
3GPP TSG CN Plenary, Meeting #11 Tdoc NP-010134
Palm Springs, USA. 14th - 16th March 2001

Source: CN WG5

Title: CR 29.198: for moving 29.198 from R99 to Rel 4 (N5-010158)

Agenda item: 6.5.2

Document for: Approval

Doc- Doc- Spec CR R Phas Subject Cat Versio Versi Meeti Workit
NP-
010134

N5-
010158

29.198 047 Rel4 Add new features and Split R99
into a multi-part TS for
upgrading to Rel 4

B 3.2.0 4.0.0 N5-10 OSA1

Structure of the OSA API (29.198) and Mapping (29.998) documents

The Open Service Access (OSA) Application Programming Interface (API) specifications consist of two sets of
documents:

API specification (3GPP TS 29.198)
The Parts of 29.198 - apart from Part 1 and Part 2 - define the interfaces, parameters and state models that belong to
the API specification. UML (Unified Modelling Language) is used to specify the interface classes.
As such it provides a UML interface class description of the methods (API calls) supported by that interface and the
relevant parameters and types. The interfaces are specified in IDL (Interface Description Language).

Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998)
The Parts of 29.998 contain a possible mapping from the APIs defined in 29.198 to various network protocols (i.e.
MAP [7], CAP [8], etc.). It is an informative document, since this mapping is considered as implementation- /
vendor-dependent. On the other hand this mapping will provide potential service designers with a better
understanding of the relationship of the OSA API interface classes and the behaviour of the network associated to
these interface classes.

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes, a Service Capability Server
interacts with, in order to provide the Service Capability Features (SCF) to the application. The specific underlying
network and its protocols are transparent to the application.

The API specification (3GPP TS 29.198) is structured in the following Parts:

29.198-1 Part 1: Overview
29.198-2 Part 2: Common Data Definitions
29.198-3 Part 3: Framework
29.198-4 Part 4: Call Control SCF
29.198-5 Part 5: User Interaction SCF
29.198-6 Part 6: Mobility SCF
29.198-7 Part 7: Terminal Capabilities SCF
29.198-8 Part 8: Data Session Control SCF
29.198-9 Part 9: Generic Messaging SCF
29.198-10 Part 10: Connectivity Manager SCF
29.198-11 Part 11: Account Management SCF
29.198-12 Part 12: Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

3GPP

3GPP TSG-CN5 Meeting #10 Tdoc N5-010158
Antwerp, BELGIUM, 5 – 7 March 2001

CR-Form-v3

CHANGE REQUEST

a 29.198 CR 047 a rev - a Current version: 3.2.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE Radio Access Network Core Network X

Title: a Add new features and Split R99 into a multi-part TS for upgrading to Rel 4

Source: a CN5

Work item code:a OSA1-ECOM
OSA1-CSCF
OSA1-SEC
OSA1-TC
OSA1-LCSI

Date: a 07/03/2001

Category: a B Release: a Rel 4
Use one of the following categories

F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),

Use one of the following releases:
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: Addition of features (CN5's Work Tasks under Feature: OSA enhancements in the 3GPP Work Plan):
Interactions OSA - e-commerce (Stages 2/3),
OSA APIs for MuMa CC (Stages 2/3),
OSA security (security related SCF(s) definition),
Retrieval of Terminal capabilities (Stages 2/3),
LCS - OSA interfaces (Stages 3)

Summary of
change:

Split the TS into multiple documents (muliti-part TS) as follows:
29.198-1 Part 1: Overview (to be put by CN#11 under Change Control)
29.198-2 Part 2: Common Data Definitions (to be put by CN#11 under Change Control)
29.198-3 Part 3: Framework (to be put by CN#11 under Change Control)
29.198-4 Part 4: Call Control SCF (to go as version 1.0.0 for Information to CN#11)
29.198-5 Part 5: User Interaction SCF (to be put by CN#11 under Change Control)
29.198-6 Part 6: Mobility SCF (to be put by CN#11 under Change Control)
29.198-7 Part 7: Terminal Capabilities SCF (to be put by CN#11 under Change Control)
29.198-8 Part 8: Data Session Control SCF (to be put by CN#11 under Change Control)
29.198-9 Part 9: Void for Rel 4 (current thinking: Generic Messaging SCF)
29.198-10 Part 10: Void for Rel 4 (current thinking: Connectivity Manager SCF)
29.198-11 Part 11: Account Management SCF (to go as version 1.0.0 for Information to CN#11)
29.198-12 Part 12: Charging SCF (to go as version 1.0.0 for Information to CN#11)

Consequences if a

not approved:
OSA will not be available for 3GPP Rel4/5

Clauses affected: a All

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is
also structured as above. A mapping to network protocols is however not applicable for all
Parts, but the numbering of Parts is kept. Also in case a Part is not supported in a Release, the
numbering of the parts is maintained.

3GPP TS 29.198-1 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface;

Part 1: Overview;
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)3Release 4

Contents

Foreword ..4

1 Scope ..5

2 References ..5

3 Definitions, symbols and abbreviations ...6
3.1 Definitions ...6
3.2 Abbreviations...7

4 Open Service Access APIs ...8

5 Structure of the OSA API (29.198) and Mapping (29.998) documents...9

6 Methodology ..10
6.1 Tools and Languages ...10
6.2 Packaging...10
6.3 Colours...10
6.4 Naming scheme..10
6.5 State Transition Diagram text and text symbols ..11
6.6 Error results..11
6.7 References..11
6.8 Number of out parameters..12
6.9 Strings and Collections ..12
6.10 Prefixes...12
6.11 Naming space across CORBA modules ...12

History ..14

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)4Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)5Release 4

1 Scope
The present document is the first part of the 3GPP Specification defining the Application Programming Interface (API)
for Open Service Access (OSA), and provides an overview of the content and structure of the various parts of this
specification, and of the relation to other standards documents .

The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture
for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are defined in
3GPP TS 22.127 [2].

This specification has been defined jointly between ETSI SPAN12, 3GPP TSG CN WG5 and the Parlay consortium
[24], in co-operation with the JAIN consortium [25].

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

For the purposes of the present document, the following references apply:

[1] 3GPP TR 21.905: "3G Vocabulary".

3GPP TS 22.121: "Service aspects; The Virtual Home Environment (Release 4)".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

3GPP TS 23.057: "Mobile Station Application Execution Environment (MExE)".

[4] 3GPP TS 23.078: "CAMEL Phase 3, stage 2".

[5] 3GPP TS 22.101: "Universal Mobile Telecommunications System (UMTS): Service Aspects;
Service Principles".

[6] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation (www.w3.org).

[7] 3GPP TS 29.002: "Mobile Application Part (MAP)".

[8] 3GPP TS 29.078: "CAMEL Phase 3, , CAMEL Application Part (CAP) Specification".

[9] Wireless Application Protocol (WAP), Version 1.2, UAProf Specification (www.wapforum.org).

[10] Wireless Application Protocol (WAP), version 1.2, WAP Service Indication specification,
(www.wapforum.org).

[11] Wireless Application Protocol (WAP), version 1.2, WAP Push Architecture Overview
(www.wapforum.org).

[12] Wireless Application Protocol (WAP), version 1.2, WAP Architecture (www.wapforum.org).

[13] SUN IDL Compiler (www.javasoft.com/products/jdk/idl/index.html).

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)6Release 4

[14] UML Unified ModellingLanguage (www.rational.com/uml).

[15] Object Management Group (www.omg.org).

[16] 3GPP TS 22.002: "Circuit Bearer Services supported by a PLMN".

[17] 3GPP TS 22.003: "Circuit Teleservices supported by a PLMN".

[18] 3GPP TS 24.002: "Public Land Mobile Network (PLMN) Access Reference Configuration".

[19] ITU-T Q.763: "Signalling System No. 7 – ISDN user part formats and codes".

[20] ITU-T Q.931: "ISDN user-network interface layer 3 specification for basic call control".

[21] ISO 8601: "Data elements and interchange formats -- Information interchange -- Representation of
dates and times".

[22] ISO 4217: "Codes for the representation of currencies and funds".

[23] 3GPP TS 23.127v4: "Service Requirements for Open Service Access".

[24] http://www.parlay.org

[25] http://www.jain.org

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of this specification, the following definitions apply:

Applications: Services, which are designed using service capability features.

Gateway: Synonym for Service Capability Server. From the viewpoint of applications, a Service Capability Server can
be seen as a gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home
Environment to provide services.

Home Environment: responsible for overall provision of services to users

Local Service: A service, which can be exclusively provided in the current serving network by a Value Added Service
Provider.

OSA Interface: Standardised Interface used by application to access service capability features.

Personal Service Environment: contains personalised information defining how subscribed services are provided and
presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within
networks and under network control.

Service Capability Feature: Functionality offered by service capabilities that are accessible via the standardised OSA
interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

Service: term used as an alternative for Service Capability Feature in this specification

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the
terminal and serving network.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)7Release 4

User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

Value Added Service Provider: provides services other than basic telecommunications service for which additional
charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and
between terminals.

Further definitions are given in 3GPP TS 22.101 [5].

3.2 Abbreviations
For the purposes of this Standard the following abbreviations apply:

API Application Programming Interface
CAMEL Customised Application for Mobile network Enhanced Logic
CAP CAMEL Application Part
CSE Camel Service Environment
HE Home Environment
HE-VASP Home Environment - Value Added Service Provider
HLR Home Location Register
INAP Intelligent Networks Application Part
IDL Interface Description Language
MAP Mobile Application Part
ME Mobile Equipment
MExE Mobile Station (Application) Execution Environment
MS Mobile Station
MSC Mobile Switching Centre
OSA Open Service Access
PLMN Public Land Mobile Network
PSE Personal Service Environment
SAT SIM Application Tool-Kit
SCF Service Capability Feature
SCP Service Control Point
SIM Subscriber Identity Module
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
UE User Equipment
USIM User Service Identity Module
VLR Visited Location Register
VASP Value Added Service Provider
VHE Virtual Home Environment
WAP Wireless Application Protocol
WGP Wireless Gateway Proxy
WPP Wireless Push Proxy

Further abbreviations are given in the 3GPP TR 21.905 [1].

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)8Release 4

4 Open Service Access APIs
The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The network functionality is describes as
Service Capability Features or Services [note]. The OSA Framework is a general component in support of Services
(Service Capabilities) and Applications. The concepts and the functional architecture for the Open Service Access
(OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are defined in 3GPP TS 22.127 [2].

The OSA API is split into three types of interface classes, Service and Framework.

• Interface classes between the Applications and the Framework, that provide applications with basic mechanisms
(e.g. Authentication) that enable them to make use of the service capabilities in the network.

• Interface classes between Applications and Service Capability Features (SCF), which are individual services that
may be required by the client to enable the running of third party applications over the interface e.g. Messaging
type service.

• Interface classes between the Framework and the Service Capability Features, that provide the mechanisms
necessary for multi-vendorship.

These interfaces represent interfaces 1, 2 and 3 of the Figure below. The other interfaces are not yet part of the scope of
the work.

Framework
operator

admin

Enterprise
operator

admin tool

Service
supplier

admin tool

1144

33

55

Not in scope of
this version of

the API

Not in scope of
this version of

the API

Telecom Network

Not in scope of
this version of

the API

Not in scope of
this version of

the API22 66

Client
Application

Not in
 scope
of this
API
version

Within the OSA concept a set of Service Capability Features has been specified. The OSA documentation is structured
in parts. The first Part (this document) contains an overview, the second Part contains common data definitions, the
third Part the Framework interfaces. The rest of the Parts contain the description of the SCF’s.

NOTE:
The terms ‘Service’ and ‘Service Capability Feature’ are used as alternatives for the same concept in this specification.
In the OSA API itself the Service Capability Features as identified in the 3GPP requirements and architecture are
reflected as ‘service’, in terms like serviceFactory, serviceDiscovery.

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)9Release 4

5 Structure of the OSA API (29.198) and Mapping
(29.998) documents

The Open Service Access (OSA) Application Programming Interface (API) specifications consist of two sets of
documents:

API specification (3GPP TS 29.198)
The Parts of 29.198 - apart from Part 1 (the present document) and Part 2 - define the interfaces, parameters and
state models that belong to the API specification. UML (Unified Modelling Language) is used to specify the
interface classes.
As such it provides a UML interface class description of the methods (API calls) supported by that interface and the
relevant parameters and types. The interfaces are specified in IDL (Interface Description Language).

Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998)
The Parts of 29.998 contain a possible mapping from the APIs defined in 29.198 to various network protocols (i.e.
MAP [7], CAP [8], etc.). It is an informative document, since this mapping is considered as implementation- /
vendor-dependent. On the other hand this mapping will provide potential service designers with a better
understanding of the relationship of the OSA API interface classes and the behaviour of the network associated to
these interface classes.

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes, a Service Capability Server
interacts with, in order to provide the Service Capability Features (SCF) to the application. The specific underlying
network and its protocols are transparent to the application.

The API specification (3GPP TS 29.198) is structured in the following Parts:

29.198-1 Part 1: Overview

29.198-2 Part 2: Common Data Definitions

29.198-3 Part 3: Framework

29.198-4 Part 4 Call Control SCF

29.198-5 Part 5 User Interaction SCF

29.198-6 Part 6 Mobility SCF

29.198-7 Part 7 Terminal Capabilities SCF

29.198-8 Part 8 Data Session Control SCF

29.198-9 Part 9 Generic Messaging SCF

29.198-10 Part 10 Connectivity Manager SCF

29.198-11 Part 11 Account Management SCF

29.198-12 Part 12 Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Sub-structure of the Parts of 29.198

The Parts with API specification themselves are sub-structured as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented.

• The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)10Release 4

• The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data definitions clauses show a detailed expansion of each of the data types associated with the methods
within the classes. It is to be noted that some data types are used in other methods and classes and are therefore
defined within the Common Data types part of this specification.

• IDL description of the interface (normative Annex)

6 Methodology
Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages
The Unified Modelling Language (UML) [14] is used as the means to specify class and state transition diagrams.
Additionally, Object Management Group’s (OMG) [15] Interface Definition Language (IDL) is used as the means to
programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML
tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a
CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. [13].

6.2 Packaging
A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.open_service_access

Note that the CORBA module hierarchy defined in the IDLs does not necessarily parallels the logical UML package
hierarchy.

6.3 Colours
For clarity, class diagrams follows a certain colour scheme. Blue for application interface packages and yellow for all
the others.

6.4 Naming scheme
The following naming scheme is used for both documentation and IDLs.

packages

lowercase.

Using the domain-based naming (For example, org.threegpp.osa)

classes, structures and types. Start with T

TpCapitalizedWithInternalWordsAlsoCapitalized

Exception class:

TpClassNameEndsWithException

Interface. Start with Ip:

IpThisIsAnInterface

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)11Release 4

constants:

P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

methods:

firstWordLowerCaseButInternalWordsCapitalized()

method’s parameters

firstWordLowerCaseButInternalWordsCapitalized

collections (set, array or list types)

TpCollectionEndsWithSet

class/structure members

FirstWordAndInternalWordsCapitalized

Spaces in between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitions in the State Transition Diagrams follow the convention:

when_this_event_is_received [guard condition is true] /do_this_action ^send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

6.6 Error results
As OMG IDL supports exception handling with high efficiency, OSA methods communicate errors in the form of
CORBA exceptions of type TpGeneralException in the IDLs; the CORBA methods themselves always return void. But
in the documentation, errors are communicated using a return parameter of type TpGeneralResult.

6.7 References
In the interface specification whenever parameters are to be passed by reference, the "Ref" suffix is appended to their
corresponding data type (e.g. IpAnInterfaceRef anInterface), a reference can also be viewed as a logical indirection.
Therefore, structured or primitive data type passed as out parameters are references. An interface passed as an in
parameter is also a reference but an interface passed as an out parameter is a double indirection (i.e.: RefRef)

Original Data type IN parameter declaration OUT parameter declaration

TpPrimitive parm : IN TpPrimitive parm : OUT TpPrimitiveRef

TpStructured parm : IN TpStructured parm : OUT TpStructuredRef

IpInterface parm : IN IpInterfaceRef parm : OUT IpInterfaceRefRef

In IDL, however, the following rules apply:

- Interfaces are implicitly passed by reference.

- out parameters are also implicitly passed by reference.

This leads to:

- Interface as an in parameter: Passed by Reference.

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)12Release 4

- Structure or primitive type as an in parameter: Passed by Value.

- Structure or primitive type as an out parameter: Passed by Reference.

- Interface as an out parameter: As reference passed by reference.

To simplify the documentation without adding ambiguities, parameters (interfaces, structures and primitive data types)
are used as is when specified as in or out parameters in the IDL. This means that there will be no "Ref" added after the
data types of parameters in the IDL.

6.8 Number of out parameters
In order to support mapping to as many languages as possible, there is only 1 out parameter allowed per operation.

6.9 Strings and Collections
For character strings, the String data type is used without regard to the maximum length of the string. In IDL, the data
type String is typedefed1 from the CORBA primitive string. This CORBA primitive is made up of a length and a
variable array of byte.

For homogeneous collections of instances of a particular data type the following naming scheme is used:
<datatype>Set. In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a
length and a variable array of elements of the same type.

Example: typedef sequence<TpSessionID> TpSessionIDSet;

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part,
and an array for the data part.

Example: The TpAddressSet data type may be defined in C++ as:

typedef struct {

 short number;

 TpAddress address [];

} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on
"number".

6.10 Prefixes
OSA constants and data types are not defined in the global name space but in the org.threegpp.osa module.

6.11 Naming space across CORBA modules
The following shows the naming space used in this specification.

module org {

module open_service_access {

/* The fully qualified name of the following constant

 is org::open_service_access::P_THIS_IS_AN_OSA_GLOBAL_CONST */

const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;

1 A typedef is a type definition declaration in IDL.

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)13Release 4

// Add other OSA global constants and types here

module fw {

/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */

const long P_FW_CONST= THIS_IS_AN_OSA_GLOBAL_CONST;

};

module mm {

// scoping required to access P_FW_CONST

const long P_M_CONST= fw::P_FW_CONST;

};

};

};

3GPP

3GPP TS 29.198-1 V1.0.0 (2001-03)14Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for approval and placement under Change Control

3GPP TS 29.198-2 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface

Part 2: Common data
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)2Release 4

Keywords
OSA, API, Interface Class, IDL

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)3Release 4

Contents

Foreword...5

1. Scope ..6

2. References ..6

3 Definitions, symbols and abbreviations ...6
3.1 Definitions..6
3.2 Symbols ...6
3.3 Abbreviations...6

4 Common Data definitions ..7

5 Common System Data Definitions...7
5.1 Standard Data Types ..7
5.1.1 TpBoolean ..7
5.1.2 TpInt32...7
5.1.3 TpInt32Ref ...7
5.1.4 TpFloat ...7
5.1.5 TpFloatRef ...7
5.1.6 TpLongstring..7
5.1.7 TpLongstringRef ..7
5.1.8 TpString..7
5.1.9 TpStringRef..7
5.1.10 TpAssignmentID ..8
5.1.11 TpAssignmentIDRef ..8
5.1.12 TpSessionID...8
5.1.13 TpSessionIDRef ...8
5.1.14 TpSessionIDSet..8
5.2 Other Data Sorts...8
5.2.1 Sequence of Data Elements ..8
5.2.2 Tagged Choice of Data Elements ...9
5.2.3 Numbered Set of Data Elements ..9
5.2.4 Reference..9
5.3 Interface Related Data Definitions...10
5.3.1 IpInterface ..10
5.3.2 IpInterfaceRef...10
5.3.4 IpInterfaceRefRef...10
5.4 Method Result Data Definitions...10
5.4.1 TpResult ...10
5.4.2 TpResultType ...10
5.4.3 TpResultFacility ...10
5.4.4 TpResultInfo...11
5.5 Date and Time Related Data Definitions ...13
5.5.1 TpDate..13
5.5.2 TpTime...13
5.5.3 TpDateAndTime...13
5.5.4 TpDateAndTimeRef...14
5.5.5 TpDuration ...14
5.6 Address Related Data Definitions ..14
5.6.1 TpAddress ..14
5.6.2 TpAddressRef...15
5.6.3 TpAddressSet ...15
5.6.4 TpAddressSetRef ...15
5.6.5 TpAddressPresentation...15
5.6.6 TpAddressScreening ..16
5.6.7 TpAddressPlan ...16
5.6.8 TpAddressError..16
5.6.9 TpAddressRange ..17

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)4Release 4

5.6.10 TpURL ...17
5.7 Price-related Data Definitions..17
5.7.1 TpPrice ...17
5.7.2 TpAoCInfo ...17
5.7.3 TpAoCOrder ..18
5.7.4 TpCallAoCOrderCategory ...18
5.7.5 TpChargeAdviceInfo..18
5.7.6 TpCAIElements..18
5.7.7 TpChargePerTime ..19
5.7.8 TpLanguage..19

Annex A (normative): OMG IDL Description of the Common Data definitions20

History ..21

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)5Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)6Release 4

1. Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the Common Data Definitions of the OSA. The Common Data definitions contain data-types
that are common acros the rest of the OSA API. All aspects of the Common data are defined here, these being:

• Data definitions

• IDL Description of the interfaces

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2. References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)7Release 4

4 Common Data definitions
The following sections describe each aspect of the Common data definitions.

The order is as follows:

• The Data definitions section shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

5 Common System Data Definitions
These data definitions are assumed to be provided by the client operating system.

5.1 Standard Data Types
The APIs assume that the following data types can be supported.

5.1.1 TpBoolean

Defines a Boolean data type.

5.1.2 TpInt32

Defines a signed 32 bit integer.

5.1.3 TpInt32Ref

Defines a 5.2.4 Reference to a TpInt32.

5.1.4 TpFloat

Defines a single precision real number

5.1.5 TpFloatRef

Defines a Reference to a TpFloat

5.1.6 TpLongstring

Defines a Byte string, comprising length and data. The length must be at least a 32 bit integer.

5.1.7 TpLongstringRef

Defines a 5.2.4 Reference to a TpLongstring.

5.1.8 TpString

Defines a Byte string, comprising length and data. The length must be at least a 16 bit integer.

5.1.9 TpStringRef

Defines a 5.2.4 Reference to a TpString.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)8Release 4

5.1.10 TpAssignmentID
This data type is identical to a TpInt32. It specifies a number which identifies an individual event notification enabled
by the application or service.

5.1.11 TpAssignmentIDRef

Defines a Reference to type TpAssignmentID.

5.1.12 TpSessionID

Defines a network unique session ID. The API uses this ID to identify sessions, e.g. call or call leg sessions, within an
object implementing an interface capable of handling multiple sessions. For the different services, the sessionIDs are
unique only in the context of a service manager instantiation (e.g., within the context of one generic call control
manager). As such if an application creates two instances of the same service manager it shall use different
instantiations of the callback objects which implement the callback interfaces.

The session ID is identical to a TpInt32 type.

5.1.13 TpSessionIDRef

Defines a Reference to a TpSessionID.

5.1.14 TpSessionIDSet

Defines a Numbered_Set_of_Data_Elements of TpSessionID.

5.2 Other Data Sorts
The APIs assumes that the following data syntaxes can be supported

5.2.1 Sequence of Data Elements

This describes a sequence of data types. This may be defined as a structure (for example, in C++) or simply a sequence
of data elements within a structure.

Example

The TpAddress data type may be defined in C++ as:

typedef struct {

 TpAddressPlan Plan;

 TpString AddrString;

 TpString Name;

 TpAddressPresentation.....Presentation;

....TpAddressScreening........Screening;

....TpString..................SubAddressString;

} TpAddress;

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)9Release 4

5.2.2 Tagged Choice of Data Elements

This describes a data type which actually evaluates to one of a choice of a number of data elements. This data element
contains two parts: a tag data type (the tag part) which is used to identify the chosen data type, and the chosen data type
itself (the union part). This form of data type is also referred to as a tagged union.

This data type can be implemented (for example, in C++) as a structure containing an integer for the tag part, and a
union for the union part.

This data type is implementation specific. Please refer to the appropriate IDL documents (and the resulting language
mappings) to see how this data type is implemented.

Example

The TpCallError data type may be defined in C++ as:

typedef struct {

 TpCallErrorType Tag;

 union {

 TpCallErrorInfoUndefined Undefined;

 TpCallErrorInfoRoutingAborted RoutingAborted;

 TpCallErrorInfoCallAbandoned CallAbandoned;

 TpCallErrorInfoInvalidAddress InvalidAddress;

 TpCallErrorInfoInvalidState InvalidState;

 TpCallErrorInfoInvalidCriteria InvalidCriteria;

 } callErrorInfo;

} TpCallError;

5.2.3 Numbered Set of Data Elements

This describes a data type which comprises an integer which indicates the total number of data elements in the set (the
number part), and an unordered set of data elements (the data part). Set data types do not contain duplicate data
elements.

Example

The TpAddressSet data type may be defined in MIDL as:

typedef struct TpAddressSet

{

TpInt32 Number; [size_is(Number)] TpAddress Set[];

}

TpAddressSet;

5.2.4 Reference

This describes a reference (or pointer) to a data type. This is primarily used to describe 'out' method parameters.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)10Release 4

This data type may be implemented (for example, in C++) as a pointer. However, in some languages it may not be
necessary for 'out' parameters to be implemented as pointers.

Example

The TpAddressRef data type may be defined in C++ as:

typedef TpAddress * TpAddressRef

5.3 Interface Related Data Definitions

5.3.1 IpInterface

Defines the address of a generic interface instance.

5.3.2 IpInterfaceRef

Defines a 5.2.4 Reference to type IpInterface.

5.3.4 IpInterfaceRefRef

Defines a 5.2.4 Reference to type IpInterfaceRef.

5.4 Method Result Data Definitions

5.4.1 TpResult

Defines the 5.2.1 Sequence of Data Elements that specify the result of a method call. All methods in the APIs return a
result of type TpResult.

Sequence Element Name Sequence Element Type

ResultType TpResultType

ResultFacility TpResultFacility

ResultInfo TpResultInfo

5.4.2 TpResultType

Defines whether the method was successful or not.

Name Value Description

P_RESULT_FAILURE 0 Method failed

P_RESULT_SUCCESS 1 Method was successful

5.4.3 TpResultFacility

Defines the facility code of a result. In phase 2 of the APIs, only P_RESULT_FACILITY_UNDEFINED must be used.

Name Value Description

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)11Release 4

P_RESULT_FACILITY_UNDEFINED 0 Undefined

5.4.4 TpResultInfo

Defines further information relating to the result of the method, such as error codes.

Name Value Description

P_RESULT_INFO_UNDEFINED 0000h No further information present

P_INVALID_DOMAIN_ID 0001h Invalid client ID

P_INVALID_AUTH_CAPABILITY 0002h Invalid authentication capability

P_INVALID_AGREEMENT_TEXT 0003h Invalid agreement text

P_INVALID_SIGNING_ALGORITHM 0004h Invalid signing algorithm

P_INVALID_INTERFACE_NAME 0005h Invalid interface name

P_INVALID_SERVICE_ID 0006h Invalid service ID

P_INVALID_EVENT_TYPE 0007h Invalid event type

P_SERVICE_NOT_ENABLED 0008h The service ID does not correspond to a service that has been enabled

P_INVALID_ASSIGNMENT_ID 0009h The assignment ID is invalid

P_INVALID_PARAMETER 000Ah The method has been called with an invalid parameter

P_INVALID_PARAMETER_VALUE 000Bh A method parameter has an invalid value

P_PARAMETER_MISSING 000Ch A mandatory parameter has not been specified in the method call

P_RESOURCES_UNAVAILABLE 000Dh The required resources in the network are not available

P_TASK_REFUSED 000Eh The requested method has been refused

P_TASK_CANCELLED 000Fh The requested method has been cancelled

P_INVALID_DATE_TIME_FORMAT 0010h Invalid date and time format provided

P_NO_CALLBACK_ADDRESS_SET 0011h The requested method is refused because no callback address is set

P_INVALID_SIGNATURE 0012h Invalid digital signature

P_INVALID_SERVICE_TOKEN 0013h The service token has not been issued, or it has expired.

P_ACCESS_DENIED 0014h The client is not currently authenticated with the framework

P_INVALID_PROPERTY 0015h The framework does not recognise the property supplied by the client

P_METHOD_NOT_SUPPORTED 0016h The method is not allowed or supported within the context of the
current service agreement.

P_NO_ACCEPTABLE_AUTH_CAPABILITY 0017h An authentication mechanism, which is acceptable to the framework,
is not supported by the client

P_INVALID_INTERFACE_TYPE 0018h The interface reference supplied by the client is the wrong type.

P_INVALID_ACCESS_TYPE 0019h The framework does not support the type of access interface requested
by the client.

P_SERVICE_ACCESS_DENIED 001Ah The client application is not allowed to access this service.

P_USER_NOT_SUBSCRIBED 0030h An application is unauthorised to access information and request
services with regards to users that are not subscribed to the

application.

P_APPLICATION_NOT_ACTIVATED 0031h An application is unauthorised to access information and request
services with regards to users that have deactivated that particular

application.

P_USER_PRIVACY 0032h An application is unauthorised to access information and request
services with regards to users that have set their privacy flag regarding

that particular service.

Name Value Description

P_GCCS_SERVICE_INFORMATION_MISSING 0100h Information relating to the Call Control service could not be found

P_GCCS_SERVICE_FAULT_ENCOUNTERED 0101h Fault detected in the Call Control service

P_GCCS_UNEXPECTED_SEQUENCE 0102h Unexpected sequence of methods, i.e., the sequence does not match
the specified state diagrams for the call or the call leg.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)12Release 4

Name Value Description

P_GCCS_INVALID_ADDDRESS 0103h Invalid address specified

P_GCCS_INVALID_CRITERIA 0104h Invalid criteria specified

P_GCCS_INVALID_NETWORK_STATE 0105h Although the sequence of method calls is allowed by the gateway, the
underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the
protocol, when the call processing is suspended, e.g., after reporting

an event that was monitored in interrupt mode.

Name Value Description

P_GMS_INVALID_MAILBOX 0200h Invalid mailbox number

P_GMS_INVALID_AUTHENTICATION_INFO 0201h Invalid authentication information

P_GMS_INVALID_SESSION_ID 0202h Invalid session ID

P_GMS_LOCKING_LOCKED_MAILBOX 0203h Application attempts to lock a mailbox that has already been locked

P_GMS_UNLOCKING_UNLOCKED_MAILBOX 0204h The session ID does not correspond to a locked mailbox

P_GMS_INVALID_MESSAGE_FORMAT 0205h Invalid message format

P_GMS_HEADER_NUMBER_TOO_LARGE 0206h The number is too large for the service to handle

P_GMS_INSUFFICIENT_HEADERS 0207h Mandatory headers are not included

P_GMS_MESSAGE_NOT_REMOVED 0208h The message cannot be removed

P_GMS_INSUFFICIENT_PRIVILEGE 0209h The application does not have sufficient privilege to remove the
message

P_GMS_INVALID_FOLDER_ID 020Ah The identity of the folder is not valid

P_GMS_FOLDER_DOES_NOT_EXIST 020Bh The folder does not exist

P_GMS_NUMBER_NOT_POSITIVE 020Ch The number given is not positive

P_GMS_INVALID_MESSAGE_ID 020Dh Message ID is not valid

P_GMS_CHANGING_READONLY_PROPERTY 020Eh The change has not been carried out because some of the properties
cannot be modified.

P_GMS_HEADER_DOES_NOT_EXIST 020Fh Some of the headers do not exist

P_GMS_MAILBOX_LOCKED 0210h Attempting to update a locked mailbox

P_GMS_CANNOT_UNLOCK_MAILBOX 0211h Attempting to unlock a mailbox which is locked by another
application

P_GMS_PROPERTY_NOT_SET 0212h Failed attempt to set a property

P_GMS_FOLDER_IS_OPEN 0213h Failed attempt to open the same folder more than once

P_GMS_MAILBOX_OPEN 0214h Failed attempt to remove an open mailbox

Name Value Description

P_GUIS_INVALID_CRITERIA 0300h Invalid criteria specified

P_GUIS_ILLEGAL_ID 0301h Information id specified is invalid

P_GUIS_ID_NOT_FOUND 0302h A legal information id is not known to the User Interaction Service

P_GUIS_ILLEGAL_RANGE 0303h The values for minimum and maximum collection length are out of
range.

P_GUIS_INVALID_COLLECTION_CRITERIA 0304h Invalid collection criteria specified

P_GUIS_INVALID_NETWORK_STATE 0305h Although the sequence of method calls is allowed by the gateway, the
underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the
protocol, when the call processing is suspended, e.g., after reporting

an event that was monitored in interrupt mode.

P_GUIS_UNEXPECTED_SEQUENCE 0306h Unexpected sequence of methods, i.e., the sequence does not match
the specified state diagrams.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)13Release 4

5.5 Date and Time Related Data Definitions

5.5.1 TpDate

This data type is identical to a TpString. It specifies the data in accordance with International Standard ISO 8601. This
is defined as the string of characters in the following format:

YYYY-MM-DD

where the date is specified as:

YYYY four digits year

MM two digits month

DD two digits day

The date elements are separated by a hyphen character (-).

EXAMPLE 1: The 4 December 1998, is encoded as the string:

1998-12-04

5.5.2 TpTime

This data type is identical to a TpString. It specifies the time in accordance with International Standard ISO 8601. This
is defined as the string of characters in the following format:

HH:MM:SS.mmm

or

HH:MM:SS.mmmZ

where the time is specified as:

HH two digits hours (24h notation)

MM two digits minutes

SS two digits seconds

mmm three digits fractions of a second (i.e. milliseconds)

The time elements are separated by a colon character (:).The date and time are separated by a space. Optionally, a
capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

EXAMPLE 2: 10:30 and 15 seconds is encoded as the string:

10:30:15.000

for local time, or in UTC it would be: 10:30:15.000Z

5.5.3 TpDateAndTime

This data type is identical to a TpString. It specifies the data and time in accordance with International Standard ISO
8601. This is defined as the string of characters in the following format:

YYYY-MM-DD HH:MM:SS.mmm

or

YYYY-MM-DD HH:MM:SS.mmmZ

where the date is specified as:

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)14Release 4

YYYY four digits year

MM two digits month

DD two digits day

The date elements are separated by a hyphen character (-).

The time is specified as:

HH two digits hours (24h notation)

MM two digits minutes

SS two digits seconds

mmm three digits fractions of a second (i.e. milliseconds)

The time elements are separated by a colon character (:).The date and time are separated by a space. Optionally, a
capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

EXAMPLE 3: The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:

1998-12-04 10:30:15.000

for local time, or in UTC it would be:

1998-12-04 10:30:15.000Z

5.5.4 TpDateAndTimeRef

Defines a 5.2.4 Reference to type TpDateAndTime.

5.5.5 TpDuration

This data type is a TpInt32 representing a time interval in milliseconds. A value of "-1" defines infinite duration and a
value of "-2" represents a default duration.

5.6 Address Related Data Definitions

5.6.1 TpAddress

Defines the 5.2.1 Sequence of Data Elements that specify an address.

Sequence Element Name Sequence Element Type

Plan TpAddressPlan

AddrString TpString

Name TpString

Presentation TpAddressPresentation

Screening TpAddressScreening

SubAddressString TpString

The AddrString defines the actual address information and the structure of the
string depends on the Plan. The following table gives an overview of the format
of the AddrString for the different address plans.

Address Plan AddrString Format Description Example

P_ADDRESS_PLAN_NOT_PRESENT Not applicable

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)15Release 4

P_ADDRESS_PLAN_UNDEFINED Not applicable

P_ADDRESS_PLAN_IP For Ipv4 the dotted quad notation is used. Also for
IPv6 the dotted notation is used. The address can

optionally be followed by a port number separated
by a colon.

"127.0.0.1:42"

P_ADDRESS_PLAN_MULTICAST An Ipv4 class D address or Ipv6 equivalent in
dotted notation.

"224.0.0.0"

P_ADDRESS_PLAN_UNICAST A non multicast or broadcast IP address in dotted
notation.

"127.0.0.1"

P_ADDRESS_PLAN_E164 An international number without the international
access code, including the country code and
excluding the leading zero of the area code.

"31161249111"

P_ADDRESS_PLAN_AESA The ATM End System Address in binary format
(40 bytes)

01234567890ABCDEF01234567890AB
CDEF01234567

P_ADDRESS_PLAN_URL A uniform resource locator as defined in IETF RFC
1738

"http://www.parlay.org"

P_ADDRESS_PLAN_NSAP The binary representation of the Network Service
Access Point

490001AA000400010420

P_ADDRESS_PLAN_SMTP An e-mail address as specified in IETF RFC822 "webmaster@parlay.org"

P_ADDRESS_PLAN_MSMAIL Identical to P_ADDRESS_PLAN_SMTP "john.doe@hitech.com"

P_ADDRESS_PLAN_X400 The X400 address structured as a set of attibute
value pairs separated by semicolons.

"C=nl;ADMD=
;PRMD=uninet;O=parlay;S=Doe;I=S;G

=John'

5.6.2 TpAddressRef

Defines a 5.2.4 Reference to type TpAddress.

5.6.3 TpAddressSet

Defines a Numbered_Set_of_Data_Elements of TpAddress.

5.6.4 TpAddressSetRef

Defines a 5.2.4 Reference to type TpAddressSet.

5.6.5 TpAddressPresentation

Defines whether an address can be presented to an end user.

Name Value Description

P_ADDRESS_PRESENTATION_UNDEFINED 0 Undefined

P_ADDRESS_PRESENTATION_ALLOWED 1 Presentation Allowed

P_ADDRESS_PRESENTATION_RESTRICTED 2 Presentation Restricted

P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE 3 Address not available for presentation

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)16Release 4

5.6.6 TpAddressScreening

Defines whether an address can be presented to an end user.

Name Value Description

P_ADDRESS_SCREENING_UNDEFINED 0 Undefined

P_ADDRESS_SCREENING_USER_VERIFIED_PASSED 1 user provided address
verified and passed

P_ADDRESS_SCREENING_USER_NOT_VERIFIED 2 user provided address
not verified

P_ADDRESS_SCREENING_USER_VERIFIED_FAILED 3 user provided address
verified and failed

P_ADDRESS_SCREENING_NETWORK 4 Network provided address (Note that even
though the application may provide the address

to the gateway, from the end-user point of
view it is still regarded as a network provided

address)

5.6.7 TpAddressPlan

Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually defined in a
TpAddress data element.

Name Value Description

P_ADDRESS_PLAN_NOT_PRESENT -1 No Address Present

P_ADDRESS_PLAN_UNDEFINED 0 Undefined

P_ADDRESS_PLAN_IP 1 IP

P_ADDRESS_PLAN_MULTICAST 2 Multicast

P_ADDRESS_PLAN_UNICAST 3 Unicast

P_ADDRESS_PLAN_E164 4 E.164

P_ADDRESS_PLAN_AESA 5 AESA

P_ADDRESS_PLAN_URL 6 URL

P_ADDRESS_PLAN_NSAP 7 NSAP

P_ADDRESS_PLAN_SMTP 8 SMTP

P_ADDRESS_PLAN_MSMAIL1 9 Microsoft Mail

P_ADDRESS_PLAN_X400 10 X.400

For the case where the P_ADDRESS_PLAN_NOT_PRESENT is indicated, the rest of the
information in the TpAddress is not valid.

5.6.8 TpAddressError

Defines the reasons why an address is invalid.

Name Value Description

P_ADDRESS_INVALID_UNDEFINED 0 Undefined error

P_ADDRESS_INVALID_MISSING 1 Mandatory address not present

P_ADDRESS_INVALID_MISSING_ELEMENT 2 Mandatory address element not present

P_ADDRESS_INVALID_OUT_OF_RANGE 3 Address is outside of the valid range

P_ADDRESS_INVALID_INCOMPLETE 4 Address is incomplete

1 This value is not used in the scope of 3GPP

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)17Release 4

Name Value Description

P_ADDRESS_INVALID_CANNOT_DECODE 5 Address cannot be decoded

5.6.9 TpAddressRange

This type is identical to TpAddress with the difference that the AddrString can contain wildcards.

Two wildcards are allowed: * which matches zero or more characters and ? which matches exactly one character. The
wildcards are only allowed at the end or at the beginning of the AddrString.

Some examples for E164 addresses:

• "123" matches specifies number;

• "123*" matches all numbers starting with 123 (including 123 itself);

• "123??*" matches all numbers starting with 123 and at least 5 digits long;

• "123???" matches all numbers starting with 123 and exactly 6 digits long;

For e-mail style addresses, the wildcards are allowed at the beginning of the AddrString:

• "*@parlay.org" matches all email addresses in the parlay.org domain.

The following address ranges are illegal:

• 1?3

• 1*3

• ?123*

Legal occurrences of the '*' and '?' characters in AddrString should be escaped by a '\' character. To specify a '\'
character '\\' must be used.

5.6.10 TpURL

This data type is identical to a TpString and contains a URL address. The usage of this type is distinct from TpAddress,
which can also hold a URL. The latter contains a user address which can be specified in many ways: IP, e-mail, URL
etc. On the other hand, the TpURL type does not hold the address of a user and always represents a URL. This type is
used in user interaction and defines the URL of the test or stream to be sent to an end-user. It is therefore inappropriate
to use a general address here.

5.7 Price-related Data Definitions

5.7.1 TpPrice

This data type is identical to a TpString. It specifies price information. This is defined as a string of characters (digits) in
the following format:

DDDDDD.DD

5.7.2 TpAoCInfo

Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal.

Sequence Element Name Sequence Element Type Description

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)18Release 4

ChargeOrder TpAoCOrder Charge order

Currency TpString Currency unit according to ISO-
4217:1995

5.7.3 TpAoCOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpAoCOrderCategory

Tag Element Value Choice Element Type Choice Element Name

P_CHARGE_ADVICE_INFO TpChargeAdviceInfo ChargeAdviceInfo

P_CHARGE_PER_TIME TpChargePerTime ChargePerTime

P_CHARGE_NETWORK TpString NetworkCharge

5.7.4 TpCallAoCOrderCategory

Name Value Description

P_CHARGE_ADVICE_INFO 0 Set of GSM Charge Advice Information elements
according to 3GPP TS 22.024

P_CHARGE_PER_TIME 1 Charge per time

P_CHARGE_NETWORK 2 Operator specific charge plan specification, e.g.
charging table name / charging table entry

5.7.5 TpChargeAdviceInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines
the current tariff. The second set may be used in case of a tariff switch in the network.

Sequence Element Name Sequence Element Type Description

CurrentCAI TpCAIElements Current tariff

NextCAI TpCAIElements Next tariff after tariff switch

5.7.6 TpCAIElements

Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to
3GPP TS 22.024.

Sequence Element Name Sequence Element Type Description

UnitsPerInterval TpInt32 Units per interval

SecondsPerTimeInterval TpInt32 Seconds per time interval

ScalingFactor TpInt32 Scaling factor

UnitIncrement TpInt32 Unit increment

UnitsPerDataInterval TpInt32 Units per data interval

SegmentsPerDataInteral TpInt32 Segments per data interal

InitialSecsPerTimeInterval TpInt32 Initial secs per time interval

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)19Release 4

5.7.7 TpChargePerTime

Defines the Sequence of Data Elements that specify the time based charging information.

Sequence Element Name Sequence Element Type Description

InitialCharge TpInt32 Initial charge amount (in currency
units * 0.0001)

CurrentChargePerMinute TpInt32 Current tariff (in currency units
* 0.0001)

NextChargePerMinute TpInt32 Next tariff (in currency units *
0.0001) after tariff switch

Only used in setAdviceOfCharge()

5.7.8 TpLanguage

This data type is identical to a TpString, and defines the language. In case an indication for the language is not needed
an empty string must be used. In other cases valid language strings are defined in ISO 639.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)20Release 4

Annex A (normative):
OMG IDL Description of the Common Data definitions
The OMG IDL representation of this specification is contained in a text file (osa.idl contained in archive
2919802IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-2 V1.0.0 (2001-03)21Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for approval and placement under Change Control

3GPP TS 29.198-3 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface

Part 3: Framework
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, FW, Framework

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)3Release 4

Contents

Foreword...8

1 Scope ..9

2 References ..9

3 Definitions, symbols and abbreviations ...10
3.1 Definitions..10
3.2 Symbols ...10
3.3 Abbreviations...10

4 Overview of the Framework...10

5 The Base Interface Specification..11
5.1 Interface Specification Format...11
5.1.1 Interface Class ..11
5.1.2 Method descriptions ...12
5.1.3 Parameter descriptions ...12
5.1.4 State Model ..12
5.2 Base Interface...12
5.2.1 Interface Class IpInterface..12
5.3 Service Interfaces...12
5.3.1 Overview..12
5.4 Generic Service Interface...12

5.4.1 Interface Class IpService...12

6 Framework-to-Application Sequence Diagrams ...14
6.1 Event Notification Sequence Diagrams ...14
6.1.1 Enable Event Notification ..14
6.2 Integrity Management Sequence Diagrams ...15
6.2.1 Load Management: Suspend/resume notification from application ...15
6.2.2 Load Management: Framework queries load status ...16
6.2.3 Load Management: Application reports current load condition...16
6.2.4 Load Management: Application queries load status...17
6.2.5 Load Management: Application callback registration and load control ...18
6.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of application...19
6.2.7 Fault Management: Framework detects a Service failure ..20
6.2.8 Fault Management: Application requests a Framework activity test..21
6.3 Service Discovery Sequence Diagrams..22
6.3.1 Service Discovery...22
6.4 Trust and Security Management Sequence Diagrams..23
6.4.1 Service Selection ..23
6.4.2 Initial Access ..25
6.4.3 Authentication ..26
6.4.4 API Level Authentication...26

7 Framework-to-Application Class Diagrams...28

8 Framework-to-Application Interface Classes...30
8.1 Trust and Security Management Interface Classes ..30
8.1.1 Interface Class IpAppAPILevelAuthentication..31
8.1.2 Interface Class IpAppAccess..32
8.1.3 Interface Class IpInitial ..34
8.1.4 Interface Class IpAuthentication ..35
8.1.5 Interface Class IpAPILevelAuthentication...36
8.1.6 Interface Class IpAccess ..38
8.2 Service Discovery Interface Classes ..42
8.2.1 Interface Class IpServiceDiscovery..42
8.3 Integrity Management Interface Classes ..45

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)4Release 4

8.3.1 Interface Class IpAppFaultManager...45
8.3.2 Interface Class IpFaultManager ...47
8.3.3 Interface Class IpAppHeartBeatMgmt ...49
8.3.4 Interface Class IpAppHeartBeat...51
8.3.5 Interface Class IpHeartBeatMgmt..51
8.3.6 Interface Class IpHeartBeat..53
8.3.7 Interface Class IpAppLoadManager...54
8.3.8 Interface Class IpLoadManager ...56
8.3.9 Interface Class IpOAM ..59
8.3.10 Interface Class IpAppOAM..60
8.4 Event Notification Interface Classes ..61
8.4.1 Interface Class IpAppEventNotification ..61
8.4.2 Interface Class IpEventNotification ...62

9 Framework-to-Application State Transition Diagrams ..63
9.1 Trust and Security Management State Transition Diagrams..63
9.1.1 State Transition Diagrams for IpInitial ...63
9.1.1.1 Active State ..64
9.1.2 State Transition Diagrams for IpAPILevelAuthentication ...64
9.1.2.1 Idle State...64
9.1.2.2 InitAuthentication State..64
9.1.2.3 WaitForApplicationResult State...64
9.1.2.4 Application Authenticated State...65
9.1.3 State Transition Diagrams for IpAccess ...65
9.1.3.1 Active State ..65
9.2 Service Discovery State Transition Diagrams..65
9.2.1 State Transition Diagrams for IpServiceDiscovery ...66
9.2.1.1 Active State ..66
9.3 Integrity Management State Transition Diagrams ...67
9.3.1 State Transition Diagrams for IpHeartBeatMgmt ..67
9.3.1.1 Application not supervised State ..67
9.3.1.2 Application supervised State ..67
9.3.2 State Transition Diagrams for IpHeartBeat ..68
9.3.2.1 FW supervised by Application State ..68
9.3.3 State Transition Diagrams for IpLoadManager..69
9.3.3.1 Idle State...69
9.3.3.2 Notifying State ...69
9.3.3.3 Suspending Notification State ..69
9.3.3.4 Registered State..69
9.3.4 State Transition Diagrams for IpLoadManagerInternal ..70
9.3.4.1 Normal load State...70
9.3.4.2 Application Overload State ..70
9.3.4.3 Internal overload State..70
9.3.4.4 Internal and Application Overload State ..71
9.3.5 State Transition Diagrams for IpOAM ...71
9.3.5.1 Active State ..71
9.3.6 State Transition Diagrams for IpFaultManager..72
9.3.6.1 Framework Active State ...72
9.3.6.2 Framework Faulty State ...72
9.3.6.3 Framework Activity Test State...72
9.3.6.4 Service Activity Test State ...72
9.4 Event Notification State Transition Diagrams ...73
9.4.1 State Transition Diagrams for IpEventNotification ..73
9.4.1.1 Idle State...73
9.4.1.2 Notification Active State ..73

10 Framework-to-Service Sequence Diagrams ...73
10.1 Service Registration Sequence Diagrams...73
10.1.1 New SCF Registration..73
10.2 Service Factory Sequence Diagrams ..75
10.2.1 Sign Service Agreement...75

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)5Release 4

11 Framework-to-Service Class Diagrams..77

12 Framework-to-Service Interface Classes ...77
12.1 Service Registration Interface Classes ...77
12.1.1 Interface Class IpFwServiceRegistration ...77
12.2 Service Factory Interface Classes...80
12.2.1 Interface Class IpSvcFactory..80

13 Framework-to-Service State Transition Diagrams...81
13.1 Service Registration State Transition Diagrams...81
13.1.1 State Transition Diagrams for IpFwServiceRegistration ..81
13.1.1.1 Registering SCF State...82
13.1.1.2 SCF registered State..82
13.2 Service Factory State Transition Diagrams ..82

14 Service Properties...83
14.1 Service Property Types ..83
14.2 General Service Properties ...83
14.2.1 Service Name ...84
14.2.2 Service Version ..84
14.2.3 Service Instance ID ..84
14.2.4 Service Instance Description ..84
14.2.5 Product Name...84
14.2.6 Product Version..84
14.2.7 Supported Interfaces...84
14.2.8 Operation Set..84

15 Data Definitions ...85
15.1 Common Framework Data Definitions ..85
15.1.1 TpClientAppID...85
15.1.2 TpClientAppIDList ..85
15.1.3 TpDomainID ..85
15.1.4 TpDomainIDType ..85
15.1.5 TpEntOpID...86
15.1.6 TpPropertyName ..86
15.1.7 TpPropertyValue ..86
15.1.8 TpProperty..86
15.1.9 TpPropertyList ...86
15.1.10 TpEntOpIDList...86
15.1.11 TpFwID ..86
15.1.12 TpService ...86
15.1.13 TpServiceList ...86
15.1.14 TpServiceDescription...87
15.1.15 TpServiceID ...87
15.1.16 TpServiceIDList ...87
15.1.17 TpServiceIDRef ...87
15.1.18 TpServiceSpecString ..87
15.1.19 TpUniqueServiceNumber...87
15.1.20 TpServiceTypeProperty..87
15.1.21 TpServiceTypePropertyList ...88
15.1.22 TpServicePropertyMode ..88
15.1.23 TpServicePropertyTypeName ..88
15.1.24 TpServicePropertyName ..88
15.1.25 TpServicePropertyNameList ..88
15.1.26 TpServicePropertyValue ..88
15.1.27 TpServicePropertyValueList ..88
15.1.28 TpServiceProperty..88
15.1.29 TpServicePropertyList..89
15.1.30 TpServiceSupplierID..89
15.1.31 TpServiceTypeDescription...89
15.1.32 TpServiceTypeName..89
15.1.33 TpServiceTypeNameList..89
15.2 Event Notification Data Definitions ...90

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)6Release 4

15.2.1 TpFwEventName..90
15.2.2 TpFwEventCriteria...90
15.2.3 TpFwEventInfo ..90
15.3 Trust and Security Management Data Definitions ...90
15.3.1 TpAccessType..90
15.3.2 TpAuthType ...91
15.3.3 TpAuthCapability...91
15.3.4 TpAuthCapabilityList...91
15.3.5 TpEndAccessProperties..91
15.3.6 TpAuthDomain...91
15.3.7 TpInterfaceName..92
15.3.8 TpServiceAccessControl ..92
15.3.9 TpSecurityContext..93
15.3.10 TpSecurityDomain ...93
15.3.11 TpSecurityGroup..93
15.3.12 TpServiceAccessType ..93
15.3.13 TpServiceToken ...93
15.3.14 TpSignatureAndServiceMgr...93
15.3.15 TpSigningAlgorithm ..93
15.4 Integrity Management Data Definitions ...94
15.4.1 TpActivityTestRes..94
15.4.2 TpFaultStatsRecord..94
15.4.3 TpFaultStats ...94
15.4.4 TpFaultStatsSet ...94
15.4.5 TpActivityTestID ...94
15.4.6 TpInterfaceFault ...94
15.4.7 TpSvcUnavailReason ...95
15.4.8 TpFWUnavailReason ...95
15.4.9 TpLoadLevel ..95
15.4.10 TpLoadThreshold ...95
15.4.11 TpLoadInitVal..95
15.4.12 TpTimeInterval...96
15.4.13 TpLoadPolicy...96
15.4.14 TpLoadStatistic ..96
15.4.15 TpLoadStatisticList ..96
15.4.16 TpLoadStatisticData...96
15.4.17 TpLoadStatisticEntityID ..96
15.4.18 TpLoadStatisticEntityType...97
15.4.19 TpLoadStatisticInfo..97
15.4.20 TpLoadStatisticInfoType..97
15.4.21 TpLoadStatisticError ..97
15.5 Service Subscription Data Definitions ...98
15.5.1 TpPropertyName ..98
15.5.2 TpPropertyValue ..98
15.5.3 TpProperty..98
15.5.4 TpPropertyList ...98
15.5.5 TpEntOpProperties...98
15.5.6 TpEntOp...98
15.5.7 TpServiceContractID..98
15.5.8 TpPersonName ...98
15.5.9 TpPostalAddress...99
15.5.10 TpTelephoneNumber..99
15.5.11 TpEmail..99
15.5.12 TpHomePage..99
15.5.13 TpPersonProperties ..99
15.5.14 TpPerson ..99
15.5.15 TpServiceStartDate ..99
15.5.16 TpServiceEndDate ...99
15.5.17 TpServiceRequestor ...99
15.5.18 TpBillingContact ..100
15.5.19 TpServiceSubscriptionProperties ...100
15.5.20 TpServiceContract..100

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)7Release 4

15.5.21 TpPassword ..100
15.5.22 TpClientAppProperties...100
15.5.23 TpClientAppDescription ..100
15.5.24 TpSagID ...100
15.5.25 TpSagIDList ...101
15.5.26 TpSagDescription...101
15.5.27 TpSag ...101
15.5.28 TpServiceProfileID ..101
15.5.29 TpServiceProfileIDList ..101
15.5.30 TpServiceProfile...101

Annex A (normative): OMG IDL Description of Framework ...102

Annex B (informative): Differences between this draft and 3GPP 29.198 R99103
B.1 IpService Registration..103
B.2 IDL Namespace ...103
B.3 IpAccess...103
B.4 IpAPILevelAuthentication, IpAppAPILevelAuthentication..103
B.5 New IpAuthentication ..103
B.6 IpInitial...103
B.7 IpAppLoadManager ...103
B.8 Data Type Changes ..103

History ..108

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)8Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)9Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the Framework aspects of the interface. All aspects of the Framework are defined here, these
being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)10Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Overview of the Framework
This subclause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network
Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the
diagram below). The description of the Framework in this document separates the interfaces into these two distinct
sets: Framework to Application interfaces and Framework to Service interfaces.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model. The application must authenticate the
framework and vice versa. The application must be authenticated before it is allowed to use any other OSA
interface.

Registered Services

Client Application

Framework Call
Control

Mobility UI

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)11Release 4

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

- Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after successful
authentication.

- Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the service
agreement before it is allowed to access any network service capability feature.

- Access to network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service data for any API method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

- Registering of network service capability features. SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

The following sections describe each aspect of the Framework in the following order:

• The sequence diagrams give the reader a practical idea of how each of the Framework is implemented.

• The class diagrams section show how each of the interfaces applicable to the Framework relate to one another.

• The interface specification section describes in detail each of the interfaces shown within the class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes, either in the application or in the
gateway.

• The data definitions section show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
common data types part of this specification.

5 The Base Interface Specification

5.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>.
The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>,
while the Framework interfaces are denoted by classes with name IpFw<name>

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)12Release 4

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService
Inherits from: IpInterface

All service interfaces inherit from the following interface.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)13Release 4

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpGeneralException

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)14Release 4

6 Framework-to-Application Sequence Diagrams

6.1 Event Notification Sequence Diagrams

6.1.1 Enable Event Notification

AppLogic : IpAppEventNotification : IpAccess : IpEventNotification

1: obtainInterface ()

2: new()

3: new()

4: createNotification ()

5: rep ortNotificati on()

1: This message is used to receive a reference to the object implementing the IpEventNotification interface.

2: If there is currently no object implementing the IpEventNotification interface, then one is created using this
message.

3: This message is used to create an object implementing the IpAppEventNotification interface.

4: enableNotification(eventCriteria : in TpFwEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to
be notified: those specified in ServiceTypeNameList.

The result of this invocation has many similarities with the result of invoking listServiceTypes: in both cases the
application is informed of the availability of a list of SCFs. The differences are:

· in the case of invoking listServiceTypes, the application has to take the initiative, but it is informed of ALL SCFs
available

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)15Release 4

· in the case of using the event notification mechanism, the application needs not take the initiative to ask about the
availability of SCFs, but it is only informed of the ones that are newly available.

5: The application is notified of the availability of new SCFs of the requested type(s).

6.2 Integrity Management Sequence Diagrams

6.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

 : IpAppLoadManager : IpLoadManager

1: load change detection and policy evaluation

This is
implementation
detail

2: suspendNotification()

: resumeNot ification()

Load balancing service
makes a decision based
on pre-defined policy 3: load change detection and policy evaluat ion

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)16Release 4

6.2.2 Load Management: Framework queries load status

This sequence diagram shows how the framework requests load statistics for an application.

 : IpLoadManager : IpAppLoadManager

1: queryAppLoadReq()

2: get load information

3: queryAppLoadRes()

This is the
implementation
detail

6.2.3 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

 : IpAppLoadManager : IpLoadManager

2: evaluate policy

This is the implementation
detail

1: reportLoad()

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)17Release 4

6.2.4 Load Management: Application queries load status

This sequence diagram shows how an application requests load statistics for the framework.

 : IpAppLoadManager : IpLoadManager

1: queryLoadReq()

3: queryLoadRes()

2: get load information

This is the
implementation
detail

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)18Release 4

6.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function
based on policy.

 : IpAppLoadManager : IpLoadManager

1: registerLoadController()

Framework detects its
load condition change
and initiates load control
action 3: loadLevelNotification()

2: load change detection & policy evaluation

This is the
implementation detail

5: loadLevelNotification()

6: unregisterLoadController()

4: load change detection & policy evaluation

This is the
implementation detail

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)19Release 4

6.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of
application

Application :
IpAppHeartBeat

 :
IpHeartBeatMgmt

1: enableHeartBeat()

2: send()

3: send()

4: disableHeartBeat()

At a certain point of
time the application
decides to stop
heartbeat supervision

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)20Release 4

6.2.7 Fault Management: Framework detects a Service failure

The framework has detected that the service has failed (probably by the use of the heartbeat mechanism). The
framework updates its own records and informs any client applications that are using the service to stop.

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if
a service fails, for example via
an unreturned heartbeat. The
framework informs all
applications that are using the
service.

The application must
cease the use of this
service instance.

: svcUnavailableInd()

1: The framework informs each client application that is using the service instance that the service is unavailable. The
client application is then expected to abandon use of this service instance and access a different service instance via the
usual means (e.g. discovery, selectService etc.). The client application should not need to re-authenticate in order to
discover and use an alternative service instance. The framework will also need to make the relevant updates to its
internal records to make sure the service instance is removed from service and no client applications are still recorded as
using it.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)21Release 4

6.2.8 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks
framework to carry out an
activity test. The framework is
denoted as the target by a NULL
svcId parameter value.

Framework carries out test and
returns result to client application.

2: activityTestRes()

1: activityTestReq()

1: The client application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying a NULL value for the svcId parameter.

2: The framework does the requested activity test and sends the result to the client application.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)22Release 4

6.3 Service Discovery Sequence Diagrams

6.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; this is done via an invocation the method obtainInterface on the Framework's Access interface.

Discovery is a three-step process:

 : IpServiceDiscoveryApplication

: listServiceTypes()

3: describeServiceType()

4: discoverService()

 : IpAccess

1: obtainInterface()

2: Discovery: first step - list service types

In this first step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:

· out listTypes

This is a list of service type names, i.e., a list of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type

In this second step the application requests what are the properties that describe a certain service type that it is interested
in, among those listed in the first step.

The following input is necessary:

· in name

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in
(e.g. "P_MPCC") .

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)23Release 4

And the output is:

· out serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types,

· the corresponding property mode (mandatory or read only) associated with each SCF property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.

4: Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i. e.,
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the
identifier this network operator has assigned to the SCF version described in terms of those service properties. This is
the moment where the serviceID identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to
accept).

Input parameters are:

· in serviceTypeName

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC").

· in desiredPropertyList

This is again a list like the one used for service registration, but where the value of the service properties have been fine
tuned by the Application to (they will be logically interpreted as "minimum", "maximum", etc. by the Framework).

The following parameter is necessary as input:

· in max

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.

And the output is:

· out serviceList

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the
service property list.

6.4 Trust and Security Management Sequence Diagrams

6.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)24Release 4

 : IpAccess : IpAppAccess Applicat ion Framework

1: selectService()

2: accessCheck()

3: signServiceAgreement()

4: signServiceAgreement()

1: Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the
serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application a new identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.

Input is:

· in serviceID

This identifies the SCF required.

And output:

· out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement.

3: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this
contractual details have been agreed, then the Application can be given the means to actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the getServiceManager operation on the service factory the Framework retrieves this interface and returns it to
the Application. The service properties suitable for this application are also fed to the SCF (via the service factory
interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

· in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)25Release 4

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

· out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

6.4.2 Initial Access

The following figure shows an application accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the Application must first of all authenticate itself with the Framework.
For this purpose the application needs a reference to the Initial Contact interfaces for the Framework; this may be
obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At
this stage, the Application has no guarantee that this is a Framework interface reference, but it to initiate the
authentication process with the Framework. The Initial Contact interface only supports the initiateAuthentication
method to allow the authentication process to take place.

Once the Application has authenticated with the Framework, it can gain access to other framework interfaces and SCFs.
This is done by invoking the requestAccess method, by which the application requests a certain type of access SCF.

Applicat ion : IpInitial : IpAPILevelAuthent icat ion Framework : IpAccess : IpAppAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

5: requestAccess()

4: authenticate()

6: obtainInterface()

1: Initiate Authentication

The Application invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Select Encryption Method

The Application invokes selectAuthMethod on the Framework's API Level Authentication interface, identifying the
authentication methods it supports. The Framework prescribes the method to be used.

3: Authenticate

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)26Release 4

4: The Application and Framework authenticate each other using the prescribed method. The sequence diagram
illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level
Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the
correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using
the authenticate method on the Application's API Level Authentication interface.

5: Request Access

Upon successful (mutual) authentication, the Application invokes requestAccess on the Framework's API Level
Authenticaiton interface, providing in turn a reference to its own access interface. The Framework returns a reference
to its access interface.

6: The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery
interface.

6.4.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution tecnology mechanism.

Applicat ion : IpInitial Framework : IpAuthentication : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

1: The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to
specify the type of authentication process. In this case, the application selects to use the underlying distribution
technology mechanism for identification and authentication.

2: The application invokes the requestAccess method on the Framework's Authentication interface. The Framework
now uses the underlying distribution technology mechanism for identification and authentication of the application.

3: If the authentication was successful, the application can now invoke obtainInterface on the framework's Access
interface to obtain a reference to its service discovery interface.

6.4.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client application and the framework mutually
authenticate one another.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)27Release 4

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The application must authenticate with the Framework before it is able to use any of the other interfaces supported by
the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g.
CORBA security). OSA defines generic a authentication interface (API Level Authentication), which can be used to
perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its
own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the
client, in return. In this case the API Level Authentication interface.

2) The application invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This
includes the authentication capabilities of the application. The framework then chooses an authentication method based
on the authentication capabilities of the application and the Framework. If the application is capable of handling more
than one authentication method, then the Framework chooses one option, defined in the prescribedMethod parameter. In
some instances, the authentication capability of the application may not fulfil the demands of the Framework, in which
case, the authentication will fail.

3) The application and Framework interact to authenticate each other. Depending on the method prescribed, this
procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is
performed using the authenticate method on the API Level Authentication interface. Depending on the authentication
method selected, the protocol may require invocations on the API Level Authentication interface supported by the
Framework; or on the application counterpart; or on both.

 : IpAppAPILevelAuthent ication Application : IpInitial Framework : IpAPILevelAuthent ication

1: initiateAuthenticat ion()

2: selectEncryptionMethod()

3: authenticate()

: authenticate()

5: authenticate()

: authenticate()

IpAppAuthentication reference is
passed to framework and
IpAuthentication reference is
returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpAppAccess reference is
passed to Framework, and
IpAccess reference is
returned.

: requestAccess()

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)28Release 4

Framework-to-Application Class Diagrams

IpAppEventNotification

reportNotification()
notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()
destroyNotification()

(from Framework Interfaces)

<Interface>>

<<uses>>

Figure: Event Notification Class Diagram

IpAppFaultManager

activityTestRes()
appActivityTestReq()
fwFaultReportInd()
fwFaultRecoveryInd()
svcUnavailableInd()
genFaultStatsRecordRes()
fwUnavailableInd()

<<Interface>>

IpFaultManager

activityTestReq()
appActivityTestRes()
svcUnavailableInd()
genFaultStatsRecordReq()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeTimePeriod()

<<Interface>>

IpHeartBeat

send()

<<Interface>>

1 0..n1 0..n

IpAppHeartBeat

send()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()
disableAppHeartBeat()
changeTimePeriod()

<<Interface>>

<uses>>

0..n1 0..n1

IpAppLoadManager

queryAppLoadReq()
queryLoadRes()
queryLoadErr()
loadLevelNotificatio...
resumeNotification()
suspendNotification()

<<Interface>>

IpLoadManager

reportLoad()
queryLoadReq()
queryAppLoadRes()
queryAppLoadErr()
registerLoadController()
unregisterLoadController()
resumeNotification()
suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)29Release 4

IpServiceDiscovery

listServiceTypes()
describeServiceType()
discoverService()
listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)30Release 4

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>
IpAccess

obtainInterface()
obtainInterfaceWithCallback()
accessCheck()
selectService()
signServiceAgreement()
terminateServiceAgreement()
endAccess()

(from Framework interfaces)

<<Interface>>
IpAPILevelAuthentication

selectEncryptionMetho...
authenticate()
abortAuthentication()

(from Framework interfaces)

<<Interface>>

IpAppAccess

signServiceAgreement()
terminateServiceAgreement()
terminateAccess()

(from App interfaces)

<<Interface>>

IpAppAPILevelAuthentication

authenticate()
abortAuthentication()

(from App interfaces)

<<Interface>>

<<uses>> <<uses>>

IpAuthenticat ion

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview

8 Framework-to-Application Interface Classes

8.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

- the first point of contact for an application to access a Home Environment;

- the authentication methods for the application and Home Environment to perform an authentication protocol;

- the application with the ability to select a service capability feature to make use of;

- the application with a portal to access other Framework interfaces.

The process by which the application accesses the Home Environment has been separated into 3 stages, each supported
by a different Framework interface:

1) Initial Contact with the Framework;

2) Authentication to the Framework;

3) Access to Framework and Service Capability Features.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)31Release 4

8.1.1 Interface Class IpAppAPILevelAuthentication

Inherits from: IpInterface.

<<Interface>>

IpAppAPILevelAuthentication

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) :
TpResult

abortAuthentication () : TpResult

Method
authenticate()

This method is used by the framework to authenticate the client application using the mechanism indicated in
prescribedMethod. The client application must respond with the correct responses to the challenges presented by the
framework. The number of exchanges and the order of the exchanges is dependent on the prescribedMethod. (These
may be interleaved with authenticate() calls by the client application on the IpAPILevelAuthentication interface. This is
defined by the prescribedMethod.)

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod() on the IpAPIlLevelAuthentication interface. This parameter contains the agreed method
for authentication. If this is not the same value as returned by selectEncryptionMethod(), then an error code
(P_INVALID_AUTH_CAPABILITY) is returned.

challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol
[RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by
selectEncryptionMethod().

response : out TpStringRef

This is the response of the client application to the challenge of the framework in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Raises

TpGeneralException,TpFWException

Method
abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to
abort the authentication process, (e.g. if the client application responds incorrectly to a challenge.) If this method has

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)32Release 4

been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code
(P_ACCESS_DENIED), until the client application has been properly authenticated.

Parameters
No Parameters were identified for this method

Raises

TpGeneralException,TpFWException

8.1.2 Interface Class IpAppAccess

Inherits from: IpInterface.

The Access client application interface is used by the Framework to perform the steps that are necessary in order to
allow it to service access.

<<Interface>>

IpAppAccess

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpString) : TpResult

Method
signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called
in response to the client application calling the selectService() method on the IpAccess interface of the framework. The
framework provides the service agreement text for the client application to sign. If the client application agrees, it signs
the service agreement, returning its digital signature to the framework.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceToken is invalid, or not known by the client application,then an error code (P_INVALID_SERVICE_TOKEN) is
returned.

agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)33Release 4

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client
application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.

Raises

TpGeneralException,TpFWException

Method
terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, an
error code (P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework
uses this to confirm its identity to the client application. The client application can check that the terminationText has
been signed by the framework. If a match is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) is returned.

Raises

TpGeneralException,TpFWException

Method
terminateAccess()

The terminateAccess operation is used to end the client application's access session with the framework. The framework
is terminating the client application's access session. (For example, this may be done if the framework believes the
client application is masquerading as someone else. Using this operation will force the client application to re-
authenticate if it wishes to continue using the framework's services.)

After terminateAccess() is invoked, the client application will not longer be authenticated with the framework. The
client application will not be able to use the references to any of the framework interfaces gained during the access
session. Any calls to these interfaces will fail.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)34Release 4

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client
application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client
application. The client application can check that the terminationText has been signed by the framework. If a match is
made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

Raises

TpGeneralException,TpFWException

8.1.3 Interface Class IpInitial

Inherits from: IpInterface.

The Initial Framework interface is used by the client application to initiate the mutual authentication with the
Framework.

<<Interface>>

IpInitial

initiateAuthentication (appDomain : in TpAuthDomain, authType : in TpAuthType, fwDomain : out
TpAuthDomainRef) : TpResult

Method
initiateAuthentication()

This method is invoked by the client application to start the process of mutual authentication with the framework, and
request the use of a specific authentication method.

Parameters

appDomain : in TpAuthDomain

This identifies the application domain to the framework, and provides a reference to the domain's authentication
interface.

structure TpAuthDomain {
domainID: TpDomainID;
authInterface: IpInterfaceRef;

}; The
domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e.
TpEntOpID). It is used to identify the enterprise domain to the framework, (see authenticate() on
IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code
(P_INVALID_DOMAIN_ID).

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)35Release 4

The authInterface parameter is a reference to call the authentication interface of the client application. The type of
this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework
returns an error code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the Authentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the appDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(App)APILevelAuthentication. If
P_AUTHENTICATION is selected, the authInterface parameters are refereces to interfaces of type
Ip(App)Authentication which is used when an underlying distibution technology authentication mechanism is used.

fwDomain : out TpAuthDomainRef

This provides the application domain with a framework identifier, and a reference to call the authentication interface of
the framework.

structure TpAuthDomain {
domainID: TpDomainID;
authInterface: IpInterfaceRef;
};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
enterprise domain.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this
interface is defined by the authType parameter. The application domain uses this interface to authenticate with the
framework.

Raises

TpGeneralException,TpFWException

8.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.

The Authentication Framework interface is used by client application to request access to other interfaces supported by
the Framework. The mutual authentication process should in this case be done with some underlying distribution
technology authentication mechanism, e.g. CORBA Security.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface :
out IpInterfaceRefRef) : TpResult

Method
requestAccess()

Once application and framework are authenticated, the client application invokes the requestAccess operation on the
IpAuthentication or IpAPILevelAuthentication interface. This allows the client application to request the type of access
they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can
define their own access interfaces to satisfy client requirements for different types of access.)

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)36Release 4

If this method is called before the client application and framework have successfully completed the authentication
process, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client application. If the framework does not provide the
type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.

appAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client application. If the interface
reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

fwAccessInterface : out IpInterfaceRefRef

This provides the reference for the client application to call the access interface of the framework.

Raises

TpGeneralException,TpFWException

8.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by client application to perform its part of the mutual
authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the
Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) :
TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) :
TpResult

abortAuthentication () : TpResult

Method
selectEncryptionMethod()

The client application uses this method to initiate the authentication process. The framework returns its preferred
mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the
framework within the capability of the client application cannot be found, the framework returns an error code
(P_NO_ACCEPTABLE_AUTH_CAPABILITY).

Parameters

authCaps : in TpAuthCapabilityList

This is the means by which the authentication mechanisms supported by the client application are conveyed to the
framework.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)37Release 4

prescribedMethod : out TpAuthCapabilityRef

This is returned by the framework to indicate the mechanism preferred by the framework for the authentication process.
If the value of the prescribedMethod returned by the framework is not understood by the client application, it is
considered a catastrophic error and the client application must abort.

Raises

TpGeneralException,TpFWException

Method
authenticate()

This method is used by the client application to authenticate the framework using the mechanism indicated in
prescribedMethod. The framework must respond with the correct responses to the challenges presented by the client
application. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the
correct public key for the client application (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges and the order of the exchanges is dependent on the prescribedMethod.

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod(). This parameter contains the method that the framework has specified as acceptable for
authentication. If this is not the same value as returned by selectEncryptionMethod(), then the framework returns an
error code (P_INVALID_AUTH_CAPABILITY).

challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used
will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol
[RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by
selectEncryptionMethod().

response : out TpStringRef

This is the response of the framework to the challenge of the client application in the current sequence. The response
will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Raises

TpGeneralException,TpFWException

Method
abortAuthentication()

The client application uses this method to abort the authentication process. This method is invoked if the client
application no longer wishes to continue the authentication process, (e.g. if the framework responds incorrectly to a
challenge.) If this method has been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will
return an error code (P_ACCESS_DENIED), until the client application has been properly authenticated.

Parameters
No Parameters were identified for this method

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)38Release 4

Raises

TpGeneralException,TpFWException

8.1.6 Interface Class IpAccess

Inherits from: IpInterface.

<<Interface>>

IpAccess

obtainInterface (interfaceName : in TpInterfaceName, fwInterface : out IpInterfaceRefRef) : TpResult

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, appInterface : in IpInterfaceRef,
fwInterface : out IpInterfaceRefRef) : TpResult

accessCheck (serviceToken : in TpServiceToken, securityContext : in TpSecurityContext, securityDomain :
in TpSecurityDomain, group : in TpSecurityGroup, serviceAccessTypes : in TpServiceAccessType,
serviceAccessControl : out TpServiceAccessControlRef) : TpResult

selectService (serviceID : in TpServiceID, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpString) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

Method
obtainInterface()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface
references to other framework interfaces. (The obtainInterfacesWithCallback method should be used if the client
application is required to supply a callback interface to the framework.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.

Raises

TpGeneralException,TpFWException

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)39Release 4

Method
obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface
references to other framework interfaces, when it is required to supply a callback interface to the framework. (The
obtainInterface method should be used when no callback interface needs to be supplied.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

appInterface : in IpInterfaceRef

This is the reference to the client application interface, which is used for callbacks. If an application interface is not
needed, then this method should not be used. (The obtainInterface method should be used when no callback interface
needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.

Raises

TpGeneralException,TpFWException

Method
accessCheck()

This method may be used by the client application to check if it is authorised to access the specified service. The
response is used to indicate whether the request for access has been granted or denied and if granted the level of trust
that will be applied. The securityModelID and the relevant securityLevel are defined as part of the registration data for
the service, and the service agreement. They are specific to the service.

securityModelID:

The identity of the specific Security Model that is to be used to define a set of appropriate policies for the service that
can be used by the framework to determine access rights. The model may include blanket permission, session
permission or one shot permission. A number of security models will be stored by the framework, and referenced by the
access control module, according to the security model identifier of the service.

securityLevel:

The trust level required by the service for granting access. The Security Level is used by the framework's access control
module when it checks for access rights.

Parameters

serviceToken : in TpServiceToken

The serviceToken identifies the specific service that the client application wishes to access. The service Token identifies
the service type and service properties selected by the client application when it invoked selectService().

securityContext : in TpSecurityContext

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)40Release 4

securityDomain : in TpSecurityDomain

The security domain in which the client application is operating may influence the access control decisions and the
specific set of features that the requestor is entitled to use.

group : in TpSecurityGroup

A group can be used to define the access rights associated with all client applications that belong to that group. This
simplifies the administration of access rights.

serviceAccessTypes : in TpServiceAccessType

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as
well as those specific to services.

serviceAccessControl : out TpServiceAccessControlRef

This contains the access control policy information that controls access to the service feature, and the trustLevel that the
service provider has assigned to the client application.

structure TpServiceAccessControl {
policy: TpString;
trustLevel: TpString;
};

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel
must also have a value.

The trustLevel parameter indicates the trust level that the service provider has assigned to the client application.

Raises

TpGeneralException,TpFWException

Method
selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

serviceToken : out TpServiceTokenRef

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will
contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If
the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code
(P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework
invokes the endAccess method on the other's corresponding access interface.

Raises

TpGeneralException,TpFWException

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)41Release 4

Method
signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which
allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the service is returned to the client application. If the client application is
not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the
framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

signatureAndServiceMgr : out TpSignatureAndServiceMgrRef

This contains the digital signature of the framework for the service agreement, and a reference to the service manager
interface of the service.

structure TpSignatureAndServiceMgr {
digitalSignature: TpString;
serviceMgrInterface: IpInterfaceRef;

};
The digitalSignature is the signed version of a hash of the service token and agreement text given by the client

application.
The serviceMgrInterface is a reference to the service manager interface for the selected service.

Raises

TpGeneralException,TpFWException

Method
terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text describes the reason for the termination of the service agreement.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)42Release 4

digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework
uses this to check that the terminationText has been signed by the client application. If a match is made, the service
agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

Raises

TpGeneralException,TpFWException

Method
endAccess()

The endAccess operation is used to end the client application's access session with the framework. The client
application requests that its access session is ended. After it is invoked, the client application will no longer be
authenticated with the framework. The client application will not be able to use the references to any of the framework
interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session
(e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises

TpGeneralException,TpFWException

8.2 Service Discovery Interface Classes

8.2.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties" are applicable to each service type. The "listServiceType() method returns a list of all "service
types" that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the "service-specific properties" that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.

<<Interface>>

IpServiceDiscovery

listServiceTypes (listTypes : out TpServiceTypeNameListRef) : TpResult

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)43Release 4

describeServiceType (name : in TpServiceTypeName, serviceTypeDescription : out
TpServiceTypeDescriptionRef) : TpResult

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32, serviceList : out TpServiceListRef) : TpResult

listSubscribedServices (serviceList : out TpServiceListRef) : TpResult

Method
listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Parameters

listTypes : out TpServiceTypeNameListRef

The names of the requested service types.

Raises

TpGeneralException,TpFWException

Method
describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.

· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.

serviceTypeDescription : out TpServiceTypeDescriptionRef

The description of the specified service type. The description provides information about:
· the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples,
· the names of the super types of this service type, and
· whether the service type is currently enabled or disabled.

Raises

TpGeneralException,TpFWException

Method
discoverService()

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)44Release 4

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passes in a list of desired service properties to describe the service it is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responses it is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match
the desired service property list that the client application provided.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading". It is the basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

· If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TYPE exception is raised.

The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList"parameter is a list of service property {name, mode and value list} tuples that the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property values in the desired property list must be logically interpreted as "minimum",
"maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the
selection of desired services.

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

serviceList : out TpServiceListRef

This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service
property {name, mode and value list} tuples associated with the service.

Raises

TpGeneralException,TpFWException

Method
listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Parameters

serviceList : out TpServiceListRef

The "serviceList" parameter returns a list of subscribed services. Each service is characterised by its service ID and a
list of service property {name, mode and value list} tuples associated with the service.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)45Release 4

Raises

TpGeneralException,TpFWException

8.3 Integrity Management Interface Classes

8.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

appActivityTestReq (activityTestID : in TpActivityTestID) : TpResult

fwFaultReportInd (fault : in TpInterfaceFault) : TpResult

fwFaultRecoveryInd (fault : in TpInterfaceFault) : TpResult

svcUnavailableInd (serviceId : in TpServiceID, reason : in TpSvcUnavailReason) : TpResult

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : TpResult

fwUnavailableInd (reason : in TpFwUnavailReason) : TpResult

Method
activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpGeneralException,TpFWException

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)46Release 4

Method
appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out a test on itself, to check that it is operating correctly. The application reports the test result
by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpGeneralException,TpFWException

Method
fwFaultReportInd()

The framework invokes this method to notify the client application of a failure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

Raises

TpGeneralException,TpFWException

Method
fwFaultRecoveryInd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

Raises

TpGeneralException,TpFWException

Method
svcUnavailableInd()

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)47Release 4

The framework invokes this method to inform the client application that it can no longer use the indicated service. On
receipt of this request, the client application must act to reset its use of the specified service (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a
different service instance).

Parameters

serviceId : in TpServiceID

Identifies the affected service.

reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available

Raises

TpGeneralException,TpFWException

Method
genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the framework and/or services that are included in the general fault statistics record. The framework is
designated by a null value.

Raises

TpGeneralException,TpFWException

Method
fwUnavailableInd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available

8.3.2 Interface Class IpFaultManager

Inherits from: IpInterface.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)48Release 4

This interface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface
at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation
on the IpAccess interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : TpResult

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) :
TpResult

svcUnavailableInd (serviceID : in TpServiceID) : TpResult

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : TpResult

Method
activityTestReq()

The application invokes this method to test that the framework or a service is operational. On receipt of this request, the
framework must carry out a test on itself or on the specified service, to check that it is operating correctly. The
framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by a null value.

Raises

TpGeneralException,TpFWException

Method
appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)49Release 4

Raises

TpGeneralException,TpFWException

Method
svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use the indicated service
(either due to a failure in the client application or in the service). On receipt of this request, the framework should take
the appropriate corrective action. The framework assumes that the session between this client application and service
instance is to be closed and updates its own records appropriately as well as attempting to inform the service instance
and/or its administrator. Attempts by the client application to continue using this session should be rejected.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.

Raises

TpGeneralException,TpFWException

Method
genFaultStatsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for the framework and/or for specified services during the specified
time interval, which is returned to the client application using the genFaultStatsRecordRes operation on the
IpAppFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

serviceIDs : in TpServiceIDList

Specifies the framework and/or services to be included in the general fault statistics record. The framework is
designated by a null value.

Raises

TpGeneralException,TpFWException

8.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the Framework by the Client application. Since the
OSA APIs are inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of
the TpResult is interpreted as a heartbeat response.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)50Release 4

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (duration : in TpDuration, fwInterface : in IpHeartBeatRef, session : in TpSessionID) :
TpResult

disableAppHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method
enableAppHeartBeat()

With this method, the framework registers at the client application for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.

fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

Method
disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

Method
changeTimePeriod()

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)51Release 4

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

8.3.4 Interface Class IpAppHeartBeat

Inherits from: IpInterface.

The Heartbeat Application interface is used by the Framework to supervise the Application. The return of the TpResult
is interpreted as a heartbeat response.

<<Interface>>

IpAppHeartBeat

send (session : in TpSessionID) : TpResult

Method
send()

This is the method the framework uses in case it supervises the client application. The sender must raise an exception if
no result comes back after a certain, user-defined time..

Parameters

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

8.3.5 Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)52Release 4

This interface allows the initialisation of a heartbeat supervision of the client application. Since the APIs are inherently
synchronous, the heartbeats themselves are synchronous for efficiency reasons. The return of the TpResult is interpreted
as a heartbeat response.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (duration : in TpDuration, appInterface : in IpAppHeartBeatRef, session : out
TpSessionIDRef) : TpResult

disableHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

Method
enableHeartBeat()

With this method, the client application registers at the framework for heartbeat supervision of itself.

Parameters

duration : in TpDuration

The duration in milliseconds between the heartbeats.

appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

session : out TpSessionIDRef

Identifies the heartbeat session. In general, the application has only one session. In case of framework supervision by
the client application (see the application interfaces), the application may maintain more than one session.

Raises

TpGeneralException,TpFWException

Method
disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Parameters

session : in TpSessionID

Identifies the heartbeat session.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)53Release 4

Raises

TpGeneralException,TpFWException

Method
changeTimePeriod()

Allows the administrative change of the heartbeat period.

Parameters

duration : in TpDuration

The time interval in milliseconds between the heartbeats.

session : in TpSessionID

Identifies the heartbeat session.

Raises

TpGeneralException,TpFWException

8.3.6 Interface Class IpHeartBeat

Inherits from: IpInterface.

The Heartbeat Framework interface is used by the client application to supervise the Framework.

<<Interface>>

IpHeartBeat

send (session : in TpSessionID) : TpResult

Method
send()

This is the method the client application uses in case it supervises the framework. The sender must raise an exception if
no result comes back after a certain, user-defined time.

Parameters

session : in TpSessionID

Identifies the heartbeat session. In general, the application has only one session.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)54Release 4

Raises

TpGeneralException,TpFWException

8.3.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.

The client application developer supplies the load manager application interface to handle requests, reports and other
responses from the framework load manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : TpResult

resumeNotification () : TpResult

suspendNotification () : TpResult

Method
queryAppLoadReq()

The framework uses this method to request the application to provide load statistic records for the application and/or for
individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the application and/or the services for which load statistic records should be reported. The application is
designated by a null value.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpGeneralException,TpFWException

Method
queryLoadRes()

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)55Release 4

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics

Raises

TpGeneralException,TpFWException

Method
queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpGeneralException,TpFWException

Method
loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

Raises

TpGeneralException,TpFWException

Method
resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)56Release 4

Parameters
No Parameters were identified for this method

Raises

TpGeneralException,TpFWException

Method
suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method

Raises

TpGeneralException,TpFWException

8.3.8 Interface Class IpLoadManager

Inherits from: IpInterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy is related to the QoS level to which the application is subscribed. The framework load management function is
represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst a transaction performs. To handle responses and reports, the client application developer must
implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity
of this callback interface at the time it obtains the framework's load manager interface, by use of the
obtainInterfaceWithCallback operation on the IpAccess interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

registerLoadController (serviceIDs : in TpServiceIDList) : TpResult

unregisterLoadController (serviceIDs : in TpServiceIDList) : TpResult

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)57Release 4

resumeNotification (serviceIDs : in TpServiceIDList) : TpResult

suspendNotification (serviceIDs : in TpServiceIDList) : TpResult

Method
reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.

Raises

TpGeneralException,TpFWException

Method
queryLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework
and/or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load statistic records should be reported. The framework is
designated by a null value.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpGeneralException,TpFWException

Method
queryAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)58Release 4

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.

Raises

TpGeneralException,TpFWException

Method
queryAppLoadErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpGeneralException,TpFWException

Method
registerLoadController()

The client application uses this method to register to receive notifications of load level changes associated with the
framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and SCFs to be registered for load control. To register for framework load control only, the
serviceIDs is null.

Raises

TpGeneralException,TpFWException

Method
unregisterLoadController()

The client application uses this method to unregister for notifications of load level changes associated with the
framework and/or with individual services used by the application.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)59Release 4

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load level changes should no longer be reported. The framework
is designated by a null value.

Raises

TpGeneralException,TpFWException

Method
resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with the framework and/or with individual services used by the application; e.g. after a period of suspension
during which the application handled a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications of load level changes by the
framework should be resumed. The framework is designated by a null value.

Raises

TpGeneralException,TpFWException

Method
suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with the framework and/or with individual services used by the application; e.g. while the application
handles a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications by the framework should be
suspended. The framework is designated by a null value

Raises

TpGeneralException,TpFWException

8.3.9 Interface Class IpOAM

Inherits from: IpInterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of of the OSA APIs.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)60Release 4

<<Interface>>

IpOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime, systemDateAndTime : out
TpDateAndTimeRef) : TpResult

Method
systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the
framework. The framework responds with the system date and time.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if
the format of the parameter is invalid.

systemDateAndTime : out TpDateAndTimeRef

This is the system date and time of the framework.

Raises

TpGeneralException,TpFWException

8.3.10 Interface Class IpAppOAM

Inherits from: IpInterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes.This method is invoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>

IpAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime, clientDateAndTime : out
TpDateAndTimeRef) : TpResult

Method
systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the
application. The application responds with its own date and time.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)61Release 4

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework.

clientDateAndTime : out TpDateAndTimeRef

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if
the format of the parameter is invalid.

Raises

TpGeneralException,TpFWException

8.4 Event Notification Interface Classes

8.4.1 Interface Class IpAppEventNotification

Inherits from: IpInterface.

This interface is used by the services to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : TpResult

notificationTerminated () : TpResult

Method
reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

Raises

TpGeneralException,TpFWException

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)62Release 4

Method
notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method

Raises

TpGeneralException,TpFWException

8.4.2 Interface Class IpEventNotification

Inherits from: IpInterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

Method
createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the framework for this newly installed notification.

Raises

TpGeneralException,TpFWException

Method
destroyNotification()

This method is used by the application to delete generic notifications from the framework.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)63Release 4

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENTID.

Raises

TpGeneralException,TpFWException

9 Framework-to-Application State Transition Diagrams
This section contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

9.1 Trust and Security Management State Transition Diagrams

9.1.1 State Transition Diagrams for IpInitial

Act ive

initiateAuthentication / return new IpAuthent ication

Figure : State Transition Diagram for IpInitial

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)64Release 4

9.1.1.1 Active State

9.1.2 State Transition Diagrams for IpAPILevelAuthentication

Idle

IpInitial.initiateAuthentication

InitAuthentication

entry/ find auth. mechanism

selectEncryptionMethod

WaitForApplicationResult

entry/ ^IpAppAPILevelAuthentication.Authenticate

Application Authenticated

ALL
STATES

authenticate ^result
Authenticate(response)

authenticate ^result Authenticate(response)

"no mechanism found" ^result
selectEncryptionMethod(P_INVALID_AUTH_CAPABILITY)

"mechanism found"[[two way authentication] ^result
selectEncryptionMethod(prescribedMethod)

"mechanism found"[one way authentication]

abortAuthenti catio n

IpAccess.endAccess

requestAccess / return
P_ACCES S_DENIED

requestAccess / return
P_ACCESS_DENIED

requestAccess / return
P_ ACCES S_DENIED

requestAccess / return new IpAccess

result Authenticate[response valid]

result Authenticate[response invalid]

Figure : State Transition Diagram for IpAPILevelAuthentication

9.1.2.1 Idle State

When the application has requested the IpInitial interface for initiateAuthentication, an object implementing the
IpAPILevelAuthentication interface is created. The application now has to provide its authentication capabilities by
invoking the SelectEncryptionMethod method.

9.1.2.2 InitAuthentication State

In this state the Framework selects the preferred authentication mechanism within the capability of the application.
When a proper mechanism is found, the Framework can decide that the application doesn't have to be authenticated
(one way authentication) or that the application has to be authenticated. In case no mechanism can be found the error
code P_INVALID_AUTH_CAPABILITY is returned and the Authentication object is destroyed. This implies that the
application has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial
interface.

9.1.2.3 WaitForApplicationResult State

When entering this state, the Framework requests the application to authenticate itself by invoking the Authenticate
method on the application. In case the application requests the Framework to authenticate itself by invoking
Authenticate on the IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge
of the application. When the Framework responds to the Authenticate request, the response is analysed and in case the
response is valid a transition to the state Application Authenticated is made. In case the response is not valid, the
Authentication object is destroyed. This implicates that the application has to re-initiate the authentication by calling
once more the initiateAuthentication method on the IpInitial interface.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)65Release 4

9.1.2.4 Application Authenticated State

In this state the application is considered authenticated and is now allowed to request access to the IpAccess interface.
In case the application requests the Framework to authenticate itself by invoking Authenticate on the
IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge of the application.

9.1.3 State Transition Diagrams for IpAccess

Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

accessCheck / return whether application has access to requested service

selectService ŝignServiceAgreement

signServiceAgreement[correc t service selected] / get Service manager from Service Factory and return to application

terminateServiceAgreement / destroy Service manager object

endAccess / destroy all interface objects used by the application

network operator initiated endAccess / destroy all interface objects used by the application

Figure : State Transition Diagram for IpAccess

9.1.3.1 Active State

When the application requestes access to the Framework on the IpInitial interface, an object implementing the IpAccess
interface is created. The application can now request other Framework interfaces, including Service Discovery. When
the application is no longer interested in using the interfaces it calls the endAccess method. This results in the
destruction of all interface objects used by the application. In case the network operator decides that the application has
no longer access to the interfaces the same will happen.

9.2 Service Discovery State Transition Diagrams

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)66Release 4

9.2.1 State Transition Diagrams for IpServiceDiscovery

Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure : State Transition Diagram for IpServiceDiscovery

9.2.1.1 Active State

When the application requests Service Discovery by invoking the obtainInterface or the obtainInterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)67Release 4

9.3 Integrity Management State Transition Diagrams

9.3.1 State Transition Diagrams for IpHeartBeatMgmt

Application not
supervised

Application supervised

do/ periodically request Application for heartbeat by invoking send() method on IpAppHeartBeat

enableHeartBeat

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess changeTimePeriod

Figure : State Transition Diagram for IpHeartBeatMgmg

9.3.1.1 Application not supervised State

In this state the application has not registered for heartbeat supervision by the Framework.

9.3.1.2 Application supervised State

In this state the application has registered for heartbeat supervision by the Framework. Periodically the Framework will
request for the application heartbeat by calling the send method on the IpAppHeartBeat interface.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)68Release 4

9.3.2 State Transition Diagrams for IpHeartBeat

FW supervised by
Application

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

IpAppHeartBeatMgmt.disableAppHeartBeat

IpAccess.endAccess

Figure : State Transition Diagram for IpHeatBeat

9.3.2.1 FW supervised by Application State

In this state the Framework has requested the application for heartbeat supervision on itself. Periodically the application
calls the send() method and the Framework returns it's heartbeat result.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)69Release 4

9.3.3 State Transition Diagrams for IpLoadManager

Idle Notifying

do/ obtain load statist ics and report them at spec ified interval with queryLoadRes

Suspending
Notification

reportLoad

Registered

IpAccess.obtainInterface queryAppLoadRes[load s tat istics requested by LoadManager]
queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

reportLoad
queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]
queryAppLoadErr[load statistics requested by LoadManager]

queryLoadRequnregisterLoadController

registerLoadController

suspendNotification[all notifications suspendend]

unregisterLoadController

queryLoadRes[final load statistics report]
queryLoadErr[final load statistics report]

IpAccess.obtainInterfaceWithCallback

resumeNotification

unregisterLoadController

All S tates

IpAccess.endAccess

Figure : State Transition Diagram for IpLoadManager

9.3.3.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

9.3.3.2 Notifying State

In the Notifying state the application has requested for load statistics. The Loadmanager gathers the requested
information and (periodically) reports them to the application.

9.3.3.3 Suspending Notification State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load
statistics information.

9.3.3.4 Registered State

In this state the application has registered for load control with the method RegisterLoadController(). The LoadManager
can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore
the LoadManager can request the application to control its load (by invoking loadLevelNotification() or
suspendNotification() on the application side of interface). In case the application detects a change in load level, it
reports this to the LoadManager by calling the method reportLoad().

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)70Release 4

When entering this state, an object called LoadManagerInternal is created that has an internal state machine
encapsulating the internal behaviour of the LoadManager. The State Transition Diagram of LoadManagerInternal is
shown in Figure .

9.3.4 State Transition Diagrams for IpLoadManagerInternal

Normal load Application Overload

entry/ evaluate policy and perform necessary actions
exit/ cancel performed actions

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain services.

Internal overload

entry/ evaluate policy and perform necessary actions
exit/ cancel performed actions

A necessary action can be
suspending the load
notifictions from the
application by invoking
suspendNotification or
enabling load control
mechanisms on the
application by invoking
enableLoadControl.

Internal and Application Overload

entry/ evaluate policy and perform necessary actions
exit/ cancel performed actions

ALL
STATES

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"
"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

regis terLoadController

unregisterLoadController

igure : State Transition Diagram for IpLoadManagerInternal

9.3.4.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the framework /
SCFs is overloaded.

9.3.4.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

9.3.4.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)71Release 4

9.3.4.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

9.3.5 State Transition Diagrams for IpOAM

Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure : State Transition Diagram for IpOAM

9.3.5.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)72Release 4

9.3.6 State Transition Diagrams for IpFaultManager

Framework
Active

Framework Faulty

entry/ ^fwFaultReportInd to all applicati ons with callback
exit / ^fwFaultRecoveryInd to all applica tions with callback

Framework Activity Test

entry/ test activi ty of framework
exit / ^IpAppFaultManager.activ ityTestRes

Service Activity Test

entry/ test activity of service
exit/ ^IpAppFaultManager.activityTestRes

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

srvUnavai lableInd / test the service, inform service that application is not using it

'service fault' ^svcUnavailableInd to al l applications using the service

IpAccess.endAccess / remove
application from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /
add application to fault management

fault detected in fw

no fault detected

IpAccess.endAccess / Abort
pending test request

fault resolved

fault detected in fw

activityTestReq[null
service list]

activityTestReq[scfID]

IpAccess.endAccess

ervice fault ^srvUnavailableInd to all applica tions using the service

no fault detected

IpAccess.endAccess /
Abort pending test request

Figure : State Transition Diagram for IpFaultManager

9.3.6.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

9.3.6.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified via a fwFaultRecoveryInd message.

9.3.6.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
management callbacks are notified through a fwFaultReportInd message.

9.3.6.4 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcUnavailableInd message.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)73Release 4

9.4 Event Notification State Transition Diagrams

9.4.1 State Transition Diagrams for IpEventNotification

Idle

IpAccess.obtainInterface

Notificat ion
Active

createNotification

destroyNotification

destroyNotification[no more notifications installed]

IpAccess.endAccess

IpAccess.obtainInterfaceWithCallback
createNotification

IpAccess.endAccess

Figure : State Transition Diagram for IpEventNotification

9.4.1.1 Idle State

9.4.1.2 Notification Active State

10 Framework-to-Service Sequence Diagrams

10.1 Service Registration Sequence Diagrams

10.1.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is a two step process:

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)74Release 4

SCS :
IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

1: Registration: first step - register service

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal is to make an association between the new SCF version, as characterized by a list of
properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

· in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

· in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a triplet (ServicePropertyName,
ServicePropertyValueList, ServicePropertyMode).

· ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the
SCF data definition).

· ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string
that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

· ServicePropertyMode is the value of the property modes (e.g. "mandatory", meaning that all properties of this SCF
must be given values at service registration time).

The following output parameter results from service registration:

· out serviceID

This is a string, automatically generated by the Framework of this network, based on the following:

· a string that contains a unique number, generated by the Framework;

· a string that identifies the SCF name (e.g. "P_MPCC");

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)75Release 4

· a concatenation of strings that identify the SCF specialization, if any.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In CORBA an "entry point", called service factory, is used. The role of the service factory is to control the life cycle of
a CORBA interface, or set of interfaces, and provide clients with the references that are necessary to invoke the
methods offered by these interfaces. Some times service factories instantiate new interfaces for different clients,
sometime they give the same interface reference to more than one client. But the starting point for a client to use an SCF
is to obtain an interface reference to a factory of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a factory for it that will allow client to use it. Then it will inform the Framework of the value of
the interface associated to the new SCF. After the receipt of this information, the Framework makes the new SCF
(identified by the pair [serviceID, serviceFactoryRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

· in serviceID

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the serviceID, to know which SCF it is.

· in serviceFactoryRef

This is the interface reference at which the service factory of the new SCF is available. Note that the Framework will
have to invoke the method getServiceManager() in this interface, any time between now and when it accepts the first
application requests for discovery, so that it can get the service manager interface necessary for applications as an entry
point to any SCF.

10.2 Service Factory Sequence Diagrams

10.2.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding sections.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)76Release 4

 : IpAppCallControlManagerAppLogic : IpInitial : IpAccess : IpCallControlManager : IpAppAccess GenericC allControlServ ice :
IpSv cFactory

1: selectServ ice()

3: signServ iceAgreement()
4: getServ iceManager() 5: new()

6: new()

7: setCallbac k()

e assum e that t he appl ic ation is al ready authenti cat ed and d isc ov ered t he s erv i ce it wants to use

2: s ignServ iceAgreement ()

1: The application selects the service, using a serviceID for the generic call control service. The serviceID could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The framework signs the service agreement.

3: The client application signs the service agreement. As a result a service manager interface reference (in this case of
type IpCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the serviceID to return a service manager interface reference. The service manager is the initial
point of contact to the service.

5: The service factory creates a new manager interface instance (a call control manager) for the specified application. It
should be noted that this is an implementation detail. The service implementation may use other mechanism to get a
service manager interface instance.

6: The application creates a new IpAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)77Release 4

11 Framework-to-Service Class Diagrams

IpFwServiceRegistration

registerService()
announceServiceAvailability()
unregisterService()
describeService()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

IpSvcFactory

getServiceManager()

from Service Interfaces)

<<Interface>>

Figure: Service Factory Package Overview

12 Framework-to-Service Interface Classes

12.1 Service Registration Interface Classes

12.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)78Release 4

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList,
serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability (serviceID : in TpServiceID, serviceFactoryRef : in IpServiceRef) : TpResult

unregisterService (serviceID : in TpServiceID) : TpResult

describeService (serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

Method
registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications . A service-ID is returned to the service supplier when a service is registered in
the Framework. The service-ID is the handle with which the service supplier can identify the registered service when
needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in
further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string
representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is
raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a
recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being
registered. This description typically covers behavioral, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. An
example of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type of any of the property values is not the same as the declared type (declared in the service type), then a
P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a
readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name
are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.

serviceID : out TpServiceIDRef

This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier
can identify the registered service when attempting to access it via other operations such as unregisterService(), etc.
Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)79Release 4

Raises

TpGeneralException,TpFWException

Method
announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method is invoked after the service is authenticated and its service factory is instantiated
at a particular interface. This method informs the framework of the availability of "service factory" of the previously
registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework
makes the corresponding service discoverable.

There exists a "service manager"instance per service instance. Each service implements the IpSvcFactory interface. The
IpSvcFactory interface supports a method called the getServiceManager(application: in TpClientAppID,
serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using
signServiceAgreement()), the framework calls the getServiceManager() for this service, gets a serviceManager and
returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but
there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

serviceFactoryRef : in IpServiceRef

The interface reference at which the service factory of the previously registered service is available.

Raises

TpGeneralException,TpFWException

Method
unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework.
The service is identified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. After the unregisterService(), the service can no longer be discovered by the enterprise
client application.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for service
identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service
offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)80Release 4

Raises

TpGeneralException,TpFWException

Method
describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises,
the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID"
parameter which was originally returned by the registerService() operation.

This operation is intended to be used between a certain framework and the SCS that registered the SCF, since it is only
between them that the serviceID is valid. The SCS may register various versions of the same SCF, each with a different
description (more or less restrictive, for example), and each getting a different serviceID assigned. Getting the
description of these SCFs from the framework where they have been registered helps the SCS internal maintenance.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within
the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

serviceDescription : out TpServiceDescriptionRef

This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the
service , and the properties that describe this service.

Raises

TpGeneralException,TpFWException

12.2 Service Factory Interface Classes

12.2.1 Interface Class IpSvcFactory

Inherits from: IpInterface.

The IpSvcFactory interface allows the framework to get access to a service manager interface of a service. It is used
during the signServiceAgreement, in order to return a service manager interface reference to the application. Each
service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control
service uses the IpCallControlManager interface.

<<Interface>>

IpSvcFactory

getServiceManager (application : in TpDomainID, serviceProperties : in TpServicePropertyList,
serviceManager : out IpServiceRefRef) : TpResult

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)81Release 4

Method
getServiceManager()

This method returns a service manager interface reference for the specified application. Usually, but not necessarily,
this involves the instantiation of a new service manager interface.

Parameters

application : in TpDomainID

Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertyList

serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.

Raises

TpGeneralException,TpFWException

13 Framework-to-Service State Transition Diagrams

13.1 Service Registration State Transition Diagrams

13.1.1 State Transition Diagrams for IpFwServiceRegistration

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)82Release 4

Registering
SCF

registerService

SCF
registered

announceServiceAvailability

describeService

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

13.1.1.1 Registering SCF State

This is the state entered when a Service Capability Server (SCS) starts the registration of its SCF in the Framework, by
informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the
Framework associates a service ID to this SCF, that will be used to identify it by both sides. When receiving this ID, the
SCS instantiates a manager interface for this SCF, which will be the entry point for applications that want to use it.

13.1.1.2 SCF registered State

This is the state entered when, the service manager interface having been instantiated, the SCS informs the Framework
of the availability of the SCF, and makes it actually available by providing the Framework with the manager interfaces
to be used by applications. Anytime the SCF availability may be withdrawn by un-registering it.

13.2 Service Factory State Transition Diagrams
There are no State Transition Diagrams defined for Service Factory

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)83Release 4

14 Service Properties

14.1 Service Property Types
The service type defines which properties the supplier of an SCF supllier must provide when he registers an SCF.

At Service Registration the properties of a type must be interpreted as the set of values that can be supported by the
service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a proprety value
of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values must be used for the
property values in stead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a
sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection
procedure1, the Service Properties must thus be interpreted as the requested property values.

All property values are represented by an array of strings. The following table shows all supported property types.

Property type name Description Example value
(array of strings)

Interpretation of example
value

BOOLEAN_SET set of booleans {"FALSE"} The set of booleans consisting
of the boolean "false".

INTEGER_SET set of integers {"1", "2", "5", "7"} The set of integers consisting of
the integers 1, 2, 5 and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of
the string “Sophia" and the
string "Rijen"

ADDRESSRANGE_SET set of address ranges {"123??*",
"*.ericsson.se"}

The set of address ranges
consisting of ranges 123??* and
*.ericsson.se.

INTEGER_INTERVAL interval of integers {"5", "100"} The integers that are between
or equal to 5 and 100.

STRING_INTERVAL interval of strings {"Rijen", "Sophia"} The strings that are between or
equal to the strings "Rijen" and
"Sophia", in lexicographical
order.

INTEGER_INTEGER_MAP map from integers to
integers

{"1", "10", "2", "20",
"3", "30"}

The map that maps 1 to 10, 2 to
20 and 3 to 30.

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the left
bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported
by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval is the
largest value supported by the type.

14.2 General Service Properties
Each service instance has the following general properties:

• Service Name

1 This is achieved through the getServiceManager() operation in the Service Factory interface.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)84Release 4

• Service Version

• Service Instance ID

• Service Instance Description

• Product Name

• Product Version

• Supported Interfaces

14.2.1 Service Name

This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency”
or “UserStatus”.

14.2.2 Service Version

This property contains the version of the APIs, to which the service is compliant, e.g. “2.1".

14.2.3 Service Instance ID

This property uniquely identifies a specific instance of the service. The Framework generates this property.

14.2.4 Service Instance Description

This property contains a textual description of the service.

14.2.5 Product Name

This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

14.2.6 Product Version

This property contains the version of the product that provides the service, e.g. “3.1.11”.

14.2.7 Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. “IpUserLocation”,
“IpUserStatus”.

14.2.8 Operation Set

Property Type Description
P_OPERATION_SET STRING_SET Specifies set of the operations the SCS

supports.
The notation to be used is :
{“Interface1.operation1”,”Interface1.operation2
”, “Interface2.operation1”}, e.g.:
{“IpCall.createCall”,”IpCall.routeReq”}.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)85Release 4

15 Data Definitions
This section provides the framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:

− Data type, that shows the name of the data type.

− Description, that describes the data type.

− Tabular specification, that specifies the data types and values of the data type.

− Example, if relevant, shown to illustrate the data type.

15.1 Common Framework Data Definitions

15.1.1 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the framework. This data type is
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

15.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

15.1.3 TpDomainID

Defines the Tagged Choice of Data Elements that specify either the framework or the type of entity
attempting to access the framework.

Tag Element Type

TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name

P_FW TpFwID FwID

P_CLIENT_APPLICATION TpClientAppID ClientAppID

P_ENT_OP TpEntOpID EntOpID

P_REGISTERED_SERVICE TpServiceID ServiceID

P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

15.1.4 TpDomainIDType

Defines either the framework or the type of entity attempting to access the framework

Name Value Description

P_FW 0 The framework

P_CLIENT_APPLICATION 1 A client application

P_ENT_OP 2 An enterprise operator

P_REGISTERED_SERVICE 3 A registered service

P_SERVICE_SUPPLIER 4 A service supplier

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)86Release 4

15.1.5 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator. In
conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature.

15.1.6 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

15.1.7 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

15.1.8 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name,value} pair:

Sequence Element

Name

Sequence Element

Type

PropertyName TpPropertyName
PropertyValue TpPropertyValue

15.1.9 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

15.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

15.1.11 TpFwID

This data type is identical to TpString and identifies the Framework to a client application (or Service Capability
Feature)

15.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element

Name

Sequence Element

Type

Documentation

ServiceID TpServiceID

ServicePropertyList TpServicePropertyList

15.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)87Release 4

15.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which
consists of:

Sequence Element

Name

Sequence Element

Type

Documentation

ServiceTypeName TpServiceTypeName

ServicePropertyList TpServicePropertyList

15.1.15 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber,
TpServiceTypeName, and a number of relevant TpServiceSpecString, which are concatenated using a forward separator
(/) as the separation character.

15.1.16 TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

15.1.17 TpServiceIDRef

Defines a Reference to type TpServiceId.

15.1.18 TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_".The following values are defined.

Character String Value Description

NULL An empty (NULL) string indicates no SCF specialization

P_CALL The Call specialization of the of the User Interaction SCF

15.1.19 TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number that is
used to build the service ID (refer to TpServiceID).

15.1.20 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. boolean, integer. It
is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property’s name and mode, but also defines the list of values assigned to it.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)88Release 4

Sequence Element

Name

Sequence Element

Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyMode TpServicePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

15.1.21 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

15.1.22 TpServicePropertyMode

This type defines SCF property modes.

Name Value Documentation

NORMAL 0 The value of the corresponding SCF property type may optionally be
provided

MANDATORY 1 The value of the corresponding SCF property type must be provided at
service registration time

READONLY 2 The value of the corresponding SCF property type is optional, but once
given a value it may not be modified

MANDATORY_READONLY 3 The value of the corresponding SCF property type must be provided
and subsequently it may not be modified.

15.1.23 TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property name. The valid SCF property names are
listed in the SCF data definition.

15.1.24 TpServicePropertyName

This data type is identical to TpString. It defines a valid SCF property name.

15.1.25 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

15.1.26 TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

15.1.27 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

15.1.28 TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)89Release 4

Name Type

ServicePropertyName TpServicePropertyName

ServicePropertyValueLis
t

TpServicePropertyValueList

ServicePropertyMode TpServicePropertyMode

15.1.29 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

15.1.30 TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the framework. This data type is identical
to TpString.

15.1.31 TpServiceTypeDescription

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element

Name

Sequence Element

Type

Documentation

ServiceTypeProperty
List

TpServiceTypePropertyList a sequence of property name and property mode
tuples associated with the SCF type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated SCF
type

EnabledOrDisabled TpBoolean an indication whether the SCF type is enabled (true)
or disabled (false)

15.1.32 TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_".The following values are defined.

Character String Value Description

NULL An empty (NULL) string indicates no SCF name

P_CALL_CONTROL The name of the Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_STATUS The name of the User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

15.1.33 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)90Release 4

15.2 Event Notification Data Definitions

15.2.1 TpFwEventName

Defines the name of event being notified..

Name Value Description

P_EVENT_FW_NAME_UNDEFINED 0 Undefined

P_EVENT_FW_NEW_SERVICE_AVAILABLE 1 Notification of a new SCS available

15.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be
generated.

Tag Element Type

TpFwEventName

Tag Element Value Choice Element Type Choice Element Name

P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_NEW_SERVICE_AVAILABLE TpServiceTypeNameList ServiceTypeNameList

15.2.3 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an
event notification.

Tag Element Type

TpFwEventName

Tag Element Value Choice Element Type Choice Element Name

P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

15.3 Trust and Security Management Data Definitions

15.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description

P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and
IpAppAccess

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)91Release 4

15.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and client's with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string “SP_”. The following values are defined:

String Value Description

P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication
Interfaces: IpAPILevelAuthentication and

IpAppAPILevelAuthentication

P_AUTHENTICATION Authenticate using the implementation specific
authentication mechanism, e.g. CORBA Security.

15.3.3 TpAuthCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the authentication
capabilities that could be supported by the OSA. Other Network operator specific capabilities may also be used, but
should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation
character. The following values are defined.

String Value Description

NULL An empty (NULL) string indicates no client capabilities.
P_DES_56 A simple transfer of secret information that is shared

between the client application and the framework with
protection against interception on the link provided by the
DES algorithm with a 56bit shared secret key

P_DES_128 A simple transfer of secret information that is shared
between the client entity and the framework with protection
against interception on the link provided by the DES
algorithm with a 128bit shared secret key

P_RSA_512 A public-key cryptography system providing authentication
without prior exchange of secrets using 512 bit keys

P_RSA_1024 A public-key cryptography system providing authentication
without prior exchange of secrets using 1024bit keys

15.3.4 TpAuthCapabilityList

This data type is identical to a TpString. It is a string of multiple TpAuthCapability concatenated using a comma (,)as
the separation character.

15.3.5 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the framework should perform when an
application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

15.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain

Sequence Element Name Sequence Element Type Description

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)92Release 4

DomainID TpDomainID Identifies the domain for
authentication. This identifier is
assigned to the domain during the

initial contractual agreements, and is
valid during the lifetime of the

contract.

AuthInterface IpInterfaceRef Identifies the authentication interface
of the specific entity. This data

element has the same lifetime as the
domain authentication process, i.e. in
principle a new interface reference can
be provided each time a domain intents

to access another.

15.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the framework
SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be
preceded by the string "SP_".The following values are defined.

Character String Value Description

P_DISCOVERY The name for the Discovery interface.
P_EVENT_NOTIFICATION The name for the Event Notification interface.
P_OAM The name for the OA&M interface.
P_LOAD_MANAGER The name for the Load Manager interface.
P_FAULT_MANAGER The name for the Fault Manager interface.
P_HEARTBEAT_MANAGEMENT The name for the Heartbeat Management

interface.
P_REGISTRATION The name for the Service Registration interface.
P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription:

Enterprise Operator Account Management
interface.

P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription:
Enterprise Operator Account Information Query
interface.

P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service
Contract Management interface.

P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service
Contract Information Query interface.

P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client
Application Management interface.

P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client
Application Information Query interface.

P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service
Profile Management interface.

P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service
Profile Information Query interface.

15.3.8 TpServiceAccessControl

This is Sequence of Data Elements containing the access control policy information controlling access to the service
capability feature, and the trustLevel that the Network operator has assigned to the client application.

Sequence Element Name Sequence Element Type

Policy TpString

TrustLevel TpString

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel
must also have a value.

The trustLevel parameter indicates the trust level that the Network operator has assigned to the client application.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)93Release 4

15.3.9 TpSecurityContext

This data type is identical to a TpString and contains a group of security relevant attributes.

15.3.10 TpSecurityDomain

This data type is identical to a TpString and contains the security domain in which the client application is operating.

15.3.11 TpSecurityGroup

This data type is identical to a TpString and contains a definition of the access rights associated with all clients that
belong to that group.

15.3.12 TpServiceAccessType

This data type is identical to a TpString and contains a definition of the specific security model in use.

15.3.13 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the
framework, which can be signed as part of a service agreement. This will contain Network operator specific information
relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the
service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting
the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically
expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

15.3.14 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Name Sequence Element Type

DigitalSignature TpString

ServiceMgrInterface IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

15.3.15 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that
must be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

String Value Description

NULL An empty (NULL) string indicates no signing algorithm is
required

P_MD5_RSA_512 MD5 takes an input message of arbitrary length and
produces as output a 128-bit message digest of the input.

This is then encrypted with the private key under the RSA
public-key cryptography system using a 512 bit key.

P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and
produces as output a 128-bit message digest of the input.

This is then encrypted with the private key under the RSA
public- key cryptography system using a 1024 bit key

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)94Release 4

15.4 Integrity Management Data Definitions

15.4.1 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available”
or “Unavailable”.

15.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Name Sequence Element Type

Period TpTimeInterval

FaultStatsSet TpFaultStatsSet

15.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Name Sequence Element Type Description

Fault TpInterfaceFault

Occurrences TpInt32 The number of separate instances of
this fault

MaxDuration TpInt32 The number of seconds duration of the
longest fault

TotalDuration TpInt32 The cumulative duration (all
occurrences)

NumberOfClientsAffected TpInt32 The number of clients informed of the
fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and
TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the
period. NumberOfClientsAffected is the number of clients informed of the fault by the framework.

15.4.4 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats

15.4.5 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

15.4.6 TpInterfaceFault

Defines the cause of the interface fault detected.

Name Value Description

INTERFACE_FAULT_UNDEFINED 0 Undefined

INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware
has been detected

INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or
hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-
gateway link has been detected

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)95Release 4

15.4.7 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name Value Description

SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has
failed

SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded

SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from
fraud or malicious attack)

15.4.8 TpFWUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description

FW_UNAVAILABLE_UNDEFINED 0 Undefined

FW_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has
failed

FW_UNAVAILABLE_OVERLOADED 3 The framework is fully overloaded

FW_UNAVAILABLE_CLOSED 4 The framework has closed itself (e.g. to protect
from fraud or malicious attack)

FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link
has failed

15.4.9 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description

LOAD_LEVEL_NORMAL 0 Normal load

LOAD_LEVEL_OVERLOAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

15.4.10 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is
application and SCF dependent, so is their relationship with load level.

Sequence Element Name Sequence Element Type

LoadThreshold TpFloat

15.4.11 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element Name Sequence Element Type

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)96Release 4

LoadLevel TpLoadLevel

LoadThreshold TpLoadThreshold

15.4.12 TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

Sequence Element Name Sequence Element Type

StartTime TpDateAndTime

StopTime TpDateAndTime

15.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name Sequence Element Type

LoadPolicy TpString

15.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e.
framework, service or application) at a specific date and time.

Sequence Element Name Sequence Element Type

LoadStatisticEntityID TpLoadStatisticEntityID

TimeStamp TpDateAndTime

LoadStatisticInfo TpLoadStatisticInfo

15.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

15.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information

Sequence Element Name Sequence Element Type

LoadValue TpFloat

LoadLevel TpLoadLevel

Note: LoadValue is expressed as a percentage.

15.4.17 TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or
framework) providing load statistics.

Tag Element Type

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)97Release 4

TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name

P_LOAD_STATISTICS_FW_TYPE TpFwID FrameworkID

P_LOAD_STATISTICS_SVC_TYPE TpServiceID ServiceID

P_LOAD_STATISTICS_APP_TYPE TpClientAppID ClientAppID

15.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or framework) supplying load statistics.

Name Value Description

P_LOAD_STATISTICS_FW_TYPE 0 Framework-type load statistics

P_LOAD_STATISTICS_SVC_TYPE 1 Service-type load statistics

P_LOAD_STATISTICS_APP_TYPE 2 Application-type load statistics

15.4.19 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or
invalid).

Tag Element Type

TpLoadStatisticInfoType

Tag Element Value Choice Element Type Choice Element Name

P_LOAD_STATISTICS_VALID TpLoadStatisticData LoadStatisticData

P_LOAD_STATISTICS_INVALID TpLoadStatisticError LoadStatisticError

15.4.20 TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description

P_LOAD_STATISTICS_VALID 0 Valid load statistics

P_LOAD_STATISTICS_INVALID 1 Invalid load statistics

15.4.21 TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load
statistics information.

Name Value Description

P_LOAD_INFO_ERROR_UNDEFINED 0 Undefined error

P_LOAD_INFO_UNAVAILABLE 1 Load statistics unavailable

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)98Release 4

15.5 Service Subscription Data Definitions

15.5.1 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

15.5.2 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

15.5.3 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name,value} pair:

Sequence Element

Name

Sequence Element

Type

PropertyName TpPropertyName

PropertyValue TpPropertyValue

15.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

15.5.5 TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

15.5.6 TpEntOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data
type, consisting of a unique “enterprise operator ID” and a list of “enterprise operator properties”, as follows:

Sequence Element

Name

Sequence Element

Type

EntOpID TpEntOpID

EntOpProperties TpEntOpProperties

15.5.7 TpServiceContractID

This data type is identical to TpString. It uniquely identifies the contract, between an enterprise operator and the
framework, for the use of a Parlay service by the enterprise.

15.5.8 TpPersonName

This data type is identical to TpString. It is the name of a generic “person”.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)99Release 4

15.5.9 TpPostalAddress

This data type is identical to TpString. It is the mailing address of a generic “person”.

15.5.10 TpTelephoneNumber

This data type is identical to TpString. It is the telephone number of a generic “person”.

15.5.11 TpEmail

This data type is identical to TpString. It is the email address of a generic “person”.

15.5.12 TpHomePage

This data type is identical to TpString. It is the web address of a generic “person”.

15.5.13 TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic “person”.

15.5.14 TpPerson

This data type is a Sequence of Data Elements which describes a generic “person”: e.g. a billing contact, a
service requestor. It is a structured data type which consists of:

Sequence Element

Name

Sequence Element

Type

PersonName TpPersonName

PostalAddress TpPostalAddress

TelephoneNumber TpTelephoneNumber

Email TpEmail

HomePage TpHomePage

PersonProperties TpPersonProperties

15.5.15 TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of a Parlay service by an
enterprise or an enterprise SAG.

15.5.16 TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of a Parlay service by an
enterprise or an enterprise SAG.

15.5.17 TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of a Parlay service: e.g. the enterprise
operator.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)100Release 4

15.5.18 TpBillingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s
use of a Parlay service.

15.5.19 TpServiceSubscriptionProperties

This is of type TpPropertyList. It specifies a subset of all available service properties and service property values that
apply to an enterprise’s use of a Parlay service.

15.5.20 TpServiceContract

This data type is a Sequence of Data Elements which describes a service contract. This contract should
conform to a previously negotiated high-level agreement (regarding Parlay services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element

Name

Sequence Element

Type

ServiceContractID TpServiceContractID

ServiceRequestor TpServiceRequestor

BillingContact TpBillingContact

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceID TpServiceID

ServiceSubscriptionProperties TpServiceSubscriptionProperties

15.5.21 TpPassword

This data type is identical to TpString. It is a password assigned to a client application for authentication purposes.

15.5.22 TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, for bilateral agreement
between the enterprise operator and the framework.

15.5.23 TpClientAppDescription

This data type is a Sequence of Data Elements which describes an enterprise client application. It is a
structured data type, consisting of a unique “client application ID”, password and a list of “client application properties:

Sequence Element

Name

Sequence Element

Type

ClientAppID TpClientAppID

Password TpPassword

ClientAppProperties TpClientAppProperties

15.5.24 TpSagID

This data type is identical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)101Release 4

15.5.25 TpSagIDList

This data type defines a Numbered List of Data Elements of type TpSagID.

15.5.26 TpSagDescription

This data type is identical to TpString. It describes a SAG: e.g. a list of identifiers of the constituent client
applications, the purpose of the “grouping”.

15.5.27 TpSag

This data type is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element

Name

Sequence Element

Type

SagID TpSagID

SagDescription TpSagDescription

15.5.28 TpServiceProfileID

This data type is identical to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses a Parlay service.

15.5.29 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfileID.

15.5.30 TpServiceProfile

This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is a restriction of
the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists
of:

Sequence Element

Name

Sequence Element

Type

ServiceProfileID TpServiceProfileID

ServiceContractID TpServiceContractID

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceSubscriptionProperties TpServiceSubscriptionProperties

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)102Release 4

Annex A (normative):
OMG IDL Description of Framework
The OMG IDL representation of this interface specification is contained in a text file (fw.idl contained in
archive2919803IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)103Release 4

Annex B (informative):
Differences between this draft and 3GPP 29.198 R99
The following is a list of the differences between this draft and 3GPP 29.198 R99, for those items which are common to
both documents. Any new interfaces/methods with respect to Release 99 are not listed.

B.1 IpService Registration
Interface Class IpServiceRegistration in R99 renamed IpFwServiceRegistration

B.2 IDL Namespace
IDL namespace has been extended. Instead of all interfaces being under org::open-service-access::fw, now all
interfaces except IpFwServiceRegistratin and IpSvcFactory are under fw::fw_client, and IpFwServiceRegistration and
IpSvcFactory are under fw::fw_service

B.3 IpAccess
accessCheck(serviceToken: in TpServiceToken,securityContext: in TpStringTpSecurityContext, securityDomain: in
TpStringTpSecurityDomain, group : in TpStringTpSecurityGroup, serviceAccessTypes: in
TpStringTpServiceAccessType, serviceAccessControl: out TpServiceAccessControlRef): TpResult

B.4 IpAPILevelAuthentication, IpAppAPILevelAuthentication
Interfaces IpAuthentication and IpAppAuthentication renamed as IpAPILevelAuthentication and
IpAppAPILevelAuthentication. New interface IpAuthentication added. IpAPILevelAuthentication inherits from
IpAuthentication.

selectEncryptionMethodselectAuthMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out
TpAuthCapabilityRef) : TpResult

B.5 New IpAuthentication
requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface : out
IpInterfaceRefRef) : TpResult added.

B.6 IpInitial
requestAccess (accessType : in TpAccessType, appAccessInterface : in IpInterfaceRef, fwAccessInterface : out
IpInterfaceRefRef) : TpResult deleted from interface.

B.7 IpAppLoadManager

disableLoadControl (serviceIDs : in TpServiceIDList) : TpResult

enableLoadControl (loadStatistics : in TpLoadStatisticList) : TpResult

loadLevelNotification(loadStatistics : in TpLoadStatisticList) : TpResult

B.8 Data Type Changes
TpServiceID

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)104Release 4

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
SCF interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber,
TpServiceNameString TpServiceTypeName, and a number of relevant TpServiceSpecString, which are concatenated
using a forward separator (/) as the separation character.

TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

TpServiceIDRef

Defines a Reference to type TpServiceId.

TpServiceNameString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_".The following values are defined for OSA release 99.

Character String Value Description

NULL An empty (NULL) string indicates no SCF name

P_CALL_CONTROL The name of the Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_STATUS The name of the User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_".The following values are defined for OSA release 99.

Character String Value Description

NULL An empty (NULL) string indicates no SCF specialization

P_CALL The Call specialization of the of the User Interaction SCF

TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number that is
used to build the service ID (refer to TpServiceID).

TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. boolean, integer. It
is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property’s name and mode, but also defines the list of values assigned to it.

Sequence Element

Name

Sequence Element

Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyMode TpServicePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)105Release 4

TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

TpServicePropertyMode

This type is left as a placeholder but is not used in release 99.This defines SCF property modes.

Name Value Documentation

NORMAL 0 The value of the corresponding SCF property type may optionally be
provided

MANDATORY 1 The value of the corresponding SCF property type must be provided at
service registration time

READONLY 2 The value of the corresponding SCF property type is optional, but once
given a value it may not be modified

MANDATORY_READONLY 3 The value of the corresponding SCF property type must be provided
and subsequently it may not be modified.

TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property name. The valid SCF property names are
listed in the SCF data definition.

TpServicePropertyName

This data type is identical to TpString. It defines a valid SFCF property name. Valid SCF property names are listed in
the SCF data definition.

TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property. The valid SCF property values are
given in the SCF data definition.

TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which
consists of:

Sequence Element

Name

Sequence Element

Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyValueLis
t

TpServicePropertyValueList

ServicePropertyMode TpServicePropertyMode

TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the framework. This data type is identical
to TpString.

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)106Release 4

TpServiceTypeDescription

This type is left as a placeholder but is not used in release 99.

This data type is a Sequence_of_Data_Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element

Name

Sequence Element

Type

Documentation

ServiceTypeProperty
List

TpServiceTypePropertyList a sequence of property name and property mode
tuples associated with the SCF type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated SCF
type

EnabledOrDisabled TpBoolean an indication whether the SCF type is enabled or
disabled

TpServiceTypeName

This data type is identical to TpString and describes a valid SCF type name.This data type is identical
to a TpString, and is defined as a string of characters that uniquely identifies the type of an SCF interface. Other
Network operator specific capabilities may also be used, but should be preceded by the string "SP_".The following
values are defined for OSA release 99.

Character String Value Description

NULL An empty (NULL) string indicates no SCF name

P_CALL_CONTROL The name of the Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_STATUS The name of the User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

TpSecurityContext

This data type is identical to a TpString and contains a group of security relevant attributes.

TpSecurityDomain

This data type is identical to a TpString and contains the security domain in which the client application is operating.

TpSecurityGroup

This data type is identical to a TpString and contains a definition of the access rights associated with all clients that
belong to that group.

TpServiceAccessType

This data type is identical to a TpString and contains a definition of the specific security model in use.

TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined :

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)107Release 4

String Value Description

P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and
IpAppAccess

TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and client's with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string “SP_”. The following values are defined :

String Value Description

P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication
Interfaces: IpAPILevelAuthentication and

IpAppAPILevelAuthentication

P_AUTHENTICATION Authenticate using the implementation specific
authentication mechanism, e.g. CORBA Security.

TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Name Sequence Element Type

Period TpTimeInterval

FaultStatsSetFaultRecords TpFaultStatsSet

3GPP

3GPP TS 29.198-3 V1.0.0 (2001-03)108Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for approval and placement under Change Control

3GPP TS 29.198-4 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface

Part 4: Call Control
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, GCC, MPCC, Call Control

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)3Release 4

Contents

Foreword ..5

1 Scope ..6

2 References ..6

3 Definitions, symbols and abbreviations ...7
3.1 Definitions ...7
3.2 Symbols ...7
3.3 Abbreviations...7

4 Call Control SCF..7

5 The Service Interface Specifications..7
5.1 Interface Specification Format...7
5.1.1 Interface Class ..8
5.1.2 Method descriptions ...8
5.1.3 Parameter descriptions ...8
5.1.4 State Model ..8
5.2 Base Interface...8
5.2.1 Interface Class IpInterface..8
5.3 Service Interfaces...8
5.3.1 Overview..8
5.4 Generic Service Interface...9

5.4.1 Interface Class IpService...9

6 Generic Call Control Service ...10
6.1 Sequence Diagrams ...10
6.1.1 Additional Callbacks ..10
6.1.2 Alarm Call ..12
6.1.3 Application Initiated Call ...13
6.1.4 Call Barring 1 ...15
6.1.5 Number Translation 1...17
6.1.6 Number Translation 1 (with callbacks) ..19
6.1.7 Number Translation 2...21
6.1.8 Number Translation 3...23
6.1.9 Number Translation 4...25
6.1.10 Prepaid ...27
6.1.11 Pre-Paid with Advice of Charge (AoC)..29
6.2 Class Diagrams ..32
6.3 Generic Call Control Service Interface Classes..34
6.3.1 Interface Class IpCallControlManager...35
6.3.2 Interface Class IpAppCallControlManager ..38
6.3.3 Interface Class IpCall ...41
6.3.4 Interface Class IpAppCall ..46
6.4 Generic Call Control Service State Transition Diagrams...50
6.4.1 State Transition Diagrams for IpCallControlManager ...50
6.4.1.1 Active State ..51
6.4.1.2 Notification terminated State..51
6.4.2 State Transition Diagrams for IpCall ...51
6.4.2.1 Network Released State..52
6.4.2.2 Finished State ...52
6.4.2.3 Application Released State...52
6.4.2.4 Active State ..53
6.4.2.5 1 Party in Call State..53
6.4.2.6 2 Parties in Call State ...53
6.5 Generic Call Control Service Properties ..53
6.6 Generic Call Control Data Definitions...55
6.6.1 Generic Call Control Event Notification Data Definitions...55

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)4Release 4

6.6.2 Generic Call Control Data Definitions ...58

7 MultiParty Call Control Service...72
7.1 Sequence Diagrams ...72
7.1.1 Application initiated call setup...72
7.1.2 Call Barring 2 ...73
7.1.3 Complex Card Service..75
7.2 Class Diagrams ..78
7.3 MultiParty Call Control Service Interface Classes ..80
7.3.1 Interface Class IpMultiPartyCallControlManager..80
7.3.2 Interface Class IpAppMultiPartyCallControlManager...84
7.3.3 Interface Class IpMultiPartyCall..86
7.3.4 Interface Class IpAppMultiPartyCall ...91
7.3.5 Interface Class IpCallLeg...95
7.3.6 Interface Class IpAppCallLeg ..101
7.4 MultiParty Call Control Service State Transition Diagrams..105
7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager ...105
7.4.1.1 Active State ..106
7.4.1.2 Notification terminated State..106
7.4.2 State Transition Diagrams for IpMultiPartyCall..106
7.4.2.1 Active State ..107
7.4.2.2 Network Released State..107
7.4.2.3 No Parties State ..108
7.4.2.4 Application Released State...108
7.4.2.5 Finished State ...108
7.4.2.6 2 .. n Parties in Call State ...108
7.4.2.7 1 Party in Call State..108
7.4.2.8 Routing to Destination(s) State ..108
7.4.3 State Transition Diagrams for IpCallLeg...108
7.4.3.1 Idle State...109
7.4.3.2 Routing State ..109
7.4.3.3 Connected State..109
7.4.3.4 Failed or Disconnected State ..109
7.4.3.5 Incoming State..110
7.4.3.6 Progress State ...110
7.4.3.7 Alerting State..110
7.4.3.8 Redirected State..110
7.4.3.9 Attached State ..110
7.4.3.10 Detached State ..110
7.5 Multi-Party Call Control Service Properties ..110
7.6 Multi-Party Call Control Data Definitions...111
7.6.1 Event Notification Data Definitions...111
7.6.2 Multi-Party Call Control Data Definitions ...111

Annex A (normative): OMG IDL Description of Call Control SCF ...122

Annex B (informative): Differences between this draft and 3GPP 29.198 R99..............................123
B.1 Interface IpCallControlManager ..123
B.2 Interface IpAppCallControlManager ...123
B.3 Interface IpCall ..123
B.4 Interface IpAppCall ...123

History ..125

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)5Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)6Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects of the
Call Control SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)7Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Call Control SCF
Two flavours of call control APIs have been included in Rel.4. These are the generic call control and the multi-party
call control. The generic call control is the same API as was already present in the previous specification for Rel.99 (TS
29.198 v3.2.0) and is in principle able to satisfy the requirements on Call Control APIs for Rel.4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay Call Control Working group with
collaboration from JAIN has been focussed on the Multi-party call control API. A number of improvements on call
control functionality have been made and are reflected in this API. For this it was necessary to break the inheritance that
previously existed between Generic and Multi-party call control.

The joint call control group has furthermore decided that the multi-party call control is to be considered as the future
base call control family and the technical work will not be continued on Generic Call control. Errors or technical flaws
will of course be corrected.

The following sections describe each aspect of the Call Control Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented.

• The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

• The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data definitions section show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification.

5 The Service Interface Specifications

5.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)8Release 4

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)9Release 4

5.4 Generic Service Interface

5.4.1 Interface Class IpService
Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)10Release 4

Raises

TpGeneralException

6 Generic Call Control Service

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is
used instead.

first insta nce :
(Logical View...

second instance :
(L ogical V iew::IpA ...

 : IpAppCallControlManager : IpAp pCal lCon trolMan ager : IpCallControlManager

: new()

2: enableCallNotificat ion()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)11Release 4

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotfication request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)12Release 4

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

 :
IpCallControlManager

 : IpAppCall : IpCall : IpUICall :
IpAppUIManager

 :
IpAppUICall

 : (Logical
View::IpA...

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInf oReq()

6: 'f orward ev ent'

7: createUICall()

8: new()

10: sendInf oRes()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)13Release 4

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)14Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : (Logical
View::IpA...

5: routeRes()

1: new()

2: createCall()
3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)15Release 4

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is accepted and the call is routed to the original called party.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)16Release 4

 : (Logical
iew::Ip...

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :
IpUIManager

 :
IpCallControlManager

 :
IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)17Release 4

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)18Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpA...

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNot ify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)19Release 4

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)20Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpA...

10: routeRes()

4: callEventNot ify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)21Release 4

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotification's that do not have
a explicit IpAppCallControlManager reference specified in the enableCallNotification.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically released.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)22Release 4

 : (Logical
View::IpA...

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'
8: routeRes()

: routeReq()

10: release()

1: new()

3: callEventNotify()

4: 'forward event '

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)23Release 4

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)24Release 4

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpA...

8: routeRes()

6: 'translate number'

7: routeReq()

9: 'forward event'

10: 'translate number'

11: routeReq()

12: rou teRes()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)25Release 4

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. Before the call is routed to the translated number, the application requests for all call related
information to be delivered back to the application on completion of the call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)26Release 4

 : IpCallControlManager: IpAppCall : IpCall : IpAppCallControlManager: (Log ical
iew::IpA...

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10 : 'forward event'

1: new()

3: callEventNotify()

: 'fo rward event'

5: new()

2: enableCallNotification()

5 : deas signCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)27Release 4

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

6.1.10 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will received an announcement before his final timeslice.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)28Release 4

Prepaid :
(Logi cal View. ..

 : IpAppCallControlManager :
IpCallControlManager

: IpCal l : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: cal lEventNotify()4: "forward event"

5: new()

7: routeReq()

8: superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: sendInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()23: "forward event:

24: release()

16: createUICall()

20: release()

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager
interface.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)29Release 4

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

6.1.11 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)30Release 4

Prepaid :
(Logical Vie...

 : IpAppCallControlManager :
pCal lCon trolManager

 : IpCall : IpUICall : IpUIManager : IpAppUICal l : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCal lReq()

24: superviseCallReq()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()
23: "forward event"

5: new()

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()
26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)31Release 4

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again,
at the tariff switch time,the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)32Release 4

6.2 Class Diagrams
The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g., the IpCallControlManager interface uses the IpAppGenericCallControlManager , by
means of calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)33Release 4

IpAppCall

routeRes()
routeErr()
getCal lInfoRes()
getCal lInfoErr()
superviseCallRes()
superviseCallErr()
callFaultDetected()
getMoreDial ledDigitsR...
getMoreDial ledDigitsEr.. .
callEnded()

(from gccs)

<<Interface>>

IpCall
(from gccs)

<<Interface>>

IpCallControlM
anager

(from gccs)

<<Interface>>

<<uses>>

IpInterface
<<Interface>>

1 0..n

IpAppCallControlManager

callAborted()
callEventNotify()
callNotificationInterrupt...
callNotificationContinue...
callOverloadEncountere...
callOverloadCeased()

(from gccs)

<<Interface>>

<uses>>

1 0..n

Figure: Application Interfaces

This class diagram shows the interfaces of the generic call control service package.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)34Release 4

IpCallControlManager

createCall()
enableCallNotificatio...
disableCallNotificatio...
setCallLoadControl()
changeCallNotificati...
getCriteria()

(from gccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

<<Interface>>

IpCall

routeReq()
release()
deassignCall()
getCallInfoReq()
setCallChargePlan()
setAdviceOfCharge()
getMoreDialledDigitsR...
superviseCallReq()

(from gccs)

<<Interface>>

Figure: Service Interfaces

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)35Release 4

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

For the generic call control service, only a subset of the model is used; the API for generic call control does not give
explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service.
Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is
defined here as 'being routed' or connected.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network.
Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this
way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

disableCallNotification (assignmentID : in TpAssignmentID) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) :
TpResult

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)36Release 4

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) :
TpResult

getCriteria (eventCriteria : out TpCallEventCriteriaResultSetRef) : TpResult

Method
createCall()

This method is used to create a new call object.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

callReference : out TpCallIdentifierRef

Specifies the interface reference and sessionID of the call created.

Raises

TpGCCSException,TpGeneralException

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. If some application already
requested notifications with criteria that overlap the specified criteria, the request is refused with
P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and
the same CallNotificationType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. This means that the callback will only be used in case when
the first callback specified by the application is unable to handle the callEventNotify (e.g., due to overload or failure).

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)37Release 4

Raises

TpGCCSException,TpGeneralException

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID.

Raises

TpGCCSException,TpGeneralException

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the
callOverlloadEncountered and callOverloadCeased methods with the request.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)38Release 4

Raises

TpGeneralException,TpGCCSException

Method
changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpGeneralException,TpGCCSException

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Parameters

eventCriteria : out TpCallEventCriteriaResultSetRef

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported.

Raises

TpGeneralException,TpGCCSException

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)39Release 4

callAborted (callReference : in TpSessionID) : TpResult

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID, appCall : out IpAppCallRefRef) : TpResult

callNotificationInterrupted () : TpResult

callNotificationContinued () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Raises

TpGCCSException,TpGeneralException

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

appCall : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)40Release 4

Raises

TpGCCSException,TpGeneralException

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Raises

TpGCCSException,TpGeneralException

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Raises

TpGeneralException,TpGCCSException

Method
callOverloadCeased()

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)41Release 4

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

Raises

TpGeneralException,TpGCCSException

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLegSessionID : out
TpSessionIDRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : TpResult

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)42Release 4

Method
routeReq()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party, via a
new call leg (which is implicitly created).

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If
not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding
addresses from the route is used, otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

callLegSessionID : out TpSessionIDRef

Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID
will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

Raises

TpGCCSException,TpGeneralException

Method
release()

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)43Release 4

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpGCCSException,TpGeneralException

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of
reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the
originating party is still available the application can still initiate a follow-on call using routeReq.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)44Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpGCCSException,TpGeneralException

Method
setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpGCCSException,TpGeneralException

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)45Release 4

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpGeneralException, TpGCCSException

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpGCCSException,TpGeneralException

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)46Release 4

6.3.4 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : TpResult

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : TpResult

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : TpResult

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can
be used to correlate the response with the request.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)47Release 4

Raises

TpGCCSException,TpGeneralException

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

Raises

TpGCCSException,TpGeneralException

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Raises

TpGCCSException,TpGeneralException

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)48Release 4

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Raises

TpGCCSException,TpGeneralException

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)49Release 4

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

Raises

TpGCCSException,TpGeneralException

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)50Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGeneralException,TpGCCSException

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Raises

TpGeneralException,TpGCCSException

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)51Release 4

Act ive

Creat ion of
CallControlManager
by Service Factory

Notification terminated

"new"

enableCallNotification

disableCallNotification

"a call object has terminated abnormally" ÎpAppCallControlManager.callAborted

"arrival of call related event"[notification active for this call event] /
create a Call object ÎpAppCallControlManager.callEventNotify

disableCallNotification
"a call object has terminated abnormally"

ÎpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"
 ÎpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 IpAppCallControlManager.callNotificationInterrupted

createCall / create a Call object

Figure : Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the applicatoin to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

6.4.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state
transition diagram valid for 3GPP (UMTS) release 4.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)52Release 4

Network Released

Finished

Application
Released

release
deassignCall

timeout ^ callFaul tDetected(" timeout on rele ase")

In state Idle a tim er mechanism should
prevent that the object keeps o ccupying
resources. In case the timer exp ires, th e
object should be destroyed and
call FaultDetected should be re ported to
the application.

Active

2 Parties in
Call

1 Party in
Call

2 Parties in
Call

1 Party in
Call

"network event received for which was monitored[routeRes]

"call supervision event" ^superviseCallRes
getCallInfoReq

setAdviceOfCharge
IpAppCallControlManager.callEventNotify

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,
getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted o r invalid add ress" ^routeErr

"network event received for which was monitored[routeRes]

"call supervision event" ^superviseCallRes

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: call ing party abandoned" ^callEnded
"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

" fault detected"[fault cannot b e communicated with network event] ^callFaul tDetected

"call ends: call ing party disconnects"[no monitor for this event] ^callEnded

"requested information ready"
^getCallIn foRes, supervi seCallRes

[no reports requested with
getCallInfoReq AND
superviseCallReq]

" fault in retrieval of information " ^getCallInfoErr, su perviseCallErr

deassignCall

[no reports reque sted with getCallInfo Req AND
superviseCallReq]

"requested information ready" ^getCallInfoRes,
superviseCallRes

release

"fault in retrieval of information " ^getCallInfoErr, su perviseCallErr

Figure : Application view on the IpCall object

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used.In case the application has not requested additional call related information immediately a transition is made to
state Idle.

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)53Release 4

6.4.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can
request for charging related information by calling getCallInfoReq(). Furthermore the application can request
supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling
setAdviceOfCharge().

6.4.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq(). When the calling party abandons the call before the application
has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the
operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not
be established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

6.5 Generic Call Control Service Properties
The following table lists properties relevant for the Generic Call Control API.

Property Type Description / Interpretation

P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the
SCS. Static events are the events by which
applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by
the SCS. Dynamic events are the events the
application can request for during the context of a
call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in
TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164,

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)54Release 4

P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be
performed on call level and a reference to a Call
object can be used in the
IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call
level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be
performed at any stage during a call .

Value = FALSE: User Interaction can be
performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service.
Values are defined by data-type TpMediaType :
P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description

P_TRIGGERING_ADDRESSES ADDRESS_RANGE
_SET

Indicates for which numbers the notification
may be set. For terminating notifications it
applies to the terminating number, for
originating notifications it applies only to the
originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed
to set oritginating and/or terminating triggers
in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed
to monitor in interrupt and/or notify mode.
Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is
allowed to change or fill for legs in an
incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMB
ER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)55Release 4

setCallChargePlan indicator. Allowed values:

{P_CHARGE_PER_TIME,
P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGE
R_MAP

Indicates the mapping of chargeplans (we
assume they can be indicated with integers) to
a logical network chargeplan indicator. When
the chargeplan supports indicates
P_CHARGE_PLAN then only chargeplans in
this mapping are allowed.

6.6 Generic Call Control Data Definitions
This document provides the generic call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents
Hypertext links.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

6.6.1 Generic Call Control Event Notification Data Definitions

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description

P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event
This can be used for hot-line features. In case
this event is set in the TpCallEventCriteria,
only the originating address(es) may be
specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected
The network has collected the information
from the A-party, but not yet analysed the
information. The number can still be
incomplete. Applications might set
notifications for this event when part of the
number analysis needs to be done in the
application (see also the getMoreDialledDigits

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)56Release 4

method on the call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed
The dialled number is a valid and complete
number in the network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g., the
called party has a mobile telephone that is
currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description

P_ORIGINATING 1 Indicates that the notification is related to the
originating user in the call.

P_TERMINATING 2 Indicates that the notification is related to the
terminating user in the call.

TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name Value Description

P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call control
service and call processing is interrupted. The

application is notified of the event and call
processing resumes following an appropriate

API call or network event (such as a call
release)

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element Name Sequence Element Type Description

DestinationAddress TpAddressRange Defines the destination address or
address range for which the
notification is requested.

OriginatingAddress TpAddressRange Defines the origination address or
a address range for which the
notification is requested.

CallEventName TpCallEventName Name of the event(s)

CallNotificationType TpCallNotificationType Indicates whether it is related to
the originating or the terminating

user in the call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)57Release 4

MonitorMode TpCallMonitorMode Defines the mode that the call is
in following the notification.

Monitor mode
P_CALL_MONITOR_MODE_DO_NOT_MONITOR

is not a legal value here.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)58Release 4

TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type

DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

CallNotificationType TpCallNotificationType

MonitorMode TpCallMonitorMode

6.6.2 Generic Call Control Data Definitions

IpCall

Defines the address of an IpCall Interface.

IpCallRef

Defines a Reference to type IpCall.

IpAppCall

Defines the address of an IpAppCall Interface.

IpAppCallRef

Defines a Reference to type IpAppCall

IpAppCallRefRef

Defines a Reference to type IpAppCallRef.

TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

Sequence Element Name Sequence Element Type Sequence Element Description

CallReference IpCallRef This element specifies the interface
reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID
of the call.

IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

IpCallControlManager

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)59Release 4

Defines the address of an IpCallControlManager Interface.

IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

TpCallAlertingMechanism
This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values
of this data type are operator specific.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddre
ss

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)60Release 4

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description

P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or
pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g.
ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service
(e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service
(e.g. 64kb/s unrestricted

data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling
party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to
other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-
service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallBearerService
This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and 3G TS 22.002)

Name Value Description

P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at
this time

P_CALL_BEARER_SERVICE_SPEECH 1 Speech

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO 4 3.1 kHz audio

P_CALL_BEARER_SERVICE_
DIGITALUNRESTRICTEDTONES

5 Unrestricted digital information with
tomes/announcements

P_CALL_BEARER_SERVICE_VIDEO 6 Video

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description

ChargeOrderType TpCallChargeOrder Charge order

Currency TpString Currency unit according to ISO-
4217:1995

AdditionalInfo TpString Descriptive string which is sent
to the billing system without
prior evaluation. Could be
included in the ticket.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)61Release 4

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpCallChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name

P_CALL_CHARGE_PER_TIME TpChargePerTime ChargePerTime

P_CALL_CHARGE_NETWORK TpString NetworkCharge

TpCallChargeOrderCategory

Defines the type of charging to be applied

Name Value Description

P_CALL_CHARGE_PER_TIME 0 Charge per time

P_CALL_CHARGE_NETWORK 1 Operator specific charge plan specification, e.g.
charging table name / charging table entry

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)62Release 4

TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name Sequence Element Type

ErrorTime TpDateAndTime

ErrorType TpCallErrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific
information. This is also used to specify call leg errors and information errors.

Tag Element Type

TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_ERROR_UNDEFINED NULL Undefined

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE NULL Undefined

TpCallErrorType

Defines a specific call error.

Name Value Description

P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or
was refused, but no specific

reason can be given.

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an
invalid address was given

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid
state for the requested

operation

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)63Release 4

TpCallFault

Defines the cause of the call fault detected.

Name Value Description

P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has
been sent to the application, but the application

did not explicitly release or deassign the call
object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name Sequence Element Type

CallLegSessionID TpSessionID The leg that initiated the
release of the call.

If the call release was not
initiated by the leg, then this

value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the
call, or follow-on call, was

started.

CallConnectedToResourceTime TpDateAndTime The date and time when the
call was connected to the

resource.

This data element is only
valid when information on

user interaction is
reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the
call was connected to the
destination (i.e., when the
destination answered the
call). If the destination
did not answer, the time is
set to an empty string.

This data element is invalid
when information on user

interaction is reported with

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)64Release 4

an intermediate report.

CallEndTime TpDateAndTime The date and time when the
call or follow-on call or

user interaction was
terminated.

Cause TpCallReleaseCause The cause of the
termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description

P_CALL_INFO_UNDEFINED 00h Undefined

P_CALL_INFO_TIMES 01h Relevant call times

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause

P_CALL_INFO_INTERMEDIATE 04h Send only intermediate reports. When this is
not specified the information report will only

be sent when the call has ended. When
intermediate reports are requested a report will

be generated between follow-on calls, i.e.,
when a party leaves the call.

TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this
time

P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDLS

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless

TpCallPartyCategory
This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description

P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)65Release 4

P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call

P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element Name Sequence Element Type

Value TpInt32

Location TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

TpCallServiceCode
Defines the Sequence of Data Elements that specify the service code and type of service code received during
a call. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type

CallServiceCodeType TpCallServiceCodeType

ServiceCodeValue TpString

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description

P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The
corresponding string is operator specific.

P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the
call. The corresponding string is an ascii
representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received.
The corresponding string contains the facility
information element as defined in ITU Q.932

P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The
associated string contains the content of the
user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally
followed by some digits. The corresponding
string is an ascii representation of the
entered digits.

P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button,
optionally followed by some digits. The
corresponding string is an ascii
representation of the entered digits.

TpCallTeleService

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)66Release 4

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compatitibility Information, and 3G TS 22.003)

Name Valu
e

Description

P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony

P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via
gateways or interworking units

P_CALL_TELE_SERVICE_TELEX 7 Telex service

P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems

P_CALL_TELE_SERVICE_OSI 9 OSI application

P_CALL_TELE_SERVICE_FTAM 10 FTAM application

P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated
with an active 3.1 kHz audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic.

P_CALL_TELE_SERVICE_EMERGE
NCY_CALLS

1 Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT
_PP

2 Short message MT/PP

P_CALL_TELE_SERVICE_SMS_MO
_PP

2 Short message MO/PP

P_CALL_TELE_SERVICE_CELL_B
ROADCAST

2 Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SP
EECH_FAX_3

2 Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMA
TIC_FAX_3

2 Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_
GROUP_CALL

2 Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_
BROADCAST

2 Voice Broadcast Service

TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)67Release 4

P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry
or call party release. In case the called
party disconnects but a follow-
on call can still be made also

this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning tone has been applied. This is only
sent in combination with

P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_UI_FINISHED 0 The user interaction
has

finished.

TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by a logical 'OR' function.

Name Value Description

P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision
timer expires

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call
supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating party
when the call supervision timer expires. If call

release is requested, then the call will be
released following the tone after an

administered time period

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)68Release 4

TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element Name Sequence Element Type

MonitorMode TpCallMonitorMode

CallEventTime TpDateAndTime

CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types
of reports..

Tag Element Type

TpCallReportType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type

MonitorMode TpCallMonitorMode

CallReportType TpCallReportType

AdditionalReportCriteria TpCallAdditionalReportCriteria

TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type

TpCallReportType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)69Release 4

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY NULL Undefined

P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration

P_CALL_REPORT_DISCONNECT NULL Undefined

P_CALL_REPORT_REDIRECTED NULL Undefined

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE NULL Undefined

TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

TpCallReportType

Defines a specific call event report type.

Name Value Description

P_CALL_REPORT_UNDEFINED 0 Undefined

P_CALL_REPORT_PROGRESS 1 Call routing progress event:an
indication from the network

that progress has been made in
routing the call to the
requested call party.

P_CALL_REPORT_ALERTING 2 Call is alerting at the call
party

P_CALL_REPORT_ANSWER 3 Call answered at address

P_CALL_REPORT_BUSY 4 Called address refused call due
to busy

P_CALL_REPORT_NO_ANSWER 5 No answer at called address

P_CALL_REPORT_DISCONNECT 6 The call party has
disconnected.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address:
an indication from the network

that the call has been
redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received

P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-
routing is possible

TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type

TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval

TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)70Release 4

Name Value Description

P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval

(do not admit any calls)

1 -
60000

Duration in milliseconds

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description

P_CALL_LOAD_CONTROL_PER_INTERVAL 1 admit one call per interval

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type

ReleaseCause TpCallReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

Tag Element Type

TpCallTreatmentType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_TREATMENT_DEFAULT NULL Undefined

P_CALL_TREATMENT_RELEASE NULL Undefined

P_CALL_TREATMENT_SIAR TpUICallInfoID InformationToSend

TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description

P_CALL_TREATMENT_DEFAULT 0 Default treatment

P_CALL_TREATMENT_RELEASE 1 Release the call

P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the
call (Send Info & Release)

TpCallEventCriteriaResultSetRef

Defines a refernce to TpCallEventCriteriaResultSet.

TpCallEventCriteriaResultSet

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)71Release 4

Defines a set of TpCallEventCriteriaResult.

TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element Description

EventCriteria TpCallEventCriteria The event criteria that were specified by
the application.

AssignmentID TpInt32 The associated assignmentID. This can be
used to disable the notification.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)72Release 4

7 MultiParty Call Control Service

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is
created first. Then party A's call leg is created before triggers are set on it for answer and then routed to the call. On
answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being
played, party B's call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled
and party B is routed to the call.

PartyB :
IpCallLeg

 : IpMultiPartyCallControlManager :
IpAppMultiPartyCall

:
IpMultiPartyCall

PartyA :
IpCal lLeg

 : (Logical
View::Ip...

4: setCallback()

1: new()

2: createCall(in IpAppMultiParty CallRef)

3: new()

7: ev entReportReq()

 :
IpAppUICall

 : IpUICall

1: sendI nf oReq()

15: ev entReportReq()

18: abortActionReq()

5: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionProperties)
6: new()

13: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionProperties)

14: new()

AppPartyA :
(IpAppMultiPartyCallLeg)

AppPartyB :
IpAppMultiPartyCal lLeg)

9: ev entReportRes ()

7: ev ent ReportR es ()

8: routeReq(in TpSessionID)

16: routeReq(in TpSessionID)

12: sendInf oRes()

 :
IpUIManager

10: createUICall()

19: deassignCall()

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)73Release 4

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is rejected and the call is cleared.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)74Release 4

 : (Logical
View::IpA...

 :
IpAppMultiPartyCal lControlManager

:
IpAppMultiPartyCal l

 :
IpMultiPartyCall

 : IpUICall :
IpUIManager

 : IpMultiPartyCallControlManager :
IpAppUICall

8: sendInf oAndCollectReq()

9: s endInf oAndCollectRes()

11: sendInf oReq()

12: sendInf oRes()

5: release()

1: new()

3: reportNotif ication ()

4: 'f orward ev ent'

5: new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: c reateN otif ic ation ()

7: c reateU ICal l()

14: release()

6: getCallLegs()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)75Release 4

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN
code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set
on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the
application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which
causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to
which it is then routed.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)76Release 4

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : IpUICallPartyB' :
IpCallLeg

AppParty B' :
IpAppCallLeg

AppPartyB :
IpAppCallLeg

 :
IpUIManager

AppPartyA :
IpAppCallLeg

PartyB :
IpCallLeg

:
IpMultiPartyCallControlManager

PartyA :
IpCallLeg

 :
IpAppUICall

27: createAndRouteCall()

8: sendInf oAndCollectReq()

10: sendInf oAndCollectReq()

9: sendInf oAndC ollectRes()

11: sendInf oAndCollectRes()

13: ev entReportReq()

1: new()

3: reportNotif ication ()

4: 'f orward ev ent'

5: new()

23: release()

21: ev entReport Res(in TpSessionID, in TpCallEv entInf o)

24: sendInf oAndCollectReq()

25: sendInf oAndCollectRes()

12: setCallbackWithSessionID()

: createNotif icat ion ()

7: createUICall()

6: getCallLegsf ()

15: createCallLeg(in TpSessionID, in IpAppCallLegRef , in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInf oSet, out TpCallLegIdentif ierRef , in TpCallLegConnectionPropert ies)

17: routeReq(in TpSessionID)

16: ev entReportReq()

14: new()

20: attachMedia()

18: ev entReportRes(in TpSessionID, in TpCallEv entInf o)
19: "f orward ev ent"

22: "f orward ev ent"

30: ev entReportRes(in TpSessionID, in TpCallEv entInf o)
31: "f orward ev ent"

32: callEnded()
33: "f orward ev ent"

34: userInteractionFaultDetected()
35: "f orward ev ent"

36: deassignCall()

26: new ()

28: new ()

29: ev entReportRes()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)77Release 4

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message retuns the call legs currently in the call. In principle a reference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.

18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.

23: This message releases the called party.

24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.

27: The call is then forward routed to the new destination party.

28: As a result a new Callleg object is created.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)78Release 4

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.2 Class Diagrams
The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)79Release 4

IpAppMultiPartyCallControlManager

reportNotification()
callAborted()
callNotificationInterrupted()
callNotificationContinued()
callOverloadEncountered()
callOverloadCeased()

(from mpccs)

<<Interface>>
IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
cal lFaultDetected()
callEnded()
createAndRouteCallLegErr()

(f rom mpccs)

<<Interface>>

pM ulti PartyCall Cont rolM anager

createCall()
createNotification()
destroyNotification()
changeNotification()
getNotification()
setCallLoadControl()

(from mpccs)

<<Interface>>
IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddress()
continueProcessing()
getMoreDialledDigitsReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

1 ..n

<<uses>>

1 0..n

IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
getMoreDialledDigitsRes()
getMoreDialledDigitsErr()
superviseRes()
superviseErr()
connectionEnded()

(from mpccs)

<<Interface>>

1 0..n

<<uses>>

1 0..n

<<uses>>

pInte rface

(from open_service_access)

<<Interface>>

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)80Release 4

pMultiPartyCallControlM anager

rea teCall ()
rea teNoti fication()
estroyNotification()
ha ngeNo tification()
etNotifica tion()
etCallLoadControl()

(from mpccs)

<<Interface>>

IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddress()
continueProcessing()
getMoreDialledDigitsReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

(from open_service_access)

<<Interface>>

pMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

1 0..n 1 ..n

Figure: Service Interfaces

7.3 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallManager, IpAppMutliPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)81Release 4

: in TpCallNotificationRequest, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
TpResult

getNotification (notificationsRequested : out TpNotificationRequestedSetRef) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) :
TpResult

Method
createCall()

This method is used to create a new call object.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

callReference : out TpMultiPartyCallIdentifierRef

Specifies the interface reference and sessionID of the call created.

Raises

TpGCCSException,TpGeneralException

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. If some application already
requested notifications with criteria that overlap the specified criteria, the request is refused with
P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and
the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. This means that the callback will only be used in case when
the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure).

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)82Release 4

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Raises

TpGCCSException,TpGeneralException

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID.

Raises

TpGCCSException,TpGeneralException

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpGeneralException,TpGCCSException

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)83Release 4

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Parameters

notificationsRequested : out TpNotificationRequestedSetRef

Specifies the nofications that have been requested by the application.

Raises

TpGeneralException,TpGCCSException

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the
callOverlloadEncountered and callOverloadCeased methods with the request.

Raises

TpGeneralException,TpGCCSException

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)84Release 4

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReference : in TpCallLegIdentifier,
notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID, appCall : out
IpAppMultiPartyCallRefRef) : TpResult

callAborted (callReference : in TpSessionID) : TpResult

callNotificationInterrupted () : TpResult

callNotificationContinued () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the callLeg interface to which the notification relates.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

appCall : out IpAppMultiPartyCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)85Release 4

Raises

TpGCCSException,TpGeneralException

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Raises

TpGCCSException,TpGeneralException

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Raises

TpGCCSException,TpGeneralException

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)86Release 4

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Raises

TpGeneralException,TpGCCSException

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

Raises

TpGeneralException,TpGCCSException

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs
explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the
multi-party call control interface it may call the createAndRouteCallLeg() operation several times without
disconnecting already connected destination. Therefore, an application may implicitly create more then one
(destination) call leg. However, there can only be at most one call leg that owns the call ("call owner") at any time. In
contrast to the conference service it is not possible to move legs to another call object.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in
TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLeg : out
TpCallLegIdentifierRef, connectionProperties : in TpCallLegConnectionProperties) : TpResult

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)87Release 4

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef)
: TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
TpResult

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : TpResult

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.

Raises

TpGCCSException, TpGeneralException

Method
createCallLeg()

This method requests the creation of a new call leg object.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)88Release 4

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpGeneralException,TpGCCSException

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed.
Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through
the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)89Release 4

callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.

Raises

TpGCCSException,TpGeneralException

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpGCCSException,TpGeneralException

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpGCCSException,TpGeneralException

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)90Release 4

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of
reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the
originating party is still available the application can still initiate a follow-on call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpGCCSException,TpGeneralException

Method
setChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpGCCSException,TpGeneralException

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)91Release 4

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpGeneralException,TpGCCSException

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpGCCSException,TpGeneralException

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: IpInterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : TpResult

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)92Release 4

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : TpResult

Method
getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Raises

TpGCCSException,TpGeneralException

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
superviseRes()

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)93Release 4

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Raises

TpGCCSException,TpGeneralException

Method
superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)94Release 4

fault : in TpCallFault

Specifies the fault that has been detected.

Raises

TpGCCSException,TpGeneralException

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getInfoRes) related to the call. The application is expected to deassign the call object after
having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Raises

TpGeneralException,TpGCCSException

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an
unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this
operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)95Release 4

Raises

TpGCCSException,TpGeneralException

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID) : TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) :
TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

attachMedia (callLegSessionID : in TpSessionID) : TpResult

detachMedia (callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectedAddress : out TpAddressRef) :
TpResult

continueProcessing (callLegSessionID : in TpSessionID) : TpResult

getMoreDialledDigitsReq (callLegSessionID : in TpSessionID, length : in TpInt32) : TpResult

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in
TpDuration) : TpResult

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : TpResult

deassign (callLegSessionID : in TpSessionID) : TpResult

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the routingAddress.

The extra address information (like originalDestinationAddress) is optional and may be set to unavailable (i.e., the plan
is set to P_ADDRESS_PLAN_NOT_PRESENT). In this case information provided when routing to the origination will
be used if applicable. Otherwise network or gateway provided addresses will be used.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)96Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpGeneralException,TpGCCSException

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer", "release".

Raises

TpGeneralException,TpGCCSException

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpGeneralException,TpGCCSException

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)97Release 4

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are
deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpGeneralException,TpGCCSException

Method
getCall()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callReference : out TpMultiPartyCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.

Raises

TpGeneralException,TpGCCSException

Method
attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)98Release 4

Raises

TpGeneralException,TpGCCSException

Method
detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media channels to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpGeneralException,TpGCCSException

Method
getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

redirectedAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.

Raises

TpGeneralException,TpGCCSException

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed it's interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)99Release 4

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsReq()

This asynchronous method requests to collect further digits and return them to the application. Depending on the
administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few
digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event
data. The application should then use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpGeneralException, TpGCCSException

Method
setChargePlan()

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target
address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpGeneralException,TpGCCSException

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)100Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpGeneralException,TpGCCSException

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpGeneralException,TpGCCSException

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call leg when it is finished with the call, leg unless
callFaultDetected is received by the application.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)101Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpGeneralException,TpGCCSException

7.3.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : TpResult

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : TpResult

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

connectionEnded (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)102Release 4

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Raises

TpGeneralException,TpGCCSException

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGeneralException,TpGCCSException

Method
getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Raises

TpGeneralException,TpGCCSException

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)103Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGeneralException,TpGCCSException

Method
routeErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGCCSException,TpGeneralException

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Raises

TpGeneralException,TpGCCSException

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)104Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Raises

TpGeneralException,TpGCCSException

Method
superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Raises

TpGCCSException,TpGeneralException

Method
superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)105Release 4

Raises

TpGCCSException,TpGeneralException

Method
connectionEnded()

This method indicates to the application that the connection has terminated in the network. However, the application
may still receive some results (e.g., getInfoRes) related to the call leg. The application is expected to deassign the call
leg object after having received the connectionEnded.

Note that the event that caused the connection to end might also be received separately if the application was
monitoring for it.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the reason the connection is terminated.

Raises

TpGeneralException,TpGCCSException

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)106Release 4

Act ive

Creation of Manager
by Service Factory

Notification terminated

"new"

createNotification

destroyNotification

"a call object has terminated abnormally" ĉallAborted

"arrival of call related event"[notification active for this call event] /
create a Call object and create 1 or 2 CallLeg objects

r̂eportNotification

createCall / create a Call object

IpAccess.terminateServiceAgreement

destroyNotification "a call object has terminated abnormally"
^callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"
callNot ificationCont inued

"not ifications not poss ible"
ĉallNotificationInterrupted

Figure : Application view and the Multi-Party Call Control Manager

7.4.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object,
depending on the specific event create 1 or 2 call Leg objects and inform the application.

The application can also indicate it is no longer interested in certain call related events by calling destroyNotification()..

7.4.1.2 Notification terminated State

When the Manager is in the Notification terminated state, events requested will not be forwarded to the application.
There can be multiple reasons for this: for instance it might be that the application receives more notifications from the
network than defined in the Service Level Agreement. Another example is that the Service has detected it receives no
notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

7.4.2 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to
the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)107Release 4

Active

2 .. n Parties in Call

1 Party in
Call

Routing to
Destination(s)

createAndRouteCallLegReq[number active + requested parties <
max allowed number parties in call] / increase number of active +

requested parties

Network
Released

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

No Parties

Application
Released

Finished release

deassignCall

setCallChargePlan
superviseCallReq

etCallInfoReq
etAdviceOfCharge

2 .. n Parties in Call

1 Party in
Call

Routing to
Destination(s)

"disconnect from call party"
[monitor mode = interrupt && 2 parties in ca ll]

In states:
- No Parties,
- Finished
a timer me chanism should prevent that
the object keeps o ccupying resources. In
case the tim er expires, the object should
be destroye d and callFa ultDetected
should be reporte d to the application.

All States

getCallLegs

"answer from called party"

"requests failed"[no more outstanding
routing requests]

"routing unsuccessfull[not more
outstanding routing requests]

release

crea teAndRouteCallLegReq

deassignCa ll

getMoreDialledDigitsReq[no outstanding rou ting requests]

"requested information ready" ^getCallInfoRes,
superviseCallRes

deassignCall

[no reports requested with getCallInfoReq AND
superviseCallReq]

release

"fault in information retrieval" ^getCallInfoErr, superviseCallErr

"requested information ready" ^getCallInfoRes, superviseCallRes

"fault in information retrieval" ^getCallInfoErr, superviseCallErr

"answer from called party"

"party relea sed"

"party released"[no outstanding routing
requests]

"digits collected" ^getMoreDialledDigitsRes
"error in collecting digits" ^getMoreDialledDigitsErr

createCallLeg

"call ends : call ing party abandoned" ^callEnded

release

deassignCa ll

"call supervision event" ^superviseCallRes

"call ends: call ing party disconnects" ^callEnded

"call ends : called party disconnects"[1 or 2 parties in call AND monitor for this event] ^callEnded, routeRes(party disconnect)
"call ends : called party disconnects"[1 or 2 parties in call AND no monitor for this event] ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

IpMultiPartyCallControlManager.createCall

IpAppMultiPartyCallControlManager.reportNotification

IpAppMultiPartyCallControlManager.reportNotification(answer
from called party)

Figure : Application view on the MultiParty Call object

7.4.2.1 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details.

The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The
application can request for charging related information by calling getCallInfoReq(). Furthermore the application can
request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by
calling setAdviceOfCharge().

7.4.2.2 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). In case the application has not requested additional call related information a transition to
the Idle state is made immediately.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)108Release 4

7.4.2.3 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCallChargePlan(). The application can request for charging related information by calling
getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().

7.4.2.4 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

7.4.2.5 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.4.2.6 2 .. n Parties in Call State

In this state a successful connection between at least two parties is established.

In this state user interaction is possible, depending on the underlying network.

7.4.2.7 1 Party in Call State

In this state there is one party in the call.

In case the call originated from the network the application can now request for more digits in case the address is not
yet complete or the application can request for a connection to a called party be established by calling the operation
createAndRouteCallLegReq().

In case the called party was reached by issueing a routing request, the application can request a connection to an
additional party by calling the operation createAndRouteCallLegReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still setup a connection to another called party. Also in this case the called party can disconnect before
another party is reached. In this case depending on the actual configuration, either the call is ended or a transition is
made back to the Routing to Destinations substate or the No Parties state, depending on whether there are outstanding
routing requests.

In this state user interaction is possible.

7.4.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routing request.

7.4.3 State Transition Diagrams for IpCallLeg

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)109Release 4

Idle

Routing

Progress

Alerting

Redirected

Connected

Attached

Detached

Fai led or
Disconnected

All States

Attached

Detached

EventReportReq

getInfoReq

"call progress event"
^EventReportRes

"answer"
^EventReportRes

"midcall event" ^EventReportRes

"inval id address"
^EventReportErr

"disconnect" ^EventReportRes

"routing fai led, refused busy or
no answer" ^EventReportRes

"last report"

"call object is destructed"

releasege tCal l

detachMedia
a ttachMedia

[when routed with createAndRouteCallLeg]

[when routed with route()]

ncom ing

"answer from other party"

Progress

Alerting

Redirected

route

only send result
when m oni to r fo r
thi s even t was
requested

getLastRedirectedAddress

eventReportReq

getInfoReq

IpMultiPartyCall.createAndRouteCallLeg

IpMultiPartyCall.createCal lLeg

"incoming cal l event" ^IpAppMultiPartyCallControlManager.cal lEventNotify

Figure : Application view on the CallLeg object

7.4.3.1 Idle State

In this state a new CallLeg object has been created and the application has not yet issued a routing request.

7.4.3.2 Routing State

In this state a connection to the call party is being established.

7.4.3.3 Connected State

In this state a connection to the call party is established.

In case the request for the connection was made by createAndRouteCallLeg on the Call object, the call party is also
attached to the Call.

In case the request was made by route() the call party still needs to be attached to the Call.

7.4.3.4 Failed or Disconnected State

In this state no connection to the call party could be established or the call party has disconnected.

The reason that no connection could be established can be that an invalid address was specified, the network aborted
routing or the call party was busy.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)110Release 4

7.4.3.5 Incoming State

This state is only valid for an incoming Call Leg in case and there is no call established to another party.

7.4.3.6 Progress State

In this sub-state the network has indicated there is progress in routing the CallLeg.

7.4.3.7 Alerting State

In this sub-state the network has indicated there the terminal of the party is alerting.

7.4.3.8 Redirected State

In this sub-state the network has indicated the call party has redirected calls to another address.

7.4.3.9 Attached State

In this sub-state the media of the Call Leg object is attached to a Call object.

7.4.3.10 Detached State

In this sub-state the media of the Call Leg object is not attached to a Call object.

7.5 Multi-Party Call Control Service Properties
The following table lists properties relevant for the Multi-Party Call Control API. These properties are additional to the
properties of the generic Call Control, from which the Multi-Party Call Control is an extension.

Property Type Description

P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be
performed on leg level and a reference to a
CallLeg object can be used in the
IpUIManager.createUICall() operation.

Value = FALSE : No user interaction on leg level
is supported.

P_ROUTING_WITH_CALLLEG_OP
ERATIONS

BOOLEAN_SET Value = TRUE : the atomic operations for routing
a CallLeg are supported
{IpMultiPartyCall.createCallLeg(),
IpCallLeg.eventReportReq(), IpCallLeg.route(),
IpCallLeg.attachMedia()}

Value = FALSE : the convenience function has to
be used for routing a CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg must be explicitly
attached to a Call.

Value = FALSE : the CallLeg is automatically
attached to a Call, no IpCallLeg.attachMedia() is
needed when a party answers.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)111Release 4

7.6 Multi-Party Call Control Data Definitions
This document provides the generic call control data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

IpCallLeg

Defines the address of an IpCallLeg Interface.

IpCallLegRef

Defines a Reference to type IpCallLeg.

IpCallLegRefRef

Defines a Reference to type IpCallLegRef.

IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

IpMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

IpAppMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)112Release 4

IpAppMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

IpMultiPartyCallControlManager

Defines the address of an IpMultiPartyCall Interface.

IpMultiPartyCallControlManagerRef

Defines a Reference to type IpMultiPartyCall.

IpAppMultiPartyCallControlManager

Defines the address of an IpMultiPartyCall Interface.

IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpMultiPartyCall.

TpMultiPartyCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

Sequence Element Name Sequence Element Type Sequence Element Description

CallReference IpMultiPartyCallRef This element specifies the interface
reference for the Multi-party call object.

CallSessionID TpSessionID This element specifies the call session ID.

TpMultiPartyCallIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpMultiPartyCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier.

TpMultiPartyCallIdentifierSetRef

Defines a Reference to type TpMultiPartyCallIdentifierSet.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)113Release 4

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddre
ss

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinati
onAddress

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddres
s

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)114Release 4

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description

P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or
pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g.
ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service
(e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service
(e.g. 64kb/s unrestricted

data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling
party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to
other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-
service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address
specified by the originating
user when launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the
user from which the call is

diverting.

TpCallEventRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type

CallEventType TpCallEventType

AdditionalCallEventCriteria TpAdditionalCallEventCriteria

CallMonitorMode TpCallMonitorMode

TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

TpCallEventType

Defines a specific call event report type.

Name Value Description

P_CALL_EVENT_UNDEFINED 0 Undefined

P_CALL_EVENT_CALL_ATTEMPT 1 A Call attempt takes place
(e.g. Offhook event)

P_CALL_EVENT_ADDRESS_COLLECTED 2 The destination address has
been collected

P_CALL_EVENT_ADDRESS_ANALYSED 3 The destination address has
been analysed

P_CALL_EVENT_PROGRESS 4 Call routing progress event:an
indication from the network

that progress has been made in
routing the call to the

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)115Release 4

requested call party.

P_CALL_EVENT_ALERTING 5 Call is alerting at the call
party

P_CALL_EVENT_ANSWER 6 Call answered at address

P_CALL_EVENT_RELEASE 7 A Call has been released or the
call could not be routed

P_CALL_EVENT_REDIRECTED 8 Call redirected to new address:
an indication from the network

that the call has been
redirected to a new address.

P_CALL_EVENT_SERVICE_CODE 9 Mid-call service code received

The table below defines the disarming rules for dynamic events. In case such an event occurs the table shows which
events are disarmed (are not monitored anymore) and should be re-armed by eventReportReq() in case the application is
still interested in these events.

Event Occured Events Disarmed

P_CALL_EVENT_UNDEFINED Not Applicable

P_CALL_EVENT_CALL_ATTEMPT Not applicable, can only be armed as trigger

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS

P_CALL_EVENT_ALERTING P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS

P_CALL_EVENT_ALERTING

P_CALL_EVENT_RELEASE with criteria:

• P_USER_NOT_AVAILABLE

• P_BUSY

• P_NOT_REACHABLE

• P_ROUTING_FAILURE

• P_CALL_RESTRICTED

• P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS P_CALL_EVENT_ALERTING

P_CALL_EVENT_RELEASE with criteria:

• P_USER_NOT_AVAILABLE

• P_BUSY

• P_NOT_REACHABLE

• P_ROUTING_FAILURE

• P_CALL_RESTRICTED

• P_UNAVAILABLE_RESOURCES

• P_NO_ANSWER

• P_PREMATURE_DISCONNECT
P_CALL_EVENT_ANSWER

P_CALL_EVENT_RELEASE All pending events are disarmed

P_CALL_EVENT_REDIRECTED P_CALL_EVENT_REDIRECTED

P_CALL_EVENT_SERVICE_CODE P_CALL_EVENT_SERVICE_CODE

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)116Release 4

TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type

TpCallEventType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength

P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined

P_CALL_EVENT_PROGRESS NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_RELEASE TpCallReleaseCauseSet ReleaseCauseSet

P_CALL_EVENT_REDIRECTED NULL Undefined

P_CALL_EVENT_SERVICE_CODE TpCallServiceCode ServiceCode

TpCallReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)117Release 4

TpCallEventInfo

Defines the Sequence of Data Elements that specify the event report specific information.

Sequence Element Name Sequence Element Type

CallEventType TpCallEventType

AdditionalCallEventInfo TpAdditionalCallEventInfo

CallMonitorMode TpCallMonitorMode

CallEventTime TpDateAndTime

TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types
of events.

Tag Element Type

TpCallEventType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress

P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress

P_CALL_EVENT_PROGRESS NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_RELEASE TpCallReleaseCause ReleaseCause

P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress

P_CALL_EVENT_SERVICE_CODE TpCallServiceCode ServiceCode

TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification

Sequence Element Name Sequence Element Type Description

CallNotificationScope TpCallNoficationScope Defines the scope of the nofication request.

CallEventsRequested TpCallEventRequestSet Defines the events which are requested

TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element Name Sequence Element Type Description

DestinationAddress TpAddressRange Defines the destination
address or address range
for which the notification

is requested.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)118Release 4

OriginatingAddress TpAddressRange Defines the origination
address or address range
for which the notification

is requested.

NotificationCallType TpNotificationCallType Defines wheter the
notification is requested

for a originating or
terminating call.

TpNotificationCallType

Defines the type of call for which the notification is requested or reported.

Name Value Description

P_ORIGINATING 1 Indicates that the notification is related to the
originating user in the call.

P_TERMINATING 2 Indicates that the notification is related to the
terminating user in the call.

TpCallNotificationInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call
notification report.

Sequence Element Name Sequence Element Type Description

CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the
notification report.

CallAppInfo TpCallAppInfoSet Contains additonal call
info.

CallEventInfo TpCallEventInfo Contains the event which is
reported.

TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element Name Sequence Element Type Description

DestinationAddress TpAddress Contains the destination
address of the call.

OriginatingAddress TpAddress Contains the origination
address of the call

NotificationCallType TpNotificationCallType Indicates if the
notification was reported
for an originating or
terminating call.

TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Name Sequence Element Type

AppCallNotificationRequest TpCallNotificationRequest

AssignmentID TpInt32

TpNotificationsRequestedSet

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)119Release 4

Defines a numbered Set of Data Elements of TpNotificationRequested

TpNotificationsRequestedSetRef

Defines a reference to the type TpNotificationsRequestSet

TpCallReleaseCause

Defines the reason for which a call is released

Name Value Description

P_UNDEFINED 0 The reason of release isn’t known, because
no info was received from the network.

P_USER_NOT_AVAILBLE 1 The user isn’t available in the network.
This means that the number isn’t allocated

or that the user isn’t registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal isn’t reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an
invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call during
setup phase.

P_DISCONNECTED 7 Call disconnect by the end user.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 No resources where available to establisch
the call.

P_GENERAL_FAILURE 10 A general network failure occurred.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

Sequence Element Name Sequence Element Type Sequence Element Description

CallLegReference IpCallLegRef This element specifies the interface
reference for the callLeg object.

CallLegSessionID TpSessionID This element specifies the callLeg session
ID.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.

TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegAttachMechanism

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)120Release 4

Defines how a CallLeg should be attached to the call.

Name Value Description

P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached
implicitly to the call.

P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached
explicitly to the call by using
the attachMedia() operation.

This allows e.g. the
application to do first user

interaction to the party before
he / she is placed in the call.

TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element Name Sequence Element Type Sequence Element Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached
to the call.

TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg information requested.

Sequence Element Name Sequence Element Type description

CallLegInfoType TpCallLegInfoType The type of the call leg.

CallLegStartTime TpDateAndTime The time and date when the
call leg was started (i.e.,

the leg was routed).

CallLegConnectedToResourceTime TpDateAndTime The date and time when the
call leg was connected to

the resource. If no resource
was connected the time is
set to an empty string.

Either this element is valid
or the

CallConnectedToAddressTime
is valid, depending on

whether the report is sent
as a result of user

interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the
call leg was connected to
the destination (i.e., when
the destination answered the
call). If the destination
did not answer, the time is
set to an empty string.

Either this element is valid
or the

CallConnectedToResourceTime
is valid, depending on

whether the report is sent
as a result of user

interaction.

CallLegEndTime TpDateAndTime The date and time when the
call leg was released.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)121Release 4

ConnectedAddress TpAddress The address of the party
associated with the leg. If

during the call the
connected address was

received from the party then
this is returned, otherwise
the destination address (for

legs connected to a
destination) or the

originating address (for
legs connected to the

origination) is returned.

CallLegReleaseCause TpCallReleaseCause The cause of the
termination. May be present

with
P_CALL_LEG_INFO_RELEASE_CAUS

E was specified.

CallAppInfo TpCallAppInfoSet Additional information for
the leg. May be present with
P_CALL_LEG_INFO_APPINFO was

specified.

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description

P_CALL_LEG_INFO_UNDEFINED 00h Undefined

P_CALL_LEG_INFO_TIMES 01h Relevant call times

P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause

P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address

P_CALL_LEG_INFO_APPINFO 08h Call leg application related information

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)122Release 4

Annex A (normative):
OMG IDL Description of Call Control SCF
The OMG IDL representation of this interface specification is contained in a text file (contained in archive
2919804IDL.ZIP) which accompanies the present document.

ETSI

3GPP TS 29.198-4 V1.0.0 (2001-03)123Release 4

Annex B (informative):
Differences between this draft and 3GPP 29.198 R99
The following is a list of the differences between this draft and 3GPP 29.198 R99, for those interfaces which are
common to both documents. Any new interfaces with respect to Release 99 are not listed.

B.1 Interface IpCallControlManager
enableCallNotification (appCallControlManagerInterface : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult

B.2 Interface IpAppCallControlManager
callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID, appCallInterface : out IpAppCallRefRef) : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

B.3 Interface IpCall
getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

B.4 Interface IpAppCall
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

3GPP

3GPP TS 29.198-4 V1.0.0 (2001-03)124Release 4

3GPP

3GPP TS 29.198-4 V1.0.0 (2001-03)125Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for Information

3GPP TS 29.198-5 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface;

Part 5: Generic User Interaction
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, UI, User Interaction

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)3Release 4

Contents

Foreword...5

1 Scope ..6

2 References ..6

3 Definitions, symbols and abbreviations ...7
3.1 Definitions..7
3.2 Symbols ...7
3.3 Abbreviations...7

4 Generic and Call User Interaction SCF..7

5 Sequence Diagrams..8
5.1 Alarm Call..8
5.2 Call Barring 1...10
5.3 Prepaid ...11
5.4 Pre-Paid with Advice of Charge (AoC) ...13

6 Class Diagrams...16

7 The Service Interface Specifications..17
7.1 Interface Specification Format...17
7.1.1 Interface Class ..17
7.1.2 Method descriptions ...17
7.1.3 Parameter descriptions ...17
7.1.4 State Model ..17
7.2 Base Interface...17
7.2.1 Interface Class IpInterface..17
7.3 Service Interfaces...18
7.3.1 Overview..18
7.4 Generic Service Interface...18

7.4.1 Interface Class IpService...18

8 Generic User Interaction Interface Classes ...19
8.1 Interface Class IpUIManager ...19
8.2 Interface Class IpAppUIManager ..22
8.3 Interface Class IpUI ...24
8.4 Interface Class IpAppUI ..26
8.5 Interface Class IpUICall...29
8.6 Interface Class IpAppUICall..30

9 State Transition Diagrams..33
9.1 State Transition Diagrams for IpUIManager ..33
9.1.1 Active State ..34
9.1.2 Notification Terminated State ..34
9.2 State Transition Diagrams for IpUI..34
9.2.1 Active State ..35
9.2.2 Release Pending State ..35
9.2.3 Finished State ...35
9.3 State Transition Diagrams for IpUICall ...35
9.3.1 Active State ..36
9.3.2 Release Pending State ..36
9.3.3 Finished State ...37

10 Service Properties...37
10.1 User Interaction Service Properties ..37

11 Data Definitions ...37
11.1 TpUIFault ...37
11.2 IpUI ..37

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)4Release 4

11.3 IpUIRef ..38
11.4 IpUIRefRef...38
11.5 IpAppUI ...38
11.6 IpAppUIRef..38
11.7 IpAppUIRefRef..38
11.8 IpAppUIManager ...38
11.9 IpAppUIManagerRef..38
11.10 TpUICallIdentifier..38
11.11 TpUICallIdentifierRef ..38
11.12 TpUICollectCriteria ...38
11.13 TpUIError...39
11.14 TpUIEventCriteria..40
11.15 TpUIEventCriteriaResultSetRef...40
11.16 TPUIEventCriteriaResultSet ..40
11.17 TPUIEventCriteriaResult ...40
11.18 TpUIEventInfo ...41
11.19 TpUIEventInfoDataType..41
11.20 TpUIIdentifier ..41
11.21 TpUIIdentifierRef...41
11.22 TpUIInfo ..41
11.23 TpUIInfoType ..42
11.24 TpUIMessageCriteria ...42
11.25 TpUIReport ..42
11.26 TpUIResponseRequest ...43
11.27 TpUITargetObjectType ..43
11.28 TpUITargetObject ..43
11.29 TpUIVariableInfo...44
11.30 TpUIVariableInfoSet..44
11.31 TpUIVariablePartType...44

Annex A (normative): OMG IDL Description of User Interaction SCF ...45

Annex B (informative): Differences between this draft and 3GPP 29.198 R99 ..46
B.1 Interface IpUIManager...46
B.2 Interface IpAppUIManager..46
B.3 Interface IpUI...46
B.4 Interface IpAppUI ..46
B.5 Interface IpUICall ..46
B.6 Interface IpAppUICall ...46
B.7 Type TpUIReport...47
B.8 Type TpUIError ...47
B.9 Type TpUIEventCriteriaResult ..47
B.10 TpUITargetObjectType ..48
B.11 TpUIVariableInfo...49

History ..50

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)5Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)6Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the User Interaction Service Capability Feature (SCF) aspects of the interface. All aspects of
the User Interaction SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)7Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Generic and Call User Interaction SCF
The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of
two interfaces:

1) User Interaction Manager, containing management functions for User Interaction related issues;

2) Generic User Interaction, containing methods to interact with an end-user.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User
Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods
belong.

Table 1: Overview of Generic User Interaction interfaces and their methods

User Interaction Manager Generic User Interaction
createUI sendInfoReq
createUICall sendInfoRes
createNotification sendInfoErr
destroyUINotification sendInfoAndCollectReq
reportNotification sendInfoAndCollectRes
userInteractionAborted sendInfoAndCollectErr
userInteractionNotificationInterru
pted

release

userInteractionNotificationContin
ued

UserInteractionFaultDetected

changeNotification
getNotification

The following table gives an overview of the Call User Interaction methods and to which interfaces these methods
belong.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)8Release 4

Table 2: Overview of Call User Interaction interfaces and their methods

User Interaction Manager Call User Interaction
As defined for the Generic User
Interaction SCF

Inherits from Generic User
Interaction and adds:
recordMessageReq
recordMessageRes
recordMessageErr
deleteMessageReq
deleteMessageRes
deleteMessageErr
abortActionReq
abortActionRes
abortActionErr

The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface
allows applications to send SMS and USSD messages. An application can use this interface independently of other
SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call
party) attached to a call.

The following sections describe each aspect of the Generic User Interaction Service Capability Feature (SCF).

The order is as follows:

• the Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented;

• the Class relationships section show how each of the interfaces applicable to the SCF, relate to one another;

• the Interface specification section describes in detail each of the interfaces shown within the Class diagram part.
This section also includes Call User interation;

• the State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway;

• the Data definitions section show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

5 Sequence Diagrams

5.1 Alarm Call
The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)9Release 4

 :
IpCal lControlManager

 : IpAppCall : IpCall : IpUICall :
IpAppUIManager

 :
IpAppUICall

 : (Logica l
View::Ip...

5: routeRes()

10: sendInf oRes()

1: new()

: createCal l()

3: new()

4: routeReq()

9: sendInf oReq()

6: 'f orward ev ent'

7: createUICall()

8: new()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)10Release 4

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

5.2 Call Barring 1
The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is accepted and the call is routed to the original called party.

 : (Logical
View::Ip...

 :
IpAppCallControlManager

 : IpAppCall : IpCal l : IpUICall :
IpUIManager

 :
IpCallControlManager

 :
IpAppUICall

1: new()

13: routeRes()
14: 'forward event'

12: routeReq()

15: callEnded()
16: "forward event"

17: deassi gnCal l()

8: sendInfoAndCollectReq()

11: release()

6: createUICal l() 7: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

9: sendInfoAndCollectRes()
10: 'forward eve nt'

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)11Release 4

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives, a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

5.3 Prepaid
This sequence shows a Pre-paid application. The subscriber is using a pre-paid card or credit card to pay for the call.
The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or
the application can terminate the call. In the following sequence the end-user will received an announcement before his
final timeslice.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)12Release 4

Prepaid :
(Logical View:...

 :
IpAppCallControlManager

 :
IpCallControlManager

 : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

10: superviseCallReq()

13: superviseCallReq()

6: superviseCallReq()

21: superviseCallReq()

24: release()

17: sendInfoReq()

20: release()

16: createUICall()

18: sendInfoRes()
19: "forward event"

5: new()

8: superviseCallRes()
9: "forward event"

11: superviseCallRes()
12: "forward event"

14: superviseCallRes()
15: "forward event"

22: superviseCallRes()23: "forward event:

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager
interface.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)13Release 4

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the applicaiton is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

5.4 Pre-Paid with Advice of Charge (AoC)
This sequence shows a Pre-paid application that uses the Advice of Charge feature. The application will send the
charging information before the actual call setup and when during the call the charging changes new information is sent
in order to update the end-user. Note: the Advice of Charge feature requires an application in the end-user terminal to
display the charges for the call, depending on the information received from the application.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)14Release 4

Prepaid :
(Logical Vie...

 :
IpAppCallControlManager

 :
pCal lCon trolMa na ger

 : IpCall : IpUICall : IpUIManager : IpAppUICal l : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: supervis eCallReq()

27: release()

6: setAdviceOfCharge()

21: sendInfoReq()

19: createUICall() 20: new()

22: sendInfoRes()
23: "forward event"

28: userInteractionFaultDetected()

5: new()

9: superviseCallRes()
10: "forward event"

12: supervis eCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

18: new()

25: superviseCallRes()
26: "forward event:

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)15Release 4

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again,
at the tariff switch time,the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)16Release 4

6 Class Diagrams
The application generic user interaction service package consists of one IpAppUIManager interface, zero or more
IpAppUI interfaces and zero or more IpAppUICall interfaces.

The generic user interaction service package consists of one IpUIManager interface, zero or more IpUI interfaces and
zero or more IpUICall interfaces.

The class diagram in the following figure shows the interfaces that make up the application generic user interaction
service package and the generic user interaction service package. Communication between these packages is done via
the <<uses>> relationships.

The IpUICall implements call related user interaction and it inherits from the non call related IpUI interface. The same
holds for the corresponding application interfaces.

IpInterface
<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

<<Interface>>

IpAppUIManager

userInteractionAborted()
reportNotification()
userInteractionNotificationInterrupted()
userInteractionNotificationContinued()

<<Interface>>

IpUIManager

createUI()
createUICall()
createNotification()
destroyNotification()
changeNotification()
getNotification()

<<Interface>>

IpAppUI

sendInfoRes()
sendInfoErr()
sendInfoAndCollectRes()
sendInfoAndCollectErr()
userInterac tionFaultDetected()

<<Interface>>

IpUI

sendInfoReq()
sendInfoAndCollectReq()
release()

<<Interface>>

IpAppUICall

recordMessageRes()
recordMessageErr()
deleteMessageRes()
deleteMessageErr()
abortActionRes()
abortActionErr()

<<Interface>>

IpUICall

recordMessageReq()
deleteMessageReq()
abortActionReq()

<<Interface>>

<<uses>>
<<uses>>

<<uses>>

Figure: Generic User Interaction Package Overview

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)17Release 4

7 The Service Interface Specifications

7.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)18Release 4

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)19Release 4

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpGeneralException

8 Generic User Interaction Interface Classes
The Generic User Interaction Service interface (GUIS) is used by applications to interact with end users. The GUIS is
represented by the IpUIManager, IpUI and IpUICall interfaces that interface to services provided by the network. To
handle responses and reports, the developer must implement IpAppUIManager and IpAppUI interfaces to provide the
callback mechanism.

8.1 Interface Class IpUIManager
Inherits from: IpService.

This interface is the 'service manager' interface for the Generic User Interaction Service and provides the management
functions to the Generic User Interaction Service.

<<Interface>>

IpUIManager

createUI (appUI : in IpAppUIRef, userAddress : in TpAddress, userInteraction : out TpUIIdentifierRef) :
TpResult

createUICall (appUI : in IpAppUICallRef, uiTargetObject : in TpUITargetObject, userInteraction : out
TpUICallIdentifierRef) : TpResult

createNotification (appUIManager : in IpAppUIManagerRef, eventCriteria : in TpUIEventCriteria,
assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, evenCriteria : in TpUIEventCriteria) : TpResult

getNotification (eventCriteria : out TpUIEventCriteriaResultSetRef) : TpResult

Method
createUI()

This method is used to create a new user interaction object for non-call related purposes

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)20Release 4

Parameters

appUI : in IpAppUIRef

Specifies the application interface for callbacks from the user interaction created.

userAddress : in TpAddress

Indicates the end-user with whom to interact.

userInteraction : out TpUIIdentifierRef

Specifies the interface and sessionID of the user interaction created.

Raises

TpGUISException,TpGeneralException

Method
createUICall()

This method is used to create a new user interaction object for call related purposes.

The user interaction can take place to the specified party or to all parties in a call. Note that for certain implementation
user interaction can only be performed towards the controlling call party, which shall be the only party in the call.

Parameters

appUI : in IpAppUICallRef

Specifies the application interface for callbacks from the user interaction created.

uiTargetObject : in TpUITargetObject

Specifies the object on which to perform the user interaction. This can either be a Call, Multi-party Call or call leg
object.

userInteraction : out TpUICallIdentifierRef

Specifies the interface and sessionID of the user interaction created.

Raises

TpGUISException,TpGeneralException

Method
createNotification()

This method is used by the application to install specified notification criteria, for which the reporting is implicitly
activated. If some application already requested notifications with criteria that overlap the specified criteria, the request
is refused with P_GUIS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and
the same servicecode is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. This means that the callback will only be used in case when
the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure).

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)21Release 4

Parameters

appUIManager : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpUIEventCriteria

Specifies the event specific criteria used by the application to define the event required, like user address and service
code.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction manager interface for this newly installed notification criteria.

Raises

TpGUISException,TpGeneralException

Method
destroyNotification()

This method is used by the application to destroy previously installed notification criteria via the createNotification
method.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic user interaction manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
framework will return the error code P_INVALID_ASSIGNMENTID.

Raises

TpGUISException,TpGeneralException

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification method. Any
stored notification request associated with the specified assignementID will be replaced with the specified events
requested.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.

evenCriteria : in TpUIEventCriteria

Specifies the new set of event criteria used by the application to define the event required. Only events that meet these
criteria are reported.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)22Release 4

Raises

TpGUISException,TpGeneralException

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Parameters

eventCriteria : out TpUIEventCriteriaResultSetRef

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported.

Raises

TpGUISException,TpGeneralException

8.2 Interface Class IpAppUIManager
Inherits from: IpInterface.

The Generic User Interaction Service manager application interface provides the application callback functions to the
Generic User Interaction Service.

<<Interface>>

IpAppUIManager

userInteractionAborted (userInteraction : in TpUIIdentifier) : TpResult

reportNotification (userInteraction : in TpUIIdentifier, eventInfo : in TpUIEventInfo, assignmentID : in
TpAssignmentID, appUI : out IpAppUIRefRef) : TpResult

userInteractionNotificationInterrupted () : TpResult

userInteractionNotificationContinued () : TpResult

Method
userInteractionAborted()

This method indicates to the application that the User Interaction service instance has terminated or closed abnormally.
No further communication will be possible between the User Interaction service instance and application.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)23Release 4

Parameters

userInteraction : in TpUIIdentifier

Specifies the interface and sessionID of the user interaction service that has terminated.

Raises

TpGUISException,TpGeneralException

Method
reportNotification()

This method notifies the application of an occured network event which matches the criteria installed by the
createNotification method.

Parameters

userInteraction : in TpUIIdentifier

Specifies the reference to the interface and the sessionID to which the notification relates.

eventInfo : in TpUIEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

appUI : out IpAppUIRefRef

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

Raises

TpGUISException,TpGeneralException

Method
userInteractionNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due
to faults detected). Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Raises

TpGUISException,TpGeneralException

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)24Release 4

Method
userInteractionNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Raises

TpGUISException,TpGeneralException

8.3 Interface Class IpUI
Inherits from: IpService.

The User Interaction Service Interface provides functions to send information to, or gather information from the user.
An application can use the User Interaction Service Interface independently of other services.

<<Interface>>

IpUI

sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage,
variableInfo : in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in
TpUIResponseRequest, assignmentID : out TpAssignmentIDRef) : TpResult

sendInfoAndCollectReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in
TpLanguage, variableInfo : in TpUIVariableInfoSet, criteria : in TpUICollectCriteria, responseRequested :
in TpUIResponseRequest, assignmentID : out TpAssignmentIDRef) : TpResult

release (userInteractionSessionID : in TpSessionID) : TpResult

Method
sendInfoReq()

This asynchronous method plays an announcement or sends other information to the user.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo

Specifies the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)25Release 4

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal.

language : in TpLanguage

Specifies the Language of the information to be send to the user.

variableInfo : in TpUIVariableInfoSet

 Defines the variable part of the information to send to the user.

repeatIndicator : in TpInt32

Defines how many times the information shall be sent to the end-user. A value of zero (0) indicates that the
announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.

responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Raises

TpGUISException,TpGeneralException

Method
sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and collects some information
from the user. The announcement usually prompts for a number of characters (for example, these are digits or text
strings such as "YES" if the user's terminal device is a phone).

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo

Specifies the ID of the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal

language : in TpLanguage

Specifies the Language of the information to be send to the user.

variableInfo : in TpUIVariableInfoSet

Defines the variable part of the information to send to the user.

criteria : in TpUICollectCriteria

Specifies additional properties for the collection of information, such as the maximum and minimum number of
characters, end character, first character timeout and inter-character timeout.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)26Release 4

responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take. For this
case it can especially be used to indicate e.g. the final request.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Raises

TpGUISException,TpGeneralException

Method
release()

This method requests that the relationship between the application and the user interaction object be released. It causes
the release of the used user interaction resources and interrupts any ongoing user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction created.

Raises

TpGUISException,TpGeneralException

8.4 Interface Class IpAppUI
Inherits from: IpInterface.

The User Interaction Application Interface is implemented by the client application developer and is used to handle
generic user interaction request responses and reports.

<<Interface>>

IpAppUI

sendInfoRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in
TpUIReport) : TpResult

sendInfoErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in
TpUIError) : TpResult

sendInfoAndCollectRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID,
response : in TpUIReport, collectedInfo : in TpString) : TpResult

sendInfoAndCollectErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID,
error : in TpUIError) : TpResult

userInteractionFaultDetected (userInteractionSessionID : in TpSessionID, fault : in TpUIFault) : TpResult

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)27Release 4

Method
sendInfoRes()

This asynchronous method informs the application about the start or the completion of a sendInfoCallReq(). This
response is called only if the responseRequested parameter of the sendInfoCallReq() method was set to
P_UICALL_RESPONSE_REQUIRED.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

response : in TpUIReport

Specifies the type of response received from the user.

Raises

TpGUISException,TpGeneralException

Method
sendInfoErr()

This asynchronous method indicates that the request to send information was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

error : in TpUIError

Specifies the error which led to the original request failing.

Raises

TpGUISException,TpGeneralException

Method
sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)28Release 4

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

response : in TpUIReport

Specifies the type of response received from the user.

collectedInfo : in TpString

Specifies the information collected from the user.

Raises

TpGUISException,TpGeneralException

Method
sendInfoAndCollectErr()

This asynchronous method indicates that the request to send information and collect a response was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

error : in TpUIError

Specifies the error which led to the original request failing.

Raises

TpGUISException,TpGeneralException

Method
userInteractionFaultDetected()

This method indicates to the application that a fault has been detected in the user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the interface and sessionID of the user interaction service in which the fault has been detected.

fault : in TpUIFault

Specifies the fault that has been detected.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)29Release 4

Raises

TpGUISException,TpGeneralException

8.5 Interface Class IpUICall
Inherits from: IpUI.

The Call User Interaction Service Interface provides functions to send information to, or gather information from the
user (or call party) to which a call leg is connected. An application can use the Call User Interaction Service Interface
only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At
present, only the Call Control service supports this capability.

<<Interface>>

IpUICall

recordMessageReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, criteria : in
TpUIMessageCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32, assignmentID : out
TpAssignmentIDRef) : TpResult

abortActionReq (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : TpResult

Method
recordMessageReq()

This asynchronous method allows the recording of a message. The recorded message can be played back at a later time
with the sendInfoReq() method.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or
text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).

criteria : in TpUIMessageCriteria

 Defines the criteria for recording of messages

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)30Release 4

Raises

TpGUISException,TpGeneralException

Method
deleteMessageReq()

This asynchronous method allows to delete a recorded message.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

messageID : in TpInt32

Specifies the message ID.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Raises

TpGUISException,TpGeneralException

Method
abortActionReq()

This asynchronous method aborts a user interaction operation, e.g. a sendInfoReq(), from the specified call leg. The call
and call leg are otherwise unaffected. The user interaction call service interrupts the current action on the specified leg.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the user interaction request to be cancelled.

Raises

TpGUISException,TpGeneralException

8.6 Interface Class IpAppUICall
Inherits from: IpAppUI.

The Call User Interaction Application Interface is implemented by the client application developer and is used to handle
call user interaction request responses and reports.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)31Release 4

<<Interface>>

IpAppUICall

recordMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID,
response : in TpUIReport, messageID : in TpInt32) : TpResult

recordMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error :
in TpUIError) : TpResult

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in
TpAssignmentIDRef) : TpResult

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in
TpAssignmentIDRef) : TpResult

abortActionRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : TpResult

abortActionErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in
TpUIError) : TpResult

Method
recordMessageRes()

This method returns whether the message is successfully recorded or not. In case the message is recorded, the ID of the
message is returned.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.

response : in TpUIReport

Specifies the type of response received from the device where the message is stored.

messageID : in TpInt32

Specifies the ID that was assigned to the message by the device where the message is stored.

Method
recordMessageErr()

This method indicates that the request for recording of a message was not successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)32Release 4

assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.

error : in TpUIError

Specifies the error which led to the original request failing.

Method
deleteMessageRes()

This method returns whether the message is successfully deleted or not.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

response : in TpUIReport

Specifies the type of response received from the device where the message was stored.

assignmentID : in TpAssignmentIDRef

Specifies the ID assigned by the call user interaction interface for a user interaction request.

Raises

TpGUISException,TpGeneralException

Method
deleteMessageErr()

This method indicates that the request for deleting a message was not successful.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

error : in TpUIError

Specifies the error which led to the original request failing.

assignmentID : in TpAssignmentIDRef

Specifies the ID assigned by the call user interaction interface for a user interaction request.

Raises

TpGUISException,TpGeneralException

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)33Release 4

Method
abortActionRes()

This asynchronous method confirms that the request to abort a user interaction operation on a call leg was successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.

Raises

TpGUISException,TpGeneralException

Method
abortActionErr()

This asynchronous method indicates that the request to abort a user interaction operation on a call leg resulted in an
error.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.

error : in TpUIError

Specifies the error which led to the original request failing.

Raises

TpGUISException,TpGeneralException

9 State Transition Diagrams

9.1 State Transition Diagrams for IpUIManager

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)34Release 4

Active

exit/ release UI objects

"new"

createNotification
destroyNotification

Creation of UIManager
by Service Factory

Notification
Terminated

destroyNotification

IpAccess.terminateServiceAgreement

"notifications possible again"
 ûserInteract ionNotificat ionContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 ûserInteractionNotificationInterrupted

"arrival of user initiated request for user interaction"[notification active for this ui
event] / create a UI object ÎpAppUIManager.reportNot ification

createUI / create UI object

createUICall / create UICall object
changeNotification

getNot ification

Figure : Application view on the UI Manager

9.1.1 Active State

In this state a relation between the Application and a User Interaction Service Capability Feature (Generic User
Interaction or Call User Interaction) has been established. The application is now able to request creation of UI
and/orUICall objects.

9.1.2 Notification Terminated State

When the UI manager is in the Notification terminated state, events requested with createNotification() will not be
forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives
more notifications than defined in the Service Level Agreement. Another example is that the SCS has detected it
receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will
be accepted.

9.2 State Transition Diagrams for IpUI
The state transition diagram shows the application view on the User Interaction object.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)35Release 4

ActiveIpUIManager.createUI

IpAppUIManager.reportNotification

sendInfoReq

sendInfoAndCollectReq

Release
Pending

Finished

In state Finished a timer mechanism
should prevent that the object keeps
occupying resources. In case the timer
expires, the object should be destroyed
and userInteractionFaultDetected should
be reported to the application.

release

timeout ûserInteractionFaultDetected

"requested message has been sent"[not final request] ŝendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ŝendInfoErr

"request to send info and collect a response unsuccessful"[not final request]
ŝendInfoAndCollectErr

"fault detected in the user interaction" / report error
on outstanding user interaction

ûserInteractionFaultDetected

release

"requested message has been sent"[final request] ŝendInfoRes
"user input received"[final request] ŝendInfoAndCollectRes

"request to send message unsuccessful" [final
request] ŝendInfoErr

"request to send info and col lect response
unsuccessful"[final request]

ŝendInfoAndCollectErr

"requested message has been sent" ^sendInfoRes
"user input received" ^sendInfoAndCollectRes
"request to send message unsuccessful" ^sendInfoErr
"request to send info and collect a response unsuccessful"

ŝendInfoAndCollectErr

sendInfoReq[final request]

sendInfoAndCollectReq[final reques t]

"fault detec ted in the user interac tion" /
report error on outstanding user interaction

ûserInteractionFaultDetected

release

Figure : Application view on the UI object

9.2.1 Active State

In this state the UI object is available for requesting messages to be send to the network.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected()
will be invoked on the application and an error will be reported on all outstanding requests.

9.2.2 Release Pending State

A transition to this state is made when the Application has indicated that after a certain message no further messages
need to be sent to the end-user. There are, however, still a number of messages that are not yet completed. When the last
message is sent or when the last user interaction has been obtained, the UI object is destroyed.

In case the final request failed or the application requested to abort the final request, a transition is made back to the
Active state.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected()
will be invoked on the application and an error will be reported on all outstanding requests.

9.2.3 Finished State

In this state the user interaction has ended. The application can only release the UI object. Note that the application has
to release the object itself as good OO practice requires that when an object is created on behalf of a certain entity, this
entity is also responsible for destroying it when the object is no longer needed.

9.3 State Transition Diagrams for IpUICall
The state transition diagram shows the application view on the Call User Interaction object.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)36Release 4

Act ive

Release
Pending

Finished

IpUIManager.createUICall

release

abortActionReq / cancel the user interac tion

abortActionReq[not the final request] / cancel the
user interaction

lready requested announcements
ill cont inue, even when
pplicat ion releases the object.

In state Finished a timer mechanism
should prevent that the object keeps
occupy ing resources. In case the timer
expires , the object should be destroyed
and userInteractionFaultDetected should
be reported to the applicat ion.

timeout ^userInteractionFaultDetected

"requested message has been sent"[not final request] ŝendInfoRes

"user input received"[not final reques t] ŝendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ŝendInfoErr

"request to send info and collect a response unsuccessful"[not final request]
ŝendInfoAndCollectErr

fault detected in the user interaction" / report error on outstanding requests
ûserInteractionFaultDetected

release / abort all ongoing user interaction

"requested message has been sent"[final request] ŝendInfoRes

"user input received"[final request] ^sendInfoAndCollectReq

"request to send message unsuccessful"[
final request] ^sendInfoErr

"request to send info and collect response
unsuccessful"[final request] ŝendInfoAndCollectErr

abortActionReq[final request is cancelled]
/ cancel the user interaction

"call terminated" / report error on all outstanding requests ûserInteractionFaultDetected

IpCall.deassignCall

"requested message has been sent " ŝendInfoRes
user input received" ŝendInfoAndCollectRes

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error on all outstanding requests
ûserInteractionFaultDetected

release / abort all ongoing user interaction

"call terminated" / report error on all outstanding requests ûserInteractionFaultDetected
IpCall.deassignCall

"request to send info and collect response unsuccessful"
 ŝendInfoAndCollec tErr

"request to send message unsuccessful" ^sendInfoErr

Figure : Application view on the UICall object

9.3.1 Active State

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from
the end-user.

When the application de-assigns the related Call object, a transition is made to the Finished state. However, all
requested announcements will continue, even when the application releases the UICall object.

When the related call is due to some reason terminated, a transition is made to the Finished state, the operation
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected()
will be invoked on the application and an error will be reported on all outstanding requests.

9.3.2 Release Pending State

A transition to this state is made when the Application has indicated that after a certain announcement no further
announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet
completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object
is destroyed. In case the final request failed or the application requested to abort the final request, a transition is made
back to the Active state.

When the application de-assigns the related Call object, a transition is made to the Finished state. However, all
requested announcements will continue, even when the application releases the UICall object.

When the related call is due to some reason terminated, a transition is made to the Finished state, the operation
userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding
requests.

In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected()
will be invoked on the application and an error will be reported on all outstanding requests.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)37Release 4

9.3.3 Finished State

In this state the user interaction has ended. The application can only release the UICall object. Note that the application
has to release the object itself as good OO practice requires that when an object is created on behalf of a certain entity,
this entity is also responsible for destroying it when the object is no longer needed.

10 Service Properties

10.1 User Interaction Service Properties
The following table lists properties relevant for the User Interaction API.

Property Type Description
P_INFO_TYPE INTEGER_SET Specifies whether the UI SCS supports text or

URLs etc. Allowed value set:
{P_INFO_ID,
P_URL,
P_TEXT}

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Specifies which numbers the notification may

be set
P_SERVICE_CODE INTEGER_SET Specifies the service codes that may be used

for notification requests.

11 Data Definitions

11.1 TpUIFault
Defines the cause of the UI fault detected.

Name Value Description

P_UI_FAULT_UNDEFINED 0 Undefined

P_UI_CALL_ENDED 1 The related Call object has been terminated.
Therefore, the UICall object is also terminated.

No further interaction is possible with this
object.

11.2 IpUI
Defines the address of an IpUI Interface.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)38Release 4

11.3 IpUIRef
Defines a Reference to type IpUI.

11.4 IpUIRefRef
Defines a Reference to type IpUIRef.

11.5 IpAppUI
Defines the address of an IpAppUI Interface.

11.6 IpAppUIRef
Defines a Reference to type IpAppUI.

11.7 IpAppUIRefRef
Defines a Reference to type IpAppUIRef.

11.8 IpAppUIManager
Defines the address of an IpAppUIManager Interface.

11.9 IpAppUIManagerRef
Defines a Reference to type IpAppUIManager.

11.10 TpUICallIdentifier
Defines the Sequence of Data Elements that unambiguously specify the UICall object

Structure Element Name Structure Element
Type

Structure Element Description

UICallRef IpUICallRef This element specifies the interface
reference for the UICall object.

UserInteractionSessionID TpSessionID This element specifies the user interaction
session ID.

11.11 TpUICallIdentifierRef
Defines a reference to type TpUICallIdentifier.

11.12 TpUICollectCriteria
Defines the Sequence of Data Elements that specify the additional properties for the collection of information,
such as the end character, first character timeout, inter-character timeout, and maximum interaction time.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)39Release 4

Structure Element Name Structure Element Type

MinLength TpInt32

MaxLength TpInt32

EndSequence TpString

StartTimeout TpDuration

InterCharTimeout TpDuration

The structure elements specify the following criteria:

MinLength: Defines the minimum number of characters (e.g. digits) to collect.

MaxLength: Defines the maxmum number of characters (e.g. digits) to collect.

EndSequence: Defines the character or characters which terminate an input of variable length, e.g.
phonenumbers.

StartTimeout: specifies the value for the first character time-out timer. The timer is started when the
announcement has been completed or has been interrupted. The user should enter the start
of the response (e.g. first digit) before the timer expires. If the start of the response is not
entered before the timer expires, the input is regarded to be erroneous. After receipt of the
start of the response, which may be valid or invalid, the timer is stopped.

InterCharTimeOut: specifies the value for the inter-character time-out timer.The timer is started when a
response (e.g. digit) is received, and is reset and restarted when a subsequent response is
received. The responses may be valid or invalid. the announcement has been completed or
has been interrupted.

 Input is considered successful if the following applies:

If the EndSequence is not present (i.e. NULL):

- when the InterCharTimeOut timer expires; or

- when the number of valid digits received equals the MaxLength.

If the EndSequence is present:

- when the InterCharTimeOut timer expires; or

- when the EndSequence is received; or

- when the number of valid digits received equals the MaxLength.

In the case the number of valid characters received is less than the MinLength when the InterCharTimeOut timer
expires or when the EndSequence is received, the input is considered erroneous.

The collected characters (including the EndSequence) are sent to the client application when input has been
successful.

11.13 TpUIError
Defines the UI error codes.

Name Value Description

P_UI_ERROR_UNDEFINED 0 Undefined error

P_UI_ERROR_ILLEGAL_INFO 1 The specified information (InfoId, InfoData, or
InfoAddress) is invalid

P_UI_ERROR_ID_NOT_FOUND 2 A legal InfoId is not known to the the User Interaction
service

P_UI_ERROR_RESOURCE_UNAVAILABLE 3 The information resources used by the User Interaction

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)40Release 4

service are unavailable, e.g. due to an overload situation.

P_UI_ERROR_ILLEGAL_RANGE 4 The values for minimum and maximum collection length
are out of range

P_UI_ERROR_IMPROPER_USER_RESPONSE 5 Improper user response

P_UI_ERROR_ABANDON 6 The specified leg is disconnected before the send
information completed

P_UI_ERROR_NO_OPERATION_ACTIVE 7 There is no active user interaction for the specified leg.
Either the application did not start any user interaction or

the user interaction was already finished when the
abortAction_Req() was called.

P_UI_ERROR_NO_SPACE_AVAILABLE 8 There is no more storage capacity to record the message
when the recordMessage() operation was called

P_UI_ERROR RESOURCE TIMEOUT 9 The request has been accepted by the resource but it did
not report a result.

The call user interaction object will be automatically de-assigned if the error P_UI_ERROR_ABANDON is reported, as
a corresponding call or call leg object no longer exists.

11.14 TpUIEventCriteria
Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification

Structure Element Name Structure Element Type Description

OriginatingAddress TpAddressRange Defines the originating address
for which the notification is

requested.

DestinationAddress TpAddressRange Defines the destination address
or address range for which the
notification is requested.

ServiceCode TpString Defines a 2 digit code indicating
the UI to be triggered. The value

is operator specific.

11.15 TpUIEventCriteriaResultSetRef
Defines a reference to TpUIEventCriteriaResultSet

11.16 TPUIEventCriteriaResultSet
Defines a set of TpUIEventCriteriaResult

11.17 TPUIEventCriteriaResult
Defines a sequence of data elements that specify a requested event notification criteria with the associated
assignmentID.

Structure Element
Name

Structure Element
Type

Structure Element Description

EventCriteria TpUIEventCriteria The event criteria that were
specified by the application.

AssignmentID TpInt32 The associated assignmentID. This
can be used to disable the
notification.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)41Release 4

11.18 TpUIEventInfo
Defines the Sequence of Data Elements that specify a UI notification

Structure Element Name Structure Element Type

OriginatingAddress TpAddress Defines the originating address.

DestinationAddress TpAddress Defines the destination address.

ServiceCode TpString Defines a 2 digit code indicating
the UI to be triggered. The value

is operator specific.

DataTypeIndication TpUIEventInfoDataType Identifies the type of contents
in the dataString.

DataString TpString Freely defined data string with a
limited length e.g. 160 bytes

according to the network policy.

11.19 TpUIEventInfoDataType
Defines the type of the dataString parameter in the method userInteractionEventNotify.

Name Value Description

P_UI_EVENT_DATA_TYPE_UNDEFINED 0 Undefined (e.g. binary data)

P_UI_EVENT_DATA_TYPE_UNSPECIFIED 1 Unspecified data

P_UI_EVENT_DATA_TYPE_TEXT 2 Text

P_UI_EVENT_DATA_TYPE_USSD_DATA 3 USSD data starting with coding scheme

11.20 TpUIIdentifier
Defines the Sequence of Data Elements that unambiguously specify the UI object

Structure Element Name Structure Element
Type

Structure Element Description

UIRef IpUIRef This element specifies the interface
reference for the UI object.

UserInteractionSessionID TpSessionID This element specifies the user interaction
session ID.

11.21 TpUIIdentifierRef
Defines a reference to type TpUIIdentifier.

11.22 TpUIInfo
Defines the Tagged Choice of Data Elements that specify the information to send to the user.

Tag Element Type

TpUIInfoType

Tag Element Value Choice Element Type Choice Element Name

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)42Release 4

P_UI_INFO_ID TpInt32 InfoId

P_UI_INFO_DATA TpString InfoData

P_UI_INFO_ADDRESS TpURL InfoAddress

The choice elements represents the following:

InfoID: defines the ID of the user information script or stream to send to an end-user. The values of
this data type are operator specific.

InfoData: defines the data to be sent to an end-user’s terminal. The data is free-format and the
encoding is depending on the resources being used..

InfoAddress: defines the URL of the text or stream to be sent to an end-user’s terminal.

11.23 TpUIInfoType
Defines the type of the information to be send to the user.

Name Value Description

P_UI_INFO_ID 1 The information to be send to an end-user
consists of an ID

P_UI_INFO_DATA 2 The information to be send to an end-user
consists of a data string

P_UI_INFO_ADDRESS 3 The information to be send to an end-user
consists of a URL.

11.24 TpUIMessageCriteria
Defines the Sequence of Data Elements that specify the additional properties for the recording of a message

Structure Element Name Structure Element Type

EndSequence TpString

MaxMessageTime TpDuration

MaxMessageSize TpInt32

The structure elements specify the following criteria:

EndSequence: Defines the character or characters which terminate an input of variable length, e.g.
phonenumbers.

MaxMessageTime: specifies the maximum duration in seconds of the message that is to be recorded.

MaxMessageSize: If this parameter is non-zero, it specifies the maximum size in bytes of the message that is
to be recorded.

11.25 TpUIReport
Defines the UI reports if a response was requested.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)43Release 4

Name Value Description

P_UI_REPORT_UNDEFINED 0 Undefined report

P_UI_REPORT_INFO_SENT 1 Confirmation that the information has been
sent

P_UI_REPORT_INFO_COLLECTED 2 Information collected., meeting the specified
criteria.

P_UI_REPORT_NO_INPUT 3 No information collected. The user
immediately entered the delimiter character.

No valid information has been returned

P_UI_REPORT_TIMEOUT 4 No information collected. The user did not
input any response before the input timeout

expired

P_UI_REPORT_MESSAGE_STORED 5 A message has been stored successfully

P_UI_REPORT_MESSAGE_NOT_STORED 6 The message has not been stored successfully

P_UI_REPORT_MESSAGE_DELETED 7 A message has been deleted successfully

P_UI_REPORT_MESSAGE_NOT_DELETED 8 A message has not been deleted successfully

11.26 TpUIResponseRequest
Defines the situations for which a response is expected following the user interaction.

Name Value Description

P_UI_RESPONSE_REQUIRED 1 The User Interaction Call must send a response
when the request has completed.

P_UI_LAST_ANNOUNCEMENT_IN_A_ROW 2 This is the final announcement within a
sequence. It might, however, be that additional

announcements will be requested at a later
moment. The User Interaction Call service

may release any used resources in the network.
The UI object will not be released.

P_UI_FINAL_REQUEST 4 This is the final request. The UI object will be
released after the information has been

presented to the user.

This parameter represent a so-called bitmask, i.e. the values can be added to derived the final meaning.

11.27 TpUITargetObjectType
Defines the type of object where user interaction should be performed upon.

Name Value Description

P_UI_TARGET_OBJECT_CALL 0 User-interaction will be performed on a
complete Call.

P_UI_TARGET_OBJECT_MULTI_PARTY_CALL 1 User-interaction will be performed on a
complete Multi-party Call.

P_UI_TARGET_OBJECT_CALL_LEG 2 User-interaction will be performed on a single
Call Leg.

11.28 TpUITargetObject
Defines the Tagged Choice of Data Elements that specify the object to perform user interaction on.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)44Release 4

Tag Element Type

TpUITargetObjectType

Tag Element Value Choice Element Type Choice Element Name

P_UI_TARGET_OBJECT_CALL TpCallIdentifier Call

P_UI_TARGET_OBJECT_MULTI_PARTY_CALL TpMultiPartyCallIdentifier MultiPartyCall

P_UI_TARGET_OBJECT_CALL_LEG TpCallLegIdentifier CallLeg

11.29 TpUIVariableInfo
Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the
user.

Tag Element Type

TpUIVariablePartType

Tag Element Value Choice Element Type Choice Element Name

P_UI_VARIABLE_PART_INT TpInt32 VariablePartInteger

P_UI_VARIABLE_PART_ADDRESS TpString VariablePartAddress

P_UI_VARIABLE_PART_TIME TpTime VariablePartTime

P_UI_VARIABLE_PART_DATE TpDate VariablePartDate

P_UI_VARIABLE_PART_PRICE TpPrice VariablePartPrice

11.30 TpUIVariableInfoSet
Defines a Numbered Set of Data Elements of TpUIVariableInfo.

11.31 TpUIVariablePartType
Defines the type of the variable parts in the information to send to the user.

Name Value Description

P_UI_VARIABLE_PART_INT 0 Variable part is of type integer

P_UI_VARIABLE_PART_ADDRESS 1 Variable part is of type address

P_UI_VARIABLE_PART_TIME 2 Variable part is of type time

P_UI_VARIABLE_PART_DATE 3 Variable part is of type date

P_UI_VARIABLE_PART_PRICE 4 Variable part is of type price

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)45Release 4

Annex A (normative):
OMG IDL Description of User Interaction SCF
The OMG IDL representation of this interface specification is contained in a text file (ui.idl contained in archive
2919805IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)46Release 4

Annex B (informative):
Differences between this draft and 3GPP 29.198 R99

B.1 Interface IpUIManager
createenableUINotification (appInterface appUIManager : in IpAppUIManagerRef, eventCriteria : in
TpUIEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

createUICall (appUI : in IpAppUICallRef, uiTargetObject : in TpUITargetObject, callIdentifier : in cc::TpCallIdentifier,
callLegIdentifier : in cc::TpCallLegIdentifier, userInteraction : out TpUICallIdentifierRef) : TpResult

destroydisableUINotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpUIEventCriteria) : TpResult

getNotification (eventCriteria : out TpCallEventCriteriaResultSetRef) : TpResult

B.2 Interface IpAppUIManager
UserInteractionEventNotifyreportNotification (uiuserInteraction : in TpUIIdentifier , eventInfo : in TpUIEventInfo ,
assignmentID : in TpAssignmentID , appInterface appUI : out IpAppUIRefRef) : TpResult

B.3 Interface IpUI
sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo :
in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in TpUIResponseRequest, assignmentID :
out TpAssignmentIDRef) : TpResult

sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo :
in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in TpUIResponseRequest, assignmentID :
out TpAssignmentIDRef) : TpResult

B.4 Interface IpAppUI
sendInfoAndCollectRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID, response : in
TpUIReport , infocollectedInfo : in TpString) : TpResult

B.5 Interface IpUICall
The following method was added:

deleteMessageReq(userInteractionSessionID : in TpSessionID , messageID : in TpInt32 , assignmentID : out
TpAssignmentIDRef) : TpResult

B.6 Interface IpAppUICall
The following methods were added:

deleteMessageRes(userInteractionSessionID : in TpSessionID , response : in TpUIReport , assignmentID : in
TpAssignmentID) : TpResult

deleteMessageErr(userInteractionSessionID : in TpSessionID , error : in TpUIError , assignmentID : in
TpAssignmentID) : TpResult

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)47Release 4

B.7 Type TpUIReport

TpUIReport

Defines the UI call reports if a response was requested.

Name Value Description

P_UI_REPORT_UNDEFINED 0 Undefined report

P_UI_REPORT_ANNOUNCEMENT_ENDED

P_UI_REPORT INFO_SENT

1 Confirmation that the announcement information has endedbeen sent

P_UI_REPORT_LEGAL_INPUT

P_UI_REPORT INFO_COLLECTED

2 Information collected., meeting the specified criteria.

P_UI_REPORT_NO_INPUT 3 No information collected. The user immediately entered the delimiter character.
No valid information has been returned

P_UI_REPORT_TIMEOUT 4 No information collected. The user did not input any response before the input
timeout expired

P_UI_REPORT_MESSAGE_STORED 5 A message has been stored successfully

P_UI_REPORT_MESSAGE_NOT_STORED 6 The message has not been stored successfully

P_UI_REPORT_MESSAGE_DELETED 7 A message has been deleted successfully

P_UI_REPORT_MESSAGE_NOT_DELETED 8 A message has not been deleted successfully

B.8 Type TpUIError

TpUIError

Defines the UI call error codes.

Name Value Description

P_UI_ERROR_UNDEFINED 0 Undefined error

P_UI_ERROR_ILLEGAL_IDINFO 1 The specified information id(InfoId, InfoData, or
InfoAddress) specified is invalid

P_UI_ERROR_ID_NOT_FOUND 2 A legal information idInfoId is not known to the User
Interaction service

P_UI_ERROR_RESOURCE_UNAVAILABLE 3 The information resources used by the User Interaction
service are unavailable, e.g. due to an overload situation.

P_UI_ERROR_ILLEGAL_RANGE 4 The values for minimum and maximum collection length
are out of range

P_UI_ERROR_IMPROPER_CALLER_USER_RESPONSE 5 Improper user response

P_UI_ERROR_ABANDON 6 The specified leg is disconnected before the send
information completed

P_UI_ERROR_NO_OPERATION_ACTIVE 7 There is no active user interaction for the specified leg.
Either the application did not start any user interaction or

the user interaction was already finished when the
abortAction_Req() was called.

P_UI_ERROR_NO_SPACE_AVAILABLE 8 There is no more storage capacity to record the message
when the recordMessage() operation was called

P_UI_ERROR RESOURCE TIMEOUT 9 The request has been accepted by the resource but it did
not report a result.

B.9 Type TpUIEventCriteriaResult

TpUIEventCriteriaResultSetRef

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)48Release 4

Defines a reference to TpUIEventCriteriaResultSet

TPUIEventCriteriaResultSet

Defines a set of TpUIEventCriteriaResult

TPUIEventCriteriaResult

Defines a sequence of data elements that specify a requested event notification criteria with the associated
assignmentID.

Structure Element
Name

Structure Element
Type

Structure Element Description

EventCriteria TpUIEventCriteria The event criteria that were
specified by the application.

AssignmentID TpInt32 The associated assignmentID. This
can be used to disable the
notification.

B.10 TpUITargetObjectType

TpUITargetObjectType

Defines the type of object where user interaction should be performed upon.

Name Value Description

P_UI_TARGET_OBJECT_CALL 0 User-interaction will be performed on a
complete Call.

P_UI_TARGET_OBJECT_MULTI_PARTY_CALL 1 User-interaction will be performed on a
complete Multi-party Call.

P_UI_TARGET_OBJECT_CALL_LEG 2 User-interaction will be performed on a single
Call Leg.

TpUITargetObject

Defines the Tagged Choice of Data Elements that specify the object to perform user interaction on.

Tag Element Type

TpUITargetObjectType

Tag Element Value Choice Element Type Choice Element Name

P_UI_TARGET_OBJECT_CALL TpCallIdentifier Call

P_UI_TARGET_OBJECT_MULTI_PARTY_CALL TpMultiPartyCallIdentifier MultiPartyCall

P_UI_TARGET_OBJECT_CALL_LEG TpCallLegIdentifier CallLeg

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)49Release 4

B.11 TpUIVariableInfo

TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the
user.

Tag Element Type

TpUIVariablePartType

Tag Element Value Choice Element Type Choice Element Name

P_UI_VARIABLE_PART_INT TpInt32 VariablePartInteger

P_UI_VARIABLE_PART_ADDRESS TpString VariablePartAddress

P_UI_VARIABLE_PART_TIME TpTime VariablePartTime

P_UI_VARIABLE_PART_DATE TpDate VariablePartDate

P_UI_VARIABLE_PART_PRICE TpPrice VariablePartPrice

3GPP

3GPP TS 29.198-5 V1.0.0 (2001-03)50Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for approval and placement under Change Control

3GPP TS 29.198-6 V.1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface

Part 6: Mobility
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, MM, Mobility, UL, ULC, US

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)3Release 4

Contents

Foreword ..6

1 Scope ..7

2 References ..7

3 Definitions, symbols and abbreviations ...8
3.1 Definitions ...8
3.2 Symbols ...8
3.3 Abbreviations...8

4 Mobility SCF..8

5 Sequence Diagrams..8
5.1 User Location Sequence Diagrams..8
5.1.1 User Location Interrogation - Triggered Request...8
5.1.2 User Location Interrogation - Periodic Request ...9
5.1.3 User Location Interrogation - Parameter Error...10
5.1.4 User Location Interrogation - Network Error...11
5.1.5 User Location Interrogation - Interactive Request ...12
5.2 User Location Camel Sequence Diagrams ...12
5.2.1 User Location Camel Interrogation - Triggered Request ...12
5.2.2 User Location Camel Interrogation - Periodic Request..13
5.2.3 User Location Camel Interrogation - Parameter Error ...14
5.2.4 User Location Camel Interrogation - Network Error ...16
5.2.5 User Location Camel Interrogation - Interactive Request ..17
5.3 User Status Sequence Diagrams..18
5.3.1 Triggered Reporting ...18
5.3.2 Interactive Request Parameter Error ..19
5.3.3 Interactive Request Network Error...19
5.3.4 Interactive Request ...20

6 Class Diagrams...20
6.1 User Location Class Diagrams..20
6.2 User Location Camel Class Diagrams ...22
6.3 User Status Class Diagrams ...23

7 The Service Interface Specifications..23
7.1 Interface Specification Format...23
7.1.1 Interface Class ..23
7.1.2 Method descriptions ...24
7.1.3 Parameter descriptions ...24
7.1.4 State Model ..24
7.2 Base Interface...24
7.2.1 Interface Class IpInterface..24
7.3 Service Interfaces...24
7.3.1 Overview..24
7.4 Generic Service Interface...25

7.4.1 Interface Class IpService...25

8 Mobility Interface Classes ..26
8.1 User Location Interface Classes ...26
8.1.1 Interface Class IpUserLocation ..26
8.1.2 Interface Class IpAppUserLocation ...30
8.1.3 Interface Class IpTriggeredUserLocation ..32
8.1.4 Interface Class IpAppTriggeredUserLocation..34
8.2 User Location Camel Interface Classes ..35
8.2.1 Interface Class IpUserLocationCamel..35
8.2.2 Interface Class IpAppUserLocationCamel...39

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)4Release 4

8.3 User Status Interface Classes ...42
8.3.1 Interface Class IpAppUserStatus..42
8.3.2 Interface Class IpUserStatus ..44

9 State Transition Diagrams..47
9.1 User Location ...47
9.2 User Location Camel ..47
9.2.1 State Transition Diagrams for IpUserLocationCamel ...47
9.2.1.1 Active State ..47
9.3 User Status...48
9.3.1 State Transition Diagrams for IpUserStatus ..48
9.3.1.1 Active State ..48

10 Service Properties...48
10.1 Mobility Properties...48
10.1.1 Emergency Application Subtypes ..48
10.1.2 Value Added Application Subtypes ...49
10.1.3 PLMN Operator Application Subtypes ..49
10.1.4 Lawful Intercept Application Subtypes..49
10.1.5 Altitude Obtainable ..49
10.1.6 Location Methods...49
10.1.7 Priorities ...50
10.1.8 Max Interactive Requests ...50
10.1.9 Max Triggered Users..50
10.1.10 Max Periodic Users ..50
10.1.11 Min Periodic Interval Duration ..50
10.2 User Location Service Properties ...50
10.3 User Location Camel Service Properties..51
10.4 User Status Service Properties ...51

11 Data Definitions ...51
11.1 Common Mobility Data Definitions...51
11.1.1 TpGeographicalPosition...52
11.1.2 TpLocationPriority ...53
11.1.3 TpLocationRequest ..53
11.1.4 TpLocationResponseIndicator..54
11.1.5 TpLocationResponseTime..54
11.1.6 TpLocationType ...54
11.1.7 TpLocationUncertaintyShape...55
11.1.8 TpMobilityDiagnostic ..55
11.1.9 TpMobilityError ...56
11.1.10 TpMobilityStopAssignmentData..57
11.1.11 TpMobilityStopScope ..57
11.1.12 TpTerminalType...58
11.2 User Location Data Definitions..58
11.2.1 TpUlExtendedData...58
11.2.2 TpUlExtendedDataSet..58
11.2.3 TpUserLocationExtended...58
11.2.4 TpUserLocationExtendedSet..59
11.2.5 TpLocationTrigger ...59
11.2.6 TpLocationTriggerSet ..59
11.2.7 TpLocationTriggerCriteria ...59
11.2.8 TpUserLocation..59
11.2.9 TpUserLocationSet...60
11.3 User Location Camel Data Definitions ..60
11.3.1 TpLocationCellIDOrLAI..60
11.3.2 TpLocationTriggerCamel...60
11.3.3 TpUserLocationCamel ...61
11.3.4 TpUserLocationCamelSet ..61
11.4 User Location Emergency Data Definitions...61
11.4.1 TpIMEI...61
11.4.2 TpNaESRD ..61
11.4.3 TpNaESRK ..62

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)5Release 4

11.4.4 TpUserLocationEmergencyRequest...62
11.4.5 TpUserLocationEmergency..62
11.4.6 TpUserLocationEmergencyTrigger..63
11.5 User Status Data Definitions ..63
11.5.1 TpUserStatus ..63
11.5.2 TpUserStatusSet ...63
11.5.3 TpUserStatusIndicator..64
11.6 Units and Validations of Parameters ..65

Annex A (normative): OMG IDL Description of Mobility SCF..66

Annex B (informative): Differences between this draft and 3GPP 29.198 R99................................67

History ..69

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)6Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)7Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the Mobility Service Capability Feature (SCF) aspects of the interface. All aspects of the
Mobility SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)8Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Mobility SCF
The following sections describe each aspect of the Mobility Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented.

• The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

• The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data definitions section show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification.

5 Sequence Diagrams

5.1 User Location Sequence Diagrams

5.1.1 User Location Interrogation - Triggered Request

The following sequence diagram shows how an application requests triggered location reports from the User Location
service. When users location changes, the service reports this to the application.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)9Release 4

 : IpAppTriggeredUserLocation : IpTriggeredUserLocation

1: triggeredLocationReportingStartReq()

4: triggeredLocationReportingStop()

2: triggeredLocationReport()

3: triggeredLocationReport()

New reports are sent until the
triggered reporting is stopped

1: This message is used to start triggered location reporting for one or several users.

2: When the trigger condition is fulfilled then this message passes the location of the affected user to its callback
object.

3: This is repeated until the application stops triggered location reporting (see next message).

4: This message is used to stop triggered location reporting.

5.1.2 User Location Interrogation - Periodic Request

The following sequence diagram shows how an application requests periodic location reports from the User Location
service.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)10Release 4

 : IpAppUserLocation : IpUserLocation

1: periodicLocat ionReportingStartReq()

2: periodicLocationReport()

3: periodicLocationReport()

New reports are sent until the
periodic reporting is stopped

4: periodicLocationReportingStop()

1: This message is used to start periodic location reporting for one or several users.

2: This message passes the location of one or several users to its callback object.

3: This message passes the location of one or several users to its callback object.

This is repeated at regular intervals until the application stops periodic location reporting (see next message).

4: This message is used to stop periodic location reporting.

5.1.3 User Location Interrogation - Parameter Error

The following sequence diagram show a scenario where the application is requesting a location report from the User
Location service but there is at least one error in the parameters that is detected by the service. The scenarios for:

· extendedLocationReportReq

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)11Release 4

· periodicLocationReportingStartReq

are similar and therefore not shown.

: IpAppUserLocation : IpUserLocation

1: locationReportReq()

The scenarios for:
· extendedLocationReport_Req
· periodicLocationReportingStart_Req
are similar and therefore not shown.

1: This message is used to request the location of one or several users, but the service returns an error and the
execution of the request is aborted.

5.1.4 User Location Interrogation - Network Error

The following sequence diagram shows a scenario where the application is requesting a location report from the User
Location service, but a network error occurs. The scenarios for:

· extendedLocationReportReq

· periodicLocationReportingStartReq

are similar and therefore not shown.

 : IpAppUserLocation : IpUserLocation

1: locationReportReq()

2: locationReportErr()

The scenarios for:
· extendedLocationReport_Req
· periodicLocationReportingStart_Req
are similar and therefore not shown.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)12Release 4

1: This message is used to request the location of one or several users.

2: This message passes information about the error in the location request from the network to the callback object.

5.1.5 User Location Interrogation - Interactive Request

The following sequence diagram shows how an application requests a location report from the User Location service.

 : IpAppUserLocation : IpUserLocation

2: locationReportRes()

1: locationReportReq()

1: This message is used to request the location of one or several users.

2: This message passes the result of the location request for one or several users to its callback object.

5.2 User Location Camel Sequence Diagrams

5.2.1 User Location Camel Interrogation - Triggered Request

The following sequence diagram shows how an application requests triggered location reports from the User Location
Camel service. When users location changes, the service reports this to the application.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)13Release 4

 : IpAppUserLocationCamel : IpUserLocationCamel

1: triggeredLocationReportingStartReq()

2: triggeredLocat ionReport()

3: triggeredLocat ionReport()

New reports are sent unti l the
t riggered reporting is stopped

4: triggeredLocationReportingStop()

1: This message is used to start triggered location reporting for one or several users.

2: When the trigger condition is fulfilled then this message passes the location of the affected user to its callback
object.

3: This is repeated until the application stops triggered location reporting (see next message).

4: This message is used to stop triggered location reporting.

5.2.2 User Location Camel Interrogation - Periodic Request

The following sequence diagram shows how an application requests periodic location reports from the User Location
Camel service.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)14Release 4

 : IpAppUserLocationCamel : IpUserLocationCamel

1: periodicLocat ionReportingStartReq()

2: periodicLocationReport()

3: periodicLocationReport()

New reports are sent unt il the
periodic reporting is stopped

4: periodicLocat ionReportingStop()

1: This message is used to start periodic location reporting for one or several users.

2: This message passes the location of one or several users to its callback object.

3: This message passes the location of one or several users to its callback object.

This is repeated at regular intervals until the application stops periodic location reporting (see next message).

4: This message is used to stop periodic location reporting.

5.2.3 User Location Camel Interrogation - Parameter Error

The following sequence diagram show a scenario where the application is requesting a location report from the User
Location Camel service but there is at least one error in the parameters that is detected by the service. The scenarios
for:

· periodicLocationReportingStartReq

are similar and therefore not shown.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)15Release 4

 : IpAppUserLocationCamel : IpUserLocationCamel

1: locationReportReq()

The scenarios for:
· periodicLocationReportingStart_Req
are similar and therefore not shown.

1: This message is used to request the location of one or several users, but the service returns an error and the
execution of the request is aborted.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)16Release 4

5.2.4 User Location Camel Interrogation - Network Error

The following sequence diagram shows a scenario where the application is requesting a location report from the User
Location Camel service, but a network error occurs. The scenarios for:

· periodicLocationReportingStartReq

are similar and therefore not shown.

 : IpAppUserLocationCamel : IpUserLocationCamel

1: locationReportReq()

2: locationReportErr()

The scenarios for:
· extendedLocat ionReport_Req
· periodicLocat ionReportingStart_Req
are similar and therefore not shown.

1: This message is used to request the location of one or several users.

2: This message passes information about the error in the location request from the network to the callback object.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)17Release 4

5.2.5 User Location Camel Interrogation - Interactive Request

The following sequence diagram shows how an application requests a location report from the User Location Camel
service.

 : IpAppUserLocationCamel : IpUserLocationCamel

1: locat ionReportReq()

2: locationReportRes()

1: This message is used to request the location of one or several users.

2: This message passes the result of the location request for one or several users to its callback object.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)18Release 4

5.3 User Status Sequence Diagrams

5.3.1 Triggered Reporting

The following sequence diagram shows how an application requests triggered status reports from the Status Location
service. When user's status changes, the service reports this to the application.

 : IpAppUserStatus : IpUserStatus

1: triggeredStatusReportingStartReq()

2: triggeredStatusReport()

3: triggeredStatusReport()

4: triggeredStatusReportingStop()

New reports are sent until the
triggered reporting is stopped

1: This message is used to start triggered status reporting for one or several users.

2: When a user's status changes, this message passes the status to its callback object.

3: This is repeated until the application stops triggered status reporting (see next message).

4: This message is used to stop triggered status reporting.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)19Release 4

5.3.2 Interactive Request Parameter Error

The following sequence diagram shows, how an application requests a status report from the User Status service, but
the service discovers an error and returns an error code.

: IpAppUserStatus : IpUserStatus

1: statusReportReq()

The method is returning an
error code.

5.3.3 Interactive Request Network Error

The following sequence diagram shows, how an application requests a status report from the User Status service, but
later, when the request is processed, the service discovers an error and calls an error method.

 : IpAppUserStatus : IpUserStatus

1: statusReportReq()

2: statusReportErr()

An error has occured while
processing the request and an
error method is called.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)20Release 4

5.3.4 Interactive Request

The following sequence diagram shows how an application requests a status report from the User Status service.

 : IpAppUserStatus : IpUserStatus

1: statusReportReq()

2: statusReportRes()

1: This message is used to request the status of one or several users.

2: This message passes the result of the status request to its callback object.

6 Class Diagrams

6.1 User Location Class Diagrams
This class diagram shows the relationship between the interfaces in the User Location service. IpTriggeredUserLocation
inherits from IpUserLocation, and IpAppTriggeredUserLocation inherits from IpAppUserLocation.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)21Release 4

IpAppUserLocation

locationReportRes()
locationReportErr()
extendedLocationReportRes()
extendedLocationReportErr()
periodicLocationReport()
periodicLocationReportErr()

(from ul)

<<Interface>>

IpAppTriggeredUserLocation

triggeredLocationReport()
triggeredLocationReportErr()

(from ul)

<<Interface>>

IpUserLocation

locationReportReq()
extendedLocationReportReq()
periodicLocationReportingStartReq()
periodicLocationReportingStop()

(from ul)

<<Interface>>

IpTriggeredUserLocation

triggeredLocationReportingStartReq()
triggeredLocationReportingStop()

(from ul)

<<Interface>>

Figure 1: User Location Class Diagram

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)22Release 4

6.2 User Location Camel Class Diagrams
This class diagram shows the interfaces for the User Location Camel service.

IpAppUserLocationCamel

locationReportRes()
locationReportErr()
periodicLocationReport()
periodicLocationReportErr()
triggeredLocationReport()
triggeredLocationReportEr...

from ulc)

<<Interface>>

IpUserLocationCamel

locationReportReq()
periodicLocationReportingStartReq()
periodicLocationReportingStop()
triggeredLocationReportingStartRe...
triggeredLocationReportingStop()

from ulc)

<<Interface>>

Figure 2: User Location Camel Class Diagram

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)23Release 4

6.3 User Status Class Diagrams
This class diagram shows the interfaces for the User Status service.

IpAppUserStatus

statusReportRes()
statusReportErr()
triggeredStatusReport()
triggeredStatusReportErr()

(from us)

<<Interface>>

IpUserStatus

statusReportReq()
triggeredStatusReportingStartReq()
triggeredStatusReportingStop()

(from us)

<<Interface>>

Figure 3: User Status Class Diagram

7 The Service Interface Specifications

7.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)24Release 4

7.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)25Release 4

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpGeneralException

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)26Release 4

8 Mobility Interface Classes

8.1 User Location Interface Classes
The User Location service (UL) provides a general geographic location service. UL has functionality to allow
applications to obtain the geographical location and the status of fixed, mobile and IP based telephony users.

UL is supplemented by User Location Camel service (ULC) to provide information about network related information.
There is also some specialised functionality to handle emergency calls in the User Location Emergency service (ULE).

The UL service provides the IpUserLocation and IpTriggeredUserLocation interfaces. Most methods are asynchronous,
in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle
many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must
implement IpAppUserLocation and IpAppTriggeredUserLocation interfaces to provide the callback mechanism.

When periodic or triggered location reporting is used, errors may be reported either when the recurrent reporting is
requested, as an error per user in reports or in the corresponding err-method when the error concerns all subscribers in
an assignment.

8.1.1 Interface Class IpUserLocation

Inherits from: IpService.

This interface is the 'service manager' interface for the User Location Service.

The user location interface provides the management functions to the user location service. The application programmer
can use this interface to obtain the geographical location of users.

<<Interface>>

IpUserLocation

locationReportReq (appLocation : in IpAppUserLocationRef, users : in TpAddressSet, assignmentId : out
TpSessionIDRef) : TpResult

extendedLocationReportReq (appLocation : in IpAppUserLocationRef, users : in TpAddressSet, request : in
TpLocationRequest, assignmentId : out TpSessionIDRef) : TpResult

periodicLocationReportingStartReq (appLocation : in IpAppUserLocationRef, users : in TpAddressSet,
request : in TpLocationRequest, reportingInterval : in TpDuration, assignmentId : out TpSessionIDRef) :
TpResult

periodicLocationReportingStop (stopRequest : in TpMobilityStopAssignmentData) : TpResult

Method
locationReportReq()

Request of a report on the location for one or several users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)27Release 4

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available. The application may try to invoke the method at a later time.

P_USER_NOT_SUBSCRIBED

The end-user is not subscribed to the application.

P_APPLICATION_NOT_ACTIVATED

The end-user has de-activated the application.

P_USER_PRIVACY

The requests violates the end-user's privacy setting.

Parameters

appLocation : in IpAppUserLocationRef

Specifies the application interface for callbacks from the User Location service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the location-report request.

Raises

TpGeneralException

Method
extendedLocationReportReq()

Advanced request of report on the location for one or several users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available. The application may try to invoke the method at a later time.

P_USER_NOT_SUBSCRIBED

The end-user is not subscribed to the application.

P_APPLICATION_NOT_ACTIVATED

The end-user has de-activated the application.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)28Release 4

P_USER_PRIVACY

The requests violates the end-user's privacy setting.

Parameters

appLocation : in IpAppUserLocationRef

Specifies the application interface for callbacks from the User Location service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported

request : in TpLocationRequest

Specifies among others the requested location type, accuracy, response time and priority.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the extended location-report request.

Raises

TpGeneralException

Method
periodicLocationReportingStartReq()

Request of periodic reports on the location for one or several users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available. The application may try to invoke the method at a later time.

P_USER_NOT_SUBSCRIBED

The end-user is not subscribed to the application.

P_APPLICATION_NOT_ACTIVATED

The end-user has de-activated the application.

P_USER_PRIVACY

The requests violates the end-user's privacy setting.

Parameters

appLocation : in IpAppUserLocationRef

Specifies the application interface for callbacks from the User Location service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)29Release 4

request : in TpLocationRequest

Specifies among others the requested location type, accuracy, response time and priority.

reportingInterval : in TpDuration

Specifies the requested interval in seconds between the reports.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the periodic location-reporting request.

Raises

TpGeneralException

Method
periodicLocationReportingStop()

Termination of periodic reports on the location for one or several users.

Raises the following exceptions:

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

stopRequest : in TpMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Raises

TpGeneralException

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)30Release 4

8.1.2 Interface Class IpAppUserLocation

Inherits from: IpInterface.

The user-location application interface is implemented by the client application developer and is used to handle user
location request responses.

<<Interface>>

IpAppUserLocation

locationReportRes (assignmentId : in TpSessionID, locations : in TpUserLocationSet) : TpResult

locationReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

extendedLocationReportRes (assignmentId : in TpSessionID, locations : in TpUserLocationExtendedSet) :
TpResult

extendedLocationReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

periodicLocationReport (assignmentId : in TpSessionID, locations : in TpUserLocationExtendedSet) :
TpResult

periodicLocationReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

Method
locationReportRes()

A report containing locations for one or several users is delivered.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the location-report request.

locations : in TpUserLocationSet

Specifies the location(s) of one or several users.

Raises

TpGeneralException

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)31Release 4

Method
locationReportErr()

This method indicates that the location report request has failed.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed location report request.

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method
extendedLocationReportRes()

A report containing extended location information for one or several users is delivered.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the extended location-report request.

locations : in TpUserLocationExtendedSet

Specifies the location(s) of one or several users.

Raises

TpGeneralException

Method
extendedLocationReportErr()

This method indicates that the extended location report request has failed.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed extended location report request.

cause : in TpMobilityError

Specifies the error that led to the failure.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)32Release 4

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method
periodicLocationReport()

A report containing periodic location information for one or several users is delivered.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the periodic location-reporting request.

locations : in TpUserLocationExtendedSet

Specifies the location(s) of one or several users.

Raises

TpGeneralException

Method
periodicLocationReportErr()

This method indicates that a requested periodic location report has failed. Note that errors only concerning individual
users are reported in the ordinary periodicLocationReport() message.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed periodic location reporting start request.

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

8.1.3 Interface Class IpTriggeredUserLocation

Inherits from: IpUserLocation.

This interface can be used as an extended version of the User Location: Service Interface.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)33Release 4

The triggered user location interface represents the interface to the triggered user location functions. The application
programmer can use this interface to request user location reports that are triggered by location change.

<<Interface>>

IpTriggeredUserLocation

triggeredLocationReportingStartReq (appLocation : in IpAppUserLocationRef, users : in TpAddressSet,
request : in TpLocationRequest, triggers : in TpLocationTriggerSet, assignmentId : out TpSessionIDRef)
: TpResult

triggeredLocationReportingStop (stopRequest : in TpMobilityStopAssignmentData) : TpResult

Method
triggeredLocationReportingStartReq()

Request for user location reports when the location is changed (reports are triggered by location change).

Parameters

appLocation : in IpAppUserLocationRef

Specifies the application interface for callbacks from the User Location service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

request : in TpLocationRequest

Specifies among others the requested location type, accuracy, response time and priority.

triggers : in TpLocationTriggerSet

Specifies the trigger conditions.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the triggered location-reporting request.

Raises

TpGeneralException

Method
triggeredLocationReportingStop()

Stop triggered user location reporting.

Parameters

stopRequest : in TpMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)34Release 4

Raises

TpGeneralException

8.1.4 Interface Class IpAppTriggeredUserLocation

Inherits from: IpAppUserLocation.

This interface must be used as a specialised version of the User Location: Application Interface if the Triggered User
Location: Service Interface is used.

The triggered user location application interface is implemented by the client application developer and is used to
handle triggered location reports.

<<Interface>>

IpAppTriggeredUserLocation

triggeredLocationReport (assignmentId : in TpSessionID, location : in TpUserLocationExtended, criterion : in
TpLocationTriggerCriteria) : TpResult

triggeredLocationReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

Method
triggeredLocationReport()

A triggered report containing location for a user is delivered.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the triggered location-reporting request.

location : in TpUserLocationExtended

Specifies the location of the user.

criterion : in TpLocationTriggerCriteria

Specifies the criterion that triggered the report.

Raises

TpGeneralException

Method
triggeredLocationReportErr()

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)35Release 4

This method indicates that a requested triggered location report has failed. Note that errors only concerning individual
users are reported in the ordinary triggeredLocationReport() message.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed triggered location reporting start request.

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

8.2 User Location Camel Interface Classes
The ULC provides location information, based on network-related information, rather than the geographical co-
ordinates that can be retrieved via the general User Location Service.

Using the ULC functions, an application programmer can request the VLR Number, the location Area Identification and
the Cell Global Identification and other mobile-telephony-specific location information

The ULC provides the IpUserLocationCamel interface. Most methods are asynchronous, in that they do not lock a
thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one
that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppUserLocationCamel interface to provide the callback mechanism.

8.2.1 Interface Class IpUserLocationCamel

Inherits from: IpService.

This interface is the 'service manager' interface for ULC.

<<Interface>>

IpUserLocationCamel

locationReportReq (appLocationCamel : in IpAppUserLocationCamelRef, users : in TpAddressSet,
assignmentId : out TpSessionIDRef) : TpResult

periodicLocationReportingStartReq (appLocationCamel : in IpAppUserLocationCamelRef, users : in
TpAddressSet, reportingInterval : in TpDuration, assignmentId : out TpSessionIDRef) : TpResult

periodicLocationReportingStop (stopRequest : in TpMobilityStopAssignmentData) : TpResult

triggeredLocationReportingStartReq (appLocationCamel : in IpAppUserLocationCamelRef, users : in
TpAddressSet, trigger : in TpLocationTriggerCamel, assignmentId : out TpSessionIDRef) : TpResult

triggeredLocationReportingStop (stopRequest : in TpMobilityStopAssignmentData) : TpResult

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)36Release 4

Method
locationReportReq()

Request for mobile-related location information on one or several camel users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available. The application may try to invoke the method at a later time.

P_USER_NOT_SUBSCRIBED

The end-user is not subscribed to the application.

P_APPLICATION_NOT_ACTIVATED

The end-user has de-activated the application.

P_USER_PRIVACY

The requests violates the end-user's privacy setting.

Parameters

appLocationCamel : in IpAppUserLocationCamelRef

Specifies the application interface for callbacks from the User Location Camel service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the location-report request.

Raises

TpGeneralException

Method
periodicLocationReportingStartReq()

Request for periodic mobile location reports on one or several users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)37Release 4

The required resources in the network are not available. The application may try to invoke the method at a later time.

P_USER_NOT_SUBSCRIBED

The end-user is not subscribed to the application.

P_APPLICATION_NOT_ACTIVATED

The end-user has de-activated the application.

P_USER_PRIVACY

The requests violates the end-user's privacy setting.

Parameters

appLocationCamel : in IpAppUserLocationCamelRef

Specifies the application interface for callbacks from the User Location Camel service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

reportingInterval : in TpDuration

Specifies the requested interval in seconds between the reports.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the periodic location-reporting request.

Raises

TpGeneralException

Method
periodicLocationReportingStop()

This method stops the sending of periodic mobile location reports for one or several users.

Raises the following exceptions:

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

stopRequest : in TpMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Raises

TpGeneralException

Method
triggeredLocationReportingStartReq()

Request for user location reports, containing mobile related information, when the location is changed (the report is
triggered by the location change).

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)38Release 4

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available. The application may try to invoke the method at a later time.

P_USER_NOT_SUBSCRIBED

The end-user is not subscribed to the application.

P_APPLICATION_NOT_ACTIVATED

The end-user has de-activated the application.

P_USER_PRIVACY

The requests violates the end-user's privacy setting.

Parameters

appLocationCamel : in IpAppUserLocationCamelRef

Specifies the application interface for callbacks from the User Location Camel service.

users : in TpAddressSet

Specifies the user(s) for which the location shall be reported.

trigger : in TpLocationTriggerCamel

Specifies the trigger conditions.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the triggered location-reporting request.

Raises

TpGeneralException

Method
triggeredLocationReportingStop()

Request that triggered mobile location reporting should stop.

Raises the following exceptions:

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

stopRequest : in TpMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)39Release 4

Raises

TpGeneralException

8.2.2 Interface Class IpAppUserLocationCamel

Inherits from: IpInterface.

The user location Camel application interface is implemented by the client application developer and is used to handle
location reports that are specific for mobile telephony users.

<<Interface>>

IpAppUserLocationCamel

locationReportRes (assignmentId : in TpSessionID, locations : in TpUserLocationCamelSet) : TpResult

locationReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

periodicLocationReport (assignmentId : in TpSessionID, locations : in TpUserLocationCamelSet) : TpResult

periodicLocationReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

triggeredLocationReport (assignmentId : in TpSessionID, location : in TpUserLocationCamel, criterion : in
TpLocationTriggerCamel) : TpResult

triggeredLocationReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

Method
locationReportRes()

Delivery of a mobile location report. The report is containing mobile-related location information for one or several
users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the location-report request.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)40Release 4

locations : in TpUserLocationCamelSet

Specifies the location(s) of one or several users.

Raises

TpGeneralException

Method
locationReportErr()

This method indicates that the location report request has failed.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed location report request.

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method
periodicLocationReport()

Periodic delivery of mobile location reports. The reports are containing mobile-related location information for one or
several users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the periodic location-reporting request.

locations : in TpUserLocationCamelSet

Specifies the location(s) of one or several users.

Raises

TpGeneralException

Method
periodicLocationReportErr()

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)41Release 4

This method indicates that a requested periodic location report has failed. Note that errors only concerning individual
users are reported in the ordinary periodicLocationReport() message.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed periodic location reporting start request.

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method
triggeredLocationReport()

Delivery of a report that is indicating that the user's mobile location has changed.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the triggered location-reporting request.

location : in TpUserLocationCamel

Specifies the location of the user.

criterion : in TpLocationTriggerCamel

Specifies the criterion that triggered the report.

Raises

TpGeneralException

Method
triggeredLocationReportErr()

This method indicates that a requested triggered location report has failed. Note that errors only concerning individual
users are reported in the ordinary triggeredLocationReport() message.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed triggered location reporting start request.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)42Release 4

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

8.3 User Status Interface Classes
The User Status Service (US) provides a general user status service. US allow applications to obtain the status of fixed,
mobile and IP-based telephony users.

The US provides the IpUserStatus interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses
synchronous message calls. To handle responses and reports, the developer must implement IpAppUserStatus interface
to provide the callback mechanism.

8.3.1 Interface Class IpAppUserStatus

Inherits from: IpInterface.

The user-status application interface is implemented by the client application developer and is used to handle user status
reports.

<<Interface>>

IpAppUserStatus

statusReportRes (assignmentId : in TpSessionID, status : in TpUserStatusSet) : TpResult

statusReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

triggeredStatusReport (assignmentId : in TpSessionID, status : in TpUserStatus) : TpResult

triggeredStatusReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : TpResult

Method
statusReportRes()

Delivery of a report, that is containing one or several user's status.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)43Release 4

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the status-report request.

status : in TpUserStatusSet

Specifies the status of one or several users.

Raises

TpGeneralException

Method
statusReportErr()

This method indicates that the status report request has failed.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed status report request.

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method
triggeredStatusReport()

Delivery of a report that is indicating that a user's status has changed.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the triggered status-reporting request.

status : in TpUserStatus

Specifies the status of the user.

Raises

TpGeneralException

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)44Release 4

Method
triggeredStatusReportErr()

This method indicates that a requested triggered status reporting has failed. Note that errors only concerning individual
users are reported in the ordinary triggeredStatusReport() message.

Parameters

assignmentId : in TpSessionID

Specifies the assignment ID of the failed triggered status reporting start request.

cause : in TpMobilityError

Specifies the error that led to the failure.

diagnostic : in TpMobilityDiagnostic

Specifies additional information about the error that led to the failure.

8.3.2 Interface Class IpUserStatus

Inherits from: IpService.

The application programmer can use this interface to obtain the status of fixed, mobile and IP-based telephony users.

<<Interface>>

IpUserStatus

statusReportReq (appStatus : in IpAppUserStatusRef, users : in TpAddressSet, assignmentId : out
TpSessionIDRef) : TpResult

triggeredStatusReportingStartReq (appStatus : in IpAppUserStatusRef, users : in TpAddressSet,
assignmentId : out TpSessionIDRef) : TpResult

triggeredStatusReportingStop (stopRequest : in TpMobilityStopAssignmentData) : TpResult

Method
statusReportReq()

Request for a report on the status of one or several users.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available. The application may try to invoke the method at a later time.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)45Release 4

Parameters

appStatus : in IpAppUserStatusRef

Specifies the application interface for callbacks from the User Status service.

users : in TpAddressSet

Specifies the user(s) for which the status shall be reported.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the status-report request.

Raises

TpGeneralException

Method
triggeredStatusReportingStartReq()

Request for triggered status reports when one or several user's status is changed. The user status service will send a
report when the status changes.

Raises the following exceptions:

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available. The application may try to invoke the method at a later time.

Parameters

appStatus : in IpAppUserStatusRef

Specifies the application interface for callbacks from the User Status service.

users : in TpAddressSet

Specifies the user(s) for which the status changes shall be reported.

assignmentId : out TpSessionIDRef

Specifies the assignment ID of the triggered status-reporting request.

Raises

TpGeneralException

Method
triggeredStatusReportingStop()

This method stops the sending of status reports for one or several users.

Raises the following exceptions:

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)46Release 4

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Parameters

stopRequest : in TpMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Raises

TpGeneralException

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)47Release 4

9 State Transition Diagrams

9.1 User Location
There are no State Transition Diagrams for User Location.

9.2 User Location Camel

9.2.1 State Transition Diagrams for IpUserLocationCamel

During the signServiceAgreement a new user location interface reference is created, which is user as the initial point of
contact for the application.

Active"new"

Creat ion of User Location
Camel by Service Factory

terminateServiceAgreement

locationReportReq
periodicLocationReportingStartReq

periodicLocationReportingStop
triggeredLocationReportingStartReq

triggeredLocationReportingStop

Figure : State Transition Diagram for User Location Camel

9.2.1.1 Active State

In this state, a relation between the Application and the Network User Location Service Capability Feature has been
established. It allows the application to request a specific user location reports, subscribe to periodic user location
reports or subscribe to triggers that generate location report when a location update occurs inside the current VLR area
or when the user moves to another VLR area or both.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)48Release 4

9.3 User Status

9.3.1 State Transition Diagrams for IpUserStatus

Active"new"

terminateServiceAgreement

statusReportReq
triggeredStatusReportingStartReq
triggeredStatusReportingStop

Creation of User Status
by Service Factory

Figure : State Transition Diagram for User Status

9.3.1.1 Active State

In this state, a relation between the Application and the User Status Service Capability Feature has been established. It
allows the application to request a specific user status report or subscribe to triggers that generate status reports when
the status of one of the monitored user changes.

10 Service Properties

10.1 Mobility Properties

10.1.1 Emergency1 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see
definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

1 See definition of ‘LCS Client Type’ in GSM 09.02.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)49Release 4

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

10.1.2 Value Added2 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see
definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

10.1.3 PLMN Operator3 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see
definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

10.1.4 Lawful Intercept4 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see
definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

10.1.5 Altitude Obtainable

Indicates whether it is possible to obtain a user’s altitude.

10.1.6 Location Methods

List of supported location methods. Possible values (other values are permitted):

• “Time of Arrival”

• “Timing Advance”

• “GPS”

2 See definition of ‘LCS Client Type’ in GSM 09.02.
3 See definition of ‘LCS Client Type’ in GSM 09.02.
4 See definition of ‘LCS Client Type’ in GSM 09.02.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)50Release 4

• “User Data Lookup”

• “Any Time Interrogation”

10.1.7 Priorities

List of supported priorities for location requests. Possible values (no other values are permitted):

• “Normal”

• “High”

10.1.8 Max Interactive Requests

The maximum number of parallel outstanding location or status requests allowed per application. It shall be possible to
convert the value to a 32-bit integer.

10.1.9 Max Triggered Users

The maximum number of users allowed per application for which triggered location reporting can be requested. It shall
be possible to convert the value to a 32-bit integer.

10.1.10 Max Periodic Users

The maximum number of users allowed per application for which periodic location reporting can be requested. It shall
be possible to convert the value to a 32-bit integer.

10.1.11 Min Periodic Interval Duration

The minimal time in seconds allowed between two periodic reports. It shall be possible to convert the value to a 32-bit
integer.

10.2 User Location Service Properties
A specific User Location service shall set the following properties:

• General Properties applicable to all SCFs (in Framework)

• Permitted application types

• Permitted application subtypes

• Priorities5

• Altitude obtainable

• Location methods

• Max interactive requests

• Max triggered users

• Max periodic users

• Min periodic interval duration

5 See definition of ‘LCSClientType’ in GSM 09.02.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)51Release 4

Example

The example below describes the capabilities of two fictive User Location services:

Property Name Property Value
Service 1

Property Value
Service 2

Service instance ID 0x80923AD0 0xF0ED85CB
Service name UserLocation UserLocation
Service version 2.1 2.1
Service description Basic user location

service.
Advanced high-performance user

location service.
Product name Find It Locate.com
Product version 1.3 3.1
Supported interfaces “IpUserLocation” “IpUserLocation”
Permitted application types “Emergency service”,

“Value added service”
“Emergency service”, “Value

added service”, “Lawful intercept
service”

Permitted application subtypes ? ?
Priorities “Normal” “Normal”, “High”
Altitude obtainable False True
Location methods “Timing Advance” “GPS”, “Time Of Arrival”
Max interactive requests 2000 10000
Max triggered users 0 2000
Max periodic users 300 2000
Min periodic interval duration 600 30

10.3 User Location Camel Service Properties
A specific User Location Camel service shall set the following properties:

• General Properties applicable to all SCFs (in Framework)

• Max interactive requests

• Max triggered users

• Max periodic users

• Min periodic interval duration

10.4 User Status Service Properties
A specific User Location service shall set the following properties:

• General Properties applicable to all SCFs (in Framework)

• Max interactive requests

• Max triggered users

11 Data Definitions

11.1 Common Mobility Data Definitions
The following data definitions are used for several of the mobility services.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)52Release 4

11.1.1 TpGeographicalPosition

TpGeographicalPosition

Defines the Sequence of Data Elements that specify a geographical position.

The horizontal location is defined by an “ellipsoid point with uncertainty shape”. The reference system chosen for the
coding of locations is the World Geodetic System 1984 (WGS 84).

TypeOfUncertaintyShape describes the type of the uncertainty shape and Longitude/Latitude defines the position of the
uncertainty shape. The following table defines the meaning of the data elements that describe the uncertainty shape for
each uncertainty shape type.

Type of
uncertainty

shape

Uncertainty
Outer
Semi

Major

Uncertainty
Outer
Semi

Minor

Uncertainty
Inner
Semi

Major

Uncertainty
Inner
Semi

Minor

Angle Of
Semi Major

Segment
Start Angle

Segment End
Angle

None - - - - - - -

Circle radius of
circle

- - - - - -

Circle
Sector

radius of
circle

- - - - start angle of
circle

segment

end angle of
circle

segment

Circle Arc
Stripe

radius of
outer circle

- radius of
inner circle

- - start angle of
circle arc

stripe

end angle of
circle arc

stripe

Ellipse length of
semi-major

axis

length of
semi-minor

axis

- - rotation of
ellipse

measured
clockwise
from north

- -

Ellipse
Sector

length of
semi-major

axis

length of
semi-minor

axis

- - rotation of
ellipse

measured
clockwise
from north

start angle of
ellipse

segment

end angle of
ellipse

segment

Ellipse Arc
Stripe

length of
semi-major
axis, outer

ellipse

length of
semi-minor
axis, outer

ellipse

length of
semi-major
axis, inner

ellipse

length of
semi-minor
axis, inner

ellipse

rotation of
ellipse

measured
clockwise
from north

start angle of
ellipse arc

stripe

end angle of
ellipse arc

stripe

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)53Release 4

angle of
semi major

North

segment
end angle

segment
start angle

inner
semi-minor

axis

outer
semi-minor

axis

outer
semi-major

axis

inner semi-
major axis

Area

Figure 4 Description of an Ellipse Arc

TpGeographicalPosition:

Sequence Element Name Sequence Element Type

Longitude TpFloat

Latitude TpFloat

TypeOfUncertaintyShape TpLocationUncertaintyShape

UncertaintyInnerSemiMajor TpFloat

UncertaintyOuterSemiMajor TpFloat

UncertaintyInnerSemiMinor TpFloat

UncertaintyOuterSemiMinor TpFloat

AngleOfSemiMajor TpInt32

SegmentStartAngle TpInt32

SegmentEndAngle TpInt32

11.1.2 TpLocationPriority

TpLocationPriority

Defines the priority of a location request.

Name Value Description

P_M_NORMAL 0 Normal

P_M_HIGH 1 High

11.1.3 TpLocationRequest

TpLocationRequest

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)54Release 4

Defines the Sequence of Data Elements that specify a location request.

Sequence Element Name Sequence Element Type Description

RequestedAccuracy TpFloat Requested accuracy in meters.

RequestedResponseTime TpLocationResponseTime Requested response time as a classified reqirement
or as an absolute timer.

AltitudeRequested TpBoolean Altitude request flag.

Type TpLocationType The kind of location that is requested.

Priority TpLocationPriority Priority of location request.

RequestedLocationMethod TpString The kind of location method that is requested.

11.1.4 TpLocationResponseIndicator

TpLocationResponseIndicator

Defines a response time requirement.

Name Value Description

P_M_NO_DELAY 0 No delay: return either initial or last known location of the user.

P_M_LOW_DELAY 1 Low delay: return the current location with minimum delay. The mobility
service shall attempt to fulfil any accuracy requirement, but in doing so

shall not add any additional delay.

P_M_DELAY_TOLERANT 2 Delay tolerant: obtain the current location with regard to fulfilling the
accuracy requirement.

P_M_USE_TIMER_VALUE 3 Use timer value: obtain the current location with regard to fulfilling the
response time requirement.

11.1.5 TpLocationResponseTime

TpLocationResponseTime

Defines the Sequence of Data Elements that specify the application’s requirements on the mobility service’s
response time.

Sequence Element Name Sequence Element Type Description

ResponseTime TpLocationResponseIndicator Indicator for which kind of response time that is
required, see TpLocationResponseIndicator.

TimerValue TpInt32 Optional timer used in combination
when ResponseTime equals

P_M_USE_TIMER_VALUE.

11.1.6 TpLocationType

TpLocationType

Defines the type of location requested.

Name Value Description

P_M_CURRENT 0 Current location

P_M_CURRENT_OR_LAST_KNOWN 1 Current or last known location

P_M_INITIAL 2 Initial location for an emergency services call

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)55Release 4

11.1.7 TpLocationUncertaintyShape

TpLocationUncertaintyShape

Defines the type of uncertainty shape.

Name Value Description

P_M_SHAPE_NONE 0 No uncertainty shape present.

P_M_SHAPE_CIRCLE 1 Uncertainty shape is a circle.

P_M_SHAPE_CIRCLE_SECTOR 2 Uncertainty shape is a circle sector.

P_M_SHAPE_CIRCLE_ARC_STRIPE 3 Uncertainty shape is a circle arc stripe.

P_M_SHAPE_ELLIPSE 4 Uncertainty shape is an ellipse.

P_M_SHAPE_ELLIPSE_SECTOR 5 Uncertainty shape is an ellipse sector.

P_M_SHAPE_ELLIPSE_ARC_STRIPE 6 Uncertainty shape is an ellipse arc stripe.

11.1.8 TpMobilityDiagnostic

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)56Release 4

TpMobilityDiagnostic

Defines a diagnostic value that is reported in addition to an error by one of the mobility services.

Name Value Description

P_M_NO_INFORMATION 0 No diagnostic information present.
Valid for all type of errors.

P_M_APPL_NOT_IN_PRIV_EXCEPT_LST 1 Application not in privacy exception list.
Valid for ‘Unauthorised Application’ error.

P_M_CALL_TO_USER_NOT_SETUP 2 Call to user not set-up.
Valid for ‘Unauthorised Application’ error.

P_M_PRIVACY_OVERRIDE_NOT_APPLIC 3 Privacy override not applicable.
Valid for ‘Unauthorised Application’ error.

P_M_DISALL_BY_LOCAL_REGULAT_REQ 4 Disallowed by local regulatory requirements.
Valid for ‘Unauthorised Application’ error.

P_M_CONGESTION 5 Congestion.
Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_RESOURCES 6 Insufficient resources.
Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_MEAS_DATA 7 Insufficient measurement data.
Valid for ‘Position Method Failure’ error.

P_M_INCONSISTENT_MEAS_DATA 8 Inconsistent measurement data.
Valid for ‘Position Method Failure’ error.

P_M_LOC_PROC_NOT_COMPLETED 9 Location procedure not completed.
Valid for ‘Position Method Failure’ error.

P_M_LOC_PROC_NOT_SUPP_BY_USER 10 Location procedure not supported by user.
Valid for ‘Position Method Failure’ error.

P_M_QOS_NOT_ATTAINABLE 11 Quality of service not attainable.
Valid for ‘Position Method Failure’ error.

11.1.9 TpMobilityError

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)57Release 4

TpMobilityError

Defines an error that is reported by one of the mobility services.

Name Value Description Fatal

P_M_OK 0 No error occurred while processing the request. N/A

P_M_SYSTEM_FAILURE 1 System failure.
The request can not be handled because of a general problem in

the mobility service or the underlying network.

Yes

P_M_UNAUTHORIZED_NETWORK 2 Unauthorised network,
The requesting network is not authorised to obtain the user’s

location or status.

No

P_M_UNAUTHORIZED_APPLICATION 3 Unauthorised application.
The application is not authorised to obtain the user’s location or

status.

Yes

P_M_UNKNOWN_SUBSCRIBER 4 Unknown subscriber.
The user is unknown, i.e. no such subscription exists.

Yes

P_M_ABSENT_SUBSCRIBER 5 Absent subscriber.
The user is currently not reachable.

No

P_M_POSITION_METHOD_FAILURE 6 Position method failure.
The mobility service failed to obtain the user’s position.

No

11.1.10 TpMobilityStopAssignmentData

TpMobilityStopAssignmentData

Defines the Sequence of Data Elements that specify a request to stop whole or parts of an assignment.
Assignments are used for periodic or triggered reporting of a user's location or status.

Note that the parameter ‘Users’ is optional. If the parameter ‘StopScope’ is set to P_M_ALL_IN_ASSIGNMENT the
parameter ‘Users’ is undefined. If the parameter 'StopScope' is set to P_M_SPECIFIED_USERS, then the assignment
shall be stopped only for those users specified in the ‘Users’ list.

Sequence Element Name Sequence Element Type Description

AssignmentId TpSessionID Identity of the session that shall be
stopped.

StopScope TpMobilityStopScope Specify if only a part of the assignment or if all the assignment
shall be stopped.

Users TpAddressSet Optional parameter describing which users a
stop request is addressing, when only a part

of an assignment is to be stopped.

11.1.11 TpMobilityStopScope

TpMobilityStopScope

This enumeration is used in requests to stop mobility reports that are sent from a mobility service to an application.

Name Value Description

P_M_ALL_IN_ASSIGNMENT 0 The request concerns all users in an
assignment.

P_M_SPECIFIED_USERS 1 The request concerns only the users that are
explicitly specified in a list.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)58Release 4

11.1.12 TpTerminalType

TpTerminalType

Defines which kind of terminal is used.

Name Value Description

P_M_FIXED 0 Fixed terminal.

P_M_MOBILE 1 Mobile terminal.

P_M_IP 2 IP terminal.

11.2 User Location Data Definitions

11.2.1 TpUlExtendedData

TpUlExtendedData

Defines the Sequence of Data Elements that specify a location (extended format).

The optional vertical location is defined by the data element Altitude, which contains the altitude in meters above sea
level, and the data element AltitudeAccuracy, which contains the accuracy of the altitude.

Sequence Element Name Sequence Element Type Description

GeographicalPosition TpGeographicalPosition Specification of a position and an area of uncertainty.

TerminalType TpTerminalType Kind of terminal.

AltitudePresent TpBoolean Flag indicating if the altitude is
present.

Altitude TpFloat Decimal altitude in meters.

UncertaintyAltitude TpFloat Uncertainty of the altitude.

TimestampPresent TpBoolean Flag indicating if the timestamp is
present.

Timestamp TpDateAndTime Timestamp indicating when the position was
measured.

UsedLocationMethod TpString Specifying which location method was used.

11.2.2 TpUlExtendedDataSet

TpUlExtendedDataSet

Defines a Numbered Set of Data Elements of TpUlExtendedData.

11.2.3 TpUserLocationExtended

TpUserLocationExtended

Defines the Sequence of Data Elements that specify the identity and location(s) of a user (extended format). In
general the data element Locations will contain only one location, but in case of IP-telephony users this data element
might continue several locations (the locations of all communication end-points, where the user is currently registered).

Sequence Element Name Sequence Element Type Description

UserID TpAddress The address of the user.

StatusCode TpMobilityError Indicator of error.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)59Release 4

Locations TpUlExtendedDataSet Optional list of locations. If StatusCode is indicating an error,
this value is undefined.

11.2.4 TpUserLocationExtendedSet

TpUserLocationExtendedSet

Defines a Numbered Set of Data Elements of TpUserLocationExtended.

11.2.5 TpLocationTrigger

TpLocationTrigger

Defines the Sequence of Data Elements that specify the criteria for a triggered location report to be generated.
The area is defined by an ellipse.

Sequence Element Name Sequence Element Type Description

Longitude TpFloat Longitude of the position
used in the trigger.

Latitude TpFloat Latitude of the position
used in the trigger.

AreaSemiMajor TpFloat Semi major of ellipse area
used in the trigger.

AreaSemiMinor TpFloat Semi minor of ellipse area
used in the trigger.

AngleOfSemiMajor TpInt32 Angle of the semi major of
the ellipse area used in

the trigger.

Criterion TpLocationTriggerCriteria Trigger criteria with regard to the ellipse
area.

ReportingInterval TpDuration Duration between generated
location reports.

11.2.6 TpLocationTriggerSet

TpLocationTriggerSet

Defines a Numbered Set of Data Elements of TpLocationTrigger

11.2.7 TpLocationTriggerCriteria

TpLocationTriggerCriteria

Defines the criteria that trigger a location report.

Name Value Description

P_UL_ENTERING_AREA 0 User enters the area

P_UL_LEAVING_AREA 1 User leaves the area

11.2.8 TpUserLocation

TpUserLocation

Defines the Sequence of Data Elements that specify the identity and location of a user (basic format).

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)60Release 4

Sequence Element Name Sequence Element Type Description

UserID TpAddress The address of the user.

StatusCode TpMobilityError Indicator of error.

GeographicalPosition TpGeographicalPosition Specification of a position and an area of uncertainty. If
StatusCode is indicating an error, this value is undefined.

11.2.9 TpUserLocationSet

TpUserLocationSet

Defines a Numbered Set of Data Elements of TpUserLocation.

11.3 User Location Camel Data Definitions

11.3.1 TpLocationCellIDOrLAI

TpLocationCellIDOrLAI

This data type is identical to a TpString. It specifies the Cell Global Identification or the Location Area Identification
(LAI).
The Cell Global Identification (CGI) is defined as a string of characters in the following format:

MCC-MNC-LAC-CI

where:

MCC Mobile Country Code (three decimal digits)

MNC Mobile Network Code (two or three decimal digits)

LAC Location Area Code (four hexadecimal digits)

CI Cell Identification (four hexadecimal digits)

The Location Area Identification (LAI) is defined as a string of characters in the following format:

MCC-MNC-LAC

where:

MCC Mobile Country Code (three decimal digits)

MNC Mobile Network Code (two or three decimal digits)

LAC Location Area Code (four hexadecimal digits)

The length of the parameter indicates, which format is used. See 3G TS 29.002 for the detailed coding.

11.3.2 TpLocationTriggerCamel

TpLocationTriggerCamel

Defines the Sequence of Data Elements that specify the criteria for a triggered location report to be generated.

Sequence Element Name Sequence Element Type Description

UpdateInsideVlr TpBoolean Generate location report, when a location
update occurs inside the current VLR area.

UpdateOutsideVlr TpBoolean Generate location report, when the user
moves to another VLR area.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)61Release 4

11.3.3 TpUserLocationCamel

TpUserLocationCamel

Defines the Sequence of Data Elements that specify the location of a mobile telephony user. Note that if the
StatusCode is indicating an error , then neither GeographicalPosition, Timestamp, VlrNumber,
LocationNumber, CellIdOrLai nor their associated presence flags are defined.

Sequence Element Name Sequence Element Type Description

UserID TpAddress The address of the user.

StatusCode TpMobilityError Indicator of error.

GeographicalPositionPresent TpBoolean Flag indicating if the
geographical position is present.

GeographicalPosition TpGeographicalPosition Specification of a position and an area of
uncertainty.

TimestampPresent TpBoolean Flag indicating if the timestamp
is present.

Timestamp TpDateAndTime Timestamp indicating when the
request was processed.

VlrNumberPresent TpBoolean Flag indicating if the VLR number
is present.

VlrNumber TpAddress Current VLR number for the user.

LocationNumberPresent TpBoolean Flag indicating if the location
number is present.

LocationNumber6 TpAddress Current location number.

CellIdOrLaiPresent TpBoolean Flag indicating if cell-id or LAI
of the user is present.

CellIdOrLai TpLocationCellIDOrLAI Cell-id or LAI of the user.

11.3.4 TpUserLocationCamelSet

TpUserLocationCamelSet

Defines a Numbered Set of Data Elements of TpUserLocationCamel.

11.4 User Location Emergency Data Definitions

11.4.1 TpIMEI

TpIMEI

This data type is identical to a TpString. It specifies the International Mobile Equipment Identity (IMEI).

11.4.2 TpNaESRD

TpNaESRD

This data type is identical to a TpString. It specifies the North American Emergency Services Routing Digits (NA-
ESRD).
NA-ESRD is a telephone number in the North American Numbering Plan that can be used to identify a North American
emergency services provider and its associated Location Services client. The NA-ESRD also identifies the base station,
cell site or sector from which a North American emergency call originates.

6 The location number is the number to the MSC or in rare cases the roaming number.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)62Release 4

11.4.3 TpNaESRK

TpNaESRK

This data type is identical to a TpString. It specifies the North American Emergency Services Routing Key (NA-
ESRK).
NA-ESRK is a telephone number in the North American Numbering Plan that is assigned to an emergency services call
for the duration of the call. The NA-ESRK is used to identify (e.g. route to) both, the emergency services provider and
the switch, currently serving the emergency caller. During the lifetime of an emergency services call, the NA-ESRK
also identifies the calling subscriber.

11.4.4 TpUserLocationEmergencyRequest

TpUserLocationEmergencyRequest

Defines the Sequence of Data Elements that specify the request for the location of an emergency service user.
The emergency service user is identified by a combination of user address, NaESRD, NaESRK and IMEI. NaESRD,
NaESRK and IMEI may be provided, if the emergency service user has originated the emergency service call in North
America.

Sequence Element Name Sequence Element Type Description

UserAddressPresent TpBoolean Flag indicating if the user address is
present.

UserAddress TpAddress The address of the user.

NaEsrdPresent TpBoolean Flag indicating if the NaESRD is present.

NaEsrd TpNaESRD Current NaESRD for the user.

NaEsrkPresent TpBoolean Flag indicating if the NaESRK is present.

NaEsrk TpNaESRK Current NaESRK for the user.

ImeiPresent TpBoolean Flag indicating if the IMEI is present.

Imei TpIMEI IMEI for the user.

LocationReq TpLocationRequest The actual location request.

11.4.5 TpUserLocationEmergency

TpUserLocationEmergency

Defines the Sequence of Data Elements that specify the identity and location of an emergency service user.
The emergency service user is identified by a combination of UserID, NaESRD, NaESRK and IMEI.
NaESRD, NaESRK and IMEI may be provided, if the emergency service user has originated the emergency service call
in North America.
The horizontal location is defined by an “ellipsoid point with uncertainty ellipse” (see TpUlExtendedData).

Sequence Element Name Sequence Element Type Description

StatusCode TpMobilityError Indicator of error.

UserIdPresent TpBoolean Flag indicating if the user
address is present.

UserId TpAddress The user address.

NaEsrdPresent TpBoolean Flag indicating if the
NaESRD is present.

NaEsrd TpNaESRD Current NaESRD for the
user.

NaEsrkPresent TpBoolean Flag indicating if the
NaESRK is present.

NaEsrk TpNaESRK Current NaESRK for the
user.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)63Release 4

ImeiPresent TpBoolean Flag indicating if the IMEI
is present.

Imei TpIMEI IMEI for the user.

TriggeringEvent TpUserLocationEmergencyTrigger The reason for this location report.

GeographicalPositionPresent TpBoolean Flag indicating if the
geographical position is

present.

GeographicalPosition TpGeographicalPosition Specification of a position and an area
of uncertainty.

AltitudePresent TpBoolean Flag indicating if the
altitude is present.

Altitude TpFloat Decimal altitude in meters.

UncertaintyAltitude TpFloat Uncertainty of the
altitude.

TimestampPresent TpBoolean Flag indicating if a
timestamp is present.

Timestamp TpDateAndTime Timestamp indicating when
the request was processed.

UsedLocationMethod TpString Specifying which location
method was used.

11.4.6 TpUserLocationEmergencyTrigger

TpUserLocationEmergencyTrigger

Defines which event triggered the emergency user location report.

Name Value Description

P_ULE_CALL_ORIGINATION 0 An emergency service user originated an
emergency call.

P_ULE_CALL_RELEASE 1 An emergency service user released an
emergency call.

P_ULE_LOCATION_REQUEST 2 The report is a response to an emergency
location report request.

11.5 User Status Data Definitions

11.5.1 TpUserStatus

TpUserStatus

Defines the Sequence of Data Elements that specify the identity and status of a user.

Sequence Element Name Sequence Element Type Description

UserID TpAddress The user address.

StatusCode TpMobilityError Indicator of error.

Status TpUserStatusIndicator The current status of the user.

TerminalType TpTerminalType The kind of terminal used by the user.

11.5.2 TpUserStatusSet

TpUserStatusSet

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)64Release 4

Defines a Numbered Set of Data Elements of TpUserStatus.

11.5.3 TpUserStatusIndicator

TpUserStatusIndicator

Defines the status of a user.

Name Value Description

P_US_REACHABLE 0 User is reachable

P_US_NOT_REACHABLE 1 User is not reachable

P_US_BUSY7 2 User is busy (only applicable for interactive
user status request, not when triggers are used)

7 Only applicable to mobile (Camel) telephony users.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)65Release 4

11.6 Units and Validations of Parameters
This section describes the units that shall be used for data elements, where this is not obvious.

Altitude
Unit: Metric meter

Angle
Unit: Degrees

Value constraint: 0 ≤ 'Angle' ≤ 360

AreaSemiMajor and AreaSemiMinor
Unit: Metric meter

Value constraint: 0 ≤ 'AreaSemi…'

ReportingInterval
Unit: Seconds

Value constraint: 0 < 'ReportingInterval'

UncertaintyAltitude
Unit: Metric meter

Value constraint: 0 ≤ 'UncertaintyAltitude'

Semantic: (Altitude – UncertaintyAltitude) ≤ 'Terminal actual altitude' ≤
('Altitude' + 'UncertaintyAltitude')

UncertaintyInnerSemiMajor and UncertaintyInnerSemiMinor
Unit: Metric meter

Value constraint: 0 ≤ 'UncertaintyInner…'

UncertaintyOuterSemiMajor and UncertaintyOuterSemiMinor
Unit: Metric meter

Value constraint: 0 ≤ 'UncertaintyInner…'

UsedLocationMethod
Predefined strings are listed in section Location Methods.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)66Release 4

Annex A (normative):
OMG IDL Description of Mobility SCF
The OMG IDL representation of this interface specification is contained in a text file (mm.idl contained in archive
2919806IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)67Release 4

Annex B (informative):
Differences between this draft and 3GPP 29.198 R99

No differences recorded to methods, parameters or data types for those interfaces which are common (User Location
Camel and User Status). User Location interfaces added.

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)68Release 4

3GPP

3GPP TS 29.198-6 V.1.0.0 (2001-03)69Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for approval and placement under Change Control

3GPP TS 29.198-7 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface;

Part 7: Terminal Capabilities;
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, TERMCAP, Terminal Capabilities

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)3Release 4

Contents

Foreword ..4

1 Scope ..5

2 References ..5

3 Definitions, symbols and abbreviations ...6
3.1 Definitions ...6
3.2 Symbols ...6
3.3 Abbreviations...6

4 Terminal Capabilities SCF...6

5 Sequence Diagrams..6

6 Class Diagrams...6

7 The Service Interface Specifications..7
7.1 Interface Specification Format...7
7.1.1 Interface Class ..7
7.1.2 Method descriptions ...7
7.1.3 Parameter descriptions ...7
7.1.4 State Model ..8
7.2 Base Interface...8
7.2.1 Interface Class IpInterface..8
7.3 Service Interfaces...8
7.3.1 Overview..8
7.4 Generic Service Interface...8
7.4.1 Interface Class IpService..8

8 Terminal Capabilities Interface Classes ...9
8.1 Interface Class IpTerminalCapabilities..9

9 State Transition Diagrams..10

10 Terminal Capabilities Data Definitions..10

Annex A (normative): OMG IDL Description of Terminal Capabilities SCF12

Annex B (informative): Differences between this draft and 3GPP 29.198 R99................................13

History ..14

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)4Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)5Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the Terminal Capabilities Service Capability Feature (SCF) aspects of the interface. All aspects
of the Terminal Capabilities SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation (www.w3.org)

[5] Wireless Application Protocol (WAP), Version 1.2, UAProf Specification (www.wapforum.org)

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)6Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Terminal Capabilities SCF
The following sections describe each aspect of the Terminal Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented.

• The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

• The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data definitions section show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification.

5 Sequence Diagrams
There are no Sequence Diagrams for the Terminal Capabilities SCF.

6 Class Diagrams
Terminal Capabilities Class Diagram:

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)7Release 4

IpTerminalCapabilities

etTerminalCapabilities()

(from termcap)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

(from open_service_access)

<<Interface>>

Figure: Package Overview

7 The Service Interface Specifications

7.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

7.1.2 Method descriptions

Each method (API method "call") is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as "in" represent those that must
have a value when the method is called. Those described as "out" are those that contain the return result of the method
when the method returns.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)8Release 4

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as "Service Interface". The corresponding interfaces
that must be implemented by the application (e.g. for API callbacks) are denoted as "Application Interface".

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)9Release 4

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpGeneralException

8 Terminal Capabilities Interface Classes
The Terminal Capabilities SCF enables the application to retrieve the terminal capabilities of the specified terminal.
The Terminal Capabilities service provides a SCF interface that is called IpTerminalCapabilities. There is no need for
an application interface, since IpTerminalCapabilities only contains the synchronous method getTerminalCapabilities.

8.1 Interface Class IpTerminalCapabilities
Inherits from: IpInterface.

The Terminal Capabilities SCF interface IpTerminalCapabilities contains the synchronous method
getTerminalCapabilities. The application has to provide the terminaIdentity as input to this method. The result indicates
whether or not the terminal capabilities are available in the network and, in case they are, it will return the terminal
capabilities (see the data definition of TpTerminalCapabilities for more information).

<<Interface>>

IpTerminalCapabilities

getTerminalCapabilities (terminalIdentity : in TpString, result : out TpTerminalCapabilitiesRef) : TpResult

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)10Release 4

Method
getTerminalCapabilities()

This method is used by an application to get the capabilities of a user's terminal. Direction: Application to Network.

Parameters

terminalIdentity : in TpString

Identifies the terminal. It may be a logical address known by the WAP Gateway/PushProxy.

result : out TpTerminalCapabilitiesRef

Specifies the latest available capabilities of the user´s terminal.

This information, if available, is returned as CC/PP headers as specified in W3C [1] and adopted in the WAP UAProf
specification [2]. It contains URLs; terminal attributes and values, in RDF format; or a combination of both.

Raises

TpTermCapException,TpGeneralException

9 State Transition Diagrams
There are no State Transition Diagrams for the Terminal Capabilities SCF.

10 Terminal Capabilities Data Definitions
The constants and types defined in the following sections are defined in the org.osa.termcap package.

terminalIdentity

Identifies the terminal.

Name Type Documentation

terminalIdentity TpString Identifies the terminal. It may be a logical address
known by the WAP Gateway/PushProxy.

TpTerminalCapabilities

This data type is a Sequence_of_Data_Elements that describes the terminal capabilities. It is a structured type that
consists of:

Sequence Element

Name

Sequence Element

Type

Documentation

StatusCode TpBoolean Indicates whether or not the terminalCapabilities
are available.

TerminalCapabilities TpString Specifies the latest available capabilities of the
user´s terminal.
This information, if available, is returned as
CC/PP headers as specified in W3C [12] and
adopted in the WAP UAProf specification [13]. It
contains URLs; terminal attributes and values, in
RDF format; or a combination of both.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)11Release 4

TpTerminalCapabilitiesError

Defines an error that is reported by the Terminal Capabilities SCF.

Name Value Description

P_TERMCAP_ERROR_UNDEFINED 0 Undefined.

P_TERMCAP_INVALID_TERMINALID 1 The request can not be handled because the terminal id specified
is not valid.

P_TERMCAP_SYSTEM_FAILURE 2 System failure.
The request cannot be handled because of a general problem in

the terminal capabilities service or the underlying network.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)12Release 4

Annex A (normative):
OMG IDL Description of Terminal Capabilities SCF
The OMG IDL representation of this interface specification is contained in a text file (termcap.idl contained in archive
2919807IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)13Release 4

Annex B (informative):
Differences between this draft and 3GPP 29.198 R99
None Recorded

3GPP

3GPP TS 29.198-7 V1.0.0 (2001-03)14Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for approval and placement under Change Control

3GPP TS 29.198-8 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface

Part 8: Data Session Control
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, DSC, Data Session Control

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)3Release 4

Contents

Foreword...4

1 Scope ..5

2 References ..5

3 Definitions, symbols and abbreviations ...6
3.1 Definitions..6
3.2 Symbols ...6
3.3 Abbreviations...6

4 Data Session Control SCF..6

5 Sequence Diagrams ..7
5.1 Enable Data Session Notification...7
5.2 Address Translation With Charging...7

6 Class Diagrams...9

7 The Service Interface Specifications..10
7.1 Interface Specification Format...10
7.1.1 Interface Class ..10
7.1.2 Method descriptions ...10
7.1.3 Parameter descriptions ...10
7.1.4 State Model ..10
7.2 Base Interface...10
7.2.1 Interface Class IpInterface..10
7.3 Service Interfaces...11
7.3.1 Overview..11
7.4 Generic Service Interface...11
7.4.1 Interface Class IpService..11

8 Data Session Control Interface Classes..12
8.1 Interface Class IpAppDataSession...12
8.2 Interface Class IpAppDataSessionControlManager...15
8.3 Interface Class IpDataSession..17
8.4 Interface Class IpDataSessionControlManager..19

9 State Transition Diagrams..21
9.1 State Transition Diagrams for IpDataSession ...21
9.1.1 Network Released State..22
9.1.2 Finished State ...22
9.1.3 Application Released State...22
9.1.4 Active State ..22
9.1.5 Setup State..22
9.1.6 Established State ..22

10 Data Definitions ...22
10.1 Data Session Control Data Definitions...22
10.2 Event Notification data definitions...23

Annex A (normative): OMG IDL Description of Data Session Control SCF.................................29

Annex B (informative): Differences between this draft and 3GPP 29.198 R9930
C.1 Interface IpAppDataSessionControlManager ..30
C.2 Interface IpDataSessionControlManager ...30

History ..31

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)4Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)5Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the Data Session Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Data Session Control SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modeling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)6Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Data Session Control SCF
The Data Session control network service capability feature consists of two interfaces:

1) Data Session manager, containing management functions for data session related issues;

2) Data Session, containing methods to control a session.

A session can be controlled by one Data Session Manager only. Data Session Manager can control several sessions.

1 Data Session
Manager

Data Session

1 n

NOTE: The term "data session" is used in a broad sense to describe a data connection/session. For example, it
comprises a PDP context in GPRS.

Figure 1: Data Session control interfaces usage relationship

The Data Session Control service capability features are described in terms of the methods in the Data Session Control
interfaces. Table 1 gives an overview of the Data Session Control methods and to which interfaces these methods
belong.

Table 1: Overview of Data Session Control interfaces and their methods

Data Session Manager Data Session
createNotification connectReq
destroyNotification connectRes
dataSessionNotificationInterrupted connectErr
dataSessionNotificationContinued release
reportNotification superviseDataSessionReq
dataSessionAborted superviseDataSessionRes
getNotification superviseDataSessionErr
changeNotification dataSessionFaultDetected

setAdviceofCharge
setDataSessionChargePlan

The session manager interface provides the management functions to the data session service capability features. The
application programmer can use this interface to enable or disable data session-related event notifications.

The following sections describe each aspect of the Data Session Control Service Capability Feature (SCF).

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)7Release 4

The order is as follows:

• the Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented;

• the Class relationships section show how each of the interfaces applicable to the SCF, relate to one another;

• the Interface specification section describes in detail each of the interfaces shown within the Class diagram part;

• the State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway;

• the Data definitions section show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

5 Sequence Diagrams

5.1 Enable Data Session Notification

Application Data Session Manager :
IpDataSessionControlManager

ata Session :
IpDataSession

1: createNot ification()

5.2 Address Translation With Charging

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)8Release 4

Application Data Session Manager :
IpDataSessionControlManager

ata Session :
IpDataSession

1: createNotification()

2: reportNotification()

3: 'translate address'

4: setCallback()

: superviseDataSessionReq()

: connectReq()

7: superviseDataSessionRes()

: superviseDataSessionReq()

9: superviseDataSessionRes()

10: connectRes()

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)9Release 4

6 Class Diagrams
Data Session Control Class Diagram:

IpInterface
(from open_service_access)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

from open_service_access)

<<Interface>>

IpDataSessionControlManager

createNotification()
destroyNotification()
changeNotification()
getNotification()

(from dsc)

<<Interface>> IpDataSession

connectReq()
release()
superviseDataSessionReq()
setDataSessionChargePl...
setAdviceOfCharge()

(from dsc)

<<Interface>>

1 0..n1 0..n

IpAppDataSess ionControlManager

dataSessionAborted()
reportNotification()
dataSessionNotificat ionContinue...
dataSessionNotificat ionInterrupt ...

(from dsc)

<<Interface>>

<<uses>>

IpAppDataSession

connectRes()
connectErr()
superviseDataSessionR...
superviseDataSessionErr()
dataSessionFaultDetect. ..

(from dsc)

<<Interface>>

<<uses>>

1 0..n1 0..n

Figure: Package Overview

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)10Release 4

7 The Service Interface Specifications

7.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method "call") is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)11Release 4

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as "Service Interface". The corresponding interfaces
that must be implemented by the application (e.g. for API callbacks) are denoted as "Application Interface".

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

Parameters

appInterface: in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)12Release 4

Parameters

appInterface: in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID: in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpGeneralException

8 Data Session Control Interface Classes
The Data Session Control provides a means to control per data session basis the establishment of a new data session.
This means espcially in the GPRS context that the establishment of a PDP session is modelled not the attach/detach
mode. Change of terminal location is assumed to be managed by the underlying network and is therefore not part of the
model. The underlying assumption is that a terminal initiates a data session and the application can reject the request for
data session establishment, can continue the establishment or can continue and change the destination as requested by
the terminal.

The modelling is hold similar to the Generic Call Control but assuming a simpler underlying state model. An
IpDataSessionManager and IpData Session object are the interfaces used by the application, whereas the
IpAppDataSessionManager and the IpAppDataSession interfaces are implemented by the application.

8.1 Interface Class IpAppDataSession
Inherits from: IpInterface.

The application side of the data session interface is used to handle data session request responses and state reports.

<<Interface>>

IpAppDataSession

connectRes (dataSessionID : in TpSessionID, eventReport : in TpDataSessionReport, assignmentID : in
TpAssignmentID) : TpResult

connectErr (dataSessionID : in TpSessionID, errorIndication : in TpDataSessionError, assignmentID : in
TpAssignmentID) : TpResult

superviseDataSessionRes (dataSessionID : in TpSessionID, report : in TpDataSessionSuperviseReport,
usedVolume : in TpDataSessionSuperviseVolume) : TpResult

superviseDataSessionErr (dataSessionID : in TpSessionID, errorIndication : in TpDataSessionError) :
TpResult

dataSessionFaultDetected (dataSessionID : in TpSessionID, fault : in TpDataSessionFault) : TpResult

Method
connectRes()

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)13Release 4

This asynchronous method indicates that the request to connect a data session with the destination party was successful,
and indicates the response of the destination party (e.g. connected, disconnected).

Parameters

dataSessionID: in TpSessionID

Specifies the session ID of the data session.

eventReport: in TpDataSessionReport

Specifies the result of the request to connect the data session. It includes the network event, date and time, monitoring
mode and event specific information such as release cause.

assignmentID: in TpAssignmentID

Raises

TpDSCSException,TpGeneralException

Method
connectErr()

This asynchronous method indicates that the request to connect a data session with the destination party was
unsuccessful, e.g. an error detected in the network or the data session was abandoned.

Parameters

dataSessionID: in TpSessionID

Specifies the session ID.

errorIndication: in TpDataSessionError

Specifies the error which led to the original request failing.

assignmentID: in TpAssignmentID

Raises

TpDSCSException,TpGeneralException

Method
superviseDataSessionRes()

This asynchronous method reports a data session supervision event to the application.

Parameters

dataSessionID: in TpSessionID

Specifies the data session.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)14Release 4

report: in TpDataSessionSuperviseReport

Specifies the situation, which triggered the sending of the data session supervision response.

usedVolume: in TpDataSessionSuperviseVolume

 Specifies the used volume for the data session supervision (in the same unit as specified in the request).

Raises

TpDSCSException,TpGeneralException

Method
superviseDataSessionErr()

This asynchronous method reports a data session supervision error to the application.

Parameters

dataSessionID: in TpSessionID

 Specifies the data session ID.

errorIndication: in TpDataSessionError

Specifies the error which led to the original request failing.

Raises

TpDSCSException,TpGeneralException

Method
dataSessionFaultDetected()

This method indicates to the application that a fault in the network has been detected which can't be communicated by a
network event, e.g., when the user aborts before any establishment method is called by the application.

The system purges the Data Session object. Therefore, the application has no further control of data session processing.
No report will be forwarded to the application.

Parameters

dataSessionID: in TpSessionID

 Specifies the data session ID of the Data Session object in which the fault has been detected

fault: in TpDataSessionFault

 Specifies the fault that has been detected.

Raises

TpDSCSException,TpGeneralException

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)15Release 4

8.2 Interface Class IpAppDataSessionControlManager
Inherits from: IpInterface.

The data session control manager application interface provides the application data session control management
functions to the data session control SCF.

<<Interface>>

IpAppDataSessionControlManager

dataSessionAborted (dataSession : in TpSessionID) : TpResult

reportNotification (dataSessionReference : in TpDataSessionIdentifier, eventInfo : in
TpDataSessionEventInfo, assignmentID : in TpAssignmentID, appDataSession : out
IpAppDataSessionRefRef) : TpResult

dataSessionNotificationContinued () : TpResult

dataSessionNotificationInterrupted () : TpResult

Method
dataSessionAborted()

This method indicates to the application that the Data Session object has aborted or terminated abnormally. No further
communication will be possible between the Data Session object and the application.

Parameters

dataSession: in TpSessionID

Specifies the session ID of the data session that has aborted or terminated abnormally.

Raises

TpDSCSException,TpGeneralException

Method
reportNotification()

This method notifies the application of the arrival of a data session-related event.

Parameters

dataSessionReference: in TpDataSessionIdentifier

Specifies the session ID and the reference to the Data Session object to which the notification relates.

eventInfo: in TpDataSessionEventInfo

 Specifies data associated with this event. This data includes the destination address provided by the end-user.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)16Release 4

assignmentID: in TpAssignmentID

 Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
ID to associate events with event-specific criteria and to act accordingly.

appDataSession: out IpAppDataSessionRefRef

 Specifies a reference to the application object which implements the callback interface for the new data session.

Raises

TpDSCSException,TpGeneralException

Method
dataSessionNotificationContinued()

This method indicates to the application that all event notifications are resumed.

Parameters
No Parameters were identified for this method

Raises

TpDSCSException,TpGeneralException

Method
dataSessionNotificationInterrupted()

This method indicates to the application that event notifications will no longer be sent (for example, due to faults
detected).

Parameters
No Parameters were identified for this method

Raises

TpDSCSException,TpGeneralException

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)17Release 4

8.3 Interface Class IpDataSession
Inherits from: IpService.

The Data Session interface provides basic methods for applications to control data sessions.

<<Interface>>

IpDataSession

connectReq (dataSessionID : in TpSessionID, responseRequested : in TpDataSessionReportRequestSet,
targetAddress : in TpAddress, assignmentID : out TpAssignmentIDRef) : TpResult

release (dataSessionID : in TpSessionID, cause : in TpDataSessionReleaseCause) : TpResult

superviseDataSessionReq (dataSessionID : in TpSessionID, treatment : in
TpDataSessionSuperviseTreatment, bytes : in TpDataSessionSuperviseVolume) : TpResult

setDataSessionChargePlan (dataSessionID : in TpSessionID, dataSessionChargePlan : in
TpDataSessionChargePlan) : TpResult

setAdviceOfCharge (dataSessionID : in TpSessionID, aoCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
TpResult

Method
connectReq()

This asynchronous method requests the connection of a data session with the destination party (specified in the
parameter TargetAddress). The Data Session object is not automatically deleted if the destination party disconnects
from the data session.

Parameters

dataSessionID: in TpSessionID

Specifies the session ID.

responseRequested: in TpDataSessionReportRequestSet

Specifies the set of observed data session events that will result in a connectRes() being generated.

targetAddress: in TpAddress

Specifies the address of destination party.

assignmentID: out TpAssignmentIDRef

Specifies the ID assigned to the request. The same ID will be returned in the connectRes or Err. This allows the
application to correlate the request and the result.

Raises

TpDSCSException,TpGeneralException

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)18Release 4

Method
release()

This method requests the release of the data session and associated objects.

Parameters

dataSessionID: in TpSessionID

Specifies the session.

cause: in TpDataSessionReleaseCause

Specifies the cause of the release.

Raises

TpDSCSException,TpGeneralException

Method
superviseDataSessionReq()

The application calls this method to supervise a data session. The application can set a granted data volume for this data
session. If an application calls this function before it calls a connectReq() or a user interaction function the time
measurement will start as soon as the data session is connected. The Data Session object will exist after the data session
has been terminated if information is required to be sent to the application at the end of the data session

Parameters

dataSessionID: in TpSessionID

Specifies the data session.

treatment: in TpDataSessionSuperviseTreatment

Specifies how the network should react after the granted data volume has been sent.

bytes: in TpDataSessionSuperviseVolume

Specifies the granted number of bytes that can be transmitted for the data session.

Raises

TpDSCSException,TpGeneralException

Method
setDataSessionChargePlan()

Allows an application to include charging information in network generated CDR.

Parameters

dataSessionID: in TpSessionID

Specifies the session ID of the data session.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)19Release 4

dataSessionChargePlan: in TpDataSessionChargePlan

Specifies the charge plan used.

Raises

TpDSCSException,TpGeneralException

Method
setAdviceOfCharge()

This method allows the application to determine the charging information that will be send to the end-users terminal.

Parameters

dataSessionID: in TpSessionID

Specifies the session ID of the data session.

aoCInfo: in TpAoCInfo

Specifies two sets of Advice of Charge parameter according to GSM.

tariffSwitch: in TpDuration

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Raises

TpDSCSException,TpGeneralException

8.4 Interface Class IpDataSessionControlManager
Inherits from: IpService.

This interface is the SCF manager' interface for Data Session Control.

<<Interface>>

IpDataSessionControlManager

createNotification (appDataSessionControlManager : in IpAppDataSessionControlManagerRef,
eventCriteria : in TpDataSessionEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpDataSessionEventCriteria) :
TpResult

getNotification (eventCriteria : out TpDataSessionEventCriteriaRef) : TpResult

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)20Release 4

Method
createNotification()

This method is used to enable data session notifications.

Parameters

appDataSessionControlManager: in IpAppDataSessionControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria: in TpDataSessionEventCriteria

Specifies the event specific criteria used by the application to define the event required. Individual addresses or address
ranges may be specified for destination and/or origination. Examples of events are "Data Session set up".

assignmentID: out TpAssignmentIDRef

Specifies the ID assigned by the Data Session Manager object for this newly-enabled event notification.

Raises

TpDSCSException,TpGeneralException

Method
destroyNotification()

This method is used by the application to disable data session notifications.

Parameters

assignmentID: in TpAssignmentID

Specifies the assignment ID given by the data session manager object when the previous createNotification() was done.

Raises

TpDSCSException,TpGeneralException

Method
changeNotification()

This method is used by the application to change the event criteria introduced with the createNotification method. Any
stored notification request associated with the specified assignmentID will be replaced with the specified events
requested.

Parameters

assignmentID: in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.

eventCriteria: in TpDataSessionEventCriteria

Specifies the enw set of event criteria used by the application to define the event required. Only events that meet these
criteria are reported.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)21Release 4

Raises

TpDSCSException,TpGeneralException

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Parameters

eventCriteria: out TpDataSessionEventCriteriaRef

Specifies the event criteria used by the application to define the event required. Only events that meet these
requirements are reported.

9 State Transition Diagrams

9.1 State Transition Diagrams for IpDataSession
The state transition diagram shows the application view on the Data Session object. This diagram shows only the part of
the state transition diagram valid for 3GPP (UMTS) release 99.

Network Released

Finished

Application
Released

release

timeout ^dataSessionFaultDetected(P_DATA_SESSION_TIMEOUT_ON_RELEASE)

A ctive

Setup

Established

Setup

IpAppDataSessionControlManager.reportNotification(
P_EVENT_DSCS_SETUP)

Established

setDataSe ssionChargePlan

superviseDataS essionReq
setAdviceOfCharge

connectReq

[no reports requested with
superviseDataSessionReq]

"requested information ready"
^superviseDataSessionRes

release

"requested information ready"
^superviseDataSessionRes

[no reports requested with
superviseDataSessionReq]

In state Finished a timer mechanism
should prevent that the object keeps
occupying resources. In case the timer
expires, the object should be destroyed
and dataSessionFaultDetected should be
reported to the application.

IpAppDataSessionControlManager.reportNotificati
on(P_EVENT_DSCS_ESTABLISHED)

"data session supervision event" ^superviseDataSessionRes

release

"data session ends : party disconnects"[monitor for this event] ^ConnectRes(P_DATA_SESSION_REPORT_DISCONNECT)

" fault detected"[fault cannot b e communicated with network event] ^dataSessionFa ultDetected

"data session ends: party disconnects"[no monitor for this event]

"connection establ ished" ^connectRes(P_DATA_SESSION_REPORT_CONNECTED)

Figure: Application view on the Data Session object

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)22Release 4

9.1.1 Network Released State

In this state the data session has ended. In the case on a normal user disconnection the transition to this state is indicated
to the application by the disconnect report of connectRes(). But this will only happen if the application requested
monitoring of the disconnect event before. An abnormal disconnection is indicated by dataSessionFaultDetected(). The
application may wait for outstanding superviseDataSessionRes().

9.1.2 Finished State

In this state the data session has ended and no further data session related information is to be send to the application.
The application can only release the data session object. If the application fails to invoke release() within a certain
period of time the gateway should automatically release the object and send a timeout indication to the application.

9.1.3 Application Released State

In this state the application has released the data session object. If supervision has been requested the gateway will
collect the information and send superviseDataRes() to the application.

9.1.4 Active State

In this state a data connection between two parties is being setup or established (refer to the substates for more details).
The application can request the gateway for a certain type of charging by calling setDataSessionChargePlan(), send
advice of charge information by calling setAdviceOfCharge(), and request supervision of the data session by calling
superviseDataSessionReq().

9.1.5 Setup State

The Setup state is reached after a reportNotification() indicates to the application that a data session is interested in
being connected. If the application is going to connect the two parties by invoking connectReq() it may call the
charging or supervision methods before.

9.1.6 Established State

In this state the data connection is established. If supervision has been requested the application expects the
corresponding superviseDataSessionRes().

10 Data Definitions

10.1 Data Session Control Data Definitions

IpAppDataSession

Defines the address of an IpAppDataSession Interface.

IpAppDataSessionRef

Defines a Reference to type IpAppDataSession

IpAppDataSessionRefRef

Defines a Reference to type IpAppDataSessionRef.

IpAppDataSessionControlManager

Defines the address of an IpAppDataSessionControlManager Interface.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)23Release 4

IpAppDataSessionControlManagerRef

Defines a Reference to type IpAppDataSessionControlManager.

IpDataSession

Defines the address of an IpDataSession Interface.

IpDataSessionRef

Defines a Reference to type IpDataSession.

IpDataSessionRefRef

Defines a Reference to type IpDataSessionRef.

IpDataSessionControlManager

Defines the address of an IpDataSessionManager Interface.

IpDataSessionManagerRef

Defines a Reference to type IpDataSessionControlManager.

10.2 Event Notification data definitions

TpDataSessionEventName

Defines the names of events being notified with a new call request. The following events are supported. The values may
be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested /
received during the call process are found in the TpDataSessionReportType data-type.

Name Value Description

P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_DSCS_SETUP 1 The data session is going to be setup.

P_EVENT_DSCS_ESTABLISHED 2 The data session is established by the network.

TpDataSessionMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name Value Description

P_DATA_SESSION_MONITOR_MODE_INTERRUPT 0 The data session event is intercepted by the
data session control service and data session

establishment is interrupted. The application is
notified of the event and data session
establishement resumes following an

appropriate API call or network event (such as
a data session release)

P_DATA_SESSION_MONITOR_MODE_NOTIFY 1 The data session event is detected by the data
session control service but not intercepted. The
application is notified of the event and data
session establishment continues

P_DATA_SESSION_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

TpDataSessionEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)24Release 4

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element Name Sequence Element Type Description

DestinationAddress TpAddressRange Defines the destination address
or address range for which the
notification is requested.

OriginatingAddress TpAddressRange Defines the origination address
or a address range for which the

notification is requested.

DataSessionEventName TpDataSessionEventName Name of the event(s)

MonitorMode TpDataSessionMonitorMode Defines the mode that the Data
Session is in following the
notification.
Monitor mode
P_DATA_SESSION_MONITOR_MODE_DO_NO
T_MONITOR is not a legal value
here.

TpDataSessionEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Data Session
event notification.

Sequence Element Name Sequence Element Type

DestinationAddress TpAddress

OriginatingAddress TpAddress

DataSessionEventName TpDataSessionEventName

MonitorMode TpDataSessionMonitorMode

TpDataSessionChargePlan
Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description

ChargeOrderType TpDataSessionChargeOrder Charge order

Currency TpString Currency unit according to ISO-
4217:1995

AdditionalInfo TpString Descriptive string which is
sent to the billing system

without prior evaluation. Could
be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)25Release 4

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpDataSessionChargeOrder
Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpDataSessionChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name

P_DATA_SESSION_CHARGE_PER_VOLUME TpChargePerVolume ChargePerVolume

P_DATA_SESSION_CHARGE_NETWORK TpString NetworkCharge

TpDataSessionChargeOrderCategory

Name Value Description

P_DATA_SESSION_CHARGE_PER_VOLUME 0 Charge per volume

P_DATA_SESSION_CHARGE_NETWORK 1 Operator specific charge plan specification,
e.g. charging table name / charging table

entry

TpChargePerVolume
Defines the Sequence of Data Elements that specify the time based charging information. The volume is the sum of
uplink and downlink transfer data volumes.

Sequence Element Name Sequence Element Type Description

InitialCharge TpInt32 Initial charge amount (in currency
units * 0.0001)

CurrentChargePerKilobyte TpInt32 Current tariff (in currency units
* 0.0001)

NextChargePerKilobyte TpInt32 Next tariff (in currency units *
0.0001) after tariff switch.

Only used in setAdviceOfCharge()

TpDataSessionIdentifier
Defines the Sequence of Data Elements that unambiguously specify the Data Session object

Sequence Element Name Sequence Element Type Sequence Element Description

DataSessionReference IpDataSessionRef This element specifies the interface
reference for the Data Session object.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)26Release 4

DataSessionSessionID TpSessionID This element specifies the data session ID
of the Data Session.

TpDataSessionError
Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name Sequence Element Type

ErrorTime TpDateAndTime

ErrorType TpDataSessionErrorType

AdditionalErrorInfo TpDataSessionAdditionalErrorInfo

TpDataSessionAdditionalErrorInfo
Defines the Tagged Choice of Data Elements that specify additional Data Session error and Data Session error
specific information.

Tag Element Type

TpDataSessionErrorType

Tag Element Value Choice Element Type Choice Element Name

P_DATA_SESSION_ERROR_UNDEFINED NULL Undefined

P_DATA_SESSION_ERROR_INVALID_ADDRESS TpAddressError DataSessionErrorInvalidAddress

P_DATA_SESSION_ERROR_INVALID_STATE NULL Undefined

TpDataSessionErrorType
Defines a specific Data Session error.

Name Value Description

P_DATA_SESSION_ERROR_UNDEFINED 0 Undefined; the method failed or
was refused, but no specific

reason can be given.

P_DATA_SESSION_ERROR_INVALID_ADDRESS 1 The operation failed because an
invalid address was given

P_DATA_SESSION_ERROR_INVALID_STATE 2 The data session was not in a
valid state for the requested

operation

TpDataSessionFault
Defines the cause of the data session fault detected.

Name Value Description

P_DATA_SESSION_FAULT_UNDEFINED 0 Undefined

P_DATA_SESION_USER_ABORTED 1 User has finalised the data session before any
message could be sent by the application

P_DATA_SESSION_TIMEOUT_ON_RELEASE 2 This fault occurs when the final report has
been sent to the application, but the application

did not explicitly release data session object,
within a specified time.

The timer value is operator specific.

P_DATA_SESSION_TIMEOUT_ON_INTERRUPT 3 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)27Release 4

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

TpDataSessionReleaseCause
Defines the Sequence of Data Elements that specify the cause of the release of a data session.

Sequence Element Name Sequence Element Type

Value TpInt32

Location TpInt32

NOTE: the Value and Location are specified as in ITU-T recommendation Q.850.

TpDataSessionSuperviseVolume
Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the
specific connection.

Sequence Element Name Sequence Element Type Sequence Element Description

VolumeQuantity TpInt32 This data type is identical to a TpInt32,
and defines the quantity of the granted
volume that can be transmitted for the

specific connection. The volume specifies
the sum of uplink and downlink transfer

data volumes.

VolumeUnit TpInt32 In Order to enlarge the range of the volume
quantity value the exponent of a scaling

factor (10^VolumeUnit) is provided.

When the unit is for example in kilobytes,
VolumeUnit must be set to 3.

TpDataSessionSuperviseReport
Defines the responses from the data session control service for calls that are supervised. The values may be combined
by a logical 'OR' function.

Name Value Description

P_DATA_SESSION_SUPERVISE_VOLUME_REACHED 01h The maximum volume has been reached.

P_DATA_SESSION_SUPERVISE_DATA_SESSION_ENDED 02h The data session has ended, either due to data
session party to reach of maximum volume or

calling or called release.

P_DATA_SESSION_SUPERVISE_MESSAGE_SENT 04h A warning message has been sent.

TpDataSessionSuperviseTreatment
Defines the treatment of the call by the data session control service when the supervised volume is reached. The values
may be combined by a logical 'OR' function.

Name Value Description

P_DATA_SESSION_SUPERVISE_RELEASE 01h Release the data session when the data session
supervision volume is reached.

P_DATA_SESSION_SUPERVISE_RESPOND 02h Notify the application when the call
supervision volume is reached.

P_DATA_SESSION_SUPERVISE_INFORM 04h Send a warning message to the originating
party when the maximum volume is reached. If
data session release is requested, then the data

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)28Release 4

session will be released following the message
after an administered time period

TpDataSessionReport
Defines the Sequence of Data Elements that specify the data session report specific information.

Sequence Element Name Sequence Element Type

MonitorMode TpDataSessionMonitorMode

DataSessionEventTime TpDateAndTime

DataSessionReportType TpDataSessionReportType

AdditionalReportInfo TpDataSessionAdditionalReportInfo

TpDataSessionAdditionalReportInfo
Defines the Tagged Choice of Data Elements that specify additional data session report information for certain types of
reports.

Tag Element Type

TpDataSessionReportType

Tag Element Value Choice Element Type Choice Element Name

P_DATA_SESSION_REPORT_UNDEFINED NULL Undefined

P_DATA_SESSION_REPORT_CONNECTED NULL Undefined

P_DATA_SESSION_REPORT_DISCONNECT TpDataSessionReleaseCause DataSessionDisconnect

TpDataSessionReportRequest
Defines the Sequence of Data Elements that specify the criteria relating to data session report requests.

Sequence Element Name Sequence Element Type

MonitorMode TpDataSessionMonitorMode

DataSessionReportType TpDataSessionReportType

TpDataSessionReportRequestSet
Defines a Numbered Set of Data Elements of TpDataSessionReportRequest.

TpDataSessionReportType
Defines a specific data session event report type.

Name Value Description

P_DATA_SESSION_REPORT_UNDEFINED 0 Undefined

P_DATA_SESSION_REPORT_CONNECTED 1 Data session established.

P_DATA_SESSION_REPORT_DISCONNECT 2 Data session disconnect
requested by data session party

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)29Release 4

Annex A (normative):
OMG IDL Description of Data Session Control SCF
The OMG IDL representation of this interface specification is contained in a text file (dsc.idl contained in archive
2919808IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)30Release 4

Annex B (informative):
Differences between this draft and 3GPP 29.198 R99

C.1 Interface IpAppDataSessionControlManager
reportNotificationdataSessionEventNotify (dataSessionReference : in TpDataSessionIdentifier, eventInfo : in
TpDataSessionEventInfo, assignmentID : in TpAssignmentID, appInterfaceDataSession : out
IpAppDataSessionRefRef) : TpResult

C.2 Interface IpDataSessionControlManager
createNotificationenableDataSessionNotification (appDataSessionControlManagerInterface : in
IpAppDataSessionControlManagerRef, eventCriteria : in TpDataSessionEventCriteria, assignmentID : out
TpAssignmentIDRef) : TpResult

destroyNotificationdisableDataSessionNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpDataSessionEventCriteria) : TpResult

getNotification (eventCriteria : out TpDataSessionEventCriteriaRef) : TpResult

3GPP

3GPP TS 29.198-8 V1.0.0 (2001-03)31Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for approval and placement under Change Control

3GPP TS 29.198-11 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface

Part 11: Account Management
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, AM, Account Management

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)3Release 4

Contents

Foreword...4

1 Scope ..5

2 References ..5

3 Definitions, symbols and abbreviations ...6
3.1 Definitions..6
3.2 Symbols ...6
3.3 Abbreviations...6

4 Account Management SCF ..6

5 Sequence Diagrams..7
5.1 Standard Transaction History Retrieval ...7
5.2 Standard Query Handling...8
5.3 Standard Notification handling ..9

6 Class Diagrams...10

7 The Service Interface Specifications..11
7.1 Interface Specification Format...11
7.1.1 Interface Class ..11
7.1.2 Method descriptions ...11
7.1.3 Parameter descriptions ...12
7.1.4 State Model ..12
7.2 Base Interface...12
7.2.1 Interface Class IpInterface..12
7.3 Service Interfaces...12
7.3.1 Overview..12
7.4 Generic Service Interface...12

7.4.1 Interface Class IpService...12

8 Account Management Interface Classes ...13
8.1 Interface Class IpAccountManager..13
8.2 Interface Class IpAppAccountManager ...16

9 State Transition Diagrams..19
9.1 State Transition Diagrams for IpAccountManager ..19
9.1.1 Active State ..19
9.1.2 Notifications created State..19

10 Data Definitions ...20
10.1 Account Management Data Definitions ...20
10.1.1 TpBalanceQueryError ..20
10.1.2 TpChargingEventName..20
10.1.3 TpBalanceInfo..20
10.1.4 TpChargingEventInfo...21
10.1.5 TpChargingEventCriteria ...22
10.1.6 TpBalance ..22
10.1.7 TpBalanceSet ...22
10.1.8 TpTransactionHistory...22
10.1.9 TpTransactionHistorySet..23
10.1.10 TpTransactionHistoryStatus ...23

Annex A (normative): OMG IDL Description of Account Management SCF24

History ..25

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)4Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)5Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127[2].

This document specifies the Account Management Service Capability Feature (SCF) aspects of the interface. All
aspects of the Account Management SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modeling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)6Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Account Management SCF
The following sections describe each aspect of the Account Management Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability features is
implemented.

• The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

• The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data definitions section shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)7Release 4

5 Sequence Diagrams

5.1 Standard Transaction History Retrieval

 :
IpAppAccountManager

 :
IpAccountManager

1: retrieveTransactionHistoryReq()

2: retrieveTransactionHistoryRes()

1: This message is used by the application to retrieve a transaction history for a certain subscriber's account.

2: This method passes the result of the transaction history retrieval request for a specific user to its callback object.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)8Release 4

5.2 Standard Query Handling

 : IpAppAccountManager : IpAccountManager

Application is requesting to query
the balance

1: queryBalanceReq()

2: queryBalanceRes()

3: queryBalanceReq()

Application is requesting to query
the balance
Application is requesting to query
the balance

Application is requesting to query the
balance, but there is at least one error in the
parameters that is detected by the
IpAccountManager service.

4: queryBalanceReq()

Application is requesting to query the
balance, but a network error occurs

5: queryBalanceErr()

1: This message is used to query the balance of the account of one or several users.

2: This message passes the result of the balance query for one or several users to its callback object.

3: This scenario shows the case where at least one error in the parameters of the message is detected by the
IpAccountManager object. An exception will be thrown.

4: This scenario shows the case where a network error occurs.

5: This message passes the error of the balance query. No exception is thrown.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)9Release 4

5.3 Standard Notification handling

 : IpAppAccountManager : IpAccountManager

1: createNotification()

2: reportNotification()

3: getNotification()

4: changeNotification()

5: reportNotification()

6: destroyNotification()

1: This message is used by the application to request notifications from the IpAccountManager service on certain
criteria for one or several users.

2: This message is used by the IpAccountManager service to report a charging event that meets the criteria set in the
createNotification message.

3: The application can request the current criteria set in the IpAccountManager service by invoking the getNotification
method.

4: This message is used by the application to change the criteria initially created by createNotification, and previously
obtained by getNotification.

5: This message is used by the IpAccountManager service to report a charging event that meets the new criteria.

6: This method is used by the application to disable the charging notifications.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)10Release 4

6 Class Diagrams

IpInterface

IpAppAccountManager

reportNotification()
queryBalanceRes()
queryBalanceErr()
retrieveTransactionHistoryRes()
retrieveTransactionHistoryErr()

<<Interface>>

IpAccountManager

createNotification()
destroyNotification()
queryBalanceReq()
changeNotification()
getNotification()
retrieveTransactionHistoryReq()

<<Interface>>

<<uses>>

Figure 1: Application Interfaces

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)11Release 4

IpService

setCallback()
setCallbackWithSessionID()

IpAccountManager

createNotification()
destroyNotification()
queryBalanceReq()
changeNotification()
getNotification()
retrieveTransactionHistoryRe...

(from am)

<<Interface>>

Figure 2: Service Interfaces

7 The Service Interface Specifications

7.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)12Release 4

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)13Release 4

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpGeneralException

8 Account Management Interface Classes

8.1 Interface Class IpAccountManager
Inherits from: IpService.

The account manager interface provides methods for monitoring accounts. Applications can use this interface to enable
or disable charging-related event notifications and to query account balances.

<<Interface>>

IpAccountManager

createNotification (appAccountManager : in IpAppAccountManagerRef, ChargingEventCriteria : in
TpChargingEventCriteria, assignmentId : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentId : in TpAssignmentID) : TpResult

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)14Release 4

queryBalanceReq (users : in TpAddressSet, queryId : out TpSessionIDRef) : TpResult

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpChargingEventCriteria) :
TpResult

getNotification (eventCriteria : out TpChargingEventCriteriaRef) : TpResult

retrieveTransactionHistoryReq (user : in TpAddress, transactionInterval : in fw::TpTimeInterval, retrievalID :
out TpSessionIDRef) : TpResult

Method
createNotification()

This method is used by the application to enable charging event notifications to be sent to the application.

Parameters

appAccountManager : in IpAppAccountManagerRef

If this parameter is set (i.e. not NULL), it specifies a reference to the application interface that is used for callbacks. If it
is set to NULL, the application interface defaults to the interface specified via the setCallback() method.

ChargingEventCriteria : in TpChargingEventCriteria

Specifies the event specific criteria used by the application to define the charging event required. Individual addresses
or address ranges may be specified for subscriber accounts. Example of events are "charging" and "recharging".

assignmentId : out TpAssignmentIDRef

Specifies the ID assigned by the account management object for this newly enabled event notification.

Raises

TpAMException,TpGeneralException

Method
destroyNotification()

This method is used by the application to disable charging notifications.

Parameters

assignmentId : in TpAssignmentID

Specifies the assignment ID that was given by the account management object when the application enabled the
charging notification.

Raises

TpAMException,TpGeneralException

Method
queryBalanceReq()

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)15Release 4

This method is used by the application to query the balance of an account for one or several users.

Parameters

users : in TpAddressSet

Specifies the user(s) for which the balance is queried.

queryId : out TpSessionIDRef

Specifies the ID of the balance query request.

Raises

TpAMException,TpGeneralException

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.

eventCriteria : in TpChargingEventCriteria

Specifies the new set of event criteria used by the application to define the event required. Only events that meet these
criteria are reported

Raises

TpAMException,TpGeneralException

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Parameters

eventCriteria : out TpChargingEventCriteriaRef

Specifies the event criteria used by the application to define the event required. Only events that meet these criteria are
reported.

Raises

TpAMException,TpGeneralException

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)16Release 4

Method
retrieveTransactionHistoryReq()

This asynchronous method is used by the application to retrieve a transaction history of a subscriber's account. The
history is a set of Detailed Records.

Parameters

user : in TpAddress

Specifies the subscriber for whose account the transaction history is to be retrieved.

transactionInterval : in fw::TpTimeInterval

Specifies the time interval for which the application history is to be retrieved.

retrievalID : out TpSessionIDRef

Specifies the retrieval ID of the transaction history retrieval request.

Raises

TpAMException,TpGeneralException

8.2 Interface Class IpAppAccountManager
Inherits from: IpInterface.

The account manager application interface is implemented by the client application developer and is used to handle
charging event notifications and query balance responses.

<<Interface>>

IpAppAccountManager

reportNotification (chargingEventInfo : in TpChargingEventInfo, assignmentId : in TpAssignmentID,
appAccountManager : out IpAppAccountManagerRefRef) : TpResult

queryBalanceRes (queryId : in TpSessionID, balances : in TpBalanceSet) : TpResult

queryBalanceErr (queryId : in TpSessionID, cause : in TpBalanceQueryError) : TpResult

retrieveTransactionHistoryRes (retrievalID : in TpSessionID, transactionHistoryStatusCode : in
TpTransactionHistoryStatus, transactionHistory : in TpTransactionHistorySet) : TpResult

retrieveTransactionHistoryErr (retrievalID : in TpSessionID, transactionHistoryError : in
TpTransactionHistoryStatus) : TpResult

Method
reportNotification()

This method is used to notify the application of a charging event.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)17Release 4

Parameters

chargingEventInfo : in TpChargingEventInfo

Specifies data associated with this charging event. These data include the charging event being notified, the current
value of the balance after the notified event occurred, and the time at which the charging event occurred.

assignmentId : in TpAssignmentID

Specifies the assignment ID that was returned by the createNotification() method. The application can use the
assignment ID to associate events with event-specific criteria and to act accordingly.

appAccountManager : out IpAppAccountManagerRefRef

Specifies a reference to the application object, which implements the callback interface for the new charging session.

Raises

TpAMException,TpGeneralException

Method
queryBalanceRes()

This method indicates that the request to query the balance was successful and it reports the requested balance of an
account to the application.

Parameters

queryId : in TpSessionID

Specifies the ID of the balance query request.

balances : in TpBalanceSet

Specifies the balance for one or more user accounts.

Raises

TpAMException,TpGeneralException

Method
queryBalanceErr()

This method indicates that the request to query the balance failed and it reports the cause of failure to the application.

Parameters

queryId : in TpSessionID

Specifies the ID of the balance query request.

cause : in TpBalanceQueryError

Specifies the error that led to the failure.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)18Release 4

Raises

TpAMException,TpGeneralException

Method
retrieveTransactionHistoryRes()

This method indicates that the request to retrieve the transaction history was successful and it returns the requested
transaction history.

Parameters

retrievalID : in TpSessionID

Specifies the retrievalID of the transaction history retrieval request.

transactionHistoryStatusCode : in TpTransactionHistoryStatus

Specifies the status code for retrieving the transaction history.

transactionHistory : in TpTransactionHistorySet

Specifies the requested transaction history.

Raises

TpAMException,TpGeneralException

Method
retrieveTransactionHistoryErr()

This method indicates that the request to retrieve the transaction history failed and it reports the cause of failure to the
application.

Parameters

retrievalID : in TpSessionID

Specifies the retrievalID of the transaction history retrieval request.

transactionHistoryError : in TpTransactionHistoryStatus

Specifies the error that occured while retrieving the transaction history.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)19Release 4

Raises

TpAMException,TpGeneralException

9 State Transition Diagrams

9.1 State Transition Diagrams for IpAccountManager

Activ e Notif ications
created

Creation of IpAc countManager
by Serv ice Fact ory

query BalanceReq
changeNotif ication
getNotif ication
retriev eTransact ionHistory Req

query BalanceReq
retriev eTransactionHistory Req

IpAccess.terminateServ iceAgreement

destroy Notif icat ion

IpAccess.terminateServ iceAgreement

createNotif ication

Figure 3: Application view on the IpAccountManager

9.1.1 Active State

In this state a relation between the Application and the Account Management has been established. The state allows the
application to indicate that it is interested in charging related events, by calling createNotification. In case such an event
occurs, Account Manager will inform the application by invoking the operation reportNotification() on the
IpAppAccountManager interface. The application can also indicate it is no longer interested in certain charging related
events by calling destroyNotification().

9.1.2 Notifications created State

When the Account Manager is in the Notifications created state, events requested with createNotification() will be
forwarded to the application. In this state the application can request to change the notifications or query the Account
Manager for the notifications currently set.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)20Release 4

10 Data Definitions

10.1 Account Management Data Definitions
This section provides the Account Management specific data definitions necessary to support the OSA interface
specification.

The general format of a data definition specification is the following:

• Data type, that shows the name of the data type.

• Description, that describes the data type.

• Tabular specification, that specifies the data types and values of the data type.

• Example, if relevant, shown to illustrate the data type.

10.1.1 TpBalanceQueryError

Defines an error that is reported by the Charging service capability feature as a result of a balance query request.

Name Valu
e

Description

P_BALANCE_QUERY_OK 0 No error occurred while processing the request

P_BALANCE_QUERY_ERROR_UNDEFINED 1 General error, unspecified

P_BALANCE_QUERY_UNKNOWN_SUBSCRIBER 2 Subscriber for which balance is queried is
unknown

P_BALANCE_QUERY_UNAUTHORIZED_APPLICATIO
N

3 Application is not authorized to query balance

P_BALANCE_QUERY_SYSTEM_FAILURE 4 System failure. The request could not be handled

10.1.2 TpChargingEventName

Defines the charging event for which notifications can be requested by the application.

Name Valu
e

Description

P_AM_CHARGING 0 End user's account has been charged by an
application

P_AM_RECHARGING 1 End user has recharged the account

P_AM_ACCOUNT_LOW 2 Account balance is below the balance threshold

P_AM_ACCOUNT_ZERO 3 Account balance is at zero

P_AM_ACCOUNT_DISABLED 4 Account has been disabled

10.1.3 TpBalanceInfo

Defines the structure of data elements that specifies detailed balance info.

Structured Member Name Structured Member Type Description

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)21Release 4

Currency TpString Currency unit according to ISO-
4217:1995

ValuePartA TpInt32 This data type is identical to a
TpInt32 and specifies the most
significant part of the composed
value. A currency amount is
composed as follows:

((ValuePartA*2
32
+ ValuePartB) *

0.0001)

ValuePartB TpInt32 This data type is identical to a
TpInt32 and specifies the least
significant part of the composed
value.

Exponent TpInt32 Specifies the position of the
decimal point in the currency
amount made up of the unitPart and
the fractionPart, as described
above. E.g. an exponent of 4 means
a pure integer value, whereas an
exponent of 2 means an accuracy of
0.01.

AdditionalInfo TpString Descriptive string, containing
additional information, which is
sent to the application without
prior evaluation.

As an example, the currency amount composed of a Currency of EUR, a ValuePartA of 0, a ValuePartB of 10000, and an
exponent of 2 yields a currency amount of � �������

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

10.1.4 TpChargingEventInfo

Defines the structure of data elements that specifies charging event information.

Structured Member Name Structured Member Type Description

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)22Release 4

ChargingEventName TpChargingEventName The charging event for
which notifications can be
requested by the
application

CurrentBalanceInfo TpBalanceInfo The current balance of the
user’s account

ChargingEventTime TpTime The time at which the
charging event occurred.

10.1.5 TpChargingEventCriteria

Defines the structure of data elements that specifies charging event criteria.

Structured Member Name Structured Member Type Description

Users TpAddressSet Specifies the user(s) for
which the charging events
are requested to be
reported.

ChargingEventName TpChargingEventName Specifies the specific
charging event criteria
used by the application to
define the event required.

10.1.6 TpBalance

Defines the structure of data elements that specifies a balance.

Structured Member Name Structured Member Type Description

UserID TpAddress Specifies the user to whom
the account belongs to.

StatusCode TpBalanceQueryError Specifies the status code
for the balance query
request.

BalanceInfo TpBalanceInfo Specifies the balance
information for the user.

10.1.7 TpBalanceSet

Defines a collection of TpBalance elements.

10.1.8 TpTransactionHistory

This data type is a sequence of data elements that describes the transaction history.

Sequence Element

Name

Sequence Element

Type

Description

TransactionID TpAssignmentID Specifies the ID of the specific transaction

TimeStamp TpDateAndTime Specifies the date and time when the specific
transaction was processed.

AdditionalInfo TpString Specifies a free format string providing additional
information on the specific transaction. This could
be the applicationDescription provided with the
actual transaction.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)23Release 4

10.1.9 TpTransactionHistorySet

Defines a collection of TpTransactionHistory elements.

10.1.10 TpTransactionHistoryStatus

Defines a status code that is reported by the Account Manager service capability feature as a result of a transaction
history retrieval request.

Name Value Description

P_AM_TRANSACTION_OK 0 No error occurred while processing the request

P_AM_TRANSACTION_ERROR_UNSPECIFIED 1 General error, unspecified

P_AM_TRANSACTION_INVALID_INTERVAL 2 An invalid interval for the transaction history was
specified.

P_AM_TRANSACTION_UNKNOWN_ACCOUNT 3 No account for the specified user is known.

P_AM_TRANSACTION_UNAUTHORIZED_APPLICATION 4 Application is not authorized to query balance.

P_AM_TRANSACTION_PROCESSING_ERROR 5 A processing error occurred while compiling the
transaction history.

P_AM_TRANSACTION_SYSTEM_FAILURE 6 System failure. The request could not be handled

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)24Release 4

Annex A (normative):
OMG IDL Description of Account Management SCF
The OMG IDL representation of this interface specification is contained in a text file (am.idl contained in archive
2919811IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-11 V1.0.0 (2001-03)25Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for Information

3GPP TS 29.198-12 V1.0.0 (2001-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access;
Application Programming Interface;

Part 12: Charging;
(Release 4)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)2Release 4

Keywords
API, OSA, IDL, CS, Charging

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
All rights reserved.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)3Release 4

Contents

Foreword ..4

1 Scope ..5

2 References ..5

3 Definitions, symbols and abbreviations ...6
3.1 Definitions ...6
3.2 Symbols ...6
3.3 Abbreviations...6

4 Charging SCF...6

5 Sequence Diagrams..6
5.1 Reservation / payment in parts...6
5.2 Immediate Charge..9

6 Class Diagrams...11

7 The Service Interface Specifications..13
7.1 Interface Specification Format...13
7.1.1 Interface Class ..13
7.1.2 Method descriptions ...13
7.1.3 Parameter descriptions ...13
7.1.4 State Model ..13
7.2 Base Interface...13
7.2.1 Interface Class IpInterface..13
7.3 Service Interfaces...14
7.3.1 Overview..14
7.4 Generic Service Interface...14

7.4.1 Interface Class IpService...14

8 Charging Interface Classes ..15
8.1 Interface Class IpChargingManager ..15
8.2 Interface Class IpAppChargingSession..16
8.3 Interface Class IpChargingSession ..26

9 State Transition Diagrams..34

10 Data Definitions ...34
10.1 Charging Data Definitions..34

Annex A (normative): OMG IDL Description of Charging SCF ..38

History ..40

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)4Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)5Release 4

1 Scope
This document is part of the Stage 3 specification for an Application Programming Interface (API) for Open Service
Access (OSA). The OSA specifications define an architecture that enables application developers to make use of
network functionality through an open standardised interface, i.e. the OSA API's. The concepts and the functional
architecture for the Open Service Access (OSA) are described by 3GPP TS 23.127 [3]. The requirements for OSA are
defined in 3GPP TS 22.127 [2].

This document specifies the Charging Service Capability Feature (SCF) aspects of the interface. All aspects of the
Charging SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modeling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with the JAIN consortium.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, subsequent revisions do apply.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation (www.w3.org)

[5] Wireless Application Protocol (WAP), Version 1.2, UAProf Specification (www.wapforum.org)

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)6Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in TS 29.198-1 [1] apply.

3.2 Symbols
For the purposes of the present document, the symbols in TS 29.198-1 [1] apply.

3.3 Abbreviations
For the purposes of the present document, the abbreviations in TS 29.198-1 [1] apply.

4 Charging SCF
The following sections describe each aspect of the Charging Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented.

• The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

• The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data definitions section show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification.

5 Sequence Diagrams

5.1 Reservation / payment in parts
The sequence diagram illustrates how to request a reservation and how to charge a user from the reserved amount, for
instance to charge a user for a streamed video which lasts 10 minutes and costs a total of $2.00. The operations and
interfaces that do not provide rating are employed throughout this sequence diagram.

We assume the application has already discovered the content based charging SCF. As a result, the application received
an object reference pointing to an object that implements the IpChargingManager interface.

1. The application creates a local object implementing the IpAppChargingAmountSession interface.

2. The application opens a amount charging session, an reference to a new or existing object implementing
IpChargingAmountSession is returned together with a unique session ID.

3. In this case a new object is used.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)7Release 4

4. The application requests the reservation of $2.00.

5. Assuming the criteria for requesting a reservation are met (the application provider has permission to charge the
requested amount, the charged user has agreed to pay the requested amount), the amount is reserved in the session. At
this point, the application provider knows that the network operator will accept later debit requests up to the reserved
amount. So, the application may start serving the user, for instance by sending the video stream.

6. The successful reservation is reported back to the application.

After half of the video has been sent to the user, the application may choose to capture half of the price already:

7. The application requests to debit $1.00 from the reservation.

8. The successful debit is reported back to the application.

9. The acknowledge is forwarded to the application.

10. The application checks if the remaining lifetime of the reservation will cover the remaining 5 minutes of video. Let
us assume, it does not.

11. The application asks the IpChargingAmountReservation object to extend the lifetime of the reservation.

12. Assuming that the application provider is allowed to keep reservations open for longer thant 10 minutes, the
extendLifeTimeReq() will be honored and confirmed properly.

13. The confirmation is forwarded to the application.

14. When the complete video has been transmitted to the user without errors, the application charges another $1.00.

15. The IpChargingAmountReservation object acknowledges the successful debit at the IpAppAmountReservation
callback object.

16. The IpAppChargingAmountReservation object forwards the acknowledge to the application.

17. Since the service is complete, the application frees all resources associated with the reservation and session.

The operations which handle units are used exactly the same, except that the amount of application usage is indicated
instead of a price.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)8Release 4

Application : IpChargingSession :
pChargingManager

 : IpAppChargingSession

1: new()

2: createChargingSession ()
3: new()

4: reserveAmountReq()

5: reserveAmountRes()
6: forward event()

7: debitAmountReq()

8: debitAmountRes()
9: forward event()

10: getLifeTimeLeft()

11: extendLifeTimeReq()

12: ex tendLifeTimeRes()
13: forward event()

14: debitAmountReq()

15: debitAmountRes()

16: forward event()

17: release()

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)9Release 4

5.2 Immediate Charge
This sequence diagram illustrates how immediate charging is used. Assume a WAP gateway that charges the user $0.01
per requested URL. Since it is acceptable to loose one tick worth $0.01, no prior reservations are made. The WAP
gateway sends an immediate debit for each requested URL, and should a payment have as result failure, the user is
disconnected.

1. The application creates a local object implementing the IpAppChargingAmountSession interface. This object will
receive response messages from the IpChargingAmountSession object.

2. The application orders the creation of a session.

3. The application requests to charge the user $0.01.

4. The payment is acknowledged.

5. The acknowledgement is forwarded in the application.

6. The application requests to charge the user $0.01.

7. The payment is reported to fail.

8. The failure report is forwarded in the application.

(repeat steps 3 - 5 and 6 - 8 as long as you want to in any order you want to)

9. The application releases the session

The operations which handle units are used exactly the same, except that the amount of application usage is indicated
instead of a price.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)10Release 4

Application : IpChargingSession : IpAppChargingSession :
IpChargingManager

1: new()

2: createChargingSession ()

3: debitAmountReq()

4: debitAmountRes()
5: forward notification

6: debitAmountReq()

7: debitAmountErr()
8: forward notification

9: release()

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)11Release 4

6 Class Diagrams
This class diagram shows the application interfaces for charging and their relations to the service interfaces.

IpInterface
(from open_service_access)

IpAppChargingSession

extendLifeTimeRes()
extendLifeTimeErr()
creditAmountRes()
creditAmountErr()
debitAmountRes()
debitAmountErr()
reserveAmountRes()
reserveAmountErr()
directCreditAmountRes()
directCreditAmountErr()
directDebitAmountRes()
directDebitAmountErr()
creditUnitRes()
creditUnitErr()
debitUnitRes()
debitUnitErr()
reserveUnitRes()
reserveUnitErr()
rateRes()
rateErr()
directCreditUnitRes()
directCreditUnitErr()
directDebitUnitRes()
directDebitUnitErr()

(from cs)

IpChargingSession

reserveAmountReq()
creditAmountReq()
debitAmountReq()
getAmountLeft()
release()
extendLifeTimeReq()
getLifeTimeLeft()
directCreditAmountReq()
directDebitAmountReq()
reserveUnitReq()
creditUnitReq()
debitUnitReq()
getUnitLeft()
rateReq()
directCreditUnitReq()
directDebitUnitReq()

(from cs)

IpChargingManager

createChargingSession()

(from cs)

0..n

1

0..n

1

<<uses>>

Figure: Application Interfaces

This class diagram shows the interfaces of the charging SCF.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)12Release 4

IpService

setCallback()
setCallbackWithSessionID()

(from open_service_access)

<Interface>>

IpChargingManager

createChargingSession()

(from cs)

<<Interface>>
IpChargingSession

reserveAmountReq()
creditAmountReq()
debitAmountReq()
getAmountLeft()
release()
extendLifeTimeReq()
getLifeTimeLeft()
directCreditAmountReq()
directDebitAmountReq()
reserveUnitReq()
creditUnitReq()
debitUnitReq()
getUnitLeft()
rateReq()
directCreditUnitReq()
directDebitUnitReq()

(from cs)

<Interface>>

Figure: Service Interfaces

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)13Release 4

7 The Service Interface Specifications

7.1 Interface Specification Format
This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was sucessfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)14Release 4

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpGeneralException

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)15Release 4

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpGeneralException

8 Charging Interface Classes

8.1 Interface Class IpChargingManager
Inherits from: IpService.

This interface is the 'service manager' interface for the Charging Service. The Charging manager interface provides
management functions to the charging service. The application programmer can use this interface to start charging
sessions.

<<Interface>>

IpChargingManager

createChargingSession (appAmountSession : in IpAppAmountSessionRef, applicationDescription : in
TpString, merchantAccount : in TpMerchantAccountID, user : in TpAddress, correlationID : in
TpCorrelationID, amountSessionReference : out TpChargingSessionIDRef) : TpResult

Method
createChargingSession()

This method creates a container for further transactions between an end user and a merchant (either direct or via a
reservation).

Parameters

appAmountSession : in IpAppAmountSessionRef

Callback interface for the session in the application

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user).

merchantAccount : in TpMerchantAccountID

Identifies the account of the party providing the application to be used.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)16Release 4

user : in TpAddress

Specifies the user that is using the application. This may or may not be the user that will be charged. The Charging
service will determine the charged user.

correlationID : in TpCorrelationID

This value can be used to correlate the charging to network activity.

amountSessionReference : out TpChargingSessionIDRef

Defines the session.

8.2 Interface Class IpAppChargingSession
Inherits from: IpInterface.

This application interface must be implemented by the client application to handle callbacks from the
IpChargingSession.

<<Interface>>

IpAppChargingSession

extendLifeTimeRes (sessionID : in TpSessionID, SessionTimeLeft : in TpInt32) : TpResult

extendLifeTimeErr (sessionID : in TpSessionID, error : in TpChargingError) : TpResult

creditAmountRes (sessionID : in TpSessionID, creditedAmount : in TpChargingPrice, reservedAmountLeft :
in TpChargingPrice, requestNumberNextRequest : in TpInt32) : TpResult

creditAmountErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

debitAmountRes (sessionID : in TpSessionID, debitedAmount : in TpChargingPrice, reservedAmountLeft :
in TpChargingPrice, requestNumberNextRequest : in TpInt32) : TpResult

debitAmountErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

reserveAmountRes (sessionID : in TpSessionID, reservedAmount : in TpChargingPrice, sessionTimeLeft :
in TpInt32, requestNumberNextRequest : in TpInt32) : TpResult

reserveAmountErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

directCreditAmountRes (sessionID : in TpSessionID, creditedAmount : in TpChargingPrice,
requestNumberNextRequest : in TpInt32) : TpResult

directCreditAmountErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest
: in TpInt32) : TpResult

directDebitAmountRes (sessionID : in TpSessionID, debitedAmount : in TpChargingPrice,
requestNumberNextRequest : in TpInt32) : TpResult

directDebitAmountErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest
: in TpInt32) : TpResult

creditUnitRes (sessionID : in TpSessionID, creditedVolumes : in TpVolumeSet, reservedUnitsLeft : in
TpVolumeSet, requestNumberNextRequest : in TpInt32) : TpResult

creditUnitErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

debitUnitRes (sessionID : in TpSessionID, debitedVolumes : in TpVolumeSet, reservedUnitsLeft : in

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)17Release 4

TpVolumeSet, requestNumberNextRequest : in TpInt32) : TpResult

debitUnitErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

reserveUnitRes (sessionID : in TpSessionID, reservedUnits : in TpVolumeSet, sessionTimeLeft : in TpInt32,
requestNumberNextRequest : in TpInt32) : TpResult

reserveUnitErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

rateRes (sessionID : in TpSessionID, rates : in TpPriceVolumeSet, validityTimeLeft : in TpInt32) : TpResult

rateErr (sessionID : in TpSessionID, error : in TpChargingError) : TpResult

directCreditUnitRes (sessionID : in TpSessionID, creditedVolumes : in TpVolumeSet,
requestNumberNextRequest : in TpInt32) : TpResult

directCreditUnitErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

directDebitUnitRes (sessionID : in TpSessionID, debitedVolumes : in TpVolumeSet,
requestNumberNextRequest : in TpInt32) : TpResult

directDebitUnitErr (sessionID : in TpSessionID, error : in TpChargingError, requestNumberNextRequest : in
TpInt32) : TpResult

Method
extendLifeTimeRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

SessionTimeLeft : in TpInt32

Indicates the number of seconds that the session remains valid.

Method
extendLifeTimeErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)18Release 4

Method
creditAmountRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

creditedAmount : in TpChargingPrice

Indicates the credited amount.

reservedAmountLeft : in TpChargingPrice

The amount left of the reservation.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
creditAmountErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
debitAmountRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)19Release 4

debitedAmount : in TpChargingPrice

Indicates the debited amount.

reservedAmountLeft : in TpChargingPrice

The amount left of the reservation.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
debitAmountErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
reserveAmountRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the same as the session ID returned in the request.

reservedAmount : in TpChargingPrice

The amount reserved.

sessionTimeLeft : in TpInt32

Indicates the number of seconds that the session and the reservation therein remains valid.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)20Release 4

Method
reserveAmountErr()

This method indicates that the corresponding request failed. The reservation cannot be used.

Parameters

sessionID : in TpSessionID

This is the same as the session ID returned in the request.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
directCreditAmountRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

creditedAmount : in TpChargingPrice

Indicates the credited amount.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
directCreditAmountErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)21Release 4

Method
directDebitAmountRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

debitedAmount : in TpChargingPrice

Indicates the debited amount.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
directDebitAmountErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
creditUnitRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

creditedVolumes : in TpVolumeSet

Indicates the credited volumes of application useage.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)22Release 4

reservedUnitsLeft : in TpVolumeSet

The volume of application usage left in the reservation.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
creditUnitErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
debitUnitRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

debitedVolumes : in TpVolumeSet

Indicates the debited volumes of application useage.

reservedUnitsLeft : in TpVolumeSet

The volume of application usage left in the reservation.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
debitUnitErr()

This method indicates that the corresponding request failed.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)23Release 4

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
reserveUnitRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the same as the session ID returned in the request.

reservedUnits : in TpVolumeSet

The volume of application usage reserved.

sessionTimeLeft : in TpInt32

Indicates the number of seconds that the session and the reservation therein remains valid.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
reserveUnitErr()

This method indicates that the corresponding request failed. The reservation cannot be used.

Parameters

sessionID : in TpSessionID

This is the same as the session ID returned in the request.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)24Release 4

Method
rateRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

rates : in TpPriceVolumeSet

The applicable rates.

validityTimeLeft : in TpInt32

Indicates the number of seconds that this information remains valid.

Method
rateErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

Method
directCreditUnitRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

creditedVolumes : in TpVolumeSet

Indicates the credited volumes of application useage.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)25Release 4

Method
directCreditUnitErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
directDebitUnitRes()

This method indicates that the corresponding request was successfull.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

debitedVolumes : in TpVolumeSet

Indicates the debited volumes of application useage.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

Method
directDebitUnitErr()

This method indicates that the corresponding request failed.

Parameters

sessionID : in TpSessionID

This is the ID of the session for which the operation was called.

error : in TpChargingError

Indicates the reason for failure.

requestNumberNextRequest : in TpInt32

This request number must be used in the next request for this session.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)26Release 4

8.3 Interface Class IpChargingSession
Inherits from: IpService.

The Charging Amount Session interface provides operations to facilitate amount transactions between a merchant and
an user. The application programmer can use this interface to debit or credit amounts towards a user, to create and
extend the lifetime of a reservation and to get information about what is left of the reservation.

<<Interface>>

IpChargingSession

reserveAmountReq (sessionID : in TpSessionID, preferredAmount : in TpChargingPrice, minimumAmount :
in TpChargingPrice, applicationDescription : in TpString, requestNumber : in TpInt32,
chargingParameters : in TpChargingParameterSet) : TpResult

creditAmountReq (sessionID : in TpSessionID, applicationDescription : in TpString, amount : in
TpChargingPrice, closeReservation : in TpBoolean, requestNumber : in TpInt32) : TpResult

debitAmountReq (sessionID : in TpSessionID, applicationDescription : in TpString, amount : in
TpChargingPrice, closeReservation : in TpBoolean, requestNumber : in TpInt32) : TpResult

getAmountLeft (sessionID : in TpSessionID, amountLeft : out TpChargingPrice) : TpResult

release (sessionID : in TpSessionID, requestNumber : in TpInt32) : TpResult

extendLifeTimeReq (sessionID : in TpSessionID) : TpResult

getLifeTimeLeft (sessionID : in TpSessionID, reservationTimeLeft : out TpInt32) : TpResult

directCreditAmountReq (sessionID : in TpSessionID, applicationDescription : in TpString,
chargingParameters : in TpChargingParameterSet, amount : in TpChargingPrice, requestNumber : in
TpInt32) : TpResult

directDebitAmountReq (sessionID : in TpSessionID, applicationDescription : in TpString, amount : in
TpChargingPrice, requestNumber : in TpInt32, chargingParameters : in TpChargingParameterSet) :
TpResult

reserveUnitReq (sessionID : in TpSessionID, chargingParameters : in TpChargingParameterSet, volumes :
in TpVolumeSet, applicationDescription : in TpString, requestNumber : in TpInt32) : TpResult

creditUnitReq (sessionID : in TpSessionID, applicationDescription : in TpString, volumes : in TpVolumeSet,
closeReservation : in TpBoolean, requestNumber : in TpInt32) : TpResult

debitUnitReq (sessionID : in TpSessionID, applicationDescription : in TpString, volumes : in TpVolumeSet,
closeReservation : in TpBoolean, requestNumber : in TpInt32) : TpResult

getUnitLeft (sessionID : in TpSessionID, volumesLeft : out TpVolumeSet) : TpResult

rateReq (sessionID : in TpSessionID, chargingParameters : in TpChargingParameterSet) : TpResult

directCreditUnitReq (sessionID : in TpSessionID, applicationDescription : in TpString, chargingParameters :
in TpChargingParameterSet, volumes : in TpVolumeSet, requestNumber : in TpInt32) : TpResult

directDebitUnitReq (sessionID : in TpSessionID, applicationDescription : in TpString, chargingParameters :
in TpChargingParameterSet, volumes : in TpVolumeSet, requestNumber : in TpInt32) : TpResult

Method
reserveAmountReq()

This method is used whan an application wants to reserve an amount for services to be delivered to an user.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)27Release 4

Parameters

sessionID : in TpSessionID

The ID of the session.

preferredAmount : in TpChargingPrice

The amount that the application wants to be reserved.

minimumAmount : in TpChargingPrice

The minimum amount that can be used by the application.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

chargingParameters : in TpChargingParameterSet

Method
creditAmountReq()

This method credits an amount towards the reservation associated with the session.

The amount left in the reservation will be increased by this amount.

Each request to debit / credit an amount towards a reservation is handled separately. For example, two requests for a
payment of EUR 1,- will give a total payment of EUR 2,-.

A credit of EUR 1,- and a debit of EUR 1 will give a total payment of EUR 0,-.

Parameters

sessionID : in TpSessionID

The ID of the session.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

amount : in TpChargingPrice

The amount to be credited towards the user.

closeReservation : in TpBoolean

If set to true, this parameter indicates that the rest of the reservation can be freed.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)28Release 4

Method
debitAmountReq()

This method debits an amount from the reservation.

The amount left in the reservation will be decreased by this amount.

Each request to debit / credit an amount towards a reservation is handled separately. For example, two requests for a
payment of EUR 1,- will give a total payment of EUR 2,-.

A credit of EUR 1,- and a debit of EUR 1 will give a total payment of EUR 0,-.

When a debit operation would exceed the limit of the reservation, the debit operation fails.

Parameters

sessionID : in TpSessionID

The ID of the session.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

amount : in TpChargingPrice

The amount to be debited from the user.

closeReservation : in TpBoolean

If set to true, this parameter indicates that the reservation can be freed.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

Method
getAmountLeft()

With this method an application can request the remaining amount of the reservation.

Parameters

sessionID : in TpSessionID

The ID of the session.

amountLeft : out TpChargingPrice

Gives the amount left in the reservation.

Method
release()

This method releases the session, no operations can be done towards this session anymore (not even retries). Unused
parts of a reservation are freed.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)29Release 4

Parameters

sessionID : in TpSessionID

The ID of the session.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

Method
extendLifeTimeReq()

With this method an application can request the lifetime of the session and possible reservation therein to be extended.

Parameters

sessionID : in TpSessionID

The ID of the session.

Method
getLifeTimeLeft()

With this method an application can request the remaining lifetime of the session.

Parameters

sessionID : in TpSessionID

The ID of the session.

reservationTimeLeft : out TpInt32

Indicates the number of seconds that the session remains valid.

Method
directCreditAmountReq()

This method directly credits an amount towards the user.

A possible reservation associated with this session is not influenced.

Parameters

sessionID : in TpSessionID

The ID of the session.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)30Release 4

chargingParameters : in TpChargingParameterSet

These parameters and their values specify to the charging service what was provided to the end user so that the charging
service can determine the applicable tariff..

amount : in TpChargingPrice

The amount to be credited towards the user.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

Method
directDebitAmountReq()

This method directly debits an amount towards the user.

A possible reservation associated with this session is not influenced.

Parameters

sessionID : in TpSessionID

The ID of the session.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

amount : in TpChargingPrice

The amount to be debited from the user.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

chargingParameters : in TpChargingParameterSet

These parameters and their values specify to the charging service what was provided to the end user so that the charging
service can determine the applicable tariff..

Method
reserveUnitReq()

This method is used whan an application wants to reserve volumes of application usage to be delivered to an user in the
session.

Parameters

sessionID : in TpSessionID

The ID of the session.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)31Release 4

chargingParameters : in TpChargingParameterSet

These parameters and their values specify to the charging service what was provided to the end user so that the charging
service can determine the applicable tariff..

volumes : in TpVolumeSet

Specifies the units and number of units for each unit that will be reserved.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

Method
creditUnitReq()

This method credits a volume of application usage towards the reservation.

The volumes left in the reservation of this will be increased by this amount.

Each request to debit / credit a volume towards a reservation is handled separately. For example, two requests for a
payment for 10 kilobytes will give a total payment for 20 kilobytes

Parameters

sessionID : in TpSessionID

The ID of the session.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

volumes : in TpVolumeSet

Specifies the units and number of units for each unit which will be credited towards the user.

closeReservation : in TpBoolean

If set to true, this parameter indicates that the reservation can be freed.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

Method
debitUnitReq()

This method debits a volume of application usage from the reservation.

The volumes left in the reservation will be decreased by this amount.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)32Release 4

Each request to debit / credit a volume towards a reservation is handled separately. For example, two requests for a
payment for 10 kilobytes will give a total payment for 20 kilobytes.

When a debit operation would exceed the limit of the reservation, the debit operation succeeds, and the debited volumes
will be the rest of the volumes in the reservation.

Parameters

sessionID : in TpSessionID

The ID of the session.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

volumes : in TpVolumeSet

Specifies the units and number of units for each unit which will be debited from the user.

closeReservation : in TpBoolean

If set to true, this parameter indicates that the reservation can be freed.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

Method
getUnitLeft()

With this method an application can request the remaining amount of the reservation.

Parameters

sessionID : in TpSessionID

The ID of the session.

volumesLeft : out TpVolumeSet

Specifies the units and number of units for each unit which can still be debited from the user.

Method
rateReq()

This method is used when the application wants to have an item rated by the charging service. The result can be used to
present pricing information to the end user before the end user actually want to start using the service.

Parameters

sessionID : in TpSessionID

The ID of the session.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)33Release 4

chargingParameters : in TpChargingParameterSet

These parameters and their values specify to the charging service what was provided to the end user so that the charging
service can determine the applicable tariff..

Method
directCreditUnitReq()

This method directly credits a volume of application usage towards the user.

The volumes in a possible reservation associated with this session are not influenced.

Parameters

sessionID : in TpSessionID

The ID of the reservation.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

chargingParameters : in TpChargingParameterSet

These parameters and their values specify to the charging service what was provided to the end user so that the charging
service can determine the applicable tariff..

volumes : in TpVolumeSet

Specifies the units and number of units for each unit which will be credited towards the user.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

Method
directDebitUnitReq()

This method directly credits a volume of application usage towards the user.

The volumes in a possible reservation associated with this session are not influence.

Parameters

sessionID : in TpSessionID

The ID of the reservation.

applicationDescription : in TpString

Descriptive text for informational puposes (e.g. text presented on the bill and used in communication towards the user)

chargingParameters : in TpChargingParameterSet

These parameters and their values specify to the charging service what was provided to the end user so that the charging
service can determine the applicable tariff..

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)34Release 4

volumes : in TpVolumeSet

Specifies the units and number of units for each unit which will be debited from the user.

requestNumber : in TpInt32

Specifies the number given in the result of the previous operation on this session, or when creating the session. When
no answer is received the same operation with the same parameters must be retried with the same requestNumber.

9 State Transition Diagrams
There are no State Transition Diagrams for the Charging SCF.

10 Data Definitions

10.1 Charging Data Definitions
This section provides the Charging specific data definitions necessary to support the OSA interface specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents
Hypertext links.

The general format of a data definition specification is the following:

• Data type, that shows the name of the data type.

• Description, that describes the data type.

• Tabular specification, that specifies the data types and values of the data type.

• Example, if relevant, shown to illustrate the data type.

TpMerchantAccountID

Defines a Sequence of Data Elements that defines the used service.

Sequence Element Name Sequence Element Type

MerchantID TpString

AccountID TpInt32

TpCorrelationID

Defines the Sequence of Data Elements that identify a correlation.

Sequence Element Name Sequence Element Type

CorrelationID TpSessionID

CorrelationType TpCorrelationType

TpCorrelationType

Defines the type of correlation.

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)35Release 4

Name Value Description

P_CHS_CORRELATION_UNDEFINED 0 Unknown correlation type.

P_CHS_CORRELATION_VOICE 1 Voice Call

P_CHS_CORRELATION_DATA 2 Data Session

P_CHS_CORRELATION_MM 3 Multi Media Session

P_CHS_CORRELATION_RUNTIME 0x10000000-
0xFFFFFFFF

Parameters with values greater than
P_CHS_CORRELATION_RUNTIME may be

added run-time.

TpChargingPrice

Defines the Sequence of Data Elements that identify a price.

Sequence Element Name Sequence Element Type

Currency TpString

Amount TpAmount

Currencies as defined by ISO 4217:1995.

TpAmount

Defines the Sequence of Data Elements that define an amount in integers as “Number * 10 ^ Exponent” (i.e.
if Number = 6543 and Exponent = -2 then the amount is 65,43). This representation avoids unwanted rounding off.

Sequence Element Name Sequence Element Type

Number TpInt32

Exponent TpInt32

TpChargingParameterSet

Defines a Numbered Set of Data Elements of TpChargingParameter

TpChargingParameter

Defines a Sequence of Data Elements that defines the used service.

Sequence Element Name Sequence Element Type

ParameterID TpChargingParameterID

ParameterValue TpChargingParameterValue

TpChargingParameterID

Defines the type of charging parameter.

Name Value Description

P_CHS_PARAM_UNDEFINED 0 Unknown parameter

P_CHS_PARAM_ITEM 1 Parameter represents kind of service delivered
to the end user

P_CHS_PARAM_SUBTYPE 2 Parameter represents subtype / operation of
service delivered to the end user

P_CHS_PARAM_RESULT 3 Parameter represents the result of the service

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)36Release 4

P_CHS_PARAM_RUNTIME 0x10000000-
0xFFFFFFFF

Parameters with values greater than
P_CHS_PARAM_RUNTIME may be added

run-time.

TpChargingParameterValue

Defines the Tagged Choice of Data Elements that identify a charging parameter.

Tag Element Type

TpChargingParameterValueType

Tag Element Value Choice Element Type Choice Element Name

P_CHS_PARAMETER_INT32 TpInt32 IntValue

P_CHS_PARAMETER_FLOAT TpFloat FloatValue

P_CHS_PARAMETER_STRING TpString StringValue

P_CHS_PARAMETER_BOOLEAN TpBoolean BooleanValue

TpChargingParameterValueType

Defines the type of charging parameter.

Name Value Description

P_CHS_PARAMETER_INT32 0 Parameter represented by a TpInt32

P_CHS_PARAMETER_FLOAT 1 Parameter represented by a TpFloat

P_CHS_PARAMETER_STRING 2 Parameter represented by a TpString

P_CHS_PARAMETER_BOOLEAN 3 Parameter represented by a TpBoolean

TpVolumeSet

Defines the Numbered Set of Data Elements that describes list TpVolume.

TpVolume

Defines a volume.

Sequence Element Name Sequence Element Type

Amount TpAmount

Unit TpUnitID

TpUnitID

Defines the unit that is used in a TpVolume.

Name Value Description

P_CHS_UNIT_UNDEFINED 0 Undefined

P_CHS_UNIT_NUMBER 1 number of times / events

P_CHS_UNIT_OCTETS 2 unit is octets

P_CHS_UNIT_SECONDS 3 unit is seconds

P_CHS_UNIT_MINUTES 4 unit is minutes

P_CHS_UNIT_HOURS 5 unit is hours

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)37Release 4

P_CHS_UNIT_DAYS 6 unit is days

P_CHS_UNIT_RUNTIME 0x10000000-
0xFFFFFFFF

unit is defined runtime

TpChargingSessionID

Defines the Sequence of Data Elements that unambiguously specify the Charging Session object.

Sequence Element Name Sequence Element Type Sequence Element Description

ChargingSessionReference IpChargingSessionRef This element specifies the interface
reference for the charging session

object.

ChargingSessionID TpSessionID This element specifies the session ID
for the charging session.

RequestNumberNextRequest TpInt32 This element specifies the request
number to use for the next request.

TpPriceVolumeSet

Defines a Numbered Set of Data Elements of TpPriceVolume.

TpPriceVolume

Defines the Sequence of Data Elements that identify a price for a volume.

Sequence Element Name Sequence Element Type

Price TpChargingPrice

Volume TpVolume

TpChargingError

Indicates the error that occured.

Name Value Description

P_CHS_ERR_UNDEFINED 0 Generic error

P_CHS_ERR_ACCOUNT 1 Merchant account unknown

P_CHS_ERR_USER 2 Unknown user

P_CHS_ERR_PARAMETER 3 The set of charging parameters contains an
unknown parameter, or a required parameter

is missing.

P_CHS_ERR_NO_DEBIT 4 For some reason the application is not
allowed to get money from this user.

P_CHS_ERR_NO_CREDIT 5 For some reason the application is not
alllowed to pay this user.

P_CHS_ERR_VOLUMES 6 Required volumes are missing.

P_CHS_ERR_CURRENCY 7 This currency is not supported for this
transaction.

P_CHS_ERR_NO_EXTEND 8 Request to extend the liftetime of a
reservation is rejected.

P_CHS_RESERVATION_LIMIT 9 This amount or volume violates the bounds of
the reservation

ETSI

3GPP TS 29.198-12 V1.0.0 (2001-03)38Release 4

Annex A (normative):
OMG IDL Description of Charging SCF
The OMG IDL representation of this interface specification is contained in a text file (cs.idl contained in archive
2919812IDL.ZIP) which accompanies the present document.

3GPP

3GPP TS 29.198-12 V1.0.0 (2001-03)39Release 4

3GPP

3GPP TS 29.198-12 V1.0.0 (2001-03)40Release 4

History

Document history

1.0.0 10 March 2001 Submitted by CN5 to CN#11 for Information

	NP-010134.doc
	/_CR29.198-047_N5-010158_Draft CR cover page for moving R99 to Rel 4.doc
	/29198-01-100_OSA_API_Part1_Overview.doc
	/29198-02-100_OSA_API_Part2_Common_data.doc
	/29198-03-100_OSA_API_Part3_Framework.doc
	/29198-04-100_OSA_API_Part4_Call_Control.doc
	/29198-05-100_OSA_API_Part5_Generic_User_Interaction.doc
	/29198-06-100_OSA_API_Part6_Mobility.doc
	/29198-07-100_OSA_API_Part7_Terminal_Capabilities.doc
	/29198-08-100_OSA_API_Part8_Data_Session_Control.doc
	/29198-11-100_OSA_API_Part11_Account_Management.doc
	/29198-12-100_OSA_API_Part12_Charging.doc

