString Currency; 
     TpOctetSet AdditionalInfo; 
    }; 
     
    struct TpCallEndedReport { 
     TpSessionID CallLegSessionID; 
     TpCallReleaseCause Cause; 



    }; 
     
    struct TpCallInfoReport { 
     TpCallInfoType CallInfoType; 
     TpDateAndTime CallInitiationStartTime; 
     TpDateAndTime CallConnectedToResourceTime; 
     TpDateAndTime CallConnectedToDestinationTime; 
     TpDateAndTime CallEndTime; 
     TpCallReleaseCause Cause; 
    }; 
     
    struct TpCallTreatment { 
     TpCallTreatmentType CallTreatmentType; 
     TpCallReleaseCause ReleaseCause; 
     TpCallAdditionalTreatmentInfo 
AdditionalTreatmentInfo; 
    }; 
     
   }; 
    
    
    
    
    
  }; 
   
 }; 
  
}; 
 
#endif 



//Source file: gcc_interfaces.idl 
//Date:  12 June 2001 
 
 
#ifndef __GCC_INTERFACES_DEFINED 
#define __GCC_INTERFACES_DEFINED 
 
 
 
#include "osa.idl" 
#include "common_cc_data.idl" 
#include "gcc_data.idl" 
 
 
module org { 
  
 module csapi { 
   
  module cc { 
    
   module gccs { 
     
     
     
    interface IpAppCall : IpInterface { 
      
     void routeRes ( 
      in TpSessionID callSessionID,  
      in TpCallReport eventReport,  
      in TpSessionID callLegSessionID  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void routeErr ( 
      in TpSessionID callSessionID,  
      in TpCallError errorIndication,  
      in TpSessionID callLegSessionID  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void getCallInfoRes ( 
      in TpSessionID callSessionID,  
      in TpCallInfoReport callInfoReport  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void getCallInfoErr ( 
      in TpSessionID callSessionID,  
      in TpCallError errorIndication  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void superviseCallRes ( 
      in TpSessionID callSessionID,  
      in TpCallSuperviseReport report,  
      in TpDuration usedTime  
      )       



      raises (TpGCCSException,TpGeneralException); 
       
      
     void superviseCallErr ( 
      in TpSessionID callSessionID,  
      in TpCallError errorIndication  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void callFaultDetected ( 
      in TpSessionID callSessionID,  
      in TpCallFault fault  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void getMoreDialledDigitsRes ( 
      in TpSessionID callSessionID,  
      in TpString digits  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
      
     void getMoreDialledDigitsErr ( 
      in TpSessionID callSessionID,  
      in TpCallError errorIndication  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
      
     void callEnded ( 
      in TpSessionID callSessionID,  
      in TpCallEndedReport report  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
    }; 
     
     
     
    interface IpCall : IpService { 
      
     void routeReq ( 
      in TpSessionID callSessionID,  
      in TpCallReportRequestSet responseRequested,
  
      in TpAddress targetAddress,  
      in TpAddress originatingAddress,  
      in TpAddress originalDestinationAddress,  
      in TpAddress redirectingAddress,  
      in TpCallAppInfoSet appInfo,  
      out TpSessionID callLegSessionID  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void release ( 
      in TpSessionID callSessionID,  
      in TpCallReleaseCause cause  
      )       



      raises (TpGCCSException,TpGeneralException); 
       
      
     void deassignCall ( 
      in TpSessionID callSessionID  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void getCallInfoReq ( 
      in TpSessionID callSessionID,  
      in TpCallInfoType callInfoRequested  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void setCallChargePlan ( 
      in TpSessionID callSessionID,  
      in TpCallChargePlan callChargePlan  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void setAdviceOfCharge ( 
      in TpSessionID callSessionID,  
      in TpAoCInfo aOCInfo,  
      in TpDuration tariffSwitch  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
      
     void getMoreDialledDigitsReq ( 
      in TpSessionID callSessionID,  
      in TpInt32 length  
      )       
      raises (TpGeneralException, 
TpGCCSException); 
       
      
     void superviseCallReq ( 
      in TpSessionID callSessionID,  
      in TpDuration time,  
      in TpCallSuperviseTreatment treatment  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
    }; 
     
     
    struct TpCallIdentifier { 
     TpSessionID CallSessionID; 
     IpCall CallReference; 
    }; 
     
     
     
    interface IpAppCallControlManager : IpInterface { 
      
     void callAborted ( 
      in TpSessionID callReference  
      )       



      raises (TpGCCSException,TpGeneralException); 
       
      
     void callEventNotify ( 
      in TpCallIdentifier callReference,  
      in TpCallEventInfo eventInfo,  
      in TpAssignmentID assignmentID,  
      out IpAppCall appCall  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void callNotificationInterrupted ()   
    
      raises (TpGCCSException,TpGeneralException); 
       
      
     void callNotificationContinued (); 
       
      
     void callOverloadEncountered ( 
      in TpAssignmentID assignmentID  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
      
     void callOverloadCeased ( 
      in TpAssignmentID assignmentID  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
    }; 
     
     
     
    interface IpCallControlManager : IpService { 
      
     void createCall ( 
      in IpAppCall appCall,  
      out TpCallIdentifier callReference  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void enableCallNotification ( 
      in IpAppCallControlManager 
appCallControlManager,  
      in TpCallEventCriteria eventCriteria,  
      out TpAssignmentID assignmentID  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void disableCallNotification ( 
      in TpAssignmentID assignmentID  
      )       
      raises (TpGCCSException,TpGeneralException); 
       
      
     void setCallLoadControl ( 
      in TpDuration duration,  



      in TpCallLoadControlMechanism mechanism,  
      in TpCallTreatment treatment,  
      in TpAddressRange addressRange,  
      out TpAssignmentID assignmentID  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
      
     void changeCallNotification ( 
      in TpAssignmentID assignmentID,  
      in TpCallEventCriteria eventCriteria  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
      
     void getCriteria ( 
      out TpCallEventCriteriaResultSet 
eventCriteria  
      )       
      raises (TpGeneralException,TpGCCSException); 
       
    }; 
     
     
   }; 
    
  }; 
   
 }; 
  
}; 
 
#endif 



//Source file: mpcc_data.idl 
//Date:  12 June 2001 
 
 
#ifndef __MPCC_DATA_DEFINED 
#define __MPCC_DATA_DEFINED 
 
 
 
#include "osa.idl" 
#include "common_cc_data.idl" 
 
module org { 
  
 module csapi { 
   
  module cc { 
    
    
   enum TpCallAppInfoType { 
    P_CALL_APP_UNDEFINED,     
    P_CALL_APP_ALERTING_MECHANISM,     
    P_CALL_APP_NETWORK_ACCESS_TYPE,     
    P_CALL_APP_TELE_SERVICE,     
    P_CALL_APP_BEARER_SERVICE,     
    P_CALL_APP_PARTY_CATEGORY,     
    P_CALL_APP_PRESENTATION_ADDRESS,     
    P_CALL_APP_GENERIC_INFO,     
    P_CALL_APP_ADDITIONAL_ADDRESS,     
    P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS, 
    P_CALL_APP_REDIRECTING_ADDRESS 
   }; 
    
    
    
   union TpCallAppInfo switch(TpCallAppInfoType) { 
    case P_CALL_APP_ALERTING_MECHANISM: 
TpCallAlertingMechanism CallAppAlertingMechanism; 
    case P_CALL_APP_NETWORK_ACCESS_TYPE: 
TpCallNetworkAccessType CallAppNetworkAccessType; 
    case P_CALL_APP_TELE_SERVICE: TpCallTeleService 
CallAppTeleService; 
    case P_CALL_APP_BEARER_SERVICE: TpCallBearerService 
CallAppBearerService; 
    case P_CALL_APP_PARTY_CATEGORY: TpCallPartyCategory 
CallAppPartyCategory; 
    case P_CALL_APP_PRESENTATION_ADDRESS: TpAddress 
CallAppPresentationAddress; 
    case P_CALL_APP_GENERIC_INFO: TpString 
CallAppGenericInfo; 
    case P_CALL_APP_ADDITIONAL_ADDRESS: TpAddress 
CallAppAdditionalAddress; 
    case P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS: TpAddress 
CallAppOriginalDestinationAddress; 
    case P_CALL_APP_REDIRECTING_ADDRESS: TpAddress 
CallAppRedirectingAddress; 
    default: short Dummy;  
   }; 
    
    
    



   typedef sequence <TpCallAppInfo> TpCallAppInfoSet; 
    
    
    
   enum TpCallEventType { 
    P_CALL_EVENT_UNDEFINED,     
    P_CALL_EVENT_CALL_ATTEMPT,     
    P_CALL_EVENT_ADDRESS_COLLECTED,     
    P_CALL_EVENT_ADDRESS_ANALYSED,     
    P_CALL_EVENT_ALERTING,     
    P_CALL_EVENT_ANSWER,     
    P_CALL_EVENT_RELEASE,     
    P_CALL_EVENT_REDIRECTED,     
    P_CALL_EVENT_SERVICE_CODE,     
    P_CALL_EVENT_QUEUED 
   }; 
    
    
    
   union TpCallAdditionalEventInfo switch(TpCallEventType) { 
    case P_CALL_EVENT_ADDRESS_COLLECTED: TpAddress 
CollectedAddress; 
    case P_CALL_EVENT_ADDRESS_ANALYSED: TpAddress 
CalledAddress; 
    case P_CALL_EVENT_RELEASE: TpCallReleaseCause 
ReleaseCause; 
    case P_CALL_EVENT_REDIRECTED: TpAddress ForwardAddress; 
    case P_CALL_EVENT_SERVICE_CODE: TpCallServiceCode 
ServiceCode; 
    default: short Dummy;  
   }; 
    
    
    
   enum TpNotificationCallType { 
    P_ORIGINATING,     
    P_TERMINATING     
   }; 
    
    
    
   struct TpCallNotificationScope { 
    TpAddressRange DestinationAddress; 
    TpAddressRange OriginatingAddress; 
    TpNotificationCallType NotificationCallType; 
   }; 
    
    
    
   struct TpCallNotificationReportScope { 
    TpAddress DestinationAddress; 
    TpAddress OriginatingAddress; 
    TpNotificationCallType NotificationCallType; 
   }; 
    
    
    
   typedef sequence<TpCallReleaseCause> TpCallReleaseCauseSet; 
    
    
    



   union TpAdditionalCallEventCriteria switch(TpCallEventType) { 
    case P_CALL_EVENT_ADDRESS_COLLECTED: TpInt32 
MinAddressLength; 
    case P_CALL_EVENT_RELEASE: TpCallReleaseCauseSet 
ReleaseCauseSet; 
    case P_CALL_EVENT_SERVICE_CODE: TpCallServiceCode 
ServiceCode; 
    default: short Dummy;  
   }; 
    
    
    
   struct TpCallEventRequest { 
    TpCallEventType CallEventType; 
    TpAdditionalCallEventCriteria 
AdditionalCallEventCriteria; 
    TpCallMonitorMode CallMonitorMode; 
   }; 
    
    
    
   typedef sequence <TpCallEventRequest> TpCallEventRequestSet; 
    
    
    
   struct TpCallNotificationRequest { 
    TpCallNotificationScope CallNotificationScope; 
    TpCallEventRequestSet CallEventsRequested; 
   }; 
    
    
    
   struct TpNotificationRequested { 
    TpCallNotificationRequest AppCallNotificationRequest; 
    TpInt32 AssignmentID; 
   }; 
    
    
    
   typedef sequence <TpNotificationRequested> 
TpNotificationRequestedSet; 
    
   enum TpCallLegAttachMechanism { 
    P_CALLLEG_ATTACH_IMPLICITLY, 
    P_CALLLEG_ATTACH_EXPLICITLY 
   }; 
    
    
    
   struct TpCallLegConnectionProperties { 
    TpCallLegAttachMechanism AttachMechanism; 
   }; 
    
    
    
   const TpInt32 P_CALL_LEG_INFO_UNDEFINED = 0; 
    
    
   const TpInt32 P_CALL_LEG_INFO_TIMES = 1; 
    
    



   const TpInt32 P_CALL_LEG_INFO_RELEASE_CAUSE = 2; 
    
    
   const TpInt32 P_CALL_LEG_INFO_ADDRESS = 4; 
    
    
   const TpInt32 P_CALL_LEG_INFO_APPINFO = 8; 
    
    
   typedef TpInt32 TpCallLegInfoType; 
    
    
    
   struct TpCallLegInfoReport { 
    TpCallLegInfoType CallLegInfoType; 
    TpDateAndTime CallLegStartTime; 
    TpDateAndTime CallLegConnectedToResourceTime; 
    TpDateAndTime CallLegConnectedToAddressTime; 
    TpDateAndTime CallLegEndTime; 
    TpAddress ConnectedAddress; 
    TpCallReleaseCause CallLegReleaseCause; 
    TpCallAppInfoSet CallAppInfo; 
   }; 
    
   struct TpCallEventInfo { 
    TpCallEventType CallEventType; 
    TpCallAdditionalEventInfo AdditionalCallEventInfo; 
    TpCallMonitorMode CallMonitorMode; 
    TpDateAndTime CallEventTime; 
   }; 
    
    
    
   struct TpCallNotificationInfo { 
    TpCallNotificationReportScope 
CallNotificationReportScope; 
    TpCallAppInfoSet CallAppInfo; 
    TpCallEventInfo CallEventInfo; 
   }; 
    
  }; 
   
 }; 
  
}; 
 
#endif 



//Source file: mpcc_interfaces.idl 
//Date:  12 June 2001 
 
 
#ifndef __MPCC_INTERFACES_DEFINED 
#define __MPCC_INTERFACES_DEFINED 
 
 
 
#include "osa.idl" 
#include "common_cc_data.idl" 
#include "mpcc_data.idl" 
 
module org { 
  
 module csapi { 
   
  module cc { 
    
   module mpccs { 
 
    interface IpMultiPartyCall; 
    interface IpCallLeg; 
    interface IpAppMultiPartyCall; 
    interface IpAppCallLeg; 
     
     
    struct TpCallLegIdentifier { 
     IpCallLeg CallLegReference; 
      
     TpSessionID CallLegSessionID; 
    }; 
     
    typedef sequence <TpCallLegIdentifier> 
TpCallLegIdentifierSet; 
     
    struct TpMultiPartyCallIdentifier { 
     IpMultiPartyCall CallReference; 
     TpSessionID CallSessionID; 
    }; 
     
     
    typedef sequence <TpMultiPartyCallIdentifier> 
TpMultiPartyCallIdentifierSet; 
     
    enum TpAppMultiPartyCallBackRefType { 
     P_APP_CALLBACK_UNDEFINED, 
     P_APP_MULTIPARTY_CALL_CALLBACK, 
     P_APP_CALL_LEG_CALLBACK, 
     P_APP_CALL_AND_CALL_LEG_CALLBACK 
    }; 
     
    typedef sequence <IpAppCallLeg> TpAppCallLegRefSet; 
     
    struct TpAppCallLegCallBack { 
     IpAppMultiPartyCall appMultiPartyCall; 
     TpAppCallLegRefSet appCallLegSet; 
    }; 
     
    union TpAppMultiPartyCallBack 
switch(TpAppMultiPartyCallBackRefType) { 



     case P_APP_MULTIPARTY_CALL_CALLBACK: 
IpAppMultiPartyCall appMultiPartyCall; 
     case P_APP_CALL_LEG_CALLBACK: IpAppCallLeg 
appCallLeg; 
     case P_APP_CALL_AND_CALL_LEG_CALLBACK: 
TpAppCallLegCallBack appMultiPartyCallAndCallLeg; 
     default: short Dummy; 
    }; 
     
     
     
     
    interface IpAppCallLeg : IpInterface, IpService { 
      
     void eventReportRes ( 
      in TpSessionID callLegSessionID,  
      in TpCallEventInfo eventInfo  
      ); 
       
      
     void eventReportErr ( 
      in TpSessionID callLegSessionID,  
      in TpCallError errorIndication  
      ); 
       
      
     void getInfoRes ( 
      in TpSessionID callLegSessionID,  
      in TpCallLegInfoReport callLegInfoReport  
      ); 
       
      
     void getInfoErr ( 
      in TpSessionID callLegSessionID,  
      in TpCallError errorIndication  
      ); 
       
      
     void routeErr ( 
      in TpSessionID callLegSessionID,  
      in TpCallError errorIndication  
      ); 
       
      
     void getMoreDialledDigitsRes ( 
      in TpSessionID callSessionID,  
      in TpString digits  
      ); 
       
      
     void getMoreDialledDigitsErr ( 
      in TpSessionID callSessionID,  
      in TpCallError errorIndication  
      ); 
       
      
     void superviseRes ( 
      in TpSessionID callLegSessionID,  
      in TpCallSuperviseReport report,  
      in TpDuration usedTime  
      ); 



       
      
     void superviseErr ( 
      in TpSessionID callLegSessionID,  
      in TpCallError errorIndication  
      ); 
       
      
     void connectionEnded ( 
      in TpSessionID callLegSessionID,  
      in TpCallReleaseCause cause  
      ); 
       
    }; 
     
     
     
    interface IpCallLeg { 
      
     void routeReq ( 
      in TpSessionID callLegSessionID,  
      in TpAddress targetAddess,  
      in TpAddress originatingAddress,  
      in TpCallAppInfoSet appInfo,  
      in TpCallLegConnectionProperties 
connectionProperties  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE); 
       
      
     void eventReportReq ( 
      in TpSessionID callLegSessionID,  
      in TpCallEventRequestSet eventsRequested  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA); 
       
      
     void release ( 
      in TpSessionID callLegSessionID,  
      in TpCallReleaseCause cause  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE); 
       
      
     void getInfoReq ( 
      in TpSessionID callLegSessionID,  
      in TpCallLegInfoType callLegInfoRequested  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void getCall ( 
      in TpSessionID callLegSessionID,  
      out TpMultiPartyCallIdentifier callReference
  
      )       



      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void attachMedia ( 
      in TpSessionID callLegSessionID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE); 
       
      
     void detachMedia ( 
      in TpSessionID callLegSessionID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE); 
       
      
     void getLastRedirectedAddress ( 
      in TpSessionID callLegSessionID,  
      out TpAddress redirectedAddress  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void continueProcessing ( 
      in TpSessionID callLegSessionID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE); 
       
      
     void getMoreDialledDigitsReq ( 
      in TpSessionID callLegSessionID,  
      in TpInt32 length  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void setChargePlan ( 
      in TpSessionID callLegSessionID,  
      in TpCallChargePlan callChargePlan  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void setAdviceOfCharge ( 
      in TpSessionID callLegSessionID,  
      in TpAoCInfo aOCInfo,  
      in TpDuration tarrifSwitch  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void superviseReq ( 
      in TpSessionID callLegSessionID,  
      in TpDuration time,  



      in TpCallSuperviseTreatment treatment  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void deassign ( 
      in TpSessionID callLegSessionID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
    }; 
     
     
     
     
    interface IpAppMultiPartyCall : IpInterface { 
      
     void getInfoRes ( 
      in TpSessionID callSessionID,  
      in TpCallInfoReport callInfoReport  
      ); 
       
      
     void getInfoErr ( 
      in TpSessionID callSessionID,  
      in TpCallError errorIndication  
      ); 
       
      
     void superviseRes ( 
      in TpSessionID callSessionID,  
      in TpCallSuperviseReport report,  
      in TpDuration usedTime  
      ); 
       
      
     void superviseErr ( 
      in TpSessionID callSessionID,  
      in TpCallError errorIndication  
      ); 
       
      
     void callFaultDetected ( 
      in TpSessionID callSessionID,  
      in TpCallFault fault  
      ); 
       
      
     void callEnded ( 
      in TpSessionID callSessionID,  
      in TpCallEndedReport report  
      ); 
       
      
     void createAndRouteCallLegErr ( 
      in TpSessionID callSessionID,  
      in TpCallLegIdentifier callLegReference,  
      in TpCallError errorIndication  
      ); 



       
    }; 
     
     
     
    interface IpMultiPartyCall : IpService { 
      
     void getCallLegs ( 
      in TpSessionID callSessionID,  
      out TpCallLegIdentifierSet callLegList  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void createCallLeg ( 
      in TpSessionID callSessionID,  
      in IpAppCallLeg appCallLeg,  
      out TpCallLegIdentifier callLeg  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_ADDRESS, 
P_UNSUPPORTED_ADDRESS_PLAN); 
       
      
     void createAndRouteCallLegReq ( 
      in TpSessionID callSessionID,  
      in TpCallEventRequestSet eventsRequested,  
      in TpAddress targetAddress,  
      in TpAddress originatingAddress,  
      in TpCallAppInfoSet appInfo,  
      in IpAppCallLeg appLegInterface,  
      out TpCallLegIdentifier callLegReference  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_ADDRESS , 
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA); 
       
      
     void release ( 
      in TpSessionID callSessionID,  
      in TpCallReleaseCause cause  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE); 
       
      
     void deassignCall ( 
      in TpSessionID callSessionID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void getInfoReq ( 
      in TpSessionID callSessionID,  
      in TpCallInfoType callInfoRequested  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       



      
     void setChargePlan ( 
      in TpSessionID callSessionID,  
      in TpCallChargePlan callChargePlan  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void setAdviceOfCharge ( 
      in TpSessionID callSessionID,  
      in TpAoCInfo aOCInfo,  
      in TpDuration tariffSwitch  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
      
     void superviseReq ( 
      in TpSessionID callSessionID,  
      in TpDuration time,  
      in TpCallSuperviseTreatment treatment  
      )       
      raises (TpCommonExceptions, 
P_INVALID_SESSION_ID); 
       
    }; 
     
     
     
    interface IpAppMultiPartyCallControlManager : 
IpInterface { 
      
     void reportNotification ( 
      in TpMultiPartyCallIdentifier callReference,
  
      in TpCallLegIdentifierSet 
callLegReferenceSet,  
      in TpCallNotificationInfo notificationInfo,
  
      in TpAssignmentID assignmentID,  
      out TpAppMultiPartyCallBack appCallBack  
      ); 
       
      
     void callAborted ( 
      in TpSessionID callReference  
      ); 
       
      
     void managerInterrupted (); 
       
      
     void managerResumed (); 
       
      
     void callOverloadEncountered ( 
      in TpAssignmentID assignmentID  
      ); 
       
      



     void callOverloadCeased ( 
      in TpAssignmentID assignmentID  
      ); 
       
    }; 
     
     
     
    interface IpMultiPartyCallControlManager : IpService { 
      
     void createCall ( 
      in IpAppMultiPartyCall appCall,  
      out TpMultiPartyCallIdentifier callReference
  
      )       
      raises (TpCommonExceptions); 
       
      
     void createNotification ( 
      in IpAppMultiPartyCallControlManager 
appCallControlManager,  
      in TpCallNotificationRequest 
notificationRequest,  
      out TpAssignmentID assignmentID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE); 
       
      
     void destroyNotification ( 
      in TpAssignmentID assignmentID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_ASSIGNMENT_ID); 
       
      
     void changeNotification ( 
      in TpAssignmentID assignmentID,  
      in TpCallNotificationRequest 
notificationRequest  
      )       
      raises (TpCommonExceptions, 
P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE); 
       
      
     void getNotification ( 
      out TpNotificationRequestedSet 
notificationsRequested  
      )       
      raises (TpCommonExceptions); 
       
      
     void setCallLoadControl ( 
      in TpDuration duration,  
      in TpCallLoadControlMechanism mechanism,  
      in TpCallTreatment treatment,  
      in TpAddressRange addressRange,  
      out TpAssignmentID assignmentID  
      )       
      raises (TpCommonExceptions, 
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN); 



       
    }; 
     
     
   }; 
    
  }; 
   
 }; 
  
}; 
 
#endif 



//Source file: osa.idl 
//Date:  12 June 2001 
 
 
#ifndef __OSA_DEFINED 
#define __OSA_DEFINED 
 
 
 
module org { 
  
 module csapi { 
   
   
   
  enum TpAddressError { 
   P_ADDRESS_INVALID_UNDEFINED,    
   P_ADDRESS_INVALID_MISSING,    
   P_ADDRESS_INVALID_MISSING_ELEMENT,    
   P_ADDRESS_INVALID_OUT_OF_RANGE,    
   P_ADDRESS_INVALID_INCOMPLETE,    
   P_ADDRESS_INVALID_CANNOT_DECODE    
  }; 
   
   
   
  enum TpAddressPlan { 
   P_ADDRESS_PLAN_NOT_PRESENT,    
   P_ADDRESS_PLAN_UNDEFINED,    
   P_ADDRESS_PLAN_IP,    
   P_ADDRESS_PLAN_MULTICAST,    
   P_ADDRESS_PLAN_UNICAST,    
   P_ADDRESS_PLAN_E164,    
   P_ADDRESS_PLAN_AESA,    
   P_ADDRESS_PLAN_URL,    
   P_ADDRESS_PLAN_NSAP,    
   P_ADDRESS_PLAN_SMTP,    
   P_ADDRESS_PLAN_MSMAIL,    
   P_ADDRESS_PLAN_X400    
  }; 
   
   
   
  enum TpAddressPresentation { 
   P_ADDRESS_PRESENTATION_UNDEFINED,    
   P_ADDRESS_PRESENTATION_ALLOWED,    
   P_ADDRESS_PRESENTATION_RESTRICTED,    
   P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE    
  }; 
   
   
   
  enum TpAddressScreening { 
   P_ADDRESS_SCREENING_UNDEFINED,    
   P_ADDRESS_SCREENING_USER_VERIFIED_PASSED,    
   P_ADDRESS_SCREENING_USER_NOT_VERIFIED,    
   P_ADDRESS_SCREENING_USER_VERIFIED_FAILED,    
   P_ADDRESS_SCREENING_NETWORK    
  }; 
   
   



   
  typedef boolean TpBoolean; 
   
   
   
  typedef float TpFloat; 
   
   
   
  typedef long TpInt32; 
   
   
   
  const TpInt32 P_METHOD_NOT_SUPPORTED = 22; 
   
   
  const TpInt32 P_NO_CALLBACK_ADDRESS_SET = 17; 
   
   
  const TpInt32 P_RESOURCES_UNAVAILABLE = 13; 
   
   
  const TpInt32 P_TASK_CANCELLED = 15; 
   
   
  const TpInt32 P_TASK_REFUSED = 14; 
   
   
  typedef TpInt32 TpAssignmentID; 
   
   
   
  typedef TpInt32 TpDuration; 
   
  exception TpGeneralException { 
   TpInt32 exceptionType; 
  }; 
   
   
   
  typedef string TpLongString; 
   
   
   
  typedef TpInt32 TpSessionID; 
   
  typedef sequence <TpSessionID> TpSessionIDSet; 
   
   
   
  typedef string TpString; 
   
   
   
  exception P_INVALID_ASSIGNMENT_ID { 
   TpString extraInformation; 
  }; 
   
   
   
  exception P_INVALID_TIME_AND_DATE_FORMAT { 



   TpString extraInformation; 
  }; 
   
   
   
  exception P_INVALID_EVENT_TYPE { 
   TpString extraInformation; 
  }; 
   
   
   
  exception P_INVALID_INTERFACE_NAME { 
   TpString extraInformation; 
  }; 
   
   
   
  exception P_INVALID_INTERFACE_TYPE { 
   TpString extraInformation; 
  }; 
   
   
   
  exception P_UNKNOWN_SUBSCRIBER { 
   TpString extraInformation; 
  }; 
   
   
   
  exception P_INFORMATION_NOT_AVAILABLE { 
   TpString extraInformation; 
  }; 
   
   
   
  struct TpAddress { 
    
   TpAddressPlan Plan; 
    
   TpString AddrString; 
   TpString Name; 
    
   TpAddressPresentation Presentation; 
    
   TpAddressScreening Screening; 
    
   TpString SubAddressString; 
  }; 
   
   
  typedef TpAddress TpAddressRange; 
   
   
   
  typedef sequence <TpAddress> TpAddressSet; 
   
   
   
  typedef TpString TpPrice; 
   
   



   
  typedef TpString TpDate; 
   
   
   
  typedef TpString TpDateAndTime; 
   
   
   
  typedef TpString TpTime; 
   
   
   
  typedef TpString TpURL; 
   
   
   
  typedef TpString TpLanguage; 
   
   
   
  enum TpCallAoCOrderCategory { 
   P_CHARGE_ADVICE_INFO,    
   P_CHARGE_PER_TIME,    
   P_CHARGE_NETWORK    
  }; 
   
   
   
  struct TpCAIElements { 
   TpInt32 InitialSecsPerTimeInterval; 
   TpInt32 SecondsPerTimeInterval; 
   TpInt32 SegmentsPerDataInterval; 
   TpInt32 ScalingFactor; 
   TpInt32 UnitIncrement; 
   TpInt32 UnitsPerDataInterval; 
   TpInt32 UnitsPerInterval; 
    
    
  }; 
   
   
   
  struct TpChargeAdviceInfo { 
    
   TpCAIElements CurrentCAI; 
    
   TpCAIElements NextCAI; 
    
    
  }; 
   
   
   
  struct TpChargePerTime { 
   TpInt32 NextChargePerMinute; 
   TpInt32 InitialCharge; 
   TpInt32 CurrentChargePerMinute; 
    
  }; 
   



   
   
  union TpAoCOrder switch(TpCallAoCOrderCategory) { 
   case P_CHARGE_ADVICE_INFO: TpChargeAdviceInfo 
ChargeAdviceInfo; 
   case P_CHARGE_PER_TIME: TpChargePerTime ChargePerTime; 
   case P_CHARGE_NETWORK: TpString NetworkCharge; 
  }; 
   
   
   
  struct TpAoCInfo { 
    
   TpAoCOrder ChargeOrder; 
   TpString Currency; 
    
    
  }; 
   
   
   
  exception P_INVALID_NETWORK_STATE { 
   TpString extraInformation; 
  }; 
   
   
   
  exception P_INVALID_CRITERIA { 
   TpString extraInformation; 
  }; 
   
   
   
  const TpInt32 P_INVALID_STATE = 744; 
  exception P_INVALID_SESSION_ID { 
   TpString extraInformation; 
  }; 
   
  exception P_SET_LENGTH_EXCEEDED { 
   TpString extraInformation; 
  }; 
   
  exception TpCommonExceptions { 
   TpInt32 exceptionType; 
   TpString extraInformation; 
  }; 
   
  exception P_INVALID_CURRENCY { 
   TpString extraInformation; 
  }; 
   
  exception P_INVALID_AMOUNT { 
   TpString extraInformation; 
  }; 
   
   
   
  struct TpTimeInterval { 
   TpDateAndTime StartTime; 
   TpDateAndTime StopTime; 
  }; 



   
   
   
  exception P_APPLICATION_NOT_ACTIVATED { 
   TpString extraInformation; 
  }; 
   
  exception P_INVALID_ADDRESS { 
   TpString extraInformation; 
  }; 
   
  typedef octet TpOctet; 
   
  typedef sequence <TpOctet> TpOctetSet; 
   
  exception P_UNSUPPORTED_ADDRESS_PLAN { 
   TpString extraInformation; 
  }; 
 
     
  interface IpInterface { 
  }; 
   
   
   
  interface IpService : IpInterface { 
    
   void setCallback ( 
    in IpInterface appInterface  
    )     
    raises (TpCommonExceptions); 
     
    
   void setCallbackWithSessionID ( 
    in IpInterface appInterface,  
    in TpSessionID sessionID  
    )     
    raises (TpCommonExceptions, P_INVALID_SESSION_ID); 
     
  }; 
   
   
 
 }; 
  
}; 
 
#endif 


	NP-010326_29198-4.doc
	29198-04-200.doc
	common_cc_data.idl.rtf
	gcc_data.idl.rtf
	gcc_interfaces.idl.rtf
	mpcc_data.idl.rtf
	mpcc_interfaces.idl.rtf
	osa.idl.rtf

