
3GPP TSG_CN / SMG3 Tdoc NP-000056
Plenary Meeting #7, Madrid, Spain
13th – 15th March 2000.

Source: CN OSA CONVEYOR

Title: TS 29.198, OPEN SERVICE ARCHITECTURE, API – PART 1 (Version 1.0.0)

Agenda item: 5.5

Document for: APPROVAL

Attached to this cover sheet is the new Technical Specification TS29.198, “Open Service Architecture,
Application Programming Interface; Part 1”. The following issues are remained open:

• For a number of parameters (bearer capabilities, tele services, service code, network interworking

indicators, call party category) needs further specification of their formats.

• Charging functionality is addressed within the Call Control Service Capability Feature. The functionality is

specified but specifics of a limited set of parameters must be modified. These are GSM specific (i.e. GSM
AoC parameters) and require updates.

Both issues will be resolved in the near term and appropriate CRs can be expected to the next TSG CN#08
Plenary

3G TS 29.198 1.0.0 (2000-03)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Architecture;
Application Programming Interface;

Part 1
(3G TS 29.198 version 1.0.0)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the
purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be
implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of
this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational
Partners' Publications Offices.

3GPP

3G TS 29.198 1.0.0 (2000-03)23G TS 29.198 version 1.0.0

Reference
DTS/TSGN-0229xxxU

Keywords
OSA, API

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
htT://www.3gpp.org

3GPP

3G TS 29.198 1.0.0 (2000-03)33G TS 29.198 version 1.0.0

Contents

Foreword ..6

1 Scope ..7

2 References...8

3 Definitions and abbreviations ..9
3.1 Definitions .. 9
3.2 Abbreviations... 10

4 Open Service Architecture..11

5 Methodology ...13
5.1 Tools and Languages .. 13
5.2 Packaging.. 13
5.3 Colours .. 13
5.4 Naming scheme.. 13
5.5 Error results .. 13
5.6 References... 14
5.7 Number of out parameters.. 14
5.8 Strings and Collections... 14
5.9 Prefixes.. 15
5.10 Naming space across CORBA modules .. 15

6 Class diagrams ...16
6.1 Class diagrams common across OSA .. 16
6.1.1 Base OSA interface... 16
6.1.2 Generic Service Capability Feature interface... 16
6.2 Class diagrams for the Framework service capability feature ... 17
6.2.1 Top level Framework packages .. 17
6.2.2 Service Discovery ... 18
6.2.3 Trust and Security Management... 18
6.2.4 Integrity Management .. 21
6.3 Generic Call Control... 24
6.3.1 Interface Classes.. 26
6.4 Generic User Interaction .. 27
6.4.1 Relation between IpCall and IpUICall during call related user interaction .. 28
6.4.2 Interface Classes.. 29
6.5 Network User Location .. 30
6.5.1 Network User Location service interface.. 31
6.5.2 Network User Location application interface .. 31
6.6 User Status.. 32
6.6.1 User Status service interface ... 33
6.6.2 User Status application interface .. 33
6.7 Terminal Capabilities.. 33
6.7.1 Terminal Capabilities service interface ... 34

7 State Transition Diagrams...35
7.1 Framework .. 35
7.1.1 IpAuthentication.. 35
7.1.2 IpAccess.. 36
7.1.3 IpServiceDiscovery... 37
7.1.4 IpLoadManager ... 38
7.1.5 IPFaultManager... 40
7.1.6 IpHeartbeatmgmt ... 40
7.1.7 IpHeartBeat .. 41
7.1.8 IpOAM.. 42
7.2 Generic Call Control... 43
7.2.1 Call Control Manager... 43
7.2.2 Call... 44

3GPP

3G TS 29.198 1.0.0 (2000-03)43G TS 29.198 version 1.0.0

7.3 User Interaction.. 46
7.3.1 UI Manager .. 46
7.3.2 UI ... 47
7.3.3 UI Call... 48
7.4 Network User Location .. 49
7.4.1 Active state... 49
7.5 User Status.. 49
7.5.1 Active State.. 50

8 Data Definitions ...51
8.1 Common Data definitions.. 51
8.1.1 Primitive Data Types.. 51
8.1.2 Structured data types classification.. 51
8.1.3 Interface Definitions... 52
8.1.4 Non primitive and structured type types definition... 52
8.2 Framework Data Definitions... 57
8.2.1 Common Framework Data Definitions... 57
8.2.2 Trust and Security Management Data Definitions.. 60
8.2.3 Integrity Management Data Definitions.. 62
8.3 Generic Call Control Data Definitions .. 64
8.3.1 Interface definitions.. 64
8.3.2 Event Notification data definitions .. 65
8.3.3 Generic Call Control Type definitions .. 67
8.4 User Interaction Data Definitions... 74
8.4.1 Interface definitions.. 74
8.4.2 Type definitions... 74
8.5 Mobility Management Data definitions... 79
8.5.1 Interface Definitions... 79
8.5.2 Common Data Definitions for Mobility.. 79
8.5.3 Network User Location Data Definitions ... 82
8.5.4 User Status Data Definitions... 84
8.6 Terminal Capabilities Data Definitions... 84
8.6.1 Interface Definitions... 84
8.6.2 Terminal Capabilities Data Definitions... 84

9 IDL Interface Definitions ..86
9.1 Generic IDL.. 86
9.2 Framework IDL... 90
9.2.1 Common Data Types for Framework.. 90
9.2.2 Service Discovery IDL... 91
9.2.3 Trust and Security Management IDL.. 92
9.2.4 Integrity Management IDL.. 96
9.3 Call Control .. 102
9.3.1 Common Data Types for Call Control .. 102
9.3.2 Generic Call Control IDL.. 106
9.3.3 Enhanced Call Control IDL... 109
9.4 User Interaction IDL... 111
9.4.1 Common data types for User Interaction .. 111
9.4.2 Generic User Interaction IDL.. 113
9.5 Mobility Management IDL.. 116
9.5.1 Common definitions for mobility management: MM.idl... 116
9.5.2 Network User Location: MMnul.idl .. 118
9.5.3 User Status: MMus.idl.. 120
9.6 Terminal Capabilities: TERMCAP.idl... 121

10 History .. 123

11 Editors... 124

3GPP

3G TS 29.198 1.0.0 (2000-03)53G TS 29.198 version 1.0.0

TABLE OF FIGURES
Chapter 6
Figure 6-1: OSA base interfaces ..16
Figure 6-2: Framework top level packages..17
Figure 6-3: Framework sub-packages...17
Figure 6-4: Service Discovery Class Diagrams ..18
Figure 6-5: Trust and Security Management – Application and Framework Class Diagrams ...18
Figure 6-6: Integrity Management – Application and Framework Class Diagrams ...21
Figure 6-7: Generic Call Control Packages ...24
Figure 6-8: Generic Call Control Class diagram Interface Classes ...25
Figure 6-9: Generic User Interaction Packages...27
Figure 6-10: Generic User interaction Class diagram..28
Figure 6-11: Relation between the UICall and the Call object...28
Figure 6-12: Network User Location class diagram. ..31
Figure 6-13: User Status class diagram. ...32
Figure 6-14: Terminal Capabilities package..33
Figure 6-15: Terminal Capabilities class diagrams ..34

Chapter 7
Figure 7-1: State Transition Diagram for Authentication..35
Figure 7-2: State Transition Diagram for Access...36
Figure 7-3: State Transition Diagram for Service Discovery ...37
Figure 7-4: State Transition Diagram for LoadManager...38
Figure 7-5: State Transition Diagram for the LoadManagerInternal...39
Figure 7-6: State Transition Diagram for Fault Manager..40
Figure 7-7: State Transition Diagram for HeartBeat..41
Figure 7-8: State Transition Diagram for OAM..42
Figure 7-9: State Transition Diagram for the CallControlManager...43
Figure 7-10: State Transition Diagram for Call, part 1 ..44
Figure 7-11: State Transition Diagram for Call, part 2 ..45
Figure 7-12: State Transition Diagram for the UIManager...46
Figure 7-13: State Transition Diagram for UI...47
Figure 7-14: State Transition Diagram for UICall..48
Figure 7-15: State Transition Diagram for Network User Location..49
Figure 7-16: State Transition Diagram for User Status...49

Chapter 9
Figure 9-1: Description of an Ellipse Arc ..80

3GPP

3G TS 29.198 1.0.0 (2000-03)63G TS 29.198 version 1.0.0

Foreword
This Technical Specification has been produced by the 3GPP.
The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying
change of release date and an increase in version number as follows:

Version 3.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 Indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;

3GPP

3G TS 29.198 1.0.0 (2000-03)73G TS 29.198 version 1.0.0

1 Scope
This document specifies the stage 3 of the Open Service Architecture (OSA) Application Programming
Interface (API). The concepts and the functional architecture of the Open Service Architecture (API) are
described by TS 23.127[2]. This document describes the stage 3 specification of the Open Service
Architecture API.

The Open Service Architecture defines an architecture that enables service providers to make use of
network functionality through an open standardised interface, i.e. the OSA API. The network functionality is
describes as Service Capability Servers. Within the OSA concepts the following Service Capability Servers
are identified:
• CAMEL Service Environment (see in TS 23.078 [4])
• WAP execution platform (i.e. WAP Gateway & WAP Push Proxy, see in [13])
• Home Location Register (HLR)

The documentation of the OSA R’99 API protocol consist of two parts:
• The API specification (Part 1).

This is a normative stage 3 specification of the capabilities of the OSA R’99 API and describes the OSA
API interface classes, containing class diagrams (see section 6), state transition diagrams (see section
7), SDLs (see section 8), data type definitions (section 9), and the IDLs (see section 10).

• The Mapping specification of the OSA R’99 API and the network protocols (Part2).
This is an informative specification to provide an example how the OSA API can be mapped on the
network protocols (i.e. MAP [7], CAP[8] and WAP[9]). It is an informative document, since this mapping
is considered as implementation/vendor dependent. On the other hand this mapping will provide
potential service designers with a better understanding of the relationship of the OSA API interface
classes and the behavior of the network associated to these interface classes.

The OSA API Stage 3 activity is performed jointly with ETSI SPAN3’s Service Provider Access activity. The
contents of this document is related to the jointly owned 3GPP & ETSI document referred as the API Master
document, which contains the API interface descriptions that are common and differentiated between ETSI &
3GPP.

3GPP

3G TS 29.198 1.0.0 (2000-03)83G TS 29.198 version 1.0.0

2 References
References may be made to:

a) Specific versions of publications (identified by date of publication, edition number, version number,
etc.), in which case, subsequent revisions to the referenced document do not apply; or

b) All versions up to and including the identified version (identified by "up to and including" before the
version identity); or

c) All versions subsequent to and including the identified version (identified by "onwards" following the
version identity); or

d) Publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the
same number.

 [1] TR 21.905 ”3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; 3G Vocabulary”

 [2] TS 23.127 “3rd Generation Partnership Project; Technical Specification Services and
System Aspects; Virtual Home Environment / Open Service Architecture”

 [3] TS 23.057: “3rd Generation Partnership Project; Technical Specification Services and
System Aspects; Mobile Station Application Execution Environment (MExE)”

 [4] TS 23.078: “3rd Generation Partnership Project; Technical Specification Core Network;
CAMEL Phase 3, stage 2”

 [5] UMTS TS 22.101: ”Universal Mobile Telecommunications System (UMTS): Service

 [6] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user
side framework for content negotiation (www.w3.org)

 [7] TS 29.002: “3rd Generation Partnership Project; Technical Specification Core Network;
Mobile Application Part (MAP)”

 [8] TS 29.078: “3rd Generation Partnership Project; Technical Specification Core Network;
CAMEL Phase 3, stage 3”

 [9] Wireless Application Protocol (WAP), Version 1.2, UAProf Specification
(www.wapforum.org)

[10] Wireless Application Protocol (WAP), version 1.2, WAP Service Indication specification,
(www.wapforum.org)

[11] Wireless Application Protocol (WAP), version 1.2, WAP Push Architecture Overview
(www.wapforum.org)

[12] Wireless Application Protocol (WAP), version 1.2, WAP Architecture (www.wapforum.org)

[13] SUN IDL Compiler (www.javasoft.com/products/jdk/idl/index.html)

[14] UML Unified ModellingLanguage (www.rational.com/uml)

[15] Object Management Group (www.omg.org)

3GPP

3G TS 29.198 1.0.0 (2000-03)93G TS 29.198 version 1.0.0

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this specification, the following definitions apply:

Applications: Services, which are designed using service capability features.

Gateway: Synonym for Service Capability Server. From the viewpoint of applications,
a Service Capability Server can be seen as a gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has
an agreement with the Home Environment to provide services.

Home Environment: responsible for overall provision of services to users

Local Service: A service, which can be exclusively provided in the current serving network
by a Value Added Service Provider.

OSA Interface: Standardised Interface used by application to access service capability
features.

Personal Service Environment: contains personalised information defining how subscribed services are
provided and presented towards the user. The Personal Service
Environment is defined in terms of one or more User Profiles.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise
services. These are within networks and under network control.

Service Capability Feature: Functionality offered by service capabilities that are accessible via the
standardised OSA interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

Service Factory: The Factory mechanism (pattern) is a common Object Oriented technique
for creation of objects.

Services: Services are made up of different service capability features.

User Interface Profile: Contains information to present the personalised user interface within the
capabilities of the terminal and serving network.

User Profile: This is a label identifying a combination of one userone user interface
profile, and one user services profile.

User Services Profile: Contains identification of subscriber services, their status and reference to
service preferences.

Value Added Service Provider: provides services other than basic telecommunications service for which
additional charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network
boundaries and between terminals.

Further definitions are given in TS 22.101 [5].

3GPP

3G TS 29.198 1.0.0 (2000-03)10 3G TS 29.198 version 1.0.0

3.2 Abbreviations
For the purposes of this TS the following abbreviations apply:

CAMEL Customised Application For Mobile Network Enhanced Logic
CSE Camel Service Environment
HE Home Environment
HE-VASP Home Environment Value Added Service Provider
HLR Home Location Register
IDL Interface Description Language
MAP Mobile Application Part
ME Mobile Equipment
MExE Mobile Station (Application) Execution Environment
MS Mobile Station
MSC Mobile Switching Centre
OSA Open Service Architecture
PLMN Public Land Mobile Network
PSE Personal Service Environment
SAT SIM Application Tool-Kit
SCP Service Control Point
SIM Subscriber Identity Module
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
USIM User Service Identity Module
VASP Value Added Service Provider
VHE Virtual Home Environment
WAP Wireless Application Protocol
WGP Wireless Gateway Proxy
WPP Wireless Push Proxy

Further abbreviations are given in the TR 21.905 [1].

3GPP

3G TS 29.198 1.0.0 (2000-03)11 3G TS 29.198 version 1.0.0

4 Open Service Architecture
The concepts and Architecture of the Open Service Architecture are described within [2]. Within this stage 2
document several Service Capability Features are identified. However for OSA API Release 99, the set of
addressed Service Capability Features are limited to the following:
• Framework SCF
• Call Control SCF
• User Interaction SCF
• User Location SCF
• User Status SCF
• Terminal Capability SCF

The Framework API contains interfaces between the Application Server – Framework SCF and between
Network Service Capability Server (SCS) – Framework SCF. For Release 99, the Framework API is
restricted to the interface between Application Server – Framework SCF.

The User Profiles are limited to the Terminal Capabilities for OSA R’99. Therefore, only limited functionality is
available for the security within OSA R’99. The Framework & Network SCSs provide the following security

• Checking the subscriber’s registration to the SCS feature
• Checking the subscriber’s activation of the SCS feature
• Checking the subscriber’s privacy settings of the SCS feature

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific
implementation from the applications. This means that applications do not have to be aware of the network
nodes a Service Capability Server interacts with in order to provide the Service Capability Features to the
application. The specific underlying network and its protocols are transparent to the application.

For example, an application that has subscribed to the Network User Location service does not have to know
whether the SCS provides location reports to the application based on information from the CSE or HLR.
Similarly, the application does not have to know whether a message offered to the SCS for delivery to a
terminal is actually sent by the SCS to the terminal via a WGP/WPP or SMS-C. It is the Service Capability
Server that is capable of deciding how the message is to be sent. The OSA concept therefore leads to a shift
of logic on dealing with the network from the applications to the Service Capability Servers.

3GPP

3G TS 29.198 1.0.0 (2000-03)12 3G TS 29.198 version 1.0.0

3GPP

3G TS 29.198 1.0.0 (2000-03)13 3G TS 29.198 version 1.0.0

5 Methodology
Following is a description of the methodology used for the establishment of stage 3 specification in the scope of 3GPP
CN OSA.

5.1 Tools and Languages
The Unified Modelling Language (UML) [14] is used as the means to specify class and state transition diagrams.
Additionally, Object Management Group’s (OMG) [15] Interface Definition Language (IDL) is used as the means to
programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML
tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a
CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. [13].

5.2 Packaging

A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.threegpp.osa

Note that the CORBA module hierarchy defined in the IDLs does not necessrly parallels the logical UML package
hierarchy.

5.3 Colours

For clarity, class diagrams follows a certain colour scheme. Blue for application interface packages and yellow for all
the others.

5.4 Naming scheme

The following naming scheme is used for both documentation and IDLs.

packages
lowercase.
Using the domain-based naming (For example, org.threegpp.osa)

classes, structures and types. Start with T
TpCapitalizedWithInternalWordsAlsoCapitalized

Exception class:
TpClassNameEndsWithException

Interface. Start with Ip:
IpThisIsAnInterface

constants:
P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

methods:
firstWordLowerCaseButInternalWordsCapitalized()

method’s parameters
firstWordLowerCaseButInternalWordsCapitalized

collections (set, array or list types)
 TpCollectionEndsWithSet
class/structure members

firstWordLowerCaseButInternalWordsCapitalized

Spaces in between words are not allowed.

5.5 Error results

As OMG IDL supports exception handling with high efficiency, OSA methods communicate errors in the form of
CORBA exceptions of type TpGeneralException in the IDLs; the CORBA methods themselves always return void. But
in the documentation, errors are communicated using a return parameter of type TpGeneralResult.

3GPP

3G TS 29.198 1.0.0 (2000-03)14 3G TS 29.198 version 1.0.0

5.6 References
In the interface specification whenever parameters are to be passed by reference, the “Ref” suffix is appended to their
corresponding data type (e.g. IpAnInterfaceRef anInterface), a reference can also be viewed as a logical indirection.
Therefore, structured or primitive data type passed as out parameters are references. An interface passed as an in
parameter is also a reference but an interface passed as an out parameter is a double indirection (i.e.: RefRef)

Original Data type IN parameter declaration OUT parameter declaration
TpPrimitive parm : IN TpPrimitive parm : OUT TpPrimitiveRef
TpStructured parm : IN TpStructured parm : OUT TpStructuredRef
IpInterface parm : IN IpInterfaceRef parm : OUT IpInterfaceRefRef

In IDL, however, the following rules apply:

q Interfaces are implicitly passed by reference.
q out parameters are also implicitly passed by reference.

This leads to:

q Interface as an in parameter: Passed by Reference.
q Structure or primitive type as an in parameter: Passed by Value.
q Structure or primitive type as an out parameter: Passed by Reference.
q Interface as an out parameter: As reference passed by reference.

To simplify the documentation without adding ambiguities, parameters (interfaces, structures and primitive data types)
are used as is when specified as in or out parameters in the IDL. This means that there will be no “Ref” added after the
data types of parameters in the IDL.

5.7 Number of out parameters

In order to support mapping to as many languages as possible, there is only 1 out parameter allowed per operation.

5.8 Strings and Collections

For character strings, the String data type is used without regard to the maximum length of the string. In IDL, the data
type String is typedefed1 from the CORBA primitive string. This CORBA primitive is made up of a length and a
variable array of byte.

For homogeneous collections of instances of a particular data type the following naming scheme is used:
<datatype>Set. In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a
length and a variable array of elements of the same type.
Example: typedef sequence<TpSessionID> TpSessionIDSet;

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part,
and an array for the data part.

Example:
The TpAddressSet data type may be defined in C++ as:

typedef struct {
 short number;
 TpAddress address [];
} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on
"number".

1 A typedef is a type definition declaration in IDL.

3GPP

3G TS 29.198 1.0.0 (2000-03)15 3G TS 29.198 version 1.0.0

5.9 Prefixes
OSA constants and data types are not defined in the global name space but in the org.threegpp.osa module.

5.10 Naming space across CORBA modules

The following shows the naming space used in this specification.

module org {

module threegpp { // cannot use 3gpp, names need to start with letter

module osa {

// The fully qualified name of the following constant
// is org::threegpp::osa::P_THIS_IS_AN_OSA_GLOBAL_CONST
const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;

// Add other OSA global constants and types here

module framework {
 // no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST
 const long P_FW_CONST= THIS_IS_AN_OSA_GLOBAL_CONST;
};

module mm {

// scoping required to access P_FW_CONST
 const long P_M_CONST= framework::P_FW_CONST;
};

};

};

};

3GPP

3G TS 29.198 1.0.0 (2000-03)16 3G TS 29.198 version 1.0.0

6 Class diagrams
Class diagrams are specified in UML: interface classes are shown as interface names within shaded
rectangular boxes; relationships and generalizations as lines connecting pairs of interface classes.

All OSA interface classes should be packaged into the org.threegpp.osa module. Further sub-packaging is
an implementation decision, but this section proposes a way to do it. Using this recommended packaging, a
top-down approach is followed in the subsequent sections. Note that UML packaging is only a logical
packaging and does not necessarily reflects IDL packaging.

6.1 Class diagrams common across OSA

All application and framework interfaces inherit from IpOsa interface. Service capability features on the other
hand inherit from the common IpService interface. The corresponding interfaces that must be implemented
by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

IpService

setCallback()

<<Interface>>

IpOsa
(from org.threegpp.osa)

<<Interface>>

Figure 6-1: OSA base interfaces

6.1.1 Base OSA interface

All application and framework interfaces inherit from the following interface.

<<Interface>>

IpOsa

6.1.2 Generic Service Capability Feature interface

All SCF’s interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback(appInterface : in IpOsa) : TpResult

3GPP

3G TS 29.198 1.0.0 (2000-03)17 3G TS 29.198 version 1.0.0

6.2 Class diagrams for the Framework service capability feature
This section specifies the class diagrams that define the framework SCF, and proposes a way to package
them.

6.2.1 Top level Framework packages

The top level view of the Framework SCF consists of the following two packages:

PAppFramework PFramework

Figure 6-2: Framework top level packages

These two packages are de-composed in the following way:

PAppFramework

Consists of
• PappTrustAndSecurityMgmt
• PAppIntegrityMgmt

PFramework

Consists of
• PServiceDiscovery
• PTrustAndSecurityMgmt
• PIntegrityMgmt

The top-level packages are de-composed as described above; between some of the resulting sub-packages there are
dependencies, that reflect dependencies between any two classes in the sub-package. The following figure shows all
this.

PAppIntegrityMgmt

PTrustAndSecurityMgmt PIntegrityMgmt

PAppTrustAndSecurityMgmt

PServiceDiscovery

PAppFramework

PFramework

Figure 6-3: Framework sub-packages

3GPP

3G TS 29.198 1.0.0 (2000-03)18 3G TS 29.198 version 1.0.0

6.2.2 Service Discovery

 IpServiceDiscovery

listServiceTypes()
describeServiceType()
discoverService()
listSubscribedServices()

<<Interface>>

Figure 6-4: Service Discovery Class Diagrams

<<Interface>>

IpServiceDiscovery

listServiceTypes(listTypes: out TpServiceTypeNameListRef) : TpResult

describeServiceType(name: in TpServiceTypeName, serviceTypeDescription: out
TpServiceTypeDescriptionRef) : TpResult

discoverService(serviceTypeName: in TpServiceTypeName, desiredPropertyList: in TpServicePropertyList,
max: in TpInt32, serviceList: out TpServiceListRef) : TpResult

listSubscribedServices(serviceList: out TpServiceListRef) : TpResult

6.2.3 Trust and Security Management

IpInitial

initiateAuthentication()
requestAccess()

<<Interface>>

IpAccess

obtainInterface()
obtainInterfaceWithCallback()
accessCheck()
selectService()
signServiceAgreement()
terminateServiceAgreement()
endAccess()

<<Interface>>

IpAppAccess

signServiceAgreement()
terminateServiceAgreement()
terminateAccess()

<<Interface>>

<<uses>>

IpAuthentication

selectAuthMethod()
authenticate()
abortAuthentication()

<<Interface>>

IpAppAuthentication

authenticate()
abortAuthentication()

<<Interface>>

<<uses>>

Figure 6-5: Trust and Security Management – Application and Framework Class Diagrams

6.2.3.1 IpInitial

<<Interface>>

IpInitial

3GPP

3G TS 29.198 1.0.0 (2000-03)19 3G TS 29.198 version 1.0.0

initiateAuthentication(clientAppID: in TpClientAppID, authType : in TpAuthType, appAuthInterface:
in IosaInterfaceRef, fwAuth :out TpFwAuthRef) : TpResult

requestAccess(accessType: in TpAccessType, appAccessInterface; in IosaInterfaceRef,
fwAccessInterface: out IosaInterfaceRefRef): TpResult

6.2.3.2 IpAppAuthentication

<<Interface>>

IpAppAuthentication

authenticate(prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out
TpStringRef) : TpResult

abortAuthentication() : TpResult

6.2.3.3 IpAuthentication

<<Interface>>

IpAuthentication

selectAuthMethod (authCapability: in TpAuthCapabiltyList, prescribedMethod: out
TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod: in TpAuthCapability, challenge: in TpString, response: out
TpStringRef) : TpResult

abortAuthentication() : TpResult

6.2.3.4 IpAccess

<<Interface>>

IpAccess

obtainInterface(interfaceName: in TpInterfaceName, fwInterface: out IpInterfaceRefRef): TpResult

obtainInterfaceWithCallback(interfaceName: in TpInterfaceName, appInterface: in IpInterfaceRef,
fwInterface: out IosaInterfaceRefRef): TpResult

accessCheck(securityContext:: in TpString, securityDomain: in TpString, group : in TpString,
serviceAccessTypes: in TpString, serviceAccessControl: out TpServiceAccessControlRef):
TpResult

selectService(serviceID: in TpServiceID, serviceProperties: in TpServicePropertyList,

3GPP

3G TS 29.198 1.0.0 (2000-03)20 3G TS 29.198 version 1.0.0

serviceToken: out TpServiceTokenRef): TpResult

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString,
signingAlgorithm: in TpSigningAlgorithm, signatureAndServiceMgr: out
TpSignatureAndServiceMgrRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString,
digitalSignature: in TpString): TpResult

endAccess(endAccessProperties: in TpPropertyList) : TpResult

6.2.3.5 IpAppAccess

<<Interface>>

IpAppAccess

signServiceAgreement(serviceToken: in TpServiceToken, agreementText: in TpString,
signingAlgorithm: in TpSigningAlgorithm, digitalSignature: out TpStringRef): TpResult

terminateServiceAgreement(serviceToken: in TpServiceToken, terminationText: in TpString,
digitalSignature: in TpString): TpResult

terminateAccess(terminationText: in TpString, signingAlgorithm: in TpSigningAlgorithm,
digitalSignature: in TpStringRef) : TpResult

3GPP

3G TS 29.198 1.0.0 (2000-03)21 3G TS 29.198 version 1.0.0

6.2.4 Integrity Management

0..*IpAppHeartBeatMgmt

enableAppHeartBeat()
disableAppHeartBeat()
changeTimePeriod()

<<Interface>>

IpAppHeartBeat

send()

<<Interface>>
1

IpLoadManager

reportLoad()
queryLoadReq()
queryAppLoadRes()
queryAppLoadErr()
registerLoadController()
unregisterLoadController()
resumeNotification()
suspendNotification()

<<Interface>>

IpAppLoadManager

queryAppLoadManager()
queryLoadRes()
queryLoadErr()
disableLoadControl()
enableLoadControl()
resumeNotification()
suspendNotification()

<<Interface>>

<<uses>>

IpFaultManager

activityTestReq()
appActivityTestRes()
serviceUnavailableInd()
genFaultStatsRecordReq()

<<Interface>>

IpAppFaultManager

activityTestRes()
appActivityTestReq()
fwFaultReportInd()
fwFaultRecoveryInd()
svcUnavailableInd()
genFaultStatsRecordRes()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeTimePeriod()

<<Interface>>

<<uses>>

IpHeartBeat

send()

<<Interface>>

<<uses>>

1 0..*

Figure 6-6: Integrity Management – Application and Framework Class Diagrams

6.2.4.1 IpHeartBeatMgmt

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat(duration: in TpDuration, appInterface, in IpAppHeartBeatRef, session: out
TpSessionIDRef) : TpResult

disableHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: in TpDuration, session: in TpSessionID) : TpResult

6.2.4.2 IpAppHeartBeatMgmt

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat(duration: in TpDuration, interface: in IpHeartBeatRef, session: in
TpSessionID) : TpResult

disableAppHeartBeat(session: in TpSessionID) : TpResult

changeTimePeriod(duration: TpDuration, session: in TpSessionID) : TpResult

6.2.4.3 IpHeartBeat

<<Interface>>

IpHeartBeat

3GPP

3G TS 29.198 1.0.0 (2000-03)22 3G TS 29.198 version 1.0.0

send(session: in TpSessionID) : TpResult

6.2.4.4 IpAppHeartBeat

<<Interface>>

IpAppHeartBeat

send(session: in TpSessionID) : TpResult

6.2.4.5 IpLoadManager

<<Interface>>

IpLoadManager

reportLoad(requester : in TpClientAppID, loadLevel : in TpLoadLevel) : TpResult

queryLoadReq(requester : in TpClientAppID, serviceIDs: in TpServiceIDList, timeInterval : in
TpTimeInterval) : TpResult

queryAppLoadRes(loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr(loadStatisticsError : in TpLoadStatisticErrorList) : TpResult

registerLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

unregisterLoadController(requester : in TpClientAppID, serviceIDs: in TpServiceIDList) : TpResult

resumeNotification(serviceIDs: in TpServiceIDList) : TpResult

suspendNotification(serviceIDs: in TpServiceIDList) : TpResult

6.2.4.6 IpAppLoadManager

<<Interface>>

IpAppLoadManager

queryAppLoadReq(serviceIDs: in TpServiceIdList, timeInterval : TpTimeInterval) : TpResult

queryLoadRes(loadStatistics : in TpLoadStatList) : TpResult

queryLoadErr(loadStatisticsError : in TpLoadStatErrList) : TpResult

disableLoadControl(serviceIDs: in TpServiceIdList) : TpResult

enableLoadControl(loadStatistics : in TpLoadStatList) : TpResult

resumeNotification() : TpResult

suspendNotification() : TpResult

3GPP

3G TS 29.198 1.0.0 (2000-03)23 3G TS 29.198 version 1.0.0

6.2.4.7 IpFaultManager

<<Interface>>

IpFaultManager

activityTestReq(activityTestID: in TpActivityTestID, svcID: in TpServiceID, appID: in
TpClientAppID): TpResult

appActivityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes):
TpResult

serviceUnavailableInd(serviceId: in TpServiceID, appID: in TpClientAppID): TpResult

genFaultStatsRecordReq(timePeriod: in TpTimeInterval, serviceIDList: in TpServiceIDList, appID:
in TpClientAppID): TpResult

6.2.4.8 IpAppFaultManager

<<Interface>>

IpAppFaultManager

activityTestRes(activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes):
TpResult

appActivityTestReq(activityTestID: in TpActivityTestID): TpResult

fwFaultReportInd(fault: in TpInterfaceFault): TpResult

fwFaultRecoveryInd(fault: in TpInterfaceFault): TpResult

svcUnavailableInd(serviceId: in TpServiceID, reason: in TpSvcUnavailReason): TpResult

genFaultStatsRecordRes(faultStatistics: in TpFaultStatsRecord, serviceIDs: in TpServiceIDList):
TpResult

6.2.4.9 IpOAM

<<Interface>>

IpOAM

systemDateTimeQuery(clientDateAndTime : in TpDateAndTime, systemDateAndTime: out
TpDateAndTimeRef) : TpResult

6.2.4.10 IpAppOAM

<<Interface>>

IpAppOAM

systemDateTimeQuery(clientDateAndTime : in TpDateAndTime, systemDateAndTime: out
TpDateAndTimeRef) : TpResult

3GPP

3G TS 29.198 1.0.0 (2000-03)24 3G TS 29.198 version 1.0.0

6.3 Generic Call Control

Generic Call Control provides the basic call control capabilities for the API. It allows calls to be instantiated from the
network and routed through the network. The call model is based around a central call model that has zero to two call
legs that are active (i.e., being routed or connected), each of which represents the logical relationship between the call
and an address. However, the application does not have direct access to the call legs. Generic Call Control supports
functionality to allow call routing and call management for Camel Phase 3 and earlier services.
Generic Call Control is represented by the IpCallManager and IpCall interfaces that interface to services provided by
the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction
performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To
handle responses and reports, the developer must implement IpAppCallManager and IpAppCall.

Pappgccs

Pgccs

Figure 6-7 : Generic Call Control Packages

3GPP

3G TS 29.198 1.0.0 (2000-03)25 3G TS 29.198 version 1.0.0

IpCall

routeCallToDestinationReq()

release()
deassignCall()
getCallInfoReq()
setCallChargePlan()
superviseCallReq()
setAdviceOfCharge()

<<Interface>>

IpCallControlManage
r

enableCallNotification()
disableCallNotification()

<<Interface>>

0..*1 0..*1

IpAppCall

routeCallToDestinationRes()
routeCallToDestinationErr()

getCallInfoRes()
getCallInfoErr()
superviseCallRes()
superviseCallErr()
callFaultDetected()

<<Interface>>

1

1

<<uses>>

IpAppCallControlManager

callAborted()
callEventNotify()
callNotificationTerminated()

<<Interface>>

1

1

<<uses>>

0..*1 0..*1

IpOSA
<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA
<<Interface>>

Figure 6-8 : Generic Call Control Class diagram Interface Classes

This section contains the detailed interface specifications of the interfaces shown in the Generic Call Control Class
diagram.

3GPP

3G TS 29.198 1.0.0 (2000-03)26 3G TS 29.198 version 1.0.0

6.3.1 Interface Classes

6.3.1.1 IpAppCallControlManager

<<Interface>>

IpAppCallControlManager

callAborted(callReference : in TpSessionID) : void

callEventNotify(callReference : in TpCallIdentifier , eventInfo : in TpCallEventInfo , assignmentID : in
TpAssignmentID , appInterface : out IpAppCallRefRef) : void

callNotificationTerminated() : void

6.3.1.2 IpCallControlManager

<<Interface>>

IpCallControlManager

enableCallNotification(appInterface : in IpAppCallControlManagerRef , eventCriteria : in
TpCallEventCriteria , assignmentID : out TpAssignmentIDRef) : void

disableCallNotification(assignmentID : in TpAssignmentID) : void

6.3.1.3 IpAppCall

<<Interface>>

IpAppCall

routeCallToDestinationRes(callSessionID : in TpSessionID , eventReport : in TpCallReport) : void

routeCallToDestinationErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : void

getCallInfoRes(callSessionID : in TpSessionID , callInfoReport : in TpCallInfoReport) : void

getCallInfoErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : void

superviseCallRes(callSessionID : in TpSessionID , report : in TpSuperviseReport , usedTime : in
TpDuration , usedVolume : in TpCallSuperviseVolume) : void

superviseCallErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : void

callFaultDetected(callSessionID : in TpSessionID , fault : in TpCallFault) : void

6.3.1.4 IpCall

<<Interface>>

IpCall

routeCallToDestinationReq(callSessionID : in TpSessionID , responseRequested : in

3GPP

3G TS 29.198 1.0.0 (2000-03)27 3G TS 29.198 version 1.0.0

TpCallReportRequestSet , targetAddress : in TpAddress , originatingAddress : in TpAddress ,
originalDestinationAddress : in TpAddress , redirectingAddress : in TpAddress , appInfo : in
TpCallAppInfoSet , assignmentID : out TpAssignmentIDRef) : void

release(callSessionID : in TpSessionID , cause : in TpCallReleaseCause) : void

deassignCall(callSessionID : in TpSessionID) : void

getCallInfoReq(callSessionID : in TpSessionID , callInfoRequested : in TpCallInfoType) : void

setCallChargePlan(callSessionID : in TpSessionID , callChargePlan : in TpCallChargePlan) : void

superviseCallReq(callSessionID : in TpSessionID , time : in TpDuration , treatment : in
TpCallSuperviseTreatment , bytes : in TpCallSuperviseVolume) : void

setAdviceOfCharge(callSessionID : in TpSessionID , aOCInfo : in TpAoCInfo , tariffSwitch : in TpDuration)
: void

6.4 Generic User Interaction

The Generic User Interaction interface (GUIS) is used by applications to interact with end users.
The GUIS is represented by the IpUIManager, IpUI and IpUICall interfaces that interface to services provided
by the network.
The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface
allows applications to send SMS and USSD messages. An application can use this interface independently of other
services. The IpUICall Interface provides functions to send information to, or gather information from the user (or call
party) attached to a call.
To handle responses and reports, the developer must implement IpAppUIManager, IpAppUI and IpAppUICall
interfaces to provide the callback mechanism.

Pappguis

Pguis

Figure 6-9 : Generic User Interaction Packages

3GPP

3G TS 29.198 1.0.0 (2000-03)28 3G TS 29.198 version 1.0.0

IpUICall

abortActionReq()

<<Interface>>

IpAppUICall

abortActionRes()
abortActionErr()

<<Interface>>

1

1

<<uses>>

IpAppUI

sendInfoRes()

sendInfoErr()
sendInfoAndCollectRes()

sendInfoAndCollectErr()
userInteractionFaultDetected()

<<Interface>>

IpAppUIManager

userInteractionAborted()
userInteractionEventNotify()

<<Interface>>

0..*1 0..*1

IpUI

sendInfoReq()
sendInfoAndCollectReq()
release()

<<Interface>>

1

1

<<uses>>

IpUIManager

createUI()
createUICall()
enableUINotification()
disableUINotification()

<<Interface>>

1

1

<<uses>>

0..*1 0..*1

IpOSA
<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA
<<Interface>>

 Figure 6-10 : Generic User interaction Class diagram

6.4.1 Relation between IpCall and IpUICall during call related user interaction

For call related user interaction, the IpUICall Interface provides functions to send information to, or gather information
from the user (or call party) attached to a call. This means that there is a relationship between a specific Call object and
a UICall object. This is shown in the figure below.

I p U I C a l l

< < I n t e r f a c e > >

I p C a l l

< < I n t e r f a c e > >

11 11

Figure 6-11: Relation between the UICall and the Call object.

In case a call requires user interaction, the application requests the UIManager to create the UICall object and provides
a reference to the specific Call object. In this way the gateway is able to link the two objects together. It depends on the
actual state of the call whether user interaction is really allowed.

3GPP

3G TS 29.198 1.0.0 (2000-03)29 3G TS 29.198 version 1.0.0

6.4.2 Interface Classes

This section contains the detailed interface specifications of the interfaces shown in the Generic User Interaction Class
diagram.

6.4.2.1 IpAppUIManager

<<Interface>>

IpAppUIManager

userInteractionAborted(userInteraction : in TpUIIdentifier) : void

userInteractionEventNotify(ui : in TpUIIdentifier , eventInfo : in TpUIEventInfo ,
assignmentID : in TpAssignmentID , appInterface : out IpAppUIRefRef) : void

6.4.2.2 IpUIManager

<<Interface>>

IpUIManager

createUI(appUI : in IpAppUIRef , userAddress : in TpAddress , userInteraction : out TpUIIdentifierRef) :
void

createUICall(appUI : in IpAppUICallRef , callIdentifier : in TpCallIdentifier ,
callLegIdentifier : in TpCallLegIdentifier , userInteraction : out TpUICallIdentifierRef) : void

enableUINotification(appInterface : in IpAppUIManagerRef ,
eventCriteria : in TpUIEventCriteria , assignmentID : out TpAssignmentIDRef) : void

disableUINotification(assignmentID : in TpAssignmentID) : void

6.4.2.3 IpAppUI

<<Interface>>

IpAppUI

sendInfoRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
response : in TpUIReport) : void

sendInfoErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
error : in TpUIError) : void

sendInfoAndCollectRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
response : in TpUIReport , info : in TpString) : void

sendInfoAndCollectErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
error : in TpUIError) : void

userInteractionFaultDetected(userInteractionSessionID : in TpSessionID , fault : in TpUIFault) : void

3GPP

3G TS 29.198 1.0.0 (2000-03)30 3G TS 29.198 version 1.0.0

6.4.2.4 IpUI

<<Interface>>

IpUI

sendInfoReq(userInteractionSessionID : in TpSessionID , info : in TpUIInfo ,
variableInfo : in TpUIVariableInfo , repeatIndicator : in TpInt32 ,
responseRequested : in TpUIResponseRequest , assignmentID : out TpAssignmentIDRef) : void

sendInfoAndCollectReq(userInteractionSessionID : in TpSessionID , info : in TpUIInfo ,
variableInfo : in TpUIVariableInfo , criteria : in TpUICollectCriteria , responseRequested: in
TpUIResponseRequest , assignmentID : out TpAssignmentIDRef) : void

release(userInteractionSessionID : in TpSessionID) : void

6.4.2.5 IpAppUICall

<<Interface>>

IpAppUICall

abortActionRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID) : void

abortActionErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID ,
error : in TpUIError) : void

6.4.2.6 IpUICall

<<Interface>>

IpUICall

abortActionReq(userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

6.5 Network User Location

The Network User Location (NUL) service provides the IpUserLocationCamel and
IpTriggeredUserLocationCAmel interfaces. Most methods are asynchronous, in that they do not lock a thread
into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that
uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppUserLocation and IpAppTriggeredUserLocation interfaces to provide the callback mechanism.

3GPP

3G TS 29.198 1.0.0 (2000-03)31 3G TS 29.198 version 1.0.0

<<Interface>>
IpOsa

<<Interface>>
IpService

<<Interface>>
IpUserLocationCamel

locationReportReq()
periodicLocationReportingStartReq()
periodicLocationReportingStop()
triggeredLocationReportingStartReq()
triggeredLocationReportingStop()

<<Interface>>
IpAppUserLocationCamel

locationReportRes()
locationReportErr()
periodicLocationReport()
periodicLocationReportErr()
triggeredLocationReport()
triggeredLocationReportErr()

uses

setCallback()

Figure 6-12: Network User Location class diagram.

6.5.1 Network User Location service interface

This interface is the ‘service manager’ interface for Network User Location.

<<Interface>>

IpUserLocationCamel

locationReportReq(appLocationCamel : in IpAppUserLocationCamel, users : in TpAddressSet,
assignmentId : out TpSessionIDRef) : TpResult

periodicLocationReportingStartReq(appLocationCamel : in IpAppUserLocationCamel, users : in
TpAddressSet, reportingInterval : in TpDuration, assignmentId : out TpSessionIDRef) : TpResult

periodicLocationReportingStop(stopRequest : in TpMobilityStopAssignmentData) : TpResult

triggeredLocationReportingStartReq(appLocationCamel : in IpAppUserLocationCamel, users : in
TpAddressSet, trigger : in TpLocationTriggerCamel, assignmentId : out TpSessionIDRef) : TpResult

triggeredLocationReportingStop(stopRequest : in TpMobilityStopAssignmentData) : TpResult

6.5.2 Network User Location application interface

The network user location application interface is implemented by the client application developer and is used to handle
location reports that are specific for mobile telephony users.

3GPP

3G TS 29.198 1.0.0 (2000-03)32 3G TS 29.198 version 1.0.0

<<Interface>>

IpAppUserLocationCamel

locationReportRes(assignmentId : in TpSessionID, locations : in TpUserLocationCamelSet) : TpResult

locationReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic)

periodicLocationReport(assignmentId : in TpSessionID, locations : in TpUserLocationCamelSet) : TpResult

periodicLocationReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic)

triggeredLocationReport(assignmentId : in TpSessionID, location : in TpUserLocationCamel, criterion : in
TpLocationTriggerCamel) : TpResult

triggeredLocationReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic)

6.6 User Status

The User Status (US) provides the IpUserStatus interface. Most methods are asynchronous, in that they do not lock
a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than
one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppUserStatus interface to provide the callback mechanism.

<<Interface>>
IpAppUserStatus

statusReportRes()
statusReportErr()
triggeredStatusReport()
triggeredStatusReportErr()

<<Interface>>
IpOsa

<<Interface>>
IpService

<<Interface>>
IpUserStatus

statusReportReq()
triggeredStatusReportingStartReq()
triggeredStatusReportingStop()

uses

setCallback()

Figure 6-13: User Status class diagram.

3GPP

3G TS 29.198 1.0.0 (2000-03)33 3G TS 29.198 version 1.0.0

6.6.1 User Status service interface

The user status interface represents the interface to the user status service capability feature.

<<Interface>>

IpUserStatus

statusReportReq(appStatus : in IpAppUserStatus, users : in TpAddressSet, assignmentId : out
TpSessionIDRef) : TpResult

triggeredStatusReportingStartReq (appStatus : in IpAppUserStatus, users : in TpAddressSet, assignmentId
: out TpSessionIDRef) : TpResult

triggeredStatusReportingStop (stopRequest : in TpMobilityStopAssignmentData) : TpResult

6.6.2 User Status application interface

The user-status application interface is implemented by the client application developer and is used to handle user status
reports.

<<Interface>>

IpAppUserStatus

statusReportRes(assignmentId : in TpSessionID, status : in TpUserStatusSet) : TpResult

statusReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic)

triggeredStatusReport(assignmentId : in TpSessionID, status : in TpUserStatus) : TpResult

triggeredStatusReportErr(assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic)

6.7 Terminal Capabilities

The Terminal Capabilities service enables the application to retrieve the terminal capabilities of the specified terminal.
The Terminal Capabilities service provides a service interface that is called IpTerminalCapabilities. There is
no need for an application interface, since IpTerminalCapabilities only contains the synchronous method
getTerminalCapabilities.

termcap

Figure 6-14: Terminal Capabilities package

3GPP

3G TS 29.198 1.0.0 (2000-03)34 3G TS 29.198 version 1.0.0

IpTerminalCapabilities

getTerminalCapabilities()

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA
<<Interface>>

Figure 6-15: Terminal Capabilities class diagrams

6.7.1 Terminal Capabilities service interface

The Terminal Capabilities service interface IpTerminalCapabilities contains the synchronous method
getTerminalCapabilities. The application has to provide the terminaIdentity is input to this method.
The result indicates whether or not the terminal capabilities are available in the network and, in case they are, it will
return the terminal capabilities (see the data definition of TpTerminalCapabilities for more information).

<<Interface>>

IpTerminalCapabilities

getTerminalCapabilities(terminalIdentity : in TpString,
 Result : out TpTerminalCapabilities) : TpResult

3GPP

3G TS 29.198 1.0.0 (2000-03)35 3G TS 29.198 version 1.0.0

7 State Transition Diagrams
This section contains the State Transition Diagrams for the objects that implement the interfaces on the gateway side.
The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by
the application are shown. Methods not shown for a specific state are not relevant for that state and will return an
exception. Apart from the methods that can be invoked by the application also events internal to the gateway or related
to network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

7.1 Framework

7.1.1 IpAuthentication

.

Idle

Ip In i t ia l . in i t ia teAuthent icat ion

InitAuthentication

e n t r y / f i n d a u t h . m e c h a n i s m

selectAuthMethod

WaitForApplicationResult

ent ry / ^ IpAppAuthent icat ion.Authent icate

Application Authenticated

ALL
STATES

authent icate ^resul t Authent icate(response)

authent icate ^resul t Authent icate(response)

"no mechan ism found" ^ resu l t se lec tAu thMe thod (P_ INVAL ID_AUTH_CAPABIL ITY)

"mechan ism found" [[two way au thent ica t ion] ^ resu l t se lec tAuthent ica t ionMethod(prescr ibedMethod)

"mechan ism found" [one way authent ica t ion] / in fo rm Ip In i t ia l tha t app l ica t ion au thent ica ted

abortAuthent icat ion / in form IpIn i t ia l that appl icat ion aborted authent icat ion

resu l t Authent ica te [response va l id] / in fo rm Ip In i t ia l tha t app l ica t ion au thent ica ted

result Authenticate[response invalid]

I p A c c e s s . e n d A c c e s s

Figure 7-1: State Transition Diagram for Authentication

7.1.1.1 Idle state

When the application has requested the IpInitial interface for initiateAuthentication, an object implementing the
IpAuthentication interface is created. The application now has to provide it’s authentication capabilities by invoking the
SelectAuthMethod method.

7.1.1.2 Init Authentication state

In this state the Framework selects the preferred authentication mechanism within the capability of the application.
When a proper mechanism is found, the Framework can decide that the application doesn’t have to be authenticated
(one way authentication) or that the application has to be authenticated. In case no mechanism can be found the error
code P_INVALID_AUTH_CAPABILITY) is returned and the Authentication object is destroyed. This implicates that
the application has to re-initiate the authentication by calling once more the initiateAuthentication method on the
IpInitial interface.

3GPP

3G TS 29.198 1.0.0 (2000-03)36 3G TS 29.198 version 1.0.0

7.1.1.3 Wait For Application Result state

When entering this state, the Framework requests the application to authenticate itself by invoking the Authenticate
method on the application. In case the application requests the Framework to authenticate itself by invoking
Authenticate on the IpAuthentication interface, the Framework provides the correct response to the challenge of the
application. When the Framework responds to the Authenticate request, the response is analysed and in case the
response is valid a transition to the state Application Authenticated is made. In case the response is not valid, the
Authentication object is destroyed. This implicates that the application has to re-initiate the authentication by calling
once more the initiateAuthentication method on the IpInitial interface.

7.1.1.4 Application Authenticated state

In this state the application is considered authenticated and is now allowed to request access to the IpAccess interface. .
In case the application requests the Framework to authenticate itself by invoking Authenticate on the IpAuthentication
interface, the Framework provides the correct response to the challenge of the application.

7.1.2 IpAccess

.

Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

accessCheck / return whether application has access to requested service

selectService ̂ signServiceAgreement

signServiceAgreement[correct service selected] / get Service manager from Service Factory and return to application

terminateServiceAgreement / destroy Service manager object

endAccess / destroy all interface objects used by the application

network operator initiated endAccess / destroy all interface objects used by the application

Figure 7-2: State Transition Diagram for Access

7.1.2.1 Active state

When the application requested access to the Framework on the IpInitial interface, an object implementing the IpAccess
interface is created. The application can now request for other Framework services, including the Service Discovery
service. When the application is no longer interested in using the Services it calls the endAccess method. This results in
destruction of all interface objects used by the application. In case the network operator decides that the application has
no longer access to the Services the same will happen.

3GPP

3G TS 29.198 1.0.0 (2000-03)37 3G TS 29.198 version 1.0.0

7.1.3 IpServiceDiscovery

.

Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure 7-3: State Transition Diagram for Service Discovery

7.1.3.1 Active state

When the application requests for the Service Discovery service by invoking the obtainInterface or the
obtainInterfaceWithCallback methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created.
Next the application is allowed to request a list of the provided services and to obtain a reference to interfaces of
Services.

3GPP

3G TS 29.198 1.0.0 (2000-03)38 3G TS 29.198 version 1.0.0

7.1.4 IpLoadManager

.

IDLE Notifying

do/ obtain load statistics and report them at specified interval with queryLoadRes

Suspending

Notification

reportLoad

Registered

IpAccess.obtainInterface queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]
queryLoadReq

reportLoad
queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadRequnregisterLoadController

registerLoadController

suspendNotification[all notifications suspendend]

unregisterLoadController

queryLoadRes[final load statistics report]

queryLoadErr[final load statistics report]

IpAccess.obtainInterfaceWithCallback

resumeNotification

unregisterLoadController

All States

IpAccess.endAccess

Figure 7-4: State Transition Diagram for LoadManager

7.1.4.1 Idle State

In this state the application has obtained the interface of the LoadManager from the IpAccess interface.

7.1.4.2 Registered State

In this state the application has registered for load control with the method RegisterLoadController(). The Loadmanager
can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore
the LoadManager can request the application to control its load (by invoking enableLoadControl() or
suspendNotification() on the application side of interface). In case the application detects a change in load level, it
reports this to the LoadManager by calling the method reportLoad().
When entering this state, an object called LoadManagerInternal is created that has an internal State machine
encapsulating the internal behaviour of the LoadManager. The State Transition Diagram of LoadManagerInternal is
shown in Figure 7-5.

7.1.4.3 Notifying

In the Notifying state the application has requested for load statistics. The Loadmanager gathers the requested
information and (periodically) reports them to the application.

7.1.4.4 Suspending Notification

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load
statistics information.

3GPP

3G TS 29.198 1.0.0 (2000-03)39 3G TS 29.198 version 1.0.0

Norma l l oad
App l i ca t ion Over load

entry/ evaluate pol icy and per form necessary act ions

exi t / cancel per formed act ions

A necessary act ion can

be suspend ing the l oad

not i f ict ions to the

appl icat ion or enabl ing

l oad con t ro l mechan isms

on cer ta in serv ices.

Internal overload

entry/ evaluate pol icy and perform necessary act ions

exi t / cancel performed act ions

A n e c e s s a r y a c t i o n c a n b e

suspend ing t he l oad

not i f i c t ions f rom the

appl icat ion by invok ing

suspendNot i f i ca t ion or

enab l ing load cont ro l

m e c h a n i s m s o n t h e

appl icat ion by invok ing

enableLoadControl .

In terna l and Appl icat ion Over load

entry/ evaluate pol icy and per form necessary act ions

exi t / cancel performed act ions

repor tLoad[load leve l != 0]

repor tLoad[load leve l = 0]

" in terna l load change detect ion"

" in terna l load change to non over loaded"

" in ternal load change to non over load"

reportLoad[loadlevel = 0]

repor tLoad[loadleve l != 0]

" in terna l load change detect ion"

A L L

S T A T E S

unregis terLoadContro l le r

registerLoadControl ler

Figure 7-5: State Transition Diagram for the LoadManagerInternal

7.1.4.5 Normal Load state

In this state the none of the entities defined in the load balancing policy between the application and the framework /
services is overloaded.

7.1.4.6 Application overload state

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.1.4.7 Internal overload

In this state the Framework or one or more of the services within the specific load policy is overloaded. When entering
this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.1.4.8 Internal and application overload

In this state the application is overloaded as well as the Framework or one or more of the services within the specific
load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the
LoadManager.

3GPP

3G TS 29.198 1.0.0 (2000-03)40 3G TS 29.198 version 1.0.0

7.1.5 IPFaultManager

FW
ACTIVE

FWFAULTY

entry/ ^fwFaultReportInd to all applications with callback
exit/ ^fwFaultRecoveryInd to all applications with callback

FW ACTIVITY TEST

entry/ test activity of framework
exit/ ^app,activityTestRes

SVC ACTIVITY TEST

entry/ test activity of services
exit/ âpp,activityTestRes

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'service fault' / ŝerviceUnavailableInd to all application using the service

IpAccess.obtainFrameworkInterfaceWithCallback("FaultManagement") / add application to fault management

fault detected in fw
fault resolved

IpAccess.endAccess / remove application from load management

activityTestReq [null]

fault detected in fw

no fault detected
service fault ^srvUnavailableInd to all applications using the service

no fault detected

activityTestReq [scfID]

IpAccess.endAccess/
Abort pending test request

IpAccess.endAccess/
Abort pending test request

IpAccess.endAccess

Figure 7-6: State Transition Diagram for Fault Manager

7.1.5.1 Framework Active state

This is the normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.1.5.2 Framework Faulty state

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belongs to any interfaces of the
framework returns an error. If the framework ever recover, application with fault management callbacks will be notified
via a fwFaultRecoveryInd message.

7.1.5.3 The Service Activity Test state

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcUnavailableInd message.

7.1.5.4 The Framework Activity Test state

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
management callbacks are notified through a fwFaultReportInd message.

7.1.6 IpHeartbeatmgmt

3GPP

3G TS 29.198 1.0.0 (2000-03)41 3G TS 29.198 version 1.0.0

7.1.6.1 Application not supervised

In this state the application has not registered for heartbeat supervision by the Framework.

7.1.6.2 Application supervised

In this state the application has registered for heartbeat supervis ion by the Framework. Periodically the Framework will
request for the application heartbeat by calling the send method on the IpAppHeartBeat interface.

7.1.7 IpHeartBeat

FW supervised by
Application

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

IpAppHeartBeatMgmt.disableAppHeartBeat

IpAccess.endAccess

Figure 7-7: State Transition Diagram for HeartBeat

7.1.7.1 FW Supervised by Application state

In this state the Framework has requested the application for heartbeat supervision on itself. Periodically the application
calls the send() method and the Framework returns it’s heartbeat result.

Application not

Application supervised

enableHeartBeat
IpAccess.endAccess

disableHeartBeat

IpAccess.endAccess
changeTimePeriod

3GPP

3G TS 29.198 1.0.0 (2000-03)42 3G TS 29.198 version 1.0.0

7.1.8 IpOAM

.

Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure 7-8: State Transition Diagram for OAM

7.1.8.1 Active state

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

3GPP

3G TS 29.198 1.0.0 (2000-03)43 3G TS 29.198 version 1.0.0

7.2 Generic Call Control

7.2.1 Call Control Manager

Active

Creat ion of

Cal lContro lManager

by Serv ice Factory

Not i f icat ion terminated

e n t r y / ^ I p A p p C a l l C o n t r o l M a n a g e r . c a l l N o t i f i c a t i o n T e r m i n a t e d

1) . A p p l i c a t i o n w i l l n o t e x p l i c i t l y i n f o r m e d w h e n

n o t i f i c a t i o n s a r e e n a b l e d a g a i n .

A n e x p l i c i t n o t i f i c a t i o n c o u l d b e i m p l e m e n t e d

b y r e n a m i n g c a l l N o t i f i c a t i o n T e r m i n a t e d t o

c a l l N o t i f i c a t i o n I n f o r m a t i o n a n d a d d p a r a m e t e r

i n d i c a t i n g w h a t h a p p e n e d (n o t i f i c a t i o n

t e r m i n a t e d o r e n a b l e d) o r h a v e a b a s e c l a s s f o r

M a n a g e r o b j e c t s t o c a p t u r e n o t i f i c a t i o n

m e c h a n i s m s .

2) . A t t h i s m o m e n t n o n o t i f i c a t i o n s c a n b e

e n a b l e d i n t h e N o t i f i c a t i o n T e r m i n a t e d s t a t e . I n

c a s e i t i s a l l o w e d t o e n a b l e n o t i f i c a t i o n s i n t h e

N o t i f i c a t i o n T e r m i n a t e d s t a t e , t h e s t a t e s A c t i v e

a n d N o t i f i c a t i o n t e r m i n a t e d c a n b e m e r g e d .

" n e w "

e n a b l e C a l l N o t i f i c a t i o n

d i s a b l e C a l l N o t i f i c a t i o n

" a c a l l o b j e c t h a s t e r m i n a t e d a b n o r m a l l y " ^ I p A p p C a l l C o n t r o l M a n a g e r . c a l l A b o r t e d

" a r r i v a l o f c a l l r e l a t e d e v e n t " [n o t i f i c a t i o n a c t i v e f o r t h i s c a l l e v e n t] / c r e a t e a C a l l o b j e c t ^ I p A p p C a l l C o n t r o l M a n a g e r . c a l l E v e n t N o t i f y

IpAccess . te rmina teServ iceAgreement

IpAccess . te rmina teServ iceAgreement

" n o t i f i c a t i o n s p o s s i b l e a g a i n "

d i s a b l e C a l l N o t i f i c a t i o n

" a c a l l o b j e c t h a s t e r m i n a t e d a b n o r m a l l y " ^ I p A p p C a l l C o n t r o l M a n a g e r . c a l l A b o r t e d

" n o t i f i c a t i o n s n o t p o s s i b l e "

Figure 7-9: State Transition Diagram for the CallControlManager

7.2.1.1 Active state

In this state a relation between the Application and the Generic Call Control Service Capability has been established. It
allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the method callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

3GPP

3G TS 29.198 1.0.0 (2000-03)44 3G TS 29.198 version 1.0.0

7.2.1.2 Notification terminated state

When the Call Control manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications than defined in the Service Level Agreement. Another example is that the SCS
has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new
notifications will be accepted.

7.2.2 Call

setCallChargePlan

Active

entry/ start timer for call supervision

Outgoing

Setup

Incoming

Only send event
when requested

by Application.

Idle

setCallChargePlan[if allowed by network operator]

"call supervision timer expires" ^superviseCallRes

superviseCallReq
setAdviceOfCharge

"answer from called party"

^routeCallToDestinationRes

IpAppCallControlManager.callEventNotify

getCallInfoReq

"disconnect from called party"[[when monitor mode = interrupt for this event]]
^routeCallToDestinationRes, getCallInfoRes(intermediate report)

superviseCallReq

"connection to called party unsuccessful"[when monitor
mode = interrupt for this event] ^routeCallToDestinationRes

"routing aborted or invalid address" ̂ routeCallToDestinationErr

setAdviceOfCharge

release

deassignCall

routeCallToDestinationReq

"calling party abandons"[outstanding getCallInfoReq report AND no monitor for this event] ̂ getCallInfoErr(call abandoned)

"calling party abandons"[no outstanding getCallInfoReq AND no monitor for this event] ^callFaultDetected(user aborted)

"calling party abandons"[outstanding superviseCallReq AND no monitor for this event] ^superviseCallErr(call abandoned)

Figure 7-10: State Transition Diagram for Call, part 1

3GPP

3G TS 29.198 1.0.0 (2000-03)45 3G TS 29.198 version 1.0.0

In case the application does not
have to explicitly release the

Call object, states Network
released and Application
released can be combined and
Idle is not needed.

Network Released

States Incoming +
Outgoing Setup + Active

Idle

Application

Released

deassignCall

"network event received for which was monitored ^routeCallToDestinationRes

[no reports requested with getCallInfoReq AND
superviseCallReq]

"requested information ready" ^getCallInfoRes,
superviseCallRes

release

deassignCall

release

"call ends"[monitor for this event] ^routeCallToDestinationRes

"fault detected"[fault cannot be communicated with network event]

^callFaultDetected

deassignCall

release

"requested

information ready"

^getCallInfoRes,
superviseCallRes

[no reports

requested with

getCallInfoReq AND

superviseCallReq]

Figure 7-11: State Transition Diagram for Call, part 2

7.2.2.1 Incoming state

When the Call is in the incoming state a calling party is present. The application can now request that a connection to a
called party be established by calling the method routeCallToDestination(). Furthermore the Application can request for
certain charging related information by calling getCallInfoReq(). It is also allowed to request supervision of the call by
calling superviseCallReq().
In this state user interaction is possible.

7.2.2.2 Outgoing Setup state.

When the Application has requested a connection to be established between the calling party and the called party and
there is not yet any response from the called party side, the Call object is in state Outgoing Setup. In case the call could
not be established, the Call object will go to state Incoming and the Application is allowed to setup a new call.

7.2.2.3 Active state

A connection between two parties has been established.
In this state user interaction is possible, but only when the application requested to be notified of the transition to this
state in interrupt mode. After the user interaction is finished the gateway will automatically continue processing of the
call.

7.2.2.4 Network released state

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq().
In case the application has not requested additional call related information immediately a transition is made to state
Idle.

3GPP

3G TS 29.198 1.0.0 (2000-03)46 3G TS 29.198 version 1.0.0

7.2.2.5 Idle state

In this state the call has ended and no call related information is to be send to the application. The application can only
release the Call object. Calling the deassingCall() method has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.2.6 Application released state.

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallInfoReq(). In case the application has not requested additional call related
information immediately the Call object is destroyed.

7.3 User Interaction

7.3.1 UI Manager

Act ive

ex i t / re lease UI ob jects

C r e a t i o n o f U I M a n a g e r

b y S e r v i c e F a c t o r y

mode l shou ld be s im i l a r t o

Ca l lCon t ro lManager w i th respec t t o

no t i f i ca t ions te rm ina ted / enab led .

" n e w "

c r e a t e U I / c r e a t e U I o b j e c t

c r e a t e U I C a l l / c r e a t e U I C a l l o b j e c t

e n a b l e U I N o t i f i c a t i o n

d i s a b l e U I N o t i f i c a t i o n

" a r r i v a l o f u s e r i n i t i a t e d r e q u e s t f o r u s e r i n t e r a c t i o n " [n o t i f i c a t i o n a c t i v e f o r t h i s u i

e v e n t] / c r e a t e a U I o b j e c t ^ I p A p p U I l M a n a g e r . u s e r I n t e r a c t i o n E v e n t N o t i f y

I p A c c e s s . t e r m i n a t e S e r v i c e A g r e e m e n t

Figure 7-12: State Transition Diagram for the UIManager

7.3.1.1 Active state

In this state a relation between the Application and the User Interaction Service Capability has been established. The
application is now able to request creation of UI and UICall objects.

3GPP

3G TS 29.198 1.0.0 (2000-03)47 3G TS 29.198 version 1.0.0

7.3.2 UI

Active

only send event

when requested

by appl icat ion

Release

Pending

Abort all

o n g o i n g U I

sendInfoReq

sendInfoAndCollectReq

IpUIManager .CreateUI

"request to send information unsuccessful" ^sendInfoErr

"request to send information and col lect a response unsuccessful"

^sendInfoAndCollectErr

"requested message has been send" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

"fault detected in the user interaction"

^userInteractionFaultDetected

IpAppUIManager.userinteractionEventNotify

release

"requested message has been send"[not f inal request] ^sendInfoRes

"user input received"[not f inal request] ^sendInfoAndCollectRes

"request to send information and col lect a response

unsuccessful"[not f inal request]

^sendInfoAndCollectErr

"request to send information unsuccessful" ^sendInfoErr

"fault detected in the user interaction"[not

final request] ^userInteractionFaultDetected

"user input received"[f inal request] ^sendInfoAndCollectRes

"requested message has been send"[f inal request] ^sendInfoRes

"request to send information and collect

a response unsuccessful" [f inal request]

^sendInfoAndCollectErr

"request to send information unsuccessful"[f inal request] ^sendInfoErr

"fault detected in the user interaction"[final request] ^userInteractionFaultDetected

release

sendInfoReq[f inal request]

sendInfoAndCollectReq[f inal request]

Figure 7-13: State Transition Diagram for UI

7.3.2.1 Active state

In this state the UI object is available for requesting messages to be send to the network.

7.3.2.2 Release Pending state

A transition to this state is made when the Application has indicated that after a certain message no further messages
need to be send to the end-user. There are, however, still a number of messages that are not yet completed. When the
last message is sent or when the last user interaction has been obtained, the UI object is destroyed.

3GPP

3G TS 29.198 1.0.0 (2000-03)48 3G TS 29.198 version 1.0.0

7.3.3 UI Call

Active

only send event
when requested

by application

Release
Pending

Abort all
ongoing UI

sendInfoReq

sendInfoAndCollectReq

IpUIManager.createUICall

"request to send information unsuccessful" ^sendInfoErr

"request to send information and collect a response unsuccessful" ^sendInfoAndCollectErr

"requested message has been send" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

"fault detected in the user interaction" ^userInteractionFaultDetected

"requested message has been send"[not final request] ^sendInfoRes

"user input received"[not final request] ̂ sendInfoAndCollectRes

"request to send information and collect a response unsuccessful"[not final request]
^sendInfoAndCollectErr

"request to send information unsuccessful" ̂ sendInfoErr

"fault detected in the user interaction"[not final request]
^userInteractionFaultDetected

Already requested
announcements
will continue

Report error on
all requested UI
for which result
is expected.

"user input received"[final request] ^sendInfoAndCollectRes

"requested message has been send"[final request] ^sendInfoRes

"request to send information and collect a response unsuccessful"[final request]
^sendInfoAndCollectErr

"request to send information unsuccessful"[final request] ^sendInfoErr

"fault detected in the user interaction"[final request] ̂ userInteractionFaultDetected

release

IpCall.release ^sendInfoAndCollectErr or sendInfoErr

IpCall.deassignCall

"abnormal end of user interaction" ̂ userInteractionAborted

abortActionReq[final request is aborted] / cancel the user interaction

abortActionReq / cancel the user interaction

Alternative to this
approach is one
user interaction

per object.

release

sendInfoReq[final request]
sendInfoAndCollectReq[final request]

IpCall.release ^sendInfoAndCollectErr or sendInfoErr

IpCall.deassignCall

"abnormal end of user interaction" ̂ userInteractionAborted

Figure 7-14: State Transition Diagram for UICall

7.3.3.1 Active state

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from
the end-user.

7.3.3.2 Release Pending state

A transition to this state is made when the Application has indicated that after a certain announcement no further
announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet
completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object
is destroyed.

3GPP

3G TS 29.198 1.0.0 (2000-03)49 3G TS 29.198 version 1.0.0

7.4 Network User Location

Active
"new"

terminateServiceAgreement

locationReportReq
periodicLocationReportingStartReq
periodicLocationReportingStop
triggeredLocationReportingStartReq
triggeredLocationReportingStop

Creation of User Location
Camel by Service Factory

Figure 7-15: State Transition Diagram for Network User Location

The Service Factory allows access to a user location SCF among other things. It is used during the
signServiceAgreement, in order to return a user location interface reference which is user as the initial point of contact
for the application.

7.4.1 Active state

In this state, a relation between the Application and the Network User Location Service capability feature has been
established. It allows the application to request a specific user location reports, subscribe to periodic user location
reports or subscribe to triggers that generate location report when a location update occurs inside the current VLR area
or when the user moves to another VLR area or both.

7.5 User Status

Active

"new"

terminateServiceAgreement

statusReportReq
triggeredStatusReportingStartReq
triggeredStatusReportingStop

Creation of User Status by
Service Factory

Figure 7-16: State Transition Diagram for User Status.

3GPP

3G TS 29.198 1.0.0 (2000-03)50 3G TS 29.198 version 1.0.0

7.5.1 Active State

In this state, a relation between the Application and the User Status Service capability feature has been established. It
allows the application to request a specific user status report or subscribe to triggers that generate status reports when
the status of one of the monitored user changes.

3GPP

3G TS 29.198 1.0.0 (2000-03)51 3G TS 29.198 version 1.0.0

8 Data Definitions

8.1 Common Data definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa package.

8.1.1 Primitive Data Types

Type Name Description

TpBoolean Defines a Boolean data type.

TpInt32 Defines a signed 32 bit integer.

TpFloat Defines a single precision float

TpString Defines a string, comprising length and data.

8.1.2 Structured data types classification

Many different structured data types are used in OSA and a classification/clarification is required.

8.1.2.1 Structures made of data elements

This describes data types that can be considered as classes (in Java or C++) or structures (C++, IDL). The goal of these
data types is to group pieces of information into a logical unit. Example: an TAddress data type may be defined in IDL
as:

struct TpAddress {
 TpAddressPlan plan;
 TpString astring;
 TpString name;
 TpAddressPresentation presentation;
 TpAddressScreening screening;
 TpString subAddressString;
 };

8.1.2.2 Tagged choice of data elements (i.e.: Free unions)

This describes a data type, which actually evaluates to one of a choice of a number of data elements. This data element
contains two parts: a tag data type (the tag part) which is used to identify the chosen data type, and the chosen data type
itself (the union part). This form of data type is also referred to as a tagged union.
This data type can be implemented in IDL as a union with a switch statement for the tag part, and a set or case
statements for the union part. This data type is implementation specific, please refer to the appropriate documents.
Example: The TCallError data type may be defined in IDL as:

union TpCallError switch (TCallErrorType) {
 case CALL_ERROR_UNDEFINED:
 TpCallErrorInfoDefault CallErrorUndefined;
 case CALL_ERROR_ROUTING_ABORTED:
 TpCallErrorInfoRoutingAborted CallErrorRoutingAborted;
 case CALL_ERROR_CALL_ABANDONED:
 TpCallErrorInfoCallAbandoned CallErrorCallAbandoned;
 case CALL_ERROR_INVALID_ADDRESS:
 TpCallErrorInfoInvalidAddress CallErrorInvalidAddress;
 case CALL_ERROR_INVALID_STATE:
 TpCallErrorInfoDefault CallErrorInvalidState;
 case CALL_ERROR_INVALID_CRITERIA:
 TpCallErrorInfoDefault CallErrorInvalidCriteria;
};

8.1.2.3 Collection of data elements

This describes a data type, which comprises an ordered or unordered collection of data elements of the same type. The
number of data elements in the collection is always know and can be implicit (IDL) or may appear as an integer inside a
structure depending on the language used. This data type can be implemented in IDL as a sequence.

3GPP

3G TS 29.198 1.0.0 (2000-03)52 3G TS 29.198 version 1.0.0

Example:
typedef sequence<SessionID> SessionIDSet;

8.1.2.4 References

This describes a reference (or pointer) to a data type. This is primarily used to describe 'out' method parameters.

This data type may be implemented (for example, in C++) as a pointer. However, in some languages it may not be
necessary for 'out' parameters to be implemented as pointers.
Example: The TAddressRef data type may be defined in C++ as:

typedef TAddress *TAddressRef;

8.1.3 Interface Definitions

8.1.3.1 IpOsa

Defines the address of an IpOsa Interface.

8.1.3.2 IpOsaRef

Defines a Reference to type IpOsa

8.1.3.3 IpOsaRefRef

Defines a Reference to type IpOsaRef

8.1.3.4 IpService

Defines the address of an IpService Interface.

8.1.3.5 IpServiceRef

Defines a Reference to type IpService

8.1.3.6 IpServiceRefRef

Defines a Reference to type IpServiceRef

8.1.4 Non primitive and structured type types definition

8.1.4.1 TpAssignmentID

This data type is identical to a TpInt32. It specifies a number which identifies an individual event notification enabled
by the application or OSA service capability feature.

8.1.4.2 TpSessionID

Defines a network unique session ID. OSA uses this ID to identify sessions within an object implementing an interface
capable of handling multiple sessions. For the different OSA service capability features, the sessionIDs are unique only
in the context of a manager instantiation (e.g., within the context of one generic call control manager). As such if an
application creates two instances of the same SCF manager it shall use different instantiations of the callback objects
which implement the callback interfaces.

The session ID is identical to a TpInt32 type.

8.1.4.3 TpSessionIDSet

Defines a collection of data elements of TpSessionID.

8.1.4.4 TpDuration

This data type is a TInt32 representing a time interval in milliseconds. A value of "-1" defines infinite duration and
value of "-2" represents default duration.

3GPP

3G TS 29.198 1.0.0 (2000-03)53 3G TS 29.198 version 1.0.0

8.1.4.5 TpResult

Defines the structure of data elements that specifies the result of a method call.

Structure Member Name Structure Member Type
resultType TpResultType

resultFacility TpResultFacility

resultInfo TpResultInfo

8.1.4.6 TpResultType

Defines whether the method was successful or not.
Name Value Description

P_RESULT_FAILURE 0 Method failed

P_RESULT_SUCCESS 1 Method was successful

8.1.4.7 TpResultFacility

Defines the facility code of a result. In Release 99 of the OSA API, only P_RESULT_FACILITY_UNDEFINED must
be used.

Name Value Description
P_RESULT_FACILITY_UNDEFINED 0 Undefined

8.1.4.8 TpResultInfo

Defines further information relating to the result of the method, such as error codes.
Name Value Description

P_RESULT_INFO_UNDEFINED 0000h No further information present

P_INVALID_APPLICATION_ID 0001h Invalid application ID

P_INVALID_CLIENT_CAPABILITY 0002h Invalid client capability

P_INVALID_AGREEMENT_TEXT 0003h Invalid agreement text

P_INVALID_SIGNING_ALGORITHM 0004h Invalid signing algorithm

P_INVALID_INTERFACE_ID 0005h Invalid interface ID

P_INVALID_SERVICE_ID 0006h Invalid service capability feature ID

P_INVALID_EVENT_TYPE 0007h Invalid event type

P_SERVICE_NOT_ENABLED 0008h The service capability feature ID does not correspond to a SCF that
has been enabled

P_INVALID_ASSIGNMENT_ID 0009h The assignment ID does not correspond to one of the valid
assignment IDs

P_INVALID_PARAMETER 000Ah The method has been called with an invalid parameter

P_INVALID_PARAMETER_VALUE 000Bh A method parameter has an invalid value

P_PARAMETER_MISSING 000Ch A required parameter has not been specified in the method call

P_RESOURCES_UNAVAILABLE 000Dh The required resources in the network are not available

P_TASK_REFUSED 000Eh The requested method has been refused

P_TASK_CANCELLED 000Fh The requested method has been cancelled

P_INVALID_DATE_TIME_FORMAT 0010h Invalid date and time format provided

P_NO_CALLBACK_ADDRESS_SET 0011h The requested method has been refused because no callback
address is set

P_INVALID_TERMINATION_TEXT 0012h Invalid termination text

P_INVALID_SERVICE_TOKEN 0013h The service capability feature token does not correspond to a token
that had been issued, or the issued token has expired

P_INVALID_AUTHENTICATION 0014h The client has not been correctly authenticated

P_INVALID_SERVICE_PROPERTY 0015h Invalid service capability feature property

P_METHOD_NOT_SUPPORTED 001Bh The method is not allowed or supported within the context of the
current SCF agreement.

3GPP

3G TS 29.198 1.0.0 (2000-03)54 3G TS 29.198 version 1.0.0

current SCF agreement.

General security errors

P_USER_NOT_SUBSCRIBED 0030h A service (or application) is unauthorised to access information and
request SCFs with regards to users that are not subscribed to it.

P_APPLICATION_NOT_ACTIVATED 0031h A service (or application) is unauthorised to access information and
request SCFs with regards to its subscribed users that have

deactivated that particular service (or application).

P_USER_PRIVACY 0032h A service (or application) is unauthorised to access information and
request an SCF with regards to its subscribed users that have set

their privacy flag regarding that particular SCF.

P_GCCS_SERVICE_INFORMATION_MISSING 0100h Information relating to the Call Control SCF could not be found

P_GCCS_SERVICE_FAULT_ENCOUNTERED 0101h Fault detected in the Call Control SCF

P_GCCS_UNEXPECTED_SEQUENCE 0102h Unexpected sequence of methods, i.e., the sequence does not match
the specified state diagrams for the call or the call leg.

P_GCCS_INVALID_ADDDRESS 0103h Invalid address specified

P_GCCS_INVALID_STATE 0104h Invalid state specified

P_GCCS_INVALID_CRITERIA 0105h Invalid criteria specified

P_GCCS_INVALID_NETWORK_STATE 0106h Although the sequence of method calls is allowed by the OSA
gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the
protocol, when the call processing is suspended, e.g., after reporting

an event that was monitored in interrupt mode.

P_GCCS_NETWORK_DEASSIGN 0107h The relation between the network and the OSA gateway is
terminated. Therefore, the gateway can no longer influence the call.

This can happen after the last requested report is sent to the
application.

To prevent this error, the application should ensure that it has
requested events which are not yet reported.

P_GUIS_INVALID_CRITERIA 0300h Invalid criteria specified

P_GUIS_ILLEGAL_ID 0301h Information id specified is invalid

P_GUIS_ID_NOT_FOUND 0302h A legal information id is not known to the User Interaction SCF

P_GUIS_ILLEGAL_RANGE 0303h The values for minimum and maximum collection length are out of
range.

P_GUIS_INVALID_COLLECTION_CRITERIA 0304h Invalid collection criteria specified

P_GUIS_NETWORK_DEASSIGN 0305h The relation between the network and the OSA gateway is
terminated. Therefore, the ga teway can no longer perform UI
operations. This can happen after the last requested report is sent to

the application.

To prevent this error, the application should ensure that it has
requested events which are not yet reported.

P_GUIS_INVALID_NETWORK_STATE 0306h Although the sequence of method calls is allowed by the OSA
gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the
protocol, when the call processing is suspended, e.g., after reporting

an event that was monitored in interrupt mode.

8.1.4.9 TpDate

This data type is identical to a TpString. It specifies the data in accordance with International Standard ISO 8601. This
is defined as the string of characters in the following format:

YYYY-MM-DD
where the date is specified as:

YYYY four digits year
MM two digits month
DD two digits day

The date elements are separated by a hyphen character (-).
Example

The 4 December 1998, is encoded as the string:

1998-12-04

3GPP

3G TS 29.198 1.0.0 (2000-03)55 3G TS 29.198 version 1.0.0

8.1.4.10 TpTime

This data type is identical to a TpString. It specifies the time in accordance with International Standard ISO 8601. This
is defined as the string of characters in the following format:

HH:MM:SS.mmm
or

HH:MM:SS.mmmZ
where the time is specified as:

HH two digits hours (24h notation)
MM two digits minutes
SS two digits seconds
mmm three digits fractions of a second (i.e. milliseconds)

The time elements are separated by a colon character (:).The date and time are separated by a space. Optionally, a
capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.
Example

For local time, 10:30 and 15 seconds is encoded as the string:

10:30:15.000
or in UTC it would be:

10:30:15.000Z

8.1.4.11 TpDateAndTime

This data type is identical to a TpString. It specifies the data and time in accordance with International Standard ISO
8601. This is defined as the string of characters in the following format:

YYYY-MM-DD HH:MM:SS.mmm
or

YYYY-MM-DD HH:MM:SS.mmmZ
where the date is specified as:

YYYY four digits year
MM two digits month
DD two digits day

The date elements are separated by a hyphen character (-).
The time is specified as:

HH two digits hours (24h notation)
MM two digits minutes
SS two digits seconds
mmm three digits fractions of a second (i.e. milliseconds)

A colon character separates the time elements (:). The date and time are separated by a space. Optionally, a capital
letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.
Example

The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:

1998-12-04 10:30:15.000
for local time, or in UTC it would be:

1998-12-04 10:30:15.000Z

8.1.4.12 TpAddress

Defines the structure of data elements that specifies an address.
Structure Member Name Structure Member Type

plan TpAddressPlan

string TpString

name TpString

presentation TpAddressPresentation

screening TpAddressScreening

subAddressString TpString

8.1.4.13 TpAddressSet

Defines a collection of TpAddress elements.

3GPP

3G TS 29.198 1.0.0 (2000-03)56 3G TS 29.198 version 1.0.0

8.1.4.14 TpAddressPlan

Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually defined in a
Address data element.

Name Value Description
P_ADDRESS_PLAN_NOT_PRESENT -1 No Address Present

P_ADDRESS_PLAN_UNDEFINED 0 Undefined

P_ADDRESS_PLAN_IP 1 IP

P_ADDRESS_PLAN_MULTICAST 2 Multicast

P_ADDRESS_PLAN_UNICAST 3 Unicast

P_ADDRESS_PLAN_E164 4 E.164

P_ADDRESS_PLAN_E164_MOBILE 5 E.164 Mobile

P_ADDRESS_PLAN_AESA 6 AESA

P_ADDRESS_PLAN_URL 7 URL

P_ADDRESS_PLAN_NSAP 8 NSAP

P_ADDRESS_PLAN_SMTP 9 SMTP

P_ADDRESS_PLAN_X400 11 X.400

8.1.4.15 TpAddressPresentation

Defines whether an address can be presented to an end user.

Name Value Description
P_ADDRESS_PRESENTATION_UNDEFINED 0 Undefined

P_ADDRESS_PRESENTATION_ALLOWED 1 Presentation Allowed

P_ADDRESS_PRESENTATION_RESTRICTED 2 Presentation Restricted

P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE 3 Address not available for presentation

8.1.4.16 TpAddressScreening

Defines whether an address has been screened by the application.
Name Value Description

P_ADDRESS_SCREENING_UNDEFINED 0 Undefined

P_ADDRESS_SCREENING_USER_VERIFIED_PASSED 1 user provided address
verified and passed

P_ADDRESS_SCREENING_USER_NOT_VERIFIED 2 user provided address
not verified

P_ADDRESS_SCREENING_USER_VERIFIED_FAILED 3 user provided address
verified and failed

P_ADDRESS_SCREENING_NETWORK 4 Network provided address

8.1.4.17 TpAddressError

Defines the reasons why an address is invalid.
Name Value Description

P_ADDRESS_INVALID_UNDEFINED 0 Undefined error

P_ADDRESS_INVALID_MISSING 1 Mandatory address not present

P_ADDRESS_INVALID_MISSING_ELEMENT 2 Mandatory address element not present

P_ADDRESS_INVALID_OUT_OF_RANGE 3 Address is outside of the valid range

P_ADDRESS_INVALID_INCOMPLETE 4 Address is incomplete

P_ADDRESS_INVALID_CANNOT_DECODE 5 Address cannot be decoded

8.1.4.18 TpURL

This data type is identical to a TpString and contains a URL address. The usage of this type is distinct of TpAddress,
which can also hold an URL. The latter contains a user address which can be specified in many ways: IP, mail, URL,
X.300, E164. On the other hand, the TpURL type does not hold the address of a user and always represents a URL. This

3GPP

3G TS 29.198 1.0.0 (2000-03)57 3G TS 29.198 version 1.0.0

type is used in user interaction and defines the URL of the text or stream to be sent to an end-user. It is therefore
inappropriate to use a general address here.

8.1.4.19 TpPrice

This data type is identical to a TpString. It specifies price information, which is used in user interaction when an
announcement is being played and additional information is given to the user. This is defined as the string of characters
(digits) in the following format:
DDDDDD.DD

8.2 Framework Data Definitions
This section provides the framework specific data definitions necessary to support the OSA interface specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents
Hypertext links.

The general format of a data definition specification is the following:
• Data type, that shows the name of the data type.
• Description, that describes the data type.
• Tabular specification, that specifies the data types and values of the data type.
• Example, if relevant, shown to illustrate the data type.

8.2.1 Common Framework Data Definitions

8.2.1.1 IpServiceRef

This data type is identical to IpInterfaceRef.

8.2.1.2 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the framework. This data type is
identical to TpString.

8.2.1.3 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

8.2.1.4 TpEntOpID

This data type is identical to TpString.

8.2.1.5 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

8.2.1.6 TpService

This data type is a Sequence_of_Data_Elements which describes a registered service. It is a structured type
which consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceID TpServiceID

ServicePropertyList TpServicePropertyList

8.2.1.7 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

8.2.1.8 TpServiceDescription

This data type is a Sequence_of_Data_Elements which describes a registered service. It is a structured data type
which consists of:

3GPP

3G TS 29.198 1.0.0 (2000-03)58 3G TS 29.198 version 1.0.0

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypeName TpServiceTypeName

ServicePropertyList TpServicePropertyList

8.2.1.9 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of
a service interface. The string is automatically generated by the Framework, and comprises a TpUniqueServiceNumber,
TpServiceNameString, and a number of relevant TpServiceSpecString, which are concatenated using a forward
separator (/) as the separation character.

8.2.1.10 TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

8.2.1.11 TpServiceIDRef

Defines a Reference to type TpServiceId.

8.2.1.12 TpServiceNameString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of a
service interface. Other service provider specific capabilities may also be used, but should be preceded by the string
"SP_".The following values are defined for OSA release 99.

Character String Value Description
NULL An empty (NULL) string indicates no service name

P_CALL_CONTROL The name of the Call Control Service

P_USER_INTERACTION The name of the User Interaction Service

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities Service

P_USER_LOCATION The name of the User Location Service

P_USER_STATUS The name of the User Status tService

8.2.1.13 TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of a
service specialisation interface. Other service provider specific capabilities may also be used, but should be preceded
by the string "SP_".The following values are defined for OSA release 99.

Character String Value Description
NULL An empty (NULL) string indicates no service specialisation

P_CALL The Call specialisation of the of the User Interaction
Service

8.2.1.14 TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number.

8.2.1.15 TpPropertyStruct

This data type is a Sequence_of_Data_Elements which describes a service property. It consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServiceTypeName

ServicePropertyMode TpServicePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

3GPP

3G TS 29.198 1.0.0 (2000-03)59 3G TS 29.198 version 1.0.0

8.2.1.16 TpPropertyStructList

This data type defines a Numbered Set of Data Elements of type TpPropertyStruct.

8.2.1.17 TpServicePropertyMode

This type is left as a placeholder but is not used in release 99.This defines service property modes.
Name Value Documentation

NORMAL 0 The value of the corresponding service property type may optionally be
provided

MANDATORY 1 The value of the corresponding service property type must be provided
at service registration time

READONLY 2 The value of the corresponding service property type is optional, but
once given a value it may not be modified

MANDATORY_READONLY 3 The value of the corresponding service property type must be provided
and subsequently it may not be modified.

8.2.1.18 TpServicePropertyTypeName

This data type is identical to TpString.

8.2.1.19 TpServicePropertyName

This data type is identical to TpString.

8.2.1.20 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

8.2.1.21 TpServicePropertyValue

This data type is identical to TpString.

8.2.1.22 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

8.2.1.23 TpServiceProperty

This data type is a Sequence_of_Data_Elements which describes a “service property”. It is a structured data
type which consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyValueLis
t

TpServicePropertyValueList

ServicePropertyMode TpServicePropertyMode

8.2.1.24 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

8.2.1.25 TpServiceTypeDescription

This type is left as a placeholder but is not used in release 99.
This data type is a Sequence_of_Data_Elements which describes a service type. It is a structured data type. It
consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

PropertyStructList TpPropertyStructList a sequence of property name and property mode
tuples associated with the service type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated
service type

3GPP

3G TS 29.198 1.0.0 (2000-03)60 3G TS 29.198 version 1.0.0

service type

EnabledOrDisabled TpBoolean an indication whether the service type is enabled or
disabled

8.2.1.26 TpServiceTypeName

This data type is identical to TpString

8.2.1.27 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

8.2.2 Trust and Security Management Data Definitions

8.2.2.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client
application. If they request P_ACCESS, then a reference to the IpAccess interface is returned. (Service Providers can
define their own access interfaces to satisfy client requirements for different types of access. These can be selected
using the TpAccessType, but should be preceded by the string "SP_". The following values are defined for OSA release
99:

String Value Description
NULL An empty (NULL) string indicates the default access type

P_ACCESS Access using the OSA Access Interfaces: IpAccess and
IpAppAccess

8.2.2.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides service providers and client's with the opportunity to use an alternative to the OSA Authentication interface,
e.g. CORBA Security. OSA Authentication is the default authentication method. Other service provider specific
capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined for OSA
release 99:

String Value Description
NULL An empty (NULL) string indicates the default

authentication method: OSA Authentication.

P_AUTHENTICATION Authenticate using the OSA Authentication Interfaces:
IpAuthentication and IpAppAuthentication

8.2.2.3 TpAuthCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the authentication
capabilities that could be supported by the OSA. Other service provider specific capabilities may also be used, but
should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation
character. The following values are defined for OSA release 99.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.

P_DES_56 A simple transfer of secret information that is shared
between the client application and the framework with

protection against interception on the link provided by the
DES algorithm with a 56bit shared secret key

P_RSA_512 A public-key cryptography system providing authentication
without prior exchange of secrets using 512 bit keys

P_RSA_1024 A public-key cryptography system providing authentication
without prior exchange of secrets using 1024bit keys

3GPP

3G TS 29.198 1.0.0 (2000-03)61 3G TS 29.198 version 1.0.0

8.2.2.4 TpAuthCapabilityList

This data type is identical to a TpString. It is a string of multiple TpAuthCapability concatenated using a comma
(,)as the separation character.

8.2.2.5 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the
framework capabilities that are be supported by the OSA API. Other service provider specific capabilities may also be
used, but should be preceded by the string "SP_".The following values are defined for OSA release 99.

Character String Value Description
NULL An empty (NULL) string indicates no interface.

P_DISCOVERY The name for the Discovery interface.

P_OAM The name for the OA&M interface.

P_INTEGRITY_MANAGEMENT The name for the Integrity Management interface.

8.2.2.6 TpServiceAccessControl

This is Sequence of Data Elements containing the access control policy information controlling access to the
service feature, and the trustLevel that the service provider has assigned to the client application.

Sequence Element Name Sequence El ement Type
policy TpString

trustLevel TpString

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel
must also have a value.
The trustLevel parameter indicates the trust level that the service provider has assigned to the client application.

8.2.2.7 TpServiceToken

This data type is identical to a TpString, and identifies a selected service. This is a free format text token returned by
the framework, which can be signed as part of a service agreement. This will contain service provider specific
information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will
automatically expire if the client or framework invokes the endAccess method on the other's corresponding access
interface.

8.2.2.8 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the framework for the service
agreement, and a reference to the service manager interface of the service.

Sequence Element Name Sequence Element Type
digitalSignature TpStringRef

serviceMgrInterface TpIpInterfaceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.
The serviceMgrInterface is a reference to the service manager interface for the selected service.

8.2.2.9 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm
that must be used. Other service provider specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined for OSA release 99.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is

required

3GPP

3G TS 29.198 1.0.0 (2000-03)62 3G TS 29.198 version 1.0.0

P_MD5_RSA_512 MD5 takes an input message of arbitrary length and
produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA

public-key cryptography system using a 512 bit key.

P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and
produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA
public- key cryptography system using a 1024 bit key

8.2.3 Integrity Management Data Definitions

8.2.3.1 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are framework
provider specific.

8.2.3.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.
Sequence Element Name Sequence Element Type

Period TpTimeInterval

FaultRecords TpFaultStatsSet

8.2.3.3 TpFaultStatsSet

This defines the sequence of data elements which provide the statistics on a per fault type basis.
Sequence Element Name Sequence Element Type

Fault TpInterfaceFault

Occurrences TpInt32

MaxDuration TpInt32

TotalDuration TpInt32

NumberOfClientsAffected TpInt32

Occurrences is the number of separate instances of this fault during the period. MaxDuration and
TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the
period. NumberOfClientsAffected is the number of clients informed of the fault by the framework.

8.2.3.4 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

8.2.3.5 TpInterfaceFault

Defines the cause of the interface fault detected.
Name Value Description

INTERFACE_FAULT_UNDEFINED 0 Undefined

INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware
has been detected

INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or
hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-
gateway link has been detected

8.2.3.6 TpSvcUnavailReason

Defines the reason why a Service is unavailable.

3GPP

3G TS 29.198 1.0.0 (2000-03)63 3G TS 29.198 version 1.0.0

Name Value Description
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has
failed

SERVICE_UNAVAILABLE_OVERLOADED 3 The service is fully overloaded

SERVICE_UNAVAILABLE_CLOSED 4 The service has closed itself (e.g. to protect
from fraud or malicious attack)

8.2.3.7 TpAPIUnavailReason

Defines the reason why the API is unavailable.
Name Value Description

API_UNAVAILABLE_UNDEFINED 0 Undefined

API_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

API_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has
failed

API_UNAVAILABLE_OVERLOADED 3 The gateway is fully overloaded

API_UNAVAILABLE_CLOSED 4 The gateway has closed itself (e.g. to protect
from fraud or malicious attack)

API_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link
has failed

8.2.3.8 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.
Name Value Description

LOAD_LEVEL_NORMAL 0 Normal load

LOAD_LEVEL_OVERLOAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

8.2.3.9 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value
is application and service dependent, so is their relationship with load level.

Sequence Element Name Sequence Element Type
LoadThreshold TpFloat

8.2.3.10 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.
Sequence Element Name Sequence Element Type

LoadLevel TpLoadLevel

LoadThreshold TpLoadThreshold

8.2.3.11 TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

Sequence Element Name Sequence Element Type
StartTime TpDateAndTime

StopTime TpDateAndTime

3GPP

3G TS 29.198 1.0.0 (2000-03)64 3G TS 29.198 version 1.0.0

8.2.3.12 TpLoadPolicy

Defines the load balancing policy.
Sequence Element Name Sequence Element Type

LoadPolicy TpString

8.2.3.13 TpLoadStatistic

Defines the Sequence of Data Elements that specify the load statistic record at given timestamp.
Sequence Element Name Sequence Element Type

ServiceID TpServiceID

LoadValue TpFloat

LoadLevel TpLoadLevel

TimeStamp TpDateAndTime

LoadValue is expressed in percentage.

8.2.3.14 TpLoadStatList

Defines a Numbered Set of Data Elements of TpLoadStatistic.

8.2.3.15 TpLoadStatusError

Defines the error code for getting the load status.
Name Value Description

LOAD_STATUS_ERROR_UNDEFINED 0 Undefined error

LOAD_STATUS_ERROR_UNAVAILABLE 1 Unable to get the load status

8.2.3.16 TpLoadStatError

Defines the Sequence of Data Elements that specify the error for getting the load status at given timestamp.

Sequence Element Name Sequence Element Type
ServiceID TpServiceID

LoadStatusError TpFloat

TimeStamp TpDateAndTime

8.2.3.17 TpLoadStatErrList

Defines a Numbered Set of Data Elements of TpLoadStatisticError.*

8.3 Generic Call Control Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.gccs package.

8.3.1 Interface definitions

8.3.1.1 IpAppCall

Defines the address of an IAppCall Interface.

8.3.1.2 IpAppCallRef

Defines a Reference to type IAppCall

3GPP

3G TS 29.198 1.0.0 (2000-03)65 3G TS 29.198 version 1.0.0

8.3.1.3 IpAppCallRefRef

Defines a Reference to type IAppCallRef.

8.3.1.4 IpAppCallControlManager

Defines the address of an IAppCallControlManager Interface.

8.3.1.5 IpAppCallControlManagerRef

Defines a Reference to type IAppCallControlManager.

8.3.1.6 IpCall

Defines the address of an ICall Interface.

8.3.1.7 IpCallRef

Defines a Reference to type ICall.

8.3.1.8 IpCallRefRef

Defines a Reference to type ICallRef.

8.3.1.9 IpCallControlManager

Defines the address of an ICallControlManager Interface.’

8.3.1.10 IpCallControlManagerRef

Defines a Reference to type ICallControlManager.

8.3.2 Event Notification data definitions

8.3.2.1 TpCallEventName

Defines the names of events being notified with a new call request. The following events are supported. The values may
be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested /
received during the call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

8.3.2.2 TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for an event notification.

Sequence Element Name Sequence Element Type Description
DestinationLowerAddress TpAddress Lower destination address in an

address rannge

DestinationUpperAddress TpAddress Upper destination address in an
address range

3GPP

3G TS 29.198 1.0.0 (2000-03)66 3G TS 29.198 version 1.0.0

OriginatingLowerAddress TpAddress Lower originatin address in an
address range

OriginationUpperAddress TpAddress Upper origination address in an
address range

CallEventName TpCallEventName Name of the event(s)

8.3.2.3 TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Call
event notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

3GPP

3G TS 29.198 1.0.0 (2000-03)67 3G TS 29.198 version 1.0.0

8.3.3 Generic Call Control Type definitions

8.3.3.1 TpAoCInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters.
Sequence Element Name Sequence Element Type

AoCSet1 TpString

AoCSet2 TpString

The value of the set is operator specific, if more then one element needs to be sent then those elements are separated
with a ‘/’ character. As an example:
CAP expects 7 integers (so-called e-parameters) to be sent, each optional. This could result in sending “123//0/
indicating that elements 1, 3 and 4 have a value and the other elements are empty and do not need to be sent.

8.3.3.2 TpCallAlertingMechanism

This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values
of this data type are operator specific.

8.3.3.3 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify call application-related specific information.
 Tag Element Type
 TpCallAppInfoType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_INTERWORKING_INDICATO
RS

TpCallInterworkingIndicators CallAppInterworking
Indicators

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

8.3.3.4 TpCallAppInfoType

Defines a specific call event report type.
Name Value Description

P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_INTERWORKING_INDICATORS 3 Indicators to enable service interworking

P_CALL_APP_TELE_SERVICE 4 Indicates the tele-service (e.g. speech) and
related info such as clearing programme

3GPP

3G TS 29.198 1.0.0 (2000-03)68 3G TS 29.198 version 1.0.0

P_CALL_APP_BEARER_SERVICE 5 Indicates the bearer service (e.g. 64kb/s
unrestricted data).

P_CALL_APP_PARTY_CATEGORY 6 The category of the call party

P_CALL_APP_PRESENTATION_ADDRESS 7 The address to be presented to other call
parties

P_CALL_APP_GENERIC_INFO 8 Carries unspecified application-Service
Capability information

P_CALL_APP_ADDITIONAL_ADDRESS 9 Indicates an additional address

8.3.3.5 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

8.3.3.6 TpCallBearerService

This data type is identical to a TpString, and defines the bearer service associated with the call (e.g. 64kb/s
unrestricted data). The values of this data type are operator specific. However, DSS1 (EN 300 403-1) or ISUP User
Service Information (refer to ITU Q.763) are suggested for this data type.

8.3.3.7 TpCallChargePlan

This data type is identical to a TpString, and defines the call charge plan to be used for the call. The values of this
data type are operator specific.

8.3.3.8 TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to an undefined call
error.

Sequence Element Name Sequence Element Type
ErrorTime TpDateAndTime

ErrorType TpCallerrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

8.3.3.9 TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific
information. This is also used to specify call leg errors and call information errors.

 Tag Element Type
 TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_ERROR_UNDEFINED NULL Undefined

P_CALL_ERROR_ROUTING_ABORTED TpCallReleaseCause CallErrorRoutingAborted

P_CALL_ERROR_CALL_ABANDONED T pCallReleaseCause CallErrorCallAbandoned

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE NULL Undefined

P_CALL_ERROR_INVALID_CRITERIA NULL Undefined

8.3.3.10 TpCallErrorType

Defines a specific call error.
Name Value Description

P_CALL_ERROR_UNDEFINED 0 Undefined

3GPP

3G TS 29.198 1.0.0 (2000-03)69 3G TS 29.198 version 1.0.0

P_CALL_ERROR_ROUTING_ABORTED 1 Call routing failed and was
aborted by the network

P_CALL_ERROR_CALL_ABANDONED 2 The requested operation failed
because the controlling party
abandoned the call before the

operation was completed

P_CALL_ERROR_INVALID_ADDRESS 3 The operation failed because an
invalid address was given

P_CALL_ERROR_INVALID_STATE 4 The call was not in a valid
state for the requested

operation

P_CALL_ERROR_INVALID_CRITERIA 5 Invalid criteria were specified for the requested
operation

8.3.3.11 TpCallFault

Defines the cause of the call fault detected.
Name Value Description

P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_FAULT_USER_ABORTED 1 This fault occurs when a call is has been
triggered by the network but the user has

finalised the call before any message could be
sent by the application.

P_TIMEOUT_ON_RELEASE 2 This fault occurs when the final report has
been sent to the application, but the application
did not explicitly release or deassign the call

object, within a specified time.

The timer value is operator specific.

P_TIMEOUT_ON_INTERRUPT 3 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

8.3.3.12 TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object
Sequence Element Name Sequence Element Type Sequence Element Description

CallReference IpCallRef This element specifies the interface
reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID
of the call created.

8.3.3.13 TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

8.3.3.14 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type
CallInfoType TpCallInfoType

CallInitiationStartTime TpDateAndTime

CallConnectedToResourceTime TpDateAndTime

CallConnectedToDestinationTime TpDateAndTime

3GPP

3G TS 29.198 1.0.0 (2000-03)70 3G TS 29.198 version 1.0.0

CallEndTime TpDateAndTime

Cause TpCallReleaseCause

8.3.3.15 TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.
Name Value Description

P_CALL_INFO_UNDEFINED 00h Undefined

P_CALL_INFO_TIMES 01h Relevant call times

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause

P_CALL_INFO_INTERMEDIATE 04h Send only intermediate reports (i.e., when a
party leaves the call)

8.3.3.16 TpCallInterworkingIndicators

This data type is identical to a TpString, and defines indicators for inter-working between applications and network
based services (e.g. IN based services or ISDN supplementary services), or between different applications. The values
of this data type are operator specific.

8.3.3.17 TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.
Name Value Description

P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call
control service and call processing is

interrupted. The application is notified of
the event and call processing resumes

following an appropriate API call or network
event (such as a call release)

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control
service but not intercepted. The application
is notified of the event and call processing

continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

8.3.3.18 TpCallNetworkAccessType

This data type is identical to a TString, and defines the type of network access being used (e.g. ISDN, Dial-up
Internet, xDSL). The values of this data type are operator specific.

8.3.3.19 TpCallOverloadType

Defines the type of call overload that has been detected (and possibly acted upon) by the network.
Name Value Description

P_CALL_OVERLOAD_TYPE_UNDEFINED 0 Infinite interval

(do not admit any calls)

P_CALL_OVERLOAD_TYPE_NEW_CALLS 1 New calls to the application
are causing overload (i.e.

inbound overload)

P_CALL_OVERLOAD_TYPE_ROUTED_CALLS 2 Calls being routed to
destination or origination

addresses by the application
are causing overload (i.e.

outbound overload)

3GPP

3G TS 29.198 1.0.0 (2000-03)71 3G TS 29.198 version 1.0.0

8.3.3.20 TpCallPartyCategory

This data type is identical to a TpString, and defines the category of a call party (e.g. call priority, payphone,
prepaid). The values of this data type are operator specific. However, the values defined in ISUP ITU Recommendation
Q.763 are suggested for this data type.

8.3.3.21 TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element Name Sequence Element Type
Value TpInt32

Location TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

8.3.3.22 TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallEventTime TpDateAndTime

CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

8.3.3.23 TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information.
 Tag Element Type
 TpCallReportType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ROUTING_SUCCESS NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_REFUSED_BUSY TpCallReleaseCause RefusedBusy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

P_CALL_REPORT_CALL_ENDED TpCallReleaseCause CallEnded

8.3.3.24 TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests .

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType

AdditionalReportcriteria TpCallReportAdditionalCriteria

3GPP

3G TS 29.198 1.0.0 (2000-03)72 3G TS 29.198 version 1.0.0

8.3.3.25 TpCallReportAdditionalCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.
 Tag Element Type
 TpCallReportType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ROUTING_SUCCESS NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY NULL Undefined

P_CALL_REPORT_NO_ANSWER TpCallDuration NoAnswerDuration

P_CALL_REPORT_DISCONNECT NULL Undefined

P_CALL_REPORT_REDIRECTED NULL Undefined

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE NULL Undefined

P_CALL_REPORT_CALL_ENDED NULL Undefined

8.3.3.26 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

8.3.3.27 TpCallReportType

Defines a specific call event report type.
Name Value Description

P_CALL_REPORT_UNDEFINED 0 Undefined

P_CALL_REPORT_PROGRESS 1 Call routing progress event: an
indication from the network

that progress has been made in
routing the call to the
requested call party.

P_CALL_REPORT_ROUTING_SUCCESS 2 Call successfully routed to
address: an indication from the
network that the call has been
routed to the requested call

party.

P_CALL_REPORT_ANSWER 3 Call answered at address

P_CALL_REPORT_BUSY 4 Called address refused call due
to busy

P_CALL_REPORT_NO_ANSWER 5 No answer at called address

P_CALL_REPORT_DISCONNECT 6 Call disconnect requested by
call party

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address:
an indication from the network

that the call has been
redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received

P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-
routing is possible

P_CALL_REPORT_CALL_ENDED 10 Call has ended (disconnected):
an indication from the network
that the call has been ended.
This could either be that the
calling party or the called

party has disconnected.

3GPP

3G TS 29.198 1.0.0 (2000-03)73 3G TS 29.198 version 1.0.0

8.3.3.28 TpCallServiceCode

Defines the service code received during a call. For example, this may be a digit sequence, user-user information, recall,
flash-hook or ISDN Facility Information Element.
This data type is identical to a TpString. The coding of this data type is operator specific. However, the values
defined in ISUP ITU Recommendation Q.763 are suggested for this data type.

8.3.3.29 TpCallTeleService

This data type is identical to a TpString, and defines the tele-service associated with the call (e.g. speech, video, fax,
file transfer, browsing). The values of this data type are operator specific. However, the values defined in ISUP ITU
Recommendation Q.763 are suggested for this data type.

8.3.3.30 TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted
for the specific connection.

Sequence Element Name Sequence Element Type Sequence Element Description
VolumeQuantity TpInt32 This data type is identical to a TInt32,

and defines the quantity of the granted
volume that can be transmitted for the

specific connection.

VolumeUnit TpInt32 This data type is identical to a TInt32,
and defines the unit of the granted volume
that can be transmitted for the specific

connection.

Unit must be specified as 10^n number of
bytes, where

n denotes the power.

When the unit is for example in kilobytes,
VolumeUnit must be set to 3.

8.3.3.31 TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has

expired

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due
to timer expiry or call party

release

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning tone has been
applied

8.3.3.32 TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by a logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_RELEASE 01h Release the call when the call

supervision timer expires

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the
call supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the
controlling party when the call
supervision timer expires. If
call release is requested, then

the call will be released

3GPP

3G TS 29.198 1.0.0 (2000-03)74 3G TS 29.198 version 1.0.0

the call will be released
following the tone after an
administered time period.

8.4 User Interaction Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.guis package.

8.4.1 Interface definitions

8.4.1.1 IpUI

Defines the address of an IUI Interface.

8.4.1.2 IpUIRef

Defines a Reference to type IUI.

8.4.1.3 IpUIRefRef

Defines a Reference to type IUIRef.

8.4.1.4 IpUIManager

Defines the address of an IUIManager Interface.

8.4.1.5 IpUIManagerRef

Defines a Reference to type IUIManager.

8.4.1.6 IpAppUI

Defines the address of an IAppUI Interface.

8.4.1.7 IpAppUIRef

Defines a Reference to type IAppUI.

8.4.1.8 IpAppUIRefRef

Defines a Reference to type IAppUIRef.

8.4.1.9 IpAppUIManager

Defines the address of an IAppUIManager Interface.

8.4.1.10 IpAppUIManagerRef

Defines a Reference to type IAppUIManager.

8.4.2 Type definitions

8.4.2.1 TpUICallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UICall object

Structure Element Name Structure Element
Type

Structure Element Description

UICallRef IpUICallRef This element specifies the interface
reference for the UICall object.

3GPP

3G TS 29.198 1.0.0 (2000-03)75 3G TS 29.198 version 1.0.0

UserInteractionSessionID TpSessionID This element specifies the user interaction
session ID.

8.4.2.2 TpUICallIdentifierRef

Defines a reference to type TpUICallIdentifier.

8.4.2.3 TpUICollectCriteria

Defines the Sequence of Data Elements that specify the additional properties for the collection of information,
such as the end character, first character timeout, inter-character timeout, and maximum interaction time.

Structure Element Name Structure Element Type
MinLength TpInt32

MaxLength TpInt32

EndSequence TpString

StartTimeout TpDuration

InterCharTimeout TpDuration

The structure elements specify the following criteria:
MinLength: Defines the minimum number of characters (e.g. digits) to collect.
MaxLength: Defines the maxmum number of characters (e.g. digits) to collect.
EndSequence: Defines the character or characters which terminate an input of variable length, e.g.

phonenumbers.
StartTimeout: specifies the value for the first character time-out timer. The timer is started when the

announcement has been completed or has been interrupted. The user should enter the start
of the response (e.g. first digit) before the timer expires. If the start of the response is not
entered before the timer expires, the input is regarded to be erroneous. After receipt of the
start of the response, which may be valid or invalid, the timer is stopped.

InterCharTimeOut: specifies the value for the inter-character time-out timer.The timer is started when a
response (e.g. digit) is received, and is reset and restarted when a subsequent response is
received. The responses may be valid or invalid. the announcement has been completed or
has been interrupted.

 Input is considered successful if the following applies:

If the EndSequence is not present (i.e. NULL):
- when the InterCharTimeOut timer expires; or
- when the number of valid digits received equals the MaxLength.
If the EndSequence is present:
- when the InterCharTimeOut timer expires; or
- when the EndSequence is received; or
- when the number of valid digits received equals the MaxLength.
In the case the number of valid characters received is less than the MinLength when the InterCharTimeOut timer
expires or when the EndSequence is received, the input is considered erroneous.
The collected characters (including the EndSequence) are sent to the client application when input hs been
successful.

8.4.2.4 TpUIError

Defines the UI call error codes.
Name Value Description

P_UI_ERROR_UNDEFINED 0 Undefined error

P_UI_ERROR_ILLEGAL_ID 1 The information id specified is invalid

P_UI_ERROR_ID_NOT_FOUND 2 A legal information id is not known to the the
User Interaction service

P_UI_ERROR_RESOURCE_UNAVAILABLE 3 The information resources used by the User
Interaction service are unavailable, e.g. due to

an overload situation.

P_UI_ERROR_ILLEGAL_RANGE 4 The values for minimum and maximum
collection length are out of range

3GPP

3G TS 29.198 1.0.0 (2000-03)76 3G TS 29.198 version 1.0.0

P_UI_ERROR_IMPROPER_CALLER_RESPONSE 5 Improper user response

P_UI_ERROR_ABANDON 6 The specified leg is disconnected before the
send information completed

P_UI_ERROR_NO_OPERATION_ACTIVE 7 There is no active user interaction for the
specified leg. Either the application did not
start any user interaction or the user interaction

was already finished when the
abortAction_Req() was called.

P_UI_ERROR_NO_SPACE_AVAILABLE 8 There is no more storage capacity to record the
message when the recordMessage()

operation was called

The call user interaction object will be automatically de-assigned if the error P_UI_ERROR_ABANDON is reported, as
a corresponding call or call leg object no longer exists.

8.4.2.5 TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification
Structure Element Name Structure Element Type

UserAddress TpString

ServiceCode TpString

UserAddress: defines the address of the end-user for which notification shall be handled
ServiceCode: defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

8.4.2.6 TpUIEventInfo

Defines the Sequence of Data Elements that specify a UI notification
Structure Element Name Structure Element Type

UserAddress TpString

ServiceCode TpString

UserAddress: defines the address of the end-user for which notification shall be handled
ServiceCode: defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

8.4.2.7 TpUIFault

Defines the cause of the UI fault detected.
Name Value Description

P_UI_FAULT_UNDEFINED 0 Undefined

P_UI_CALL_DEASSIGNED 1 The related Call object has been deassigned.
No further interaction is possible. Already

requested announcements will continue but no
requested reports will be send to the

application.

8.4.2.8 TpUIIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UI object

Structure Element Name Structure Element
Type

Structure Element Description

UIRef IpUIRef This element specifies the interface
reference for the UI object.

UserInteractionSessionID TpSessionID This element specifies the user interaction
session ID.

3GPP

3G TS 29.198 1.0.0 (2000-03)77 3G TS 29.198 version 1.0.0

8.4.2.9 TpUIIdentifierRef

Defines a reference to type TpUIIdentifier.

8.4.2.10 TpUIInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the
user.

 Tag Element Type
 TpUIInfoType

Tag Element Value Choice Element Type Choice Element Name

P_UI_INFO_ID TpInt32 InfoId

P_UI_INFO_TEXT TpString InfoText

P_UI_INFO_ADDRESS TpURL InfoAddress

The choice elements represents the following:
InfoID: defines the ID of the user information script or stream to send to an end-user. The values of

this data type are operator specific.
InfoText: defines the text to be send to an end-user. The text is free-format and the encoding is

depending on the resources being used..
InfoAddress: defines the URL of the text or stream to be send to an end-user.

8.4.2.11 TpUIInfoType

Defines the type of the information to be sent to the user.
Name Value Description

P_UI_INFO_ID 1 The information to be send to an end-user
consists of an ID

P_UI_INFO_TEXT 2 The information to be send to an end-user
consists of a text string

P_UI_INFO_ADDRESS 3 The information to be send to an end-user
consists of a URL.

8.4.2.12 TpUIMessageCriteria

Defines the Sequence of Data Elements that specify the additional properties for the recording of a message

Structure Element Name Structure Element Type
EndSequence TpString

MaxMessageTime TpDuration

MaxMessageSize TpInt32

The structure elements specify the following criteria:
EndSequence: Defines the character or characters which terminate an input of variable length, e.g.

phonenumbers.
MaxMessageTime: specifies the maximum duration in seconds of the message that is to be recorded.
MaxMessageSize: If this parameter is non-zero, it specifies the maximum size in bytes of the message that is

to be recorded.

8.4.2.13 TpUIReport

Defines the UI call reports if a response was requested.

3GPP

3G TS 29.198 1.0.0 (2000-03)78 3G TS 29.198 version 1.0.0

Name Value Description
P_UI_REPORT_UNDEFINED 0 Undefined report

P_UI_REPORT_ANNOUNCEMENT_ENDED 1 Confirmation that the announcement has ended

P_UI_REPORT_LEGAL_INPUT 2 Information collected., meeting the specified
criteria.

P_UI_REPORT_NO_INPUT 3 No information collected. The user
immediately entered the delimiter character.

No valid information has been returned

P_UI_REPORT_TIMEOUT

4 No information collected. The user did not
input any response before the input timeout

expired

P_UI_REPORT_MESSAGE_STORED 5 A message has been stored successfully

P_UI_REPORT_MESSAGE_NOT_STORED 6 The message has not been stored successfully

8.4.2.14 TpUIResponseRequest

Defines the situations for which a response is expected following the user interaction.
Name Value Description

P_UI_RESPONSE_REQUIRED 1 The User Interaction Call must send a response
when the announcement has completed.

P_UI_LAST_ANNOUNCEMENT_IN_A_ROW 2 This is the final announcement within a
sequence. It might, however, be that additional
announcements will be requested at a later

moment. The User Interaction Call service
may release any used resources in the network.

The UI object will not be released.

P_UI_FINAL_REQUEST 4 This is the final request. The UI object will be
released after the information has been

presented to the user.

This parameter represent a bitmask, i.e. the values can be added to derived the final meaning.

8.4.2.15 TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the
user.

 Tag Element Type
 TpUIVariablePartType

Tag Element Value Choice Element Type Choice Element Name

P_UI_VARIABLE_PART_INT TpInt32 VariablePartInteger

P_UI_VARIABLE_PART_ADDRESS TpString VariablePartAddress

P_UI_VARIABLE_PART_TIME TpTime VariablePartTime

P_UI_VARIABLE_PART_DATE TpDate VariablePartDate

P_UI_VARIABLE_PART_PRICE TpPrice VariablePartPrice

8.4.2.16 TpUIVariablePartType

Defines the type of the variable parts in the information to send to the user.

Name Value Description
P_UI_VARIABLE_PART_INT 0 Variable part is of type integer

P_UI_VARIABLE_PART_ADDRESS 1 Variable part is of type address

P_UI_VARIALBE_PART_TIME 2 Variable part is of type time

P_UI_VARIABLE_PART_DATE 3 Variable part is of type date

P_UI_VARIABLE_PART_PRICE 4 Variable part is of type price

3GPP

3G TS 29.198 1.0.0 (2000-03)79 3G TS 29.198 version 1.0.0

8.5 Mobility Management Data definitions

8.5.1 Interface Definitions

8.5.1.1 IpAppUserStatus

Defines the address of an IpAppUserStatus Interface.

8.5.1.2 IpAppUserStatusRef

Defines a reference to type IpAppUserStatus.

8.5.1.3 IpUserStatus

Defines the address of an IpUserStatus Interface.

8.5.1.4 IpAppUserLocationCamel

Defines the address of an IpAppUserLocationCamel Interface.

8.5.1.5 IpAppUserLocationCamelRef

Defines a reference to type IpAppUserLocationCamelRef.

8.5.1.6 IpUserLocationCamel

Defines the address of an IpUserLocationCamel Interface.

8.5.2 Common Data Definitions for Mobility

The constants and types defined in the following sections are defined in the org.threegpp.osa.mm package.

8.5.2.1 TpGeographicalPosition

Defines the structure of data elements that specify a geographical position.
An “ellipsoid point with uncertainty shape” defines the horizontal location. The reference system chosen for the coding
of locations is the World Geodetic System 1984 (WGS 84).

TypeOfUncertaintyShape describes the type of the uncertainty shape and Longitude/Latitude defines the position of the
uncertainty shape. The following table defines the meaning of the data elements that describe the uncertainty shape for
each uncertainty shape type.

Type of
uncertainty

shape

Uncertainty
Outer
Semi

Major

Uncertainty
Outer
Semi

Minor

Uncertainty
Inner
Semi

Major

Uncertainty
Inner
Semi

Minor

Angle Of
Semi Major

Segment
Start Angle

Segment End
Angle

None - - - - - - -
Circle radius of

circle
- - - - - -

Circle
Sector

radius of
circle

- - - - start angle of
circle

segment

end angle of
circle

segment
Circle Arc

Stripe
radius of

outer circle
- radius of

inner circle
- - start angle of

circle arc
stripe

end angle of
circle arc

stripe
Ellipse length of

semi-major
axis

length of
semi-minor

axis

- - rotation of
ellipse

measured
clockwise

from north

- -

Ellipse
Sector

length of
semi-major

axis

length of
semi-minor

axis

- - rotation of
ellipse

measured
clockwise

from north

start angle of
ellipse

segment

end angle of
ellipse

segment

3GPP

3G TS 29.198 1.0.0 (2000-03)80 3G TS 29.198 version 1.0.0

Ellipse Arc
Stripe

length of
semi-major
axis, outer

ellipse

length of
semi-minor
axis, outer

ellipse

length of
semi-major
axis, inner

ellipse

length of
semi-minor
axis, inner

ellipse

rotation of
ellipse

measured
clockwise

from north

start angle of
ellipse arc

stripe

end angle of
ellipse arc

stripe

angle of
semi major

North

segment
end angle

segment
start angle

inner
semi-minor

axis

outer
semi-minor

axis

outer
semi-major

axis

inner semi-
major axis

Area

Figure 8-1: Description of an Ellipse Arc

Structured Member Name Structured Member Type

longitude TpFloat

latitude TpFloat

typeOfUncertaintyShape TpLocationUncertaintyShape

uncertaintyInnerSemiMajor TpFloat

uncertaintyOuterSemiMajor TpFloat

uncertaintyInnerSemiMinor TpFloat

uncertaintyOuterSemiMinor TpFloat

angleOfSemiMajor TpInt32

segmentStartAngle TpInt32

segmentEndAngle TpInt32

8.5.2.2 TpLocationPriority

Defines the priority of a location request.
Name Value Description

P_M_NORMAL 0 Normal

P_M_HIGH 1 High

8.5.2.3 TpLocationResponseIndicator

Defines a response time requirement.
Name Value Description

P_M_NO_DELAY 0 No delay: return either initial or last known location of the user.

3GPP

3G TS 29.198 1.0.0 (2000-03)81 3G TS 29.198 version 1.0.0

P_M_LOW_DELAY 1 Low delay: return the current location with minimum delay. The mobility
SCF shall attempt to fulfil any accuracy requirement, but in doing so shall

not add any additional delay.

P_M_DELAY_TOLERANT 2 Delay tolerant: obtain the current location with regard to fulfilling the
accuracy requirement.

P_M_USE_TIMER_VALUE 3 Use timer value: obtain the current location with regard to fulfilling the
response time requirement.

8.5.2.4 TpLocationResponseTime

Defines the structure of data elements that specifies the application’s requirements on the mobility service capability

Structure Member Name Structure Member Type Description
responseTime TpLocationResponseIndicator Indicator for wich kind of response time that is

required, see TLocationResponseIndicator.

timerValue TpInt32 Optional timer used in combination when
ResponseTime equals P_USE_TIMER_VALUE.

8.5.2.5 TpLocationType

Defines the type of location requested.
Name Value Description

P_M_CURRENT 0 Current location

P_M_CURRENT_OR_LAST_KNOWN 1 Current or last known location

P_M_INITIAL 2 Initial location for an emergency services call

8.5.2.6 TpLocationUncertaintyShape

Defines the type of uncertainty shape.
Name Value Description

P_M_SHAPE_NONE 0 No uncertainty shape present.

P_M_SHAPE_CIRCLE 1 Uncertainty shape is a circle.

P_M_SHAPE_CIRCLE_SECTOR 2 Uncertainty shape is a circle sector.

P_M_SHAPE_CIRCLE_ARC_STRIPE 3 Uncertainty shape is a circle arc stripe.

P_M_SHAPE_ELLIPSE 4 Uncertainty shape is an ellipse.

P_M_SHAPE_ELLIPSE_SECTOR 5 Uncertainty shape is an ellipse sector.

P_M_SHAPE_ELLIPSE_ARC_STRIPE 6 Uncertainty shape is an ellipse arc stripe.

8.5.2.7 TpMobilityDiagnostic

Defines a diagnostic value that is reported in addition to an error by one of the mobility service capability features.
Name Value Description

P_M_NO_INFORMATION 0 No diagnostic informat ion present. Valid for all type of errors.

P_M_APPL_NOT_IN_PRIV_EXCEPT_LST 1 Application not in privacy exception list. Valid for ‘Unauthorised

P_M_CALL_TO_USER_NOT_SETUP 2 Call to user not set -up. Valid for ‘Unauthorised Application’ error.

P_M_PRIVACY_OVERRIDE_NOT_APPLIC 3 Privacy override not applicable. Valid for ‘Unauthorised Application’ error.

P_M_DISALL_BY_LOCAL_REGULAT_REQ 4 Disallowed by local regulatory requirements. Valid for ‘Unauthorised

P_M_CONGESTION 5 Congestion. Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_RESOURCES 6 Insufficient resources. Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_MEAS_DATA 7 Insufficient measurement data. Valid for ‘Position Method Failure’ error.

P_M_INCONSISTENT_MEAS_DATA 8 Inconsistent measurement data. Valid for ‘Position Method Failure’ error.

P_M_LOC_PROC_NOT_COMPLETED 9 Location procedure not completed. Valid for ‘Position Method Failure’
error.

3GPP

3G TS 29.198 1.0.0 (2000-03)82 3G TS 29.198 version 1.0.0

P_M_LOC_PROC_NOT_SUPBY_USER 10 Locat ion procedure not supported by user. Valid for ‘Position Method

P_M_QOS_NOT_ATTAINABLE 11 Quality of service not attainable. Valid for ‘Position Method Failure’ error.

8.5.2.8 TpMobilityError

Defines an error that is reported by one of the mobility service capability features. A fatal error occurring during the life
of periodic or triggered user location/status requests (triggeredStatusReportErr, triggeredLocationReportErr or
periodicLocationReportErr) will terminate the request such that any particular request is allowed to generate at most
one fatal error but possibly several non fatal errors.

Name Value Description Fatal
P_M_OK 0 No error occurred while processing the request. N/A

P_M_SYSTEM_FAILURE 1 System failure.
The request can not be handled because of a general problem in

the mobility SCF or the underlying network.

Yes

P_M_UNAUTHORIZED_NETWORK 2 Unauthorised network,
The requesting network is not authorised to obtain the user’s

location or status.

No

P_M_UNAUTHORIZED_APPLICATION 3 Unauthorised application.
The application is not authorised to obtain the user’s location or

status.

Yes

P_M_UNKNOWN_SUBSCRIBER 4 Unknown subscriber.
The user is unknown, i.e. no such subscription exists.

Yes

P_M_ABSENT_SUBSCRIBER 5 Absent subscriber.
The user is currently not reachable.

No

P_M_POSITION_METHOD_FAILURE 6 Position method failure.
The mobility SCF failed to obtain the user’s position.

No

8.5.2.9 TpMobilityStopAssignmentData

Defines the structure of data elements that specifies a request to stop whole or parts of an assignment. Assignments are
used for periodic or triggered reporting of a user locations or statuses.

Observe that the parameter “users” is optional. If the parameter “stopScope” is set to P_M_ALL_IN_ASSIGNMENT,
the parameter “stopScope” is undefined. If the parameter “stopScope” is set to P_M_SPECIFIED_USERS, then the
assignment shall be stopped only for the users specified in the “users” collection.
Structure Element Name Structure Element Type Description
assignmentId TpSessionID Identity of the session that shall be stopped.

stopScope TpMobilityStopScope Specify if only a part of the assignment or if whole the assignment
shall be stopped.

users TpAddressSet Optional parameter describing which users a stop request is
addressing when only a part of an assignment is to be stopped.

8.5.2.10 TpMobilityStopScope

This enumeration is used in requests to stop mobility reports that are sent from a mobility service capability feature to
an application.

Name Value Description
P_M_ALL_IN_ASSIGNMENT 0 The request concerns all users in an

assignment.

P_M_SPECIFIED_USERS 1 The request concerns only the users that are
explicitly specified in a collection.

8.5.3 Network User Location Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.mm.nul package.

3GPP

3G TS 29.198 1.0.0 (2000-03)83 3G TS 29.198 version 1.0.0

8.5.3.1 TpLocationCellIDOrLAI

This data type is identical to a TString. It specifies the Cell Global Identification or the Location Area Identification
(LAI).

The Cell Global Identification (CGI) is defined as the string of characters in the following format:

MCC-MNC-LAC-CI

where:

MCC Mobile Country Code (three decimal digits)

MNC Mobile Network Code (two or three decimal digits)

LAC Location area code (four hexadecimal digits)

CI Cell Identification (four hexadecimal digits)

The Location Area Identification (LAI) is defined as a string of characters in the following format:
MCC-MNC-LAC

where:

MCC Mobile Country Code (three decimal digits)

MNC Mobile Network Code (two or three decimal digits)

LAC Location area code (four hexadecimal digits)

8.5.3.2 TpLocationTriggerCamel

Defines the structure of data elements that specifies the criteria for a triggered location report to be generated.
Structure Member Name Structure Member Type Description

updateInsideVlr TpBoolean Generate location report when it occurs an location update
inside the current VLR area.

updateOutsideVlr TpBoolean Generate location report when the user moves to another VLR
area.

8.5.3.3 TpUserLocationCamel

Defines the structure of data elements that specifies the location of a mobile telephony user. Observe that if the
statusCode is indicating an error, then neither geographicalPosition, timestamp, vlrNumber, locationNumber,
cellIdOrLai nor their associated presense flags are defined.

Structure Member Name Structure Member Type Description
userID TpAddress The address of the user.

statusCode TpMobilityError Indicator of error.

geographicalPositionPresent TpBoolean Flag indicating if the geographical position is present.

geographicalPosition TpGeographicalPosition Specification of a position and an area of uncertainty.

timestampPresent TpBoolean Flag indicating if the timestamp is present.

timestamp TpDateAndTime Timestamp indicating when the request was processed.

vlrNumberPresent TpBoolean Flag indicating if the VLR number is present.

vlrNumber TpAddress Current VLR number for the user.

vocationNumberPresent TpBoolean Flag indicating if the location number is present.

locationNumber2 TpAddress Current location number.

cellIdOrLaiPresent TpBoolean Flag indicating if cell-id or LAI of the user is present.

cellIdOrLai TpLocationCellIDOrLAI Cell-id or LAI of the user.

8.5.3.4 TpUserLocationCamelSet

Defines a collection of TUserLocationCamel

2 The location number is the number to the MSC or in rare cases the roaming number.

3GPP

3G TS 29.198 1.0.0 (2000-03)84 3G TS 29.198 version 1.0.0

8.5.4 User Status Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.mm.us package.

8.5.4.1 TpUserStatus

Defines the structure of data elements that specifies the identity and status of a user.
Structure Element Name Structure Element Type Description

userID TpAddress The user address.

statusCode TpMobilityError Indicator of error.

status TpUserStatusIndicator The current status of the user.

8.5.4.2 TpUserStatusSet

Defines a collection of TUserStatus.

8.5.4.3 TpUserStatusIndicator

Defines the status of a user.
Name Value Description

P_US_REACHABLE 0 User is reachable

P_US_NOT_REACHABLE 1 User is not reachable

P_US_BUSY3 2 User is busy (only applicable for interactive
user status request, not when triggers are used)

8.6 Terminal Capabilities Data Definitions

8.6.1 Interface Definitions

8.6.1.1 IpTerminalCapabilities

Defines the address of an IpTerminalCapabilities Interface.

8.6.1.2 IpTerminalCapabilitiesRef

Defines a reference to type IpTerminalCapabilities

8.6.2 Terminal Capabilities Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.osa.termcap package.

8.6.2.1 terminalIdentity

Identifies the terminal.
Name Type Documentation

terminalIdentity TpString Identifies the terminal. It may be a logical address
known by the WAP Gateway/PushProxy.

3 Only applicable to mobile (Wireless) telephony users.

3GPP

3G TS 29.198 1.0.0 (2000-03)85 3G TS 29.198 version 1.0.0

8.6.2.2 TpTerminalCapabilities

This data type is a Sequence_of_Data_Elements that describes the terminal capabilities. It is a structured type
that consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

statusCode TpBoolean Indicates whether or not the terminalCapabilities
are available.

terminalCapabilities TpServicePropertyList Specifies the latest available capabilities of the
user´s terminal.
This information, if available, is returned as
CC/PP headers as specified in W3C [12] and
adopted in the WAP UAProf specification [13]. It
contains URLs; terminal attributes and values, in
RDF format; or a combination of both.

8.6.2.3 TpTerminalCapabilitiesError

Defines an error that is reported by theTerminal Capabilities service.

Name Value Description
P_TERMCAP_ERROR_UNDEFINED 0 Undefined.

P_TERMCAP_INVALID_TERMINALID 1 The request can not be handled because the terminal id specified
is not valid.

P_TERMCAP_SYSTEM_FAILURE 2 System failure.
The request cannot be handled because of a general problem in
the terminal capabilities service or the underlying network.

3GPP

3G TS 29.198 1.0.0 (2000-03)86 3G TS 29.198 version 1.0.0

9 IDL Interface Definitions

The OSA API definitions have been divided into several CORBA modules. The common data definitions are placed in
the root module while each of the specific service capability feature API definitions are being assigned their own
module directly under that root. Each specific SCF functions, like User Status, have their data and interface definitions
collocated. This structure has the advantage that explicit scoping is kept to a minimum.

The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are provided in
the org.threegpp.osa module within a file name called OSA.idl

Module Name Description IDL file name
org.threegpp.osa Common data/interface definitions OSA.idl
org.threegpp.osa.mm Common mobility data definitions (root) MM.idl
org.threegpp.osa.mm.nul Network User Location (NUL) MMnul.idl
org.threegpp.osa.mm.us User Status (US) MMus.idl
org.threegpp.osa.cc Call Control CC.idl
org.threegpp.osa.ui User Interaction UI.idl
org.threegpp.osa.termcap Terminal Capabilities TERMCAP.idl

9.1 Generic IDL
module org {
module threegpp {
module osa {

 /**/
 // Primitive data types
 /**/

 typedef boolean TpBoolean; // Defines a Boolean data type
 typedef long TpInt32; // Defines a signed 32 bit integer
 typedef float TpFloat; // Defines a single precision real number.
 typedef string TpString; // Defines a string comprising length and data.

 // Primitive based OSA datatypes

 typedef TpInt32 TpDuration; // This data type is a TpInt32 representing a
 // time interval in milliseconds. A value of "-1" defines
 // infinite duration and a value of "-2" represents default
 // duration.
 typedef TpInt32 TpSessionID; // Defines a network unique session ID. OSA
 // uses this ID to identify sessions, e.g. call or call leg
 // sessions, within an object implementing an interface
 // capable of handling multiple sessions. For the different
 // OSA service capability feature, the sessionIDs are unique
 // only in the context of a manager instantiation (e.g., within
 // the context of one generic call control manager). As such
 // if an application creates two instances of the same SCF
 // manager it shall use different instantiations of the
 // callback objects which implement the callback interfaces.
 typedef TpAssignmentID TpInt32; // This data type is identical to a TpInt32. It
 // specifies a number which identifies an individual
 // event notification enabled by the application or
 // OSA service capability feature.
 typedef sequence<TpSessionID> TpSessionIDSet;

 // Defines the general OSA exception values
 enum TpGeneralExceptionType {
 P_RESULT_INFO_UNDEFINED, // No further information present
 P_INVALID_APPLICATION_ID, // Invalid application ID
 P_INVALID_CLIENT_CAPABILITY,// Invalid client capability
 P_INVALID_AGREEMENT_TEXT, // Invalid agreement text
 P_INVALID_SIGNING_ALGORITHM,// Invalid signing algorithm
 P_INVALID_INTERFACE_NAME, // Invalid interface name
 P_INVALID_SERVICE_ID, // Invalid service capability feature ID
 P_INVALID_EVENT_TYPE, // Invalid event type
 P_SERVICE_NOT_ENABLED, // The SCF ID does not correspond

3GPP

3G TS 29.198 1.0.0 (2000-03)87 3G TS 29.198 version 1.0.0

 // to a SCF that has been enabled
 P_INVALID_ASSIGNMENT_ID, // The assignment ID does not
 // correspond to one of the valid assignment IDs
 P_INVALID_PARAMETER, // The method has been called with an
 // invalid parameter
 P_INVALID_PARAMETER_VALUE, // A method parameter has an invalid value
 P_PARAMETER_MISSING, // A required parameter has not been
 // specified in the method call
 P_RESOURCES_UNAVAILABLE, // The required resources in the
 // network are not available
 P_TASK_REFUSED, // The requested method has been refused
 P_TASK_CANCELLED, // The requested method has been cancelled
 P_INVALID_DATE_TIME_FORMAT, // Invalid date and time format provided
 P_NO_CALLBACK_ADDRESS_SET, // The requested method has been refused
 // because no callback address is set
 P_INVALID_TERMINATION_TEXT, // Invalid termination text
 P_INVALID_SERVICE_TOKEN, // The SCF token does not correspond to a
 // token that had been issued, or the issued token
 // has expired.
 P_INVALID_AUTHENTICATION, // The client has not been correctly authenticated
 P_INVALID_SERVICE_PROPERTY, // Invalid service capability feature property.
 P_METHOD_NOT_SUPPORTED // The method is not allowed or supported within
 // the context of the current SCF agreement.
 };

 exception TpGeneralException {
 TpGeneralExceptionType exceptionType;
 };

 // Defines the GCCS OSA exception values
 enum TpGCCSExceptionType {
 P_GCCS_SERVICE_INFORMATION_MISSING,// Information relating to the Call
 // Control SCF could not be found
 P_GCCS_SERVICE_FAULT_ENCOUNTERED, // Fault detected in the Call Control SCF
 P_GCCS_UNEXPECTED_SEQUENCE, // Unexpected sequence of methods, i.e.,
 // the sequence does not match the specified
 // state diagrams for the call or the call leg.
 P_GCCS_INVALID_ADDDRESS, // Invalid address specified
 P_GCCS_INVALID_STATE, // Invalid state specified
 P_GCCS_INVALID_CRITERIA, // Invalid criteria specified
 P_GCCS_INVALID_NETWORK_STATE,// Although the sequence of method calls is
 // allowed by the OSA gateway, the underlying
 // protocol can not support it. E.g., in some
 // protocols some methods are only allowed by
 // the protocol, when the call processing is
 // suspended, e.g., after reporting an event
 // that was monitored in interrupt mode.
 P_GCCS_NETWORK_DEASSIGN // The relation between the network and the OSA
 // gateway is terminated. Therefore, the gateway
 // can no longer influence the call. This can happen
 // after the last requested report is sent to the
 // application. To prevent this error, the application
 // should ensure that it has requested events which
 // are not yet reported.
 };

 exception TpGCCSException {
 TpGCCSExceptionType exceptionType;
 };

 // Defined the GUIS OSA exception values
 enum TpGUISExceptionType {
 P_GUIS_INVALID_CRITERIA, // Invalid criteria specified
 P_GUIS_ILLEGAL_ID, // Information id specified is invalid
 P_GUIS_ID_NOT_FOUND, // A legal information id is not known to the User
 // Interaction SCF
 P_GUIS_ILLEGAL_RANGE, // The values for minimum and maximum collection
 // length are out of range.
 P_GUIS_INVALID_COLLECTION_CRITERIA, // Invalid collection criteria specified
 P_GUIS_NETWORK_DEASSIGN, // The relation between the network and the OSA
 // gateway is terminated. Therefore, the gateway
 // can no longer perform UI operations. This can
 // happen after the last requested report is sent
 // to the application. To prevent this error, the
 /// application should ensure that it has requested
 // events which are not yet reported.
 P_GUIS_INVALID_NETWORK_STATE // Although the sequence of method calls is
 // allowed by the OSA gateway, the underlying

3GPP

3G TS 29.198 1.0.0 (2000-03)88 3G TS 29.198 version 1.0.0

 // protocol can not support it. E.g., in some
 // protocols some methods are only allowed by
 // the protocol, when the call processing is
 // suspended, e.g., after reporting an event
 // that was monitored in interrupt mode.

 };

 exception TpGUISException {
 TpGUISExceptionType exceptionType;
 };

 /**/
 /********************* Date and Time related data definitions *************/
 /**/

 // This data type is identical to a TpString. It specifies the data in
 // accordance with International Standard ISO 8601. This is defined as the
 // string of characters in the following format:
 // YYYY-MM-DD
 // where the date is specified as:
 // YYYY four digits year
 // MM two digits month
 // DD two digits day
 // The date elements are separated by a hyphen character (-).
 typedef TpString TpDate;

 // This data type is identical to a TpString. It specifies the time in accordance
 // with International Standard ISO 8601. This is defined as the string of
 // characters in the following format:
 // HH:MM:SS.mmm
 // or
 // HH:MM:SS.mmmZ
 // where the time is specified as:
 // HH two digits hours (24h notation)
 // MM two digits minutes
 // SS two digits seconds
 // mmm three digits fractions of a second (i.e. milliseconds)
 // The time elements are separated by a colon character (:).The date and time
 // are separated by a space. Optionally, a capital letter Z may be appended
 // to the time field to indicate Universal Time (UTC). Otherwise, local time
 // is assumed.
 typedef TpString TpTime;

 // This data type is identical to TosaString. It specifies the data and time
 // in accordance with International Standard ISO 8601. This is defined as the
 // string of characters in the following format:
 //
 // YYYY-MM-DD HH:MM:SS.mmm
 // or YYYY-MM-DD HH:MM:SS.mmmZ
 //
 // Example:
 // The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:
 // 1998-12-04 10:30:15.000
 // for local time, or in UTC it would be:
 // 1998-12-04 10:30:15.000Z
 typedef TpString TpDateAndTime;

 /**/
 // Address related data definitons
 /**/

 // Defines whether an address can be presented to an end user
 enum TpAddressPresentation {
 P_ADDRESS_PRESENTATION_UNDEFINED, // Undefined
 P_ADDRESS_PRESENTATION_ALLOWED, // Presentation Allowed
 P_ADDRESS_PRESENTATION_RESTRICTED, // Presentation Restricted
 P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE // Address not available for
 // presentation
 };

 // Defines whether an address has been screened by the application
 enum TpAddressScreening {
 P_ADDRESS_SCREENING_UNDEFINED, // Undefined
 P_ADDRESS_SCREENING_USER_VERIFIED_PASSED, // user provided address verified
 // and passed
 P_ADDRESS_SCREENING_USER_NOT_VERIFIED, // user provided address not verified

3GPP

3G TS 29.198 1.0.0 (2000-03)89 3G TS 29.198 version 1.0.0

 P_ADDRESS_SCREENING_USER_VERIFIED_FAILED, // user provided address verified and
 // failed
 P_ADDRESS_SCREENING_NETWORK // Network provided address
 };

 // Defines the address plan (or numbering plan) used. It is also used to indicate
 // whether an address is actually defined in a TAddress data element
 enum TpAddressPlan {
 P_ADDRESS_PLAN_NOT_PRESENT, // No Address Present
 P_ADDRESS_PLAN_UNDEFINED, // Undefined
 P_ADDRESS_PLAN_IP, // IP
 P_ADDRESS_PLAN_MULTICAST, // Multicast
 P_ADDRESS_PLAN_UNICAST, // Unicast
 P_ADDRESS_PLAN_E164, // E.164
 P_ADDRESS_PLAN_E164_MOBILE, // E.164 Mobile
 P_ADDRESS_PLAN_AESA, // AESA
 P_ADDRESS_PLAN_URL, // URL
 P_ADDRESS_PLAN_NSAP, // NSAP
 P_ADDRESS_PLAN_SMTP, // SMTP
 P_ADDRESS_PLAN_NOT_USED,
 P_ADDRESS_PLAN_X400 // X.400
 };

 // Defines the reasons why an address is invalid.
 enum TpAddressError {
 P_ADDRESS_INVALID_UNDEFINED, // Undefined error
 P_ADDRESS_INVALID_MISSING, // Mandatory address not present
 P_ADDRESS_INVALID_MISSING_ELEMENT, // Mandatory address element not present
 P_ADDRESS_INVALID_OUT_OF_RANGE, // Address is outside of the valid range
 P_ADDRESS_INVALID_INCOMPLETE, // Address is incomplete
 P_ADDRESS_INVALID_CANNOT_DECODE // Address cannot be decoded
 };

 // Defines the structure of data elements that specifies an address
 struct TpAddress {
 TpAddressPlan plan;
 TpString astring;
 TpString name;
 TpAddressPresentation presentation;
 TpAddressScreening screening;
 TpString subAddressString;
 };

 // Defined a collection of TpAddress elements
 typedef sequence<TpAddress> TpAddressSet;

 // This data type is identical to a TpString and contains a URL address.
 typedef TpString TpURL;

 // This data type is identical to a TpString. It specifies price information.
 // This is defined as the string of characters (digits) in the following format:
 // DDDDDD.DD
 typedef TpString TpPrice;

 /**/
 // base OSA interface
 /**/

 // All application, framework and service capability features interfaces inherit
 // from the following interface. This API Base Interface does not provide any
 // additional methods.
 interface IpOsa {
 };

 // All service capability feature interfaces inherit from the following interface.
 interface IpService : IpOsa {
 // This method specifies the reference address of the callback interface
 // that a SCF uses to invoke methods on the application.
 void setCallback(in IpOsa appInterface) raises (TpGeneralException);
 };

};};};

3GPP

3G TS 29.198 1.0.0 (2000-03)90 3G TS 29.198 version 1.0.0

9.2 Framework IDL

9.2.1 Common Data Types for Framework
#include <OSA.idl>

module org{
 module threegpp{
 module osa{
 module fw{

typedef TpString TpClientAppID; // Identifies the client appl to the framework.

typedef sequence <TpClientAppID> TpClientAppIDList;

typedef TpString TpEntOpID;

typedef sequence < TpEntOpID > TpEntOpIDList;

typedef TpString TpServiceID; // A string of characters, generated

// automatically by the Framework and
// comprising a TpUniqueServiceNumber,
// TpServiceNameString, and a number of
// relevant TpServiceSpecString,
// concatenated using a forward
// separator (/), that uniquely
// identifies an instance of a
// service interface.

typedef sequence <TpServiceID> TpServiceIDList;

 typedef TpString TpServiceNameString; // Uniquely identifies the name

// of a service interface. For
// OSA release 99 the following
// values have been defined:
// NULL (no service name),
// P_CALL_CONTROL,
// P_USER_INTERACTION,
// P_USER_LOCATION,
//P_TERMINAL_CAPABILITIES and
// P_USER_STATUS.

typedef TpString TpServiceSpecString; // Uniquely identifies the name

// of a service specialisation
// interface. For OSA release 99
// the following values have
// been defined: NULL (no
// service specialisation) and
// P_CALL.

typedef TpString TpUniqueServiceNumber; // A string of characters that
// represents a unique number.

 enum TpServicePropertyMode {
 NORMAL, // The value of the corresponding service property
 // type may optionally be provided.
 MANDATORY, // The value of the corresponding service property
 // type must be provided at service registration.
 READONLY, // The value of the corresponding service property
 // is optional, nut once given a value it may not be
 // modified.
 MANDATORY_READONLY // The value of the corresponding service property
 // type must be provided and may not be modified
 // subsequently.
 };

typedef TpString TpServicePropertyTypeName;

typedef TpString TpServicePropertyName;

typedef sequence <TpServicePropertyName> TpServicePropertyNameList;

typedef TpString TpServicePropertyValue;

3GPP

3G TS 29.198 1.0.0 (2000-03)91 3G TS 29.198 version 1.0.0

typedef sequence <TpServicePropertyValue> TpServicePropertyValueList;

 struct TpServiceProperty { // Describes a service property

 TpServicePropertyName ServicePropertyName;
 TpServicePropertyValueList ServicePropertyValueList;
 TpServicePropertyMode ServicePropertyMode;
};

typedef sequence <TpServiceProperty> TpServicePropertyList;

typedef TpString TpServiceTypeName;

typedef sequence <TpServiceTypeName> TpServiceTypeNameList;

struct TpService { // Describes a registered service.
 TpServiceID ServiceID;
 TpServicePropertyList ServicePropertyList;
 };

typedef sequence <TpService>TpServiceList;

 struct TpServiceDescription { // Describes the properties of a registered
servicec.
 TpServiceTypeName ServiceTypeName;
 TpServicePropertyList ServicePropertyList;
 };

struct TpPropertyStruct { // Describes a service property.
 TpServiceTypeName ServicePropertyName;
 TpService PropertyMode ServicePropertyMode;
 TpServicePropertyTypeName ServicePropertyTypeName;
 };

typedef sequence <TpPropertyStruct>TpPropertyStructList;

 struct TpServiceTypeDescription { // Describes a service type.
 TpPropertyStructList PropertyStructList;
 TpServiceTypeNameList ServiceTypeNameList;
 TpBoolean EnabledOrDisabled;
 };

};};};};

9.2.2 Service Discovery IDL
#include <fw.idl>

module org{
module threegpp{
module osa{
module fw{
module discovery{

/***/
// Interface definitions //
/***/

/* The Service Discovery Framework interface is used by the client application to
know what types of services are supported by the Framework, and what are their
properties; and to obtain the services its subscription allows access to. */
interface IpServiceDiscovery {

 /* This method is invoked by the client application to obtain the names of all service
 types that are in the Framework repository. */
 TpResult listServiceTypes (
 out TpServiceTypeNameList listTypes // The names of the requested service types.
);

 /* This method is invoked by the client application to obtain the detailed description of
 a particular service type. */
 TpResult describeServiceType (
 in TpServiceTypeName name, // Identifies the service

// type to be described.
 out TpServiceTypeDescription serviceTypeDescription // Describes the

3GPP

3G TS 29.198 1.0.0 (2000-03)92 3G TS 29.198 version 1.0.0

// specified service
// type.

);

 /* This method is invoked by the client application to obtain the IDs of the services
 that meet its requirements. */
 TpResult discoverService (
 in TpServiceTypeName serviceTypeName, // Type of the required service.
 in TpServicePropertyList desiredPropertyList, // Properties that the discovered set

// of services should satisfy.
 in TpInt32 max, // Maximum number of services that are

// to be returned.
 out TpServiceList serviceList // A list of matching services.

);

 /* This method is invoked by the client application to obtain a list of subscribed
 services that they are allowed to access. */
 TpResult listSubscribedServices (
 out TpServiceList serviceList // A list of subscribed services.
);

};

};};};};};

9.2.3 Trust and Security Management IDL
#include <fw.idl>

module org{
module threegpp{
module osa{
module fw{
module trust_and_security{

/***/
// Data definitions //
/***/

 typedef TpString TpAccessType; // The type of access interface
// requested by the client application.
// For OSA release 99 the following
// values have been defined: NULL
// (indicates the default access
// type) and P_ACCESS.

 typedef TpString TpAuthType; // The type of authentication mechanism

// requested by the client. For OSA
// release 99 the following values have
// been defined: NULL (indicates OSA
// authentication), P_AUTHENTICATION
// (indicates use of the OSA
// authentication interfaces.

 typedef TpString TpAuthCapability; // The authentication capabilities that

// could be supported by the OSA. For
// OSA release 99 the following values
// have been defined: NULL (indicates no
// client capabilities, P_DES_56,
// P_RSA_512 and P_RSA_1024).

 typedef TpString TpAuthCapabilityList;// A string of multiple TpAuthCapability

// concatenated using a commas.

 typedef TpString TpInterfaceName; // Identifies the names of the framework

// capabilities that are be supported by
// the OSA API. For release 99 these are
// NULL, P_DISCOVERY, P_OAM,
// P_INTEGRITY_MANAGEMENT.

 struct TpServiceAccessControl {
 TpString policy; // Access control policy information

// controlling access to the service
// feature.

 TpString trustLevel; // The level of trust that the service
// provider has assigned to the client
// application.

3GPP

3G TS 29.198 1.0.0 (2000-03)93 3G TS 29.198 version 1.0.0

 };

 typedef TpString TpServiceToken; // Uniquely identifies a service.

 struct TpSignatureAndServiceMgrRef {
 TpString digitalSignature; // The digital signature of the

// Framework for the service
// agreement.

 IpOsa serviceMgrInterface;
 };

 typedef TpString TpSigningAlgorithm; // Identifies the signing

// algorithm that must be used.
// For OSA release 99 the
// follwing values have been
// defined: NULL (indicates
// no signing algorithm is
// required), P_MD5_RSA_512 and
// P_MD5_RSA_1024.

 typedef TpString TpFwID;

 struct TpFwAuth {
 TpFwID fwID;
 IpOSA fwAuthInterface;
 };

/***/
// Interface definitions //
/***/

/* The Initial Framework interface is used by the client application to initiate the mutual
authentication with the Framework and, when this is finished successfully, to request access
to it. */
interface IpInitial {

/* This method is invoked by the client application to start the process of mutual
authentication with the framework, and request the use of a specific authentication method.
*/
TResult initiateAuthentication (
in TpClientAppID clientAPPID, // Identifies the client to the framework.
in TpAuthType authType, // Allows the client application to request a

// specific type of authentication mechanism.
in IpOsa appAuthInterface, // Provides a reference to the client

// application authentication interface.
out TpFwAuth fwAuth // Provides a framework identifier, and a

// reference to framework authentication
// interface.

);

/* This method is invoked by the client application, once mutual authentication is
achieved, to request access to the framework and specify the type of access desired. */
TpResult requestAccess (
in TpAccessType accessType, // Identifies the type of access interface

// requested by the client application.
in IpOsa appAccessInterface, // Provides a reference to the access interface

// of the client application.
out IpOsa fwAccessInterface // Provides a reference to call the access

// interface of the framework.
);

};

/* The Access Framework interface is used by the client application to perform the mechanisms
necessary for it to obtain access to services. */
interface IpAccess {

/* This method is invoked by the client application to obtain interface references to other
framework interfaces. */
TpResult obtainInterface (
in TpInterfaceName interfaceName,// The name of the framework interface to which a

// reference to the interface is requested.
out IpOsa fwInterface // The requested interface reference.
);

3GPP

3G TS 29.198 1.0.0 (2000-03)94 3G TS 29.198 version 1.0.0

/* This method is invoked by the client application to obtain interface references to other
framework interfaces, when it is required to supply a callback interface to the framework.
*/
TpResult obtainInterfaceWithCallback (
in TpInterfaceName interfaceName, // The name of the framework interface to which

// a reference to the interface is requested.
in IpOsa appInterface, // This is the reference to the client

// application interface which is used for
// callbacks.

out IpOsa fwInterface // The requested interface reference.
);

/* This method may be invoked by the client application to check whether it has been
granted permission to access the specified service and, if granted, the level of trust that
will be applied. */
TpResult accessCheck (
in TpString securityContext, // A group of security relevant

// attributes.
in TpString securityDomain, // The security domain in which

// the client application is
// operating.

in TpString group, // Used to define the access
// rights associated with all
// clients that belong to that
// group.

in TpString serviceAccessTypes, // Defined by the specific
// security model in use.

out TpServiceAccessControl serviceAccessControl // The access control policy
// information controlling
// access to the service
// feature, and the trustLevel
// that the service provider
// has assigned to the client
// application.

);

/* This method is invoked by the client application to identify the service that it wishes
to use. */
TpResult selectService (
in TpServiceID serviceID, // Identifies the service.
in TpServicePropertyList serviceProperties, // List the properties that the service

// should support.
out TpServiceToken serviceToken // A free format text token returned by

// the framework, which can be signed as
// part of a service agreement.

);

/* This method is invoked by the client application to request that the framework sign an
agreement on the service, which allows the client application to use the service. */
TpResult signServiceAgreement (
in TpServiceToken serviceToken, // Used to identify the service

// instance requested by the
// client application.

in TpString agreementText, // The agreement text to be
// signed by the framework.

in TpSigningAlgorithm signingAlgorithm, // The algorithm used to compute
// the digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr // A reference to a structure
// that contains the digital
// signature of the framework
// for the service agreement,
// and a reference to the
// service manager interface of
// the service.

);

/* This method is invoked by the client application to terminate an agreement for the
specified service. */
TpResult terminateServiceAgreement (
in TpServiceToken serviceToken, // Identifies the service agreement to be terminated.
in TpString terminationText, // Describes the reason for the termination of the

// service agreement.
in TpString digitalSignature // Used by the framework to check that the

// terminationText has been signed by the client.
);

/* This method is invoked by the client application to end the access session
with the Framework. */

3GPP

3G TS 29.198 1.0.0 (2000-03)95 3G TS 29.198 version 1.0.0

TpResult endAccess ();

};

/* The Access client application interface is used by the Framework to perform the steps that
are necessary in order to allow it to service access. */
interface IpAppAccess {

/* This method is invoked by the Framework to request that client application sign an
agreement on a specified service. */
TpResult signServiceAgreement (
in TpServiceToken serviceToken, // Identifies the service instance to which

// this service agreement corresponds.
in TpString agreementText, // Agreement text that has to be signed by the

// client application.
in TpSigningAlgorithm signingAlgorithm, // Algorithm used to compute the digital

// signature.
out TpString digitalSignature // Signed version of a hash of the service

// token and agreement text given by the
// framework.

);

/* This method is invoked by the Framework to terminate an agreement for a specified
service. */
TpResult terminateServiceAgreement (
in TpServiceToken serviceToken, // Identifies the service agreement to be

// terminated.
in TpString terminationText, // Describes the reason for the termination.
in TpString digitalSignature // Used by the Framework to confirm its

// identity to the client.
);

/* This method is invoked by the Framework to end the client application's access session
with the framework. */
TpResult terminateAccess (
in TpString terminationText, // Describes the reason for the termination of

// the access session.
in TpSigningAlgorithm signingAlgorithm, // The algorithm used to compute the digital

// signature.
in TpString digitalSignature // Used by the Framework to confirm its

// identity to the client.
);

};

/* The Authentication Framework interface is used by client application to perform its part of
the mutual authentication process with the Framework necessary to be allowed to use any of the
other interfaces supported by the Framework. */
interface IpAuthentication {

/* This method is invoked by the client application to start the authentication process,
informed the Framework of the authentication mechanisms it supports, and be informed by its
of its preferred choice. */
TpResult selectAuthMethod (
in TpAuthCapabiltyList authCapability, // Informs the Framework of the authentication

// mechanisms supported by the client
// application.

out TpAuthCapability prescribedMethod // Indicates the mechanism preferred by the
// framework.

);

/* This method is invoked by the client application to authenticate the framework using the
mechanism indicated in the parameter prescribedMethod. */
TpResult authenticate (
in TpAuthCapability prescribedMethod, // Specifies the method accepted by that the

// framework for authentication.
in TpString challenge, // The challenge presented by the client

// application to be responded to by the
// framework.

out TpString response // The response of the framework to the
// challenge of the client application.

);

/* This method is invoked by the client application to to abort the authentication process.

3GPP

3G TS 29.198 1.0.0 (2000-03)96 3G TS 29.198 version 1.0.0

TpResult abortAuthentication();

};

/* The Authentication client application interface is used by the Framework to authenticate
the client application. */
interface IpAppAuthentication {

/* This method is invoked by the Framework to authenticate the client application using the
mechanism indicated in prescribedMethod. */
TpResult authenticate (
in TpAuthCapability prescribedMethod, // The agreed authentication method.
in TpString challenge, // The challenge presented by the Framework.
out TpString response
);

/* This method is invoked by the Framework to abort the authentication process. */
TpResult abortAuthentication();

};

};};};};};

9.2.4 Integrity Management IDL
#include <fw.idl>

module org{
module threegpp{
module osa{
module fw{
module integrity{

/***/
// Data definitions //
/***/

typedef TpString TpActivityTestRes; // An implementation specific

// result, whose values are
// Framework provider specific.

 struct TpTimeInterval { // A time interval.
 TpDateAndTime StartTime;
 TpDateAndTime StopTime;
 };

 enum TpInterfaceFault { // The cause of the interface fault detected.
 INTERFACE_FAULT_UNDEFINED, // Undefined.
 INTERFACE_FAULT_LOCAL_FAILURE, // A fault in the local API software or
 // hardware has been detected.
 INTERFACE_FAULT_GATEWAY_FAILURE, // A fault in the gateway API software
 // or hardware has been detected.
 INTERFACE_FAULT_PROTOCOL_ERROR // An error in the protocol used on the
 // client-gateway link has been detected.
 };

 struct TpFaultStatsSet { // Statistics on a per fault type basis.
 TpInterfaceFault Fault;
 TpInt32 Occurrences; // The number of separate

// instances of this fault
// during the period.

 TpInt32 MaxDuration; // The duration in seconds of
// the longest fault.

 TpInt32 TotalDuration; // The cumulative total during
// the period.

 TpInt32 NumberOfClientsAffected; // Those informed of the fault
// by the Framework.

 };

 struct TpFaultStatsRecord { // The set of fault information records to be returned

// for the requested time period.
 TpTimeInterval Period;
 TpFaultStatsSet FaultRecords;
 };

3GPP

3G TS 29.198 1.0.0 (2000-03)97 3G TS 29.198 version 1.0.0

typedef TpInt32 TpActivityTestUD; // Used as a token to match activity

// test requests with their results.

 enum TpSvcUnavailReason { // The reason why a service is unavailable.
 SERVICE_UNAVAILABLE_UNDEFINED, // Undefined.
 SERVICE_UNAVAILABLE_LOCAL_FAILURE, // The local API software or hardware
 // has failed.
 SERVICE_UNAVAILABLE_GATEWAY_FAILURE, // The gateway API software or

// hardware has failed.
 SERVICE_UNAVAILABLE_OVERLOADED, // The service is fully overloaded.
 SERVICE_UNAVAILABLE_CLOSED // The service has closed itself.
 };

 enum TpAPIUnavailReason { // The reason why the API is unavailable.
 API_UNAVAILABLE_UNDEFINED, // Undefined.
 API_UNAVAILABLE_LOCAL_FAILURE, // The local API software or hardware
 // has failed.
 API_UNAVAILABLE_GATEWAY_FAILURE, // The gateway API software or

// hardware has failed.
 API_UNAVAILABLE_OVERLOADED, // The gateway is fully overloaded.
 API_UNAVAILABLE_CLOSED, // The gateway has closed itself.
 API_UNAVAILABLE_PROTOCOL_FAILURE // The protocol used on the client-gateway
 // link has failed.
 };

 enum TpLoadLevel { // The load level values.
 LOAD_LEVEL_NORMAL, // Normal load.
 LOAD_LEVEL_OVERLOAD, // Overload.
 LOAD_LEVEL_SEVERE_OVERLOAD // Severe overload.
 };

 struct TpLoadThreshold{ // The load threshold value.

 TpFloat LoadThreshold;
};

 struct TpLoadInitVal {// The pair of load level and associated load threshold values.
 TpLoadLevel LoadLevel;
 TpLoadThreshold LoadThreshold;
 };

 struct TpLoadPolicy { // The load balancing policy.
 TpString LoadPolicy;
 };

 struct TpLoadStatistic { // The load statistic record at given

// timestamp.
 TpServiceID ServiceID;
 TpFloat LoadValue; // Expressed in percentage.
 TpLoadLevel LoadLevel;
 TpDateAndTime TimeStamp;
 };

typedef sequence <TpLoadStatistic> TpLoadStatisticList;

 enum TpLoadStatusError { // The error code for getting the load status.
 LOAD_STATUS_ERROR_UNDEFINED, // Undefined error.
 LOAD_STATUS_ERROR_UNAVAILABLE // Unable to get the load status.
 };

 struct TpLoadStatisticError { // The error for getting the load status at

// given timestamp.
 TpServiceID ServiceID;
 TpFloat LoadStatusError;
 TpDateAndTime TimeStamp;
 };

typedef sequence <TpLoadStatisticError> TpLoadStatisticErrList;

/***/
// Interface definitions //
/***/

/* The Heartbeat Framework interface is used by the client application to supervise the
Framework or a service. */

3GPP

3G TS 29.198 1.0.0 (2000-03)98 3G TS 29.198 version 1.0.0

interface IpHeartBeat {

/* This method is invoked by the client application to make the service or Framework
supervision. */
TpResult send (
in TpSessionID session // The heartbeat session.
);

};

/* The Heartbeat client application interface is used by the Framework to supervise the client
application. */
interface IpAppHeartBeat {

/* This method is invoked by the Framework to make the client application supervision. */
TpResult send (
in TpSessionID session // The heartbeat session.
);

};

/* The Heartbeat Management Framework interface is used by the client application to
initialise a heartbeat supervision of the client application. */
interface IpHeartBeatMgmt {

/* This method is invoked by the client application to register at the Framework for
heartbeat supervision. */
TpResult enableHeartBeat (
in TpDuration duration, // Duration in milliseconds between heartbeats.
in IpAppHeartBeat appInterface, // The callback interface the heartbeat is

// calling.
out TpSessionID session // The heartbeat session.
);

/* This method is invoked by the client application to stop its heartbeat supervision. */
TpResult disableHeartBeat (
in TpSessionID session // The heartbeat session.
);

/* This method is invoked by the client application to change the heartbeat period. */
TpResult changeTimePeriod (
in TpDuration duration, // Duration in milliseconds between heartbeats.
in TpSessionID session // The heartbeat session.
);

};

/* The Heartbeat Management client application interface is used by the Framework to
initialise its heartbeat supervision of the Framework. */
interface IpAppHeartBeatMgmt {

/* This method is invoked by the Framework to register at the client application for its
heartbeat supervision. */
TpResult enableAppHeartBeat (
in TpDuration duration, // Time interval in milliseconds between the

// heartbeats.
in IpHeartBeat interface, // The callback interface the heartbeat is calling.
in TpSessionID session // The heartbeat session.
);

/* This method is invoked by the Framework to stop the heartbeat supervision by the
application. */
TpResult disableAppHeartBeat (
in TpSessionID session // The heartbeat session.
);

/* This method is invoked by the Framework to change the heartbeat period. */
TpResult changeTimePeriod (
in TpDuration duration, // Interval in milliseconds between the heartbeats.
in TpSessionID session // The heartbeat session.
);

};

3GPP

3G TS 29.198 1.0.0 (2000-03)99 3G TS 29.198 version 1.0.0

/* The Load Manager Framework interface is used by the client application for load balancing
management. */
interface IpLoadManager {

/* This method is invoked by the client application to notify framework its current load
level (0,1, or 2) when the load level on the application has changed. */
TpResult reportLoad (
in TpClientAppID requester, // The identifier of the client application for

// callbacks from the load balancing service.
in TpLoadLevel loadLevel // The application's load level.
);

/* This method is invoked by the client application to request load statistic records for
the framework and specified services. */
TpResult queryLoadReq (
in TpClientAppID requester, // The identifier of the client application for

// callbacks from the load balancing service.
in TpServiceIDList serviceIDs, // Specifies the framework and services for which the

// load statistics shall be reported.
in TpTimeInterval timeInterval // The time interval within which the load statistics

// are generated.
);

/* This method is invoked by the client application to report load statistics back to the
framework that requested the information. */
TpResult queryAppLoadRes (
in TpLoadStatisticList loadStatistics // The application's load statistics.
);

/* This method is invoked by the client application to return an error response to the
framework that requested the application's load statistics information. */
TpResult queryAppLoadErr (
in TpLoadStatisticErrorList loadStatisticsError // The error code associated with the

// failed attempt to retrieve the
// application's load statistics.

);

/* This method is invoked by the client application to register the client application for
load management under various load conditions. */
TpResult registerLoadController (
in TpClientAppID requester, // Identifies the client application for callbacks from

// the load balancing service.
in TpServiceIDList serviceIDs // Specifies the framework and services to be

// registered for load control.
);

/* This method is invoked by the client application to unregister for load management. */
TpResult unregisterLoadController (
in TpClientAppID requester, // Identifies the client application for callbacks from

// the load balancing service.
in TpServiceIDList serviceIDs // Specifies the framework or services to be

// unregistered for load control.
);

/* This method is invoked by the client application to resume load management notifications
to it from the framework and specified services. */
TpResult resumeNotification (
in TpServiceIDList serviceIDs // Specifies the framework and services for which

// notifications are to be resumed.
);

/* This method is invoked by the client application to suspend load management
notifications to it from the framework and specified services, while it handles a temporary
load condition. */
TpResult suspendNotification (
in TpServiceIDList serviceIDs // Specifies the framework and services for which

// notifications are to be suspended.
);

};

/* The Load Manager client application interface is used by the Framework to access the
application load balancing service. */
interface IpAppLoadManager {

3GPP

3G TS 29.198 1.0.0 (2000-03)1003G TS 29.198 version 1.0.0

/* This method is invoked by the Framework to request for load statistic records produced
by a specified application. */
TpResult queryAppLoadReq (
in TpServiceIDList serviceIDs, // Specifies the services or application for which the

// load statistics shall be reported.
in TpTimeInterval timeInterval // The time interval within which the load statistics

// are generated.
);

/* This method is invoked by the Framework to return load statistics to the application
which requested the information. */
TpResult queryLoadRes (
in TpLoadStatisticList loadStatistics // The load statistics supplied by the

// Framework.
);

/* This method is invoked by the Framework to return an error code to the application that
requested load statistics. */
TpResult queryLoadErr (
in TpLoadStatisticErrList loadStatisticsError // The error code supplied by the

// Framework.
);

/* This method is invoked by the Framework to disable load control activity at the client
application based on policy, after the load level of the Framework or service which has
been registered for load control moves back to normal. */
TpResult disableLoadControl (
in TpServiceIDList serviceIDs // Specifies the framework and services for which the

// load has changed to normal.
);

/* This method is invoked by the Framework to enable load management activity at the client
application based on the policy, upon detecting load condition change. */
TpResult enableLoadControl (
in TpLoadStatisticList loadStatistics // The new load statistics.
);

/* This method is invoked by the Framework to resume the notification from an application
for its load status after the detection of load level change at the Framework and the
evaluation of the load balancing policy. */
TpResult resumeNotification();

/* This method is invoked by the Framework to suspend the notification from an application
for its load status after the detection of load level change at the Framework and the
evaluation of the load balancing policy. */
TpResult suspendNotification();

};

/* The Fault Manager Framework interface is used by the client application to inform the
Framework of events that affect the integrity of the Framework and services, and to request
information about the integrity of the system. */
interface IpFaultManager {

/* This method may be invoked by the client application to test that the Framework or a
service is operational. */
TpResult activityTestReq (
in TpActivityTestID activityTestID, // Identifier provided by the client

// application to correlate the
// response with this request.

in TpServiceID svcID, // Identifies for which service the client
// application is requesting the activity test
// be done.

in TpClientAppID appID // Identifies which client application is
// requesting the activity test (and therefore
// which application receives the results).

);

/* This method is invoked by the client application to return the result of a previously
requested activity test. */
TpResult appActivityTestRes (
in TpActivityTestID activityTestID, // Used by the Framework to correlate this

// response with the original request.
in TpActivityTestRes activityTestResult // Result of the activity test.
);

3GPP

3G TS 29.198 1.0.0 (2000-03)1013G TS 29.198 version 1.0.0

/* This method is invoked by the client application to inform the Framework that it can no
longer use the indicated service. */
TpResult serviceUnavailableInd (
in TpServiceID serviceId, // Identity of the service which can no longer be used.
in TpClientAppID appID // Identity of the application sending the indication.
);

/* This method is invoked by the client application to request fault statistics from the
Framework. */
TpResult genFaultStatsRecordReq (
in TpTimeInterval timePeriod, // The period over which the fault statistics

// are to be generated.
in TpServiceIDList serviceIDList, // The services that the application would like

// to have included in the general fault
// statistics record.

in TpClientAppID appID // Identifies which client application is
// requesting the statistics record (and
// therefore should receive it).

);

};

/* The Fault Manager client application interface is used by the Framework to inform the
application of events that affect the integrity of the Framework, service or client
application. */
interface IpAppFaultManager {

/* This method is invoked by the Framework, in response to an activityTestReq, to return
the result of the activity test in this method. */
TpResult activityTestRes (
in TpActivityTestID activityTestID, // The identifier provided to correlate this

// response with the original request.
in TpActivityTestRes activityTestResult // Result of the activity test.
);

/* This method is invoked by the Framework to request that the client application carries
out an activity test to check that is it operating correctly. */
TpResult appActivityTestReq (
in TpActivityTestID activityTestID // The identifier provided to correlate this

// response with the original request.
);

/* This method is invoked by the Framework to notify the client application of a failure
within the Framework. */
TpResult fwFaultReportInd (
in TpInterfaceFault fault // The fault that has been detected.
);

/* This method is invoked by the Framework to notify the client application that a
previously reported fault has been rectified. */
TpResult fwFaultRecoveryInd (
in TpInterfaceFault fault // The fault from which the framework has recovered.
);

/* This method is invoked by the Framework to inform the client application that it can no
longer use the indicated service due to a failure. */
TpResult svcUnavailableInd (
in TpServiceID serviceId, // Identity of the service which can no longer be used.
in TpSvcUnavailReason reason // The reason why the service is no longer available.
);

/* This method is invoked by the Framework to provide fault statistics to a client
application in response to a genFaultStatsRecordReq. */
TpResult genFaultStatsRecordRes (
in TpFaultStatsRecord faultStatistics, // The fault statistics record.
in TpServiceIDList serviceIDs // The services that have been included in the

// general fault statistics record.
);

};

/* The OAM Framework interface is used by the client application to query the system date and
time, for synchronisation purposes. */
interface IpOAM {

3GPP

3G TS 29.198 1.0.0 (2000-03)1023G TS 29.198 version 1.0.0

/* This method is invoked by the client application to interchange the system an client
application date and time. */
TpResult systemDateTimeQuery (
in TpDateAndTime clientDateAndTime, // The date and time of the client.
out TpDateAndTimeRef systemDateAndTime // The date and time of the system.
);

};

/* The OAM client application interface is used by the Framework to query the application date
and time, for synchronisation purposes. */
interface IpAppOAM {

/* This method is invoked by the Framework to interchange the system an client application
date and time. */
TpResult systemDateTimeQuery (
in TpDateAndTime systemDateAndTime, // The date and time of the system.
out TpDateAndTimeRef clientDateAndTime // The date and time of the client.
);

};

};};};};};

9.3 Call Control

9.3.1 Common Data Types for Call Control
// source file: CC.idl
// Generic Call Data description

#ifndef __OSA_CC_DEFINED
#define __OSA_CC_DEFINED

#include <OSA.idl>

module org {
 module threegpp {
 module osa {
 module cc {

 struct TpAoCInfo {
 TpString AoCSet1;
 TpString AoCSet2;
 };

 /* Defines the mechanism that will be used to alert a call party. */
 typedef TpInt32 TpCallAlertingMechanism;

 /* Defines the bearer service associated with the call. */
 typedef TpString TpCallBearerService;

 /* Defines indicators for application interworking. */
 typedef TpString TpCallInterworkingIndicators;

 typedef TpString TpCallNetworkAccessType;

 /* Defines the category of a call party (e.g. call priority, payphone, prepaid).*/
 typedef TpString TpCallPartyCategory;

 /* Defines the tele-service associated with the call (e.g. speech, video, fax, file transfer,

browsing). */
 typedef TpString TpCallTeleService;

 /* Defines a specific call event report type. */
 enum TpCallAppInfoType {
 P_CALL_APP_UNDEFINED, /* Undefined */
 P_CALL_APP_ALERTING_MECHANISM, /* The alerting mechanism or pattern to use */
 P_CALL_APP_NETWORK_ACCESS_TYPE, /* The network access type (e.g. ISDN) */
 P_CALL_APP_INTERWORKING_INDICATORS, /* Indicators to enable service interworking */

3GPP

3G TS 29.198 1.0.0 (2000-03)1033G TS 29.198 version 1.0.0

 P_CALL_APP_TELE_SERVICE, /* Indicates the tele-service (e.g. speech) and related
info such as clearing programme */

 P_CALL_APP_BEARER_SERVICE, /* Indicates the bearer service (e.g. 64kb/s unrestricted
data). */

 P_CALL_APP_PARTY_CATEGORY, /* The category of the call party */
 P_CALL_APP_PRESENTATION_ADDRESS, /* The address to be presented to other call parties */
 P_CALL_APP_GENERIC_INFO, /* Carries unspecified service-service information */
 P_CALL_APP_ADDITIONAL_ADDRESS /* Indicates an additional address */
 };

 /* Defines the Tagged Choice of Data Elements that specify call application-related specific

information. */
 union TpCallAppInfo switch(TpCallAppInfoType) {
 case P_CALL_APP_TELE_SERVICE:
 TpCallTeleService CallAppTeleService;
 case P_CALL_APP_BEARER_SERVICE:
 TpCallBearerService CallAppBearerService;
 case P_CALL_APP_PARTY_CATEGORY:
 TpCallPartyCategory CallAppPartyCategory;
 case P_CALL_APP_PRESENTATION_ADDRESS:
 TpAddress CallAppPresentationAddress;
 case P_CALL_APP_GENERIC_INFO:
 TpString CallAppGenericInfo;
 case P_CALL_APP_ADDITIONAL_ADDRESS:
 TpAddress CallAppAdditionalAddress;
 case P_CALL_APP_ALERTING_MECHANISM:
 TpCallAlertingMechanism CallAppAlertingMechanism;
 case P_CALL_APP_NETWORK_ACCESS_TYPE:
 TpCallNetworkAccessType CallAppNetworkAccessType;
 case P_CALL_APP_INTERWORKING_INDICATORS:
 TpCallInterworkingIndicators CallAppInterworkingIndicators;
 };

 typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

 /* This data type is identical to a TpString, and defines the call charge plan to be used for the

call. The values of this data type are operator specific. */
 typedef TpString TpCallChargePlan;

 const TpInt32 P_EVENT_NAME_UNDEFINED = 0; // Undefined
 const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1; // Offhook event
 const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2; // Address information collected
 const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4; // Address information is analysed
 const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8; // Called party is busy
 const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 16; // Called party is unreachable
 const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 32; // No answer from called party
 const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64; // Failure in routing the call
 const TpInt32 P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY = 128; // Party answered call

 typedef TpInt32 TpCallEventName; /*Defines the names of event being notified. */

 struct TpCallEventCriteria {
 TpAddress DestinationLowerAddress; /*Lower destination address in an address rannge*/
 TpAddress DestinationUpperAddress; /*Upper destination address in an address range*/
 TpAddress OriginatingLowerAddress; /*Lower originatin address in an address range */
 TpAddress OriginationUpperAddress; /*Upper origination address in an address range */
 TpCallEventName CallEventName; /*Name of the event(s) */
 };

 struct TpCallEventInfo {
 TpAddress DestinationAddress;
 TpAddress OriginatingAddress;
 TpAddress OriginalDestinationAddress;
 TpAddress RedirectingAddress;
 TpCallAppInfoSet CallAppInfo;
 TpCallEventName CallEventName;
 };

 /* Defines the Sequence of Data Elements that specify the cause of the release of a call.*/
 struct TpCallReleaseCause {
 TpInt32 Value;
 TpInt32 Location;
 };

 /* Defines a specific call error. */
 enum TpCallErrorType {
 P_CALL_ERROR_UNDEFINED, /* Undefined */
 P_CALL_ERROR_ROUTING_ABORTED, /* Call routing failed and was aborted by the network */

3GPP

3G TS 29.198 1.0.0 (2000-03)1043G TS 29.198 version 1.0.0

 P_CALL_ERROR_CALL_ABANDONED, /* The requested operation failed because the controlling party
abandoned the call before the operation was completed */

 P_CALL_ERROR_INVALID_ADDRESS, /* The operation failed because an invalid address was given */
 P_CALL_ERROR_INVALID_STATE, /* The call was not in a valid state for the requested

operation */
 P_CALL_ERROR_INVALID_CRITERIA /* Invalid criteria were specified for the requested operation

*/
 };

 /* Defines the Tagged Choice of Data Elements that specify additional call error and call error

specific information. This is also used to specify call leg errors and call information
errors. */

 union TpCallAdditionalErrorInfo switch(TpCallErrorType) {
 case P_CALL_ERROR_ROUTING_ABORTED: TpCallReleaseCause CallErrorRoutingAborted;
 case P_CALL_ERROR_CALL_ABANDONED: TpCallReleaseCause CallErrorCallAbandoned;
 case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;
 };

 /* Defines the Sequence of Data Elements that specify the additional information relating to an

undefined call error. */
 struct TpCallError {
 TpCallAdditionalErrorInfo AdditionalErrorInfo;
 TpCallErrorType ErrorType;
 TpDateAndTime ErrorTime;
 };

 /* Defines the cause of the call fault detected. */
 enum TpCallFault {
 P_CALL_FAULT_UNDEFINED, /* Undefined */
 P_CALL_FAULT_USER_ABORTED, /* User has finalised the call before any message could be sent by

the application. */
 P_CALL_TIMEOUT_ON_RELEASE, /* Final report has been sent to the application, but the

application did not explicitly release or deassign the call object, within a specified time.
*/

 P_CALL_TIMEOUT_ON_INTERRUPT /* Application did not instruct the gateway how to handle the call
within a specified time, after the gateway reported an event that was requested by the
application in interrupt mode.*/

 };

 /* Defines the type of call information requested and reported */
 const TpInt32 P_CALL_INFO_UNDEFINED = 0; /* Undefined */
 const TpInt32 P_CALL_INFO_TIMES = 1; /* Relevant call times */
 const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2; /* Call release cause. */
 const TpInt32 P_CALL_INFO_INTERMEDIATE = 4; /* Send only intermediate reports (i.e., when a

party leaves the call). */

 typedef TpInt32 TpCallInfoType;

 /* Defines the Sequence of Data Elements that specify the call information requested. Information

that was not requested may be undefined or not present. */
 struct TpCallInfoReport {
 TpDateAndTime CallConnectedToDestinationTime;
 TpDateAndTime CallEndTime;
 TpCallReleaseCause Cause;
 TpCallInfoType CallInfoType;
 TpDateAndTime CallInitiationStartTime;
 TpDateAndTime CallConnectedToResourceTime;
 };

 /* Defines the mode that the call will monitor for events, or the mode that the call is in

following a detected event. */
 enum TpCallMonitorMode {
 P_CALL_MONITOR_MODE_INTERRUPT, /* The call event is intercepted by the call control service

and call processing is interrupted. The application is notified of the event and call
processing resumes following an appropriate API call or network event (such as a call
release) */

 P_CALL_MONITOR_MODE_NOTIFY, /* The call event is detected by the call control service
but not intercepted. The application is notified of the event and call processing continues
*/

 P_CALL_MONITOR_MODE_DO_NOT_MONITOR /* Do not monitor for the event */
 };

 /* Defines the type of call overload that has been detected (and possibly acted upon) by the

network. */
 enum TpCallOverloadType {
 P_CALL_OVERLOAD_TYPE_UNDEFINED, /* Infinite interval (do not admit any calls) */
 P_CALL_OVERLOAD_TYPE_NEW_CALLS, /* New calls to the application are causing overload (i.e.

inbound overload) */

3GPP

3G TS 29.198 1.0.0 (2000-03)1053G TS 29.198 version 1.0.0

 P_CALL_OVERLOAD_TYPE_ROUTED_CALLS /* Calls being routed to destination or origination addresses
by the application are causing overload (i.e. outbound overload) */

 };

 /* Defines a specific call event report type. */
 enum TpCallReportType {
 P_CALL_REPORT_UNDEFINED, /* Undefined */
 P_CALL_REPORT_PROGRESS, /* Call routing progress event */
 P_CALL_REPORT_ROUTING_SUCCESS, /* Call successfully routed to address */
 P_CALL_REPORT_ANSWER, /* Call answered at address */
 P_CALL_REPORT_BUSY, /* Called address refused call due to busy */
 P_CALL_REPORT_NO_ANSWER, /* No answer at called address */
 P_CALL_REPORT_DISCONNECT, /* Call disconnect requested by address */
 P_CALL_REPORT_REDIRECTED,
 P_CALL_REPORT_SERVICE_CODE,
 P_CALL_REPORT_ROUTING_FAILURE,
 P_CALL_REPORT_CALL_ENDED
 };

 /* Defines the Tagged Choice of Data Elements that specify additional call report information. */
 union TpCallAdditionalReportInfo switch(TpCallReportType) {
 case P_CALL_REPORT_BUSY: TpCallReleaseCause RefuseBusy;
 case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;
 case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;
 case P_CALL_REPORT_SERVICE_CODE: TpCallReleaseCause ServiceCode;
 case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;
 case P_CALL_REPORT_CALL_ENDED: TpCallReleaseCause CallEnded;
 };

 struct TpCallReport {
 TpCallMonitorMode MonitorMode;
 TpDateAndTime CallEventTime;
 TpCallReportType CallReportType;
 TpCallAdditionalReportInfo AdditionalReportInfo;
 };

 /* Defines the service code received during a call. For example, this may be a digit sequence,

user-user information, recall, flash-hook or ISDN Facility Information Element. This data
type is identical to a TpString. The coding of this data type is operator specific. */

 typedef TpString TpCallServiceCode;

 /* Defines the Tagged Choice of Data Elements that specify specific criteria. */
 union TpCallReportAdditionalCriteria switch(TpCallReportType) {
 case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;
 case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;
 };

 /* Defines the Sequence of Data Elements that specify the criteria relating to call report

requests. */
 struct TpCallReportRequest {
 TpCallMonitorMode MonitorMode;
 TpCallReportType CallReportType;
 TpCallReportAdditionalCriteria AdditionalReportCriteria;
 };

 /* Defines a Numbered Set of Data Elements of TpCallReportRequest. */
 typedef sequence <TpCallReportRequest> TpCallReportRequestSet;

 const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1; /* The call supervision timer has expired. */
 const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2; /* The call has ended, either due to timer expiry

or call party release. */
 const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4; /* A warning tone has been applied. */

 /* Defines the responses from the call control service for calls that are supervised:*/
 typedef TpInt32 TpCallSuperviseReport;

 const TpInt32 P_CALL_SUPERVISE_RELEASE = 1; /* Release the call when the call supervision

timer expires. */
 const TpInt32 P_CALL_SUPERVISE_RESPOND = 2; /* Notify the application when the call

supervision timer expires. */
 const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4; /* Send a warning tone to the controlling party

when the call supervision timer expires. If call release is requested, then the call will be
released following the tone after an administered time period */

 /* Defines the following treatment of the call by the call control service when the call

supervision timer expires.*/
 typedef TpInt32 TpCallSuperviseTreatment;

3GPP

3G TS 29.198 1.0.0 (2000-03)1063G TS 29.198 version 1.0.0

 /* Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be

transmitted for the specific connection. */
 struct TpCallSuperviseVolume {
 TpInt32 VolumeQuantity; /* Qantity of the granted volume that can be transmitted for the

specific connection. */
 TpInt32 VolumeUnit; /* Unit of the granted volume that can be transmitted for the specific

connection. */
 };

 /* Define the possible Exceptions. */
 const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;
 const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;
 const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;
 const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;
 const TpInt32 P_GCCS_INVALID_STATE = 260;
 const TpInt32 P_GCCS_INVALID_CRITERIA = 261;
 const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 262;
 const TpInt32 P_GCCS_NETWORK_DEASSIGN = 263;

 exception TpGCCSException {
 TpInt32 exceptionType;
 };

 }; // end module cc
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file CC.idl

9.3.2 Generic Call Control IDL
// source file: GCC.idl
// GenericCall Interface description

#ifndef __OSA_CC_GCC_DEFINED
#define __OSA_CC_GCC_DEFINED

#include <CC.idl>

module org {
 module threegpp {
 module osa {
 module cc {
 module gcc {

 interface IpAppCallControlManager; // forward definition
 interface IpAppCall; // forward definition

 /* This interface is the 'service manager' interface for Generic Call Control. */
 interface IpCallControlManager {
 /* This method is used to enable call notifications. */
 void enableCallNotification (
 in IpAppCallControlManager appInterface,
 in TpCallEventCriteria eventCriteria,
 out TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method is used by the application to disable call notifications.*/
 void disableCallNotification (
 in TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);
 };

 /* This interface provides the means to control a simple call. */
 interface IpCall : IpService {
 /* This method requests routing of the call to the destination party.*/
 void routeCallToDestinationReq (
 in TpSessionID callSessionID,
 in TpCallReportRequestSet responseRequested,
 in TpAddress targetAddress,
 in TpAddress originatingAddress,

3GPP

3G TS 29.198 1.0.0 (2000-03)1073G TS 29.198 version 1.0.0

 in TpAddress originalDestinationAddress,
 in TpAddress redirectingAddress,
 in TpCallAppInfoSet appInfo,
 out TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method requests the release of the call and associated objects.*/
 void release (
 in TpSessionID callSessionID,
 in TpCallReleaseCause cause
)
 raises (TpGCCSException, TpGeneralException);

 /* This method requests that the relationship between the application and
 the call and associated objects be de-assigned. */
 void deassignCall (
 in TpSessionID callSessionID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method requests information associated with the call.*/
 void getCallInfoReq (
 in TpSessionID callSessionID,
 in TpCallInfoType callInfoRequested
)
 raises (TpGCCSException, TpGeneralException);

 /* Set an operator specific charge plan for the call. */
 void setCallChargePlan (
 in TpSessionID callSessionID,
 in TpCallChargePlan callChargePlan
)
 raises (TpGCCSException, TpGeneralException);

 /* The application calls this method to supervise a call. */
 void superviseCallReq (
 in TpSessionID callSessionID,
 in TpDuration time,
 in TpCallSuperviseTreatment treatment,
 in TpCallSuperviseVolume bytes
)
 raises (TpGCCSException, TpGeneralException);

 void setAdviceOfCharge(
 in TpSessionID callSessionID,
 in TpAoCInfo aOCInfo,
 in TpDuration tariffSwitch
)
 raises (TpGCCSException, TpGeneralException);
 };

 /* Sequence of Data Elements that unambiguously specify the Generic Call object */
 struct TpCallIdentifier {
 IpCall CallReference;
 TpSessionID CallSessionID;
 };

 /* The generic call control manager application interface provides the
 application call control management functions to the generic call control
 service. */
 interface IpAppCallControlManager : IpOsa {
 void callAborted (
 in TpSessionID callReference
)
 raises (TpGCCSException, TpGeneralException);

 /* This method notifies the application of the arrival of a call-related event. */
 void callEventNotify (
 in TpCallIdentifier callReference,
 in TpCallEventInfo eventInfo,
 in TpAssignmentID assignmentID,
 out IpAppCall appInterface
)
 raises (TpGCCSException, TpGeneralException);

 /* This method indicates to the application that all event notifications
 have been terminated .*/

3GPP

3G TS 29.198 1.0.0 (2000-03)1083G TS 29.198 version 1.0.0

 void callNotificationTerminated ()
 raises (TpGCCSException, TpGeneralException);
 };

 /* The application side of the simple call interface is used to handle call
 request responses and state reports. */
 interface IpAppCall : IpOsa {
 /* This method indicates that the request to route the call to the
 destination was successful.*/
 void routeCallToDestinationRes (
 in TpSessionID callSessionID,
 in TpCallReport eventReport,
 in TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method indicates that the request to route the call to the
 destination party was unsuccessful. */
 void routeCallToDestinationErr (
 in TpSessionID callSessionID,
 in TpCallError errorIndication,
 in TpAssignmentID assignmentID
)
 raises (TpGCCSException, TpGeneralException);

 /* This method reports all necessary information requested by the
 application, for example to calculate charging.*/
 void getCallInfoRes (
 in TpSessionID callSessionID,
 in TpCallInfoReport callInfoReport
)
 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports that the original request was erroneous,
 or resulted in an error condition.*/
 void getCallInfoErr (
 in TpSessionID callSessionID,
 in TpCallError errorIndication
)
 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision event to the application. .*/
 void superviseCallRes (
 in TpSessionID callSessionID,
 in TpCallSuperviseReport report,
 in TpDuration usedTime,
 in TpCallSuperviseVolume usedVolume
)
 raises (TpGCCSException, TpGeneralException);

 /* This asynchronous method reports a call supervision error to the application.*/
 void superviseCallErr (
 in TpSessionID callSessionID,
 in TpCallError errorIndication
)
 raises (TpGCCSException, TpGeneralException);

 /* This method indicates to the application that a fault in the network has
 been detected.*/
 void callFaultDetected (
 in TpSessionID callSessionID,
 in TpCallFault fault
)
 raises (TpGCCSException, TpGeneralException);

 };

 }; // end module gcc
 }; // end module cc
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file GCC.idl

3GPP

3G TS 29.198 1.0.0 (2000-03)1093G TS 29.198 version 1.0.0

9.3.3 Enhanced Call Control IDL

The IDL in this section is only supplied in order to make the User Interaction IDL compile.
With the createUICall() method on the UIManager object it is possible to associate the UICall object to a Call object as
well as a CallLeg object. The CallLeg object is not used in this specification. However the IDL for this interface has to
be supplied otherwise the User Interaction IDL will not compile.

// source file: ECC.idl

#ifndef __OSA_CC_ECC_DEFINED
#define __OSA_CC_ECC_DEFINED

#include <GCC.idl>

module org {
 module threegpp {
 module osa {
 module cc {
 module ecc {

 typedef TpInt32 TpMediaType;

 const TpInt32 P_AUDIO = 1;
 const TpInt32 P_VIDEO = 2;
 const TpInt32 P_DATA = 4;

 typedef TpInt32 TpAudioCapabilitiesType;

 typedef TpInt32 TpVideoCapabilitiesType;

 typedef TpInt32 TpDataCapabilities;

 union TpChannelDataTypeRequest switch(TpMediaType) {
 case P_DATA: TpDataCapabilities Data;
 case P_VIDEO: TpVideoCapabilitiesType Video;
 case P_AUDIO: TpAudioCapabilitiesType Audio;
 };

 typedef TpChannelDataTypeRequest TpChannelDataType;

 enum TpChannelDirection {
 P_INCOMING,
 P_OUTGOING
 };

 struct TpChannelRequest {
 TpChannelDataTypeRequest DataTypeRequest;
 TpChannelDirection Direction;
 };

 typedef sequence <TpChannelRequest> TpChannelRequestSet;

enum TpCallLegType {
 P_CALL_LEG_TYPE_UNDEFINED,
 P_CALL_LEG_TYPE_CONTROLLING,
 P_CALL_LEG_TYPE_PASSIVE
 };

enum TpCallLegInfoType {
 P_CALL_LEG_INFO_UNDEFINED,
 P_CALL_LEG_INFO_ADDRESS,
 P_CALL_LEG_INFO_RELEASE_CAUSE,
 P_CALL_LEG_INFO_APPINFO,
 P_CALL_LEG_INFO_TIMES
 };

 interface IpMMChannel : IpService {
 void close (
 in TpSessionID channelSessionID
)
 raises (TpGeneralException,TpGCCSException);

3GPP

3G TS 29.198 1.0.0 (2000-03)1103G TS 29.198 version 1.0.0

 };

 struct TpChannel {
 TpChannelDirection Direction;
 IpMMChannel Channel;
 TpChannelDataType DataType;
 TpInt32 ChannelNumber;
 };

 typedef sequence <TpChannel> TpChannelSet;

interface IpCallLeg : IpService {
 void routeCallLegToOrigination (
 in TpSessionID callLegSessionID,
 in TpAddress targetAddress,
 in TpAddress originatingAddress,
 in TpAddress originalCalledAddress,
 in TpAddress redirectingAddress,
 in TpCallAppInfoSet appInfo
)
 raises (TpGeneralException,TpGCCSException);

 void routeCallLegToDestination (
 in TpSessionID callLegSessionID,
 in TpAddress targetAddress,
 in TpAddress originatingAddress,
 in TpAddress originalCalledAddress,
 in TpAddress redirectingAddress,
 in TpCallAppInfoSet appInfo
)
 raises (TpGeneralException,TpGCCSException);

 void eventReportReq (
 in TpSessionID callLegSessionID,
 in TpCallReportRequestSet eventReportsRequested
)
 raises (TpGeneralException,TpGCCSException);

 void release (
 in TpSessionID callLegSessionID,
 in TpCallReleaseCause cause
)
 raises (TpGeneralException,TpGCCSException);

 void getInfoReq (
 in TpSessionID callLegSessionID,
 in TpCallLegInfoType callLegInfoRequested
)
 raises (TpGeneralException,TpGCCSException);

 void getType (
 in TpSessionID callLegSessionID,
 out TpCallLegType callLegType
)
 raises (TpGeneralException,TpGCCSException);

 void getCall (
 in TpSessionID callLegSessionID,
 out org::threegpp::osa::cc::gcc::TpCallIdentifier callReference
)
 raises (TpGeneralException,TpGCCSException);

 void mediaChannelAllow (
 in TpSessionID callLegSessionID,
 in TpSessionIDSet channelList
)
 raises (TpGeneralException,TpGCCSException);

 void getMediaChannels (
 in TpSessionID callLegSessionID,
 out TpChannelSet channels
)
 raises (TpGeneralException,TpGCCSException);

 void mediaChannelMonitorReq (
 in TpSessionID callLegSessionID,

3GPP

3G TS 29.198 1.0.0 (2000-03)1113G TS 29.198 version 1.0.0

 in TpChannelRequestSet channelEventCriteria,
 in TpCallMonitorMode monitorMode
)
 raises (TpGeneralException,TpGCCSException);
};

 struct TpCallLegIdentifier {
 TpSessionID CallLegSessionID;
 IpCallLeg CallLegReference;
 };

 }; // end module ecc
 }; // end module cc
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file ECC.idl

9.4 User Interaction IDL

9.4.1 Common data types for User Interaction
// source file: UI.idl
// User Interaction data description

#ifndef __OSA_UI_DEFINED
#define __OSA_UI_DEFINED

#include <OSA.idl>

module org {
 module threegpp {
 module osa {
 module ui {

 /* Defines the additional properties for the collection of information */
 struct TpUICollectCriteria {
 TpInt32 MinLength; /* minimum number of characters to collect */
 TpInt32 MaxLength; /* maxmum number of characters to collect */
 TpString EndSequence; /* character(s) which terminate an input of variable length. */
 TpDuration StartTimeout; /* defines a duration (in seconds) */
 TpDuration InterCharTimeout; /* value for the inter-character time-out timer. */
 };

 /* Defines the UI call error codes. */
 enum TpUIError {
 P_UI_ERROR_UNDEFINED, /* Undefined error */
 P_UI_ERROR_ILLEGAL_ID, /* The information id specified is invalid */
 P_UI_ERROR_ID_NOT_FOUND, /* Information id is not known to the the User Interaction
service */

 P_UI_ERROR_RESOURCE_UNAVAILABLE, /* Resources used by the User Interaction service are
unavailable. */

 P_UI_ERROR_ILLEGAL_RANGE, /* The values for manimum and maximum collection length are
out of range */

 P_UI_ERROR_IMPROPER_CALLER_RESPONSE, /* Improper user response */
 P_UI_ERROR_ABANDON, /* Specified leg is disconnected before the send information
completed */

 P_UI_ERROR_NO_OPERATION_ACTIVE, /* No active user interaction for the specified leg. */
 P_UI_ERROR_NO_SPACE_AVAILABLE /* There is no more storage capacity to record the message.*/
 };

 /* Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI
notification */

 struct TpUIEventCriteria {
 TpString UserAddress; /* Address of the end-user for which notification shall be handled */
 TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */
 };

 /* Defines the Sequence of Data Elements that specify a UI notification */

3GPP

3G TS 29.198 1.0.0 (2000-03)1123G TS 29.198 version 1.0.0

 struct TpUIEventInfo {
 TpString UserAddress; /* Address of the end-user for which notification shall be handled */
 TpString ServiceCode; /* 2 digit code indicating the UI to be triggered. */
 };

 /* Defines the cause of the UI fault detected. */
 enum TpUIFault {
 P_UI_FAULT_UNDEFINED, /* Undefined */
 P_UI_CALL_DEASSIGNED /* The related Call object has been deassigned. */
 };

 /* Defines the type of information send to the end-user */
 enum TpUIInfoType {
 P_UI_INFO_ID, /* The information consists of an ID */
 P_UI_INFO_TEXT, /* The information consists of a text string */
 P_UI_INFO_ADDRESS /* The information consists of a URL. */
 };

 /* Defines the Tagged Choice of Data Elements that specifies the information to be send to a end-
user. */

 union TpUIInfo switch(TpUIInfoType) {
 case P_UI_INFO_ID: TpInt32 InfoID; /*Defines the ID of the user information script or
stream to send to an end-user.*/

 case P_UI_INFO_TEXT: TpString InfoText; /*Defines the text to be send to an end-user.*/
 case P_UI_INFO_ADDRESS: TpURL InfoAddress; /*Defines the URL of the text or stream to be send to
an end-user*/

 };

 /* Defines the criteria for recording of messages */
 struct TpUIMessageCriteria {
 TpString EndSequence; /* Defines the character(s) which terminate an input of variable length.
*/

 TpDuration MaxMessageTime; /* Specifies the maximum allowed duration in seconds. */
 TpInt32 MaxMessageSize; /* Specifies the maximum allowed size in bytes of the message. */
 };

 /* Defines the UI call reports if a response was requested. */
 enum TpUIReport {
 P_UI_REPORT_UNDEFINED, /* Undefined report */
 P_UI_REPORT_ANNOUNCEMENT_ENDED, /* Confirmation that the announcement has ended */
 P_UI_REPORT_LEGAL_INPUT, /* Information collected., meeting the specified criteria. */
 P_UI_REPORT_NO_INPUT, /* User immediately entered the delimiter character. No valid
information has been returned */

 P_UI_REPORT_TIMEOUT, /* User did not input any response before the input timeout
expired */

 P_UI_REPORT_MESSAGE_STORED, /* A message has been stored successfully */
 P_UI_REPORT_MESSAGE_NOT_STORED /* The message has not been stored successfully */
 };

 /* Defines the situations for which a response is expected following the user interaction. */
 enum TpUIResponseRequest {
 P_UI_RESPONSE_REQUIRED, /* A response must be sent when the announcement has
completed. */

 P_UI_LAST_ANNOUNCEMENT_IN_A_ROW, /* This is the final announcement within a sequence. */
 P_UI_FINAL_REQUEST /* This is the final request. */
 };

 /* Defines the type of the variable parts in the information to send to the user. */
 enum TpUIVariablePartType {
 P_UI_VARIABLE_PART_INT, /* Variable part is of type integer */
 P_UI_VARIABLE_PART_ADDRESS,/* Variable part is of type address */
 P_UI_VARIABLE_PART_TIME, /* Variable part is of type time */
 P_UI_VARIABLE_PART_DATE, /* Variable part is of type date */
 P_UI_VARIABLE_PART_PRICE /* Variable part is of type price */
 };

 /* Defines the Tagged Choice of Data Elements that specify the variable parts in the information to
send to the user. */

 union TpUIVariableInfo switch(TpUIVariablePartType) {
 case P_UI_VARIABLE_PART_INT: TpInt32 VariablePartInteger;
 case P_UI_VARIABLE_PART_ADDRESS: TpString VariablePartAddress;
 case P_UI_VARIABLE_PART_TIME: TpTime VariablePartTime;
 case P_UI_VARIABLE_PART_DATE: TpDate VariablePartDate;
 case P_UI_VARIABLE_PART_PRICE: TpPrice VariablePartPrice;
 };

3GPP

3G TS 29.198 1.0.0 (2000-03)1133G TS 29.198 version 1.0.0

 /* Define the possible Exceptions. */
 exception TpGUISException {
 TpInt32 exceptionType;
 };

 const TpInt32 P_GUIS_INVALID_CRITERIA = 768; /* Invalid criteria specified */
 const TpInt32 P_GUIS_ILLEGAL_ID = 769; /* Information id specified is invalid */
 const TpInt32 P_GUIS_ID_NOT_FOUND = 770; /* Information id is not known to the User
Interaction Service */

 const TpInt32 P_GUIS_ILLEGAL_RANGE = 771; /* The values for minimum and maximum
collection length are out of range */

 const TpInt32 P_GUIS_INVALID_COLLECTION_CRITERIA = 772; /* Invalid collection criteria specified */
 const TpInt32 P_GUIS_NETWORK_DEASSIGN = 773; /* The relation between the network and the
gateway is terminated. */

 const TpInt32 P_GUIS_INVALID_NETWORK_STATE = 774; /* Although the sequence of method calls is
allowed by the gateway, the underlying protocol can not support it. */

 }; // end module ui
 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file UI.idl

9.4.2 Generic User Interaction IDL
// source file: GUI.idl
// GUIS Interface description

#ifndef __OSA_UI_GUI_DEFINED
#define __OSA_UI_GUI_DEFINED

#include <UI.idl>
#include <ECC.idl>

module org {
 module threegpp {
 module osa {
 module ui {
 module gui {

 interface IpAppUIManager; // forward definition;
 interface IpAppUI; // forward definition;
 interface IpAppUICall; // forward definition;

 /* The User Interaction Service Interface provides functions to send
 information to, or gather information from the user. */
 interface IpUI : IpService {
 /* This method plays an announcement or sends other information to the user.*/
 void sendInfoReq (
 in TpSessionID userInteractionSessionID,
 in TpUIInfo info,
 in TpUIVariableInfo variableInfo,
 in TpInt32 repeatIndicator,
 in TpUIResponseRequest responseRequested,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method plays an announcement or sends other information to the user
 and collects some information from the user. */
 void sendInfoAndCollectReq (
 in TpSessionID userInteractionSessionID,
 in TpUIInfo info,
 in TpUIVariableInfo variableInfo,
 in TpUICollectCriteria criteria,
 in TpUIResponseRequest responseRequested,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method requests that the relationship between the application and
 the user interaction object be released. */
 void release (
 in TpSessionID userInteractionSessionID

3GPP

3G TS 29.198 1.0.0 (2000-03)1143G TS 29.198 version 1.0.0

)
 raises (TpGUISException, TpGeneralException);

 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UI object */
 struct TpUIIdentifier {
 TpSessionID UserInteractionSessionID;
 IpUI UIRef;
 };

 /* The Call User Interaction Service Interface provides functions to send
 information to, or gather information from, the user. */
 interface IpUICall : IpUI {
 /* This asynchronous method aborts the specified user interaction operation. */
 void abortActionReq (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);
 };

 /* Defines the Sequence of Data Elements that unambiguously specify the UICall object. */
 struct TpUICallIdentifier {
 IpUICall UICallRef;
 TpSessionID UserInteractionSessionID;
 };

 /* This interface is the 'service manager' interface for the Generic User Interaction Service. */
 interface IpUIManager {
 /* This method is used to create a new user interaction object for non-call related purposes */
 void createUI (
 in IpAppUI appUI,
 in TpAddress userAddress,
 out TpUIIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used to create a new user interaction object for call related purposes. */
 void createUICall (
 in IpAppUICall appUI,
 in org::threegpp::osa::cc::gcc::TpCallIdentifier callIdentifier,
 in org::threegpp::osa::cc::ecc::TpCallLegIdentifier callLegIdentifier,
 out TpUICallIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used to enable the reception of user initiated user interaction. */
 void enableUINotification (
 in IpAppUIManager appInterface,
 in TpUIEventCriteria eventCriteria,
 out TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This method is used by the application to disable UI notifications. */
 void disableUINotification (
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);
 };

 /* The Generic User Interaction Service manager application interface provides
 the application call management functions to the Generic User Interaction Service. */
 interface IpAppUIManager : IpOsa {
 /* This method indicates to the application that the User Interaction service
 instance has terminated or closed abnormally. */
 void userInteractionAborted (
 in TpUIIdentifier userInteraction
)
 raises (TpGUISException, TpGeneralException);

 /* This method notifies the application of an user initiated request for user interaction. */
 void userInteractionEventNotify (
 in TpUIIdentifier ui,
 in TpUIEventInfo eventInfo,

3GPP

3G TS 29.198 1.0.0 (2000-03)1153G TS 29.198 version 1.0.0

 in TpAssignmentID assignmentID,
 out IpAppUI appInterface
)
 raises (TpGUISException, TpGeneralException);
 };

 /* The User Interaction Application Interface is used to handle generic user
 interaction request responses and reports. */
 interface IpAppUI : IpOsa {
 /* This method informs the application about the start or the completion of a sendInfoCallReq().

*/
 void sendInfoRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIReport response
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information was unsuccessful. */
 void sendInfoErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method returns the information collected to the application. */
 void sendInfoAndCollectRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIReport response,
 in TpString info
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to send information
 and collect a response was unsuccessful. */
 void sendInfoAndCollectErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);

 /* This method indicates to the application that a fault has been detected in the user

interaction. */
 void userInteractionFaultDetected (
 in TpSessionID userInteractionSessionID,
 in TpUIFault fault
)
 raises (TpGUISException, TpGeneralException);
 };

 /* The Call User Interaction Application Interface is used to handle call user
 interaction request responses and reports. */
 interface IpAppUICall : IpAppUI {
 /* This method confirms that the request to abort a user interaction operation on a call was

successful. */
 void abortActionRes (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID
)
 raises (TpGUISException, TpGeneralException);

 /* This asynchronous method indicates that the request to abort a user interaction
 operation on a call resulted in an error.*/
 void abortActionErr (
 in TpSessionID userInteractionSessionID,
 in TpAssignmentID assignmentID,
 in TpUIError error
)
 raises (TpGUISException, TpGeneralException);
 };

 }; // end module gui
 }; // end module ui

3GPP

3G TS 29.198 1.0.0 (2000-03)1163G TS 29.198 version 1.0.0

 }; // end module osa
 }; // end module threegpp
}; // end module org

#endif

// END file GUI.idl

9.5 Mobility Management IDL

9.5.1 Common definitions for mobility management: MM.idl
#include <OSA.idl>

module org {
module threegpp {
module osa {
module mm {

 // Defines the type of uncertainty shape.
 enum TpLocationUncertaintyShape {
 P_M_SHAPE_NONE, // No uncertainty shape present.
 P_M_SHAPE_CIRCLE, // Uncertainty shape is a circle.
 P_M_SHAPEa_CIRCLE_SECTOR, // Uncertainty shape is a circle sector.
 P_M_SHAPE_CIRCLE_ARC_STRIPE, // Uncertainty shape is a circle arc stripe.
 P_M_SHAPE_ELLIPSE, // Uncertainty shape is an ellipse.
 P_M_SHAPE_ELLIPSE_SECTOR, // Uncertainty shape is an ellipse sector.
 P_M_SHAPE_ELLIPSE_ARC_STRIPE // Uncertainty shape is an ellipse arc stripe.
 };

 // Defines the structure of data elements that specify a geographical position.
 // An “ellipsoid point with uncertainty shape” defines the horizontal location.
 // The reference system chosen for the coding of locations is the World Geodetic
 // System 1984 (WGS 84).
 struct TpGeographicalPosition {
 TpFloat longitude;
 TpFloat latitude;
 TpLocationUncertaintyShape typeOfUncertaintyShape;
 TpFloat uncertaintyInnerSemiMajor;
 TpFloat uncertaintyOuterSemiMajor;
 TpFloat uncertaintyInnerSemiMinor;
 TpFloat uncertaintyOuterSemiMinor;
 TpInt32 angleOfSemiMajor;
 TpInt32 segmentStartAngle;
 TpInt32 segmentEndAngle;
 };

 // Defines the priority of a location request.
 enum TpLocationPriority {
 P_M_NORMAL,
 P_M_HIGH
 };

 // Defines a response time requirement.
 enum TpLocationResponseIndicator {
 P_M_NO_DELAY, // Return either initial or last known location of the user.
 P_M_LOW_DELAY, // Return the current location with minimum delay.
 // The mobility SCF shall attempt to fulfil any
 // accuracy requirement, but in doing so shall not add
 // any additional delay.
 P_M_DELAY_TOLERANT, // Obtain the current location with regard to
 // fulfilling the accuracy requirement.
 P_M_USE_TIMER_VALUE // Obtain the current location with regard to
 // fulfilling the response time requirement.
 };

 // Defines the structure of data elementsthat specifies the application's
 // requirements on the mobility SCF's response time.
 struct TpLocationResponseTime {
 // Indicator for wich kind of response time that is required, see
 // TLocationResponseIndicator.
 TpLocationResponseIndicator responseTime;
 // Optional timer used in combination when responseTime equals

3GPP

3G TS 29.198 1.0.0 (2000-03)1173G TS 29.198 version 1.0.0

 // USE_TIMER_VALUE.
 TpInt32 timerValue;
 };

 // Defines the type of location requested.
 enum TpLocationType {
 P_M_CURRENT, // Current location
 P_M_CURRENT_OR_LAST_KNOWN, // Current or last known location
 P_M_INITIAL // Initial location for an emergency services call
 };

// Defines a diagnostic value that is reported in addition to an error by
 // one of the mobility SCFs.
 enum TpMobilityDiagnostic {
 P_M_NO_INFORMATION, // No diagnostic information present.
 // Valid for all type of errors.
 P_M_APPL_NOT_IN_PRIV_EXCEPT_LST, // Application not in privacy exception list.
 // Valid for 'Unauthorised Application' error.
 P_M_CALL_TO_USER_NOT_SETUP, // Call to user not set-up. Valid for
 // 'Unauthorised Application' error.
 P_M_PRIVACY_OVERRIDE_NOT_APPLIC, // Privacy override not applicable. Valid for
 // 'Unauthorised Application' error.
 P_M_DISALL_BY_LOCAL_REGULAT_REQ, // Disallowed by local regulatory requirements.
 // Valid for 'Unauthorised Application' error.
 P_M_CONGESTION, // Congestion. Valid for 'Position Method
 // Failure' error.
 P_M_INSUFFICIENT_RESOURCES, // Insufficient resources. Valid for 'Position
 // Method Failure' error.
 P_M_INSUFFICIENT_MEAS_DATA, // Insufficient measurement data. Valid for
 // 'Position Method Failure' error.
 P_M_INCONSISTENT_MEAS_DATA, // Inconsistent measurement data. Valid for
 // 'Position Method Failure' error.
 P_M_LOC_PROC_NOT_COMPLETED, // Location procedure not completed. Valid for
 // 'Position Method Failure' error.
 P_M_LOC_PROC_NOT_SUPP_BY_USER, // Location procedure not supported by user.
 // Valid for 'Position Method Failure' error.
 P_M_QOS_NOT_ATTAINABLE // Quality of service not attainable. Valid for
 // 'Position Method Failure' error.
 };

 // Defines an error that is reported by one of the mobility SCFs.
 enum TpMobilityError {
 P_M_OK, // No error occurred while processing the request.
 P_M_SYSTEM_FAILURE, // System failure. The request can not be handled because
 // of a general problem in the mobility SCF or the
 // underlying network. Fatal
 P_M_UNAUTHORIZED_NETWORK, // Unauthorised network, The requesting network is
 // not authorised to obtain the user's location or
 // status. Non fatal
 P_M_UNAUTHORIZED_APPLICATION, // Unauthorised application. The application is
 // not authorised to obtain the user's location
 // or status. Fatal
 P_M_UNKNOWN_SUBSCRIBER, // Unknown subscriber. The user is unknown, i.e. no
 // such subscription exists. Fatal
 P_M_ABSENT_SUBSCRIBER, // Absent subscriber. The user is currently not
 // reachable. Non fatal
 P_M_POSITION_METHOD_FAILURE // Position method failure. The mobility SCF
 // failed to obtain the user's position. Non fatal
 };

 // This enumeration is used in requests to stop mobility reports that are
 // sent from a mobility SCF to an application.
 enum TpMobilityStopScope {
 P_M_ALL_IN_ASSIGNMENT, // The request concerns all users in an assignment.
 P_M_SPECIFIED_USERS // The request concerns only the users that are
 // explicitly specified in a collection.
 };

 // Defines the structure of data element that specifies a request to stop whole or parts of an
 // assignment. Assignments are used for periodic or triggered reporting of a
 // user locations or statuses. Observe that the parameter 'Users' is optional.
 // If the parameter 'stopScope' is set to P_M_ALL_IN_ASSIGNMENT, the parameter
 // 'stopScope' is undefined. If the parameter stopScope is set to
 // P_M_SPECIFIED_USERS, then the assignment shall be stopped only for the users
 // specified in the 'users' collection.
 struct TpMobilityStopAssignmentData {
 // Identity of the session that shall be stopped.
 TpSessionID assignmentId;

3GPP

3G TS 29.198 1.0.0 (2000-03)1183G TS 29.198 version 1.0.0

 // Specify if only a part of the assignment or if whole the assignment
 // shall be stopped.
 TpMobilityStopScope stopScope;
 // Optional parameter describing which users a stop request is
 // addressing when only a part of an assignment is to be stopped.
 TpAddressSet users;
 };

}; }; }; };

9.5.2 Network User Location: MMnul.idl
/**/
// Mobility Management Data Definitions & Interfaces
// Network User Location
/**/

#include <MM.idl>

module org {
module threegpp {
module osa {
module mm {
module nul {

 /**/
 // Data definitions
 /**/

 // This data type is identical to a TString. It specifies the Cell Global
 // Identification or the Location Area Identification (LAI).
 // The Cell Global Identification (CGI) is defined as the string of characters
 // in the following format:
 // MCC-MNC-LAC-CI
 // where:
 // MCC Mobile Country Code (three decimal digits)
 // MNC Mobile Network Code (two or three decimal digits)
 // LAC Location area code (four hexadecimal digits)
 // CI Cell Identification (four hexadecimal digits)
 //
 // The Location Area Identification (LAI) is defined as a string of characters
 // in the following format:
 // MCC-MNC-LAC
 // where:
 // MCC Mobile Country Code (three decimal digits)
 // MNC Mobile Network Code (two or three decimal digits)
 // LAC Location area code (four hexadecimal digits)
 typedef TpString TpLocationCellIDOrLAI;

 // Defines the structure of data elements that specifies the criteria for a
 // triggered location report to be generated.
 struct TpLocationTriggerCamel {
 TpBoolean updateInsideVlr; // Generate location report when it occurs an
 // location update inside the current VLR area.
 TpBoolean updateOutsideVlr;// Generate location report when the user moves
 // to another VLR area.
 };

 // Defines the structure of data elements that specifies the location of a mobile
 // telephony user. Observe that if the StatusCode is indicating an error ,
 // then neither GeographicalPosition, Timestamp, VlrNumber, LocationNumber,
 // CellIdOrLai nor their associated presense flags are defined.
 struct TpUserLocationCamel {
 TpAddress userID; // The address of the user.
 TpMobilityError statusCode; // Indicator of error.
 TpBoolean geographicalPositionPresent; // Flag indicating if the
 // geographical position is present.
 TpGeographicalPosition geographicalPosition; // Specification of a position
 // and an area of uncertainty.
 TpBoolean timestampPresent; // Flag indicating if the timestamp is present.
 TpDateAndTime timestamp; // Timestamp indicating when the request
 // was processed.
 TpBoolean vlrNumberPresent; // Flag indicating if the VLR number is present.
 TpAddress vlrNumber; // Current VLR number for the user.
 TpBoolean locationNumberPresent; // Flag indicating if the location
 // number is present.
 TpAddress locationNumber; // Current location number.
 TpBoolean cellIdOrLaiPresent; // Flag indicating if cell-id or

3GPP

3G TS 29.198 1.0.0 (2000-03)1193G TS 29.198 version 1.0.0

 // LAI of the user is present.
 TpLocationCellIDOrLAI cellIdOrLai; // Cell-id or LAI of the user.
 };

 typedef sequence <TpUserLocationCamel> TpUserLocationCamelSet;

 /**/
 // Interface definitions
 /**/

 interface IpAppUserLocationCamel; // Forward definition

 // Inherits from the generic service capability feature interface.
 // This interface is the SCF manager’s interface for Network User Location.
 interface IpUserLocationCamel : IpService {

 // Request for mobile-related location information on one or several wireles users.
 void locationReportReq(
 in IpAppUserLocationCamel appLocationCamel,
 in TpAddressSet users,
 out TpSessionID assignmentId)
 raises (TpGeneralException);

 // Request for periodic mobile location reports on one or several users.
 void periodicLocationReportingStartReq(
 in IpAppUserLocationCamel appLocationCamel,
 in TpAddressSet users,
 in TpDuration reportingInterval,
 out TpSessionID assignmentId)
 raises (TpGeneralException);

 // This method stops the sending of periodic mobile location reports for
 // one or several users.
 void periodicLocationReportingStop(
 in TpMobilityStopAssignmentData stopRequest)
 raises (TpGeneralException);

 // Request for user location reports, containing mobile related information,
 // when the location is changed (the report is triggered by the location change).
 void triggeredLocationReportingStartReq(
 in IpAppUserLocationCamel appLocationCamel,
 in TpAddressSet users,
 in TpLocationTriggerCamel trigger,
 out TpSessionID assignmentId)
 raises (TpGeneralException);

 // Request that triggered mobile location reporting should stop.
 void triggeredLocationReportingStop(
 in TpMobilityStopAssignmentData stopRequest)
 raises (TpGeneralException);
 };

 // Inherits from the generic service capability feature interface.
 // The network user location application interface is implemented by the client
 // application developer and is used to handle location reports that are
 // specific for mobile telephony users.
 interface IpAppUserLocationCamel : IpOsa {

 // Delivery of a mobile location report. The report is containing
 // mobile-related location information for one or several users.
 void locationReportRes(
 in TpSessionID assignmentId,
 in TpUserLocationCamelSet locations)
 raises (TpGeneralException);

 // This method indicates that the location report request has failed.
 void locationReportErr(
 in TpSessionID assignmentId,
 in TpMobilityError cause,
 in TpMobilityDiagnostic diagnostic);

 // Periodic delivery of mobile location reports. The reports are
 // containing mobile-related location information for one or several users.
 void periodicLocationReport(
 in TpSessionID assignmentId,
 in TpUserLocationCamelSet locations)
 raises (TpGeneralException);

3GPP

3G TS 29.198 1.0.0 (2000-03)1203G TS 29.198 version 1.0.0

 // This method indicates that a requested periodic location report has
 // failed. Note that errors only concerning individual users are reported
 // in the ordinary periodicLocationReport() message.
 void periodicLocationReportErr(
 in TpSessionID assignmentId,
 in TpMobilityError cause,
 in TpMobilityDiagnostic diagnostic);

 // Delivery of a report that is indicating that one or several user's
 // mobile location has changed.
 void triggeredLocationReport(
 in TpSessionID assignmentId,
 in TpUserLocationCamel location,
 in TpLocationTriggerCamel criterion)
 raises (TpGeneralException);

 // This method indicates that a requested triggered location report has
 // failed. Note that errors only concerning individual users are reported
 // in the ordinary triggeredLocationReport() message.
 void triggeredLocationReportErr(
 in TpSessionID assignmentId,
 in TpMobilityError cause,
 in TpMobilityDiagnostic diagnostic);
 };

};};};};};

9.5.3 User Status: MMus.idl
/**/
// Mobility Management Data Definitions & Interfaces
// User Status
/**/

#include <MM.idl>

module org {
module threegpp {
module osa {
module mm {
module us {

 /**/
 // Data definitions
 /**/

 // Defines the status of a user.
 enum TpUserStatusIndicator {
 P_US_REACHABLE, // User is reachable
 P_US_NOT_REACHABLE, // User is not reachable
 P_US_BUSY // User is busy (only applicable for interactive user
 // status request, not when triggers are used)
 };

 // Defines the structure of data elements that specify the identity
 // and status of a user.
 struct TpUserStatus {
 TpAddress userID; // The user address.
 TpMobilityError statusCode; // Indicator of error.
 TpUserStatusIndicator status; // The current status of the user.
};

 typedef sequence <TpUserStatus> TpUserStatusSet;

 /**/
 // Interface definitions
 /**/

 interface IpAppUserStatus; // Forward definition

 // Inherits from the generic service capability feature interface.
 // The user status interface represents the interface to the user status SCF.
 interface IpUserStatus : IpService {

 // Request for a report on the status of one or several users.
 void statusReportReq(
 in IpAppUserStatus appStatus,
 in TpAddressSet users,

3GPP

3G TS 29.198 1.0.0 (2000-03)1213G TS 29.198 version 1.0.0

 out TpSessionID assignmentId)
 raises (TpGeneralException);

 // Request for triggered status reports when one or several user's
 // status is changed. The user status SCF will send a report when
 // the status changes.
 void triggeredStatusReportingStartReq (
 in IpAppUserStatus appStatus,
 in TpAddressSet users,
 out TpSessionID assignmentId)
 raises (TpGeneralException);

 // This method stops the sending of status reports for one or several users.
 void triggeredStatusReportingStop (
 in TpMobilityStopAssignmentData stopRequest)
 raises (TpGeneralException);
 };

 // Inherits from the base osa interface.
 // The user-status application interface is implemented by the client
 // application developer and is used to handle user status reports.
 interface IpAppUserStatus : IpOsa {

 // Delivery of a report, that is containing one or several user's status.
 void statusReportRes(
 in TpSessionID assignmentId,
 in TpUserStatusSet status)
 raises (TpGeneralException);

 // This method indicates that the status report request has failed.
 void statusReportErr(
 in TpSessionID assignmentId,
 in TpMobilityError cause,
 in TpMobilityDiagnostic diagnostic);

 // Delivery of a report that is indicating that a user's status has changed.
 void triggeredStatusReport(
 in TpSessionID assignmentId,
 in TpUserStatus status)
 raises (TpGeneralException);

 // This method indicates that a requested triggered status reporting has
 // failed. Note that errors only concerning individual users are reported
 // in the ordinary triggeredStatusReport() message.
 void triggeredStatusReportErr(
 in TpSessionID assignmentId,
 in TpMobilityError cause,
 in TpMobilityDiagnostic diagnostic);
 };

};};};};};

9.6 Terminal Capabilities: TERMCAP.idl

#ifndef __TERMCAP_DEFINED
#define __TERMCAP_DEFINED

module org {
module threegpp {
module osa {
module termcap {

 enum TpTerminalCapabilitiesError {
 P_TERMCAP_ERROR_UNDEFINED, /* Undefined */
 P_TERMCAP_INVALID_TERMINALID, /* Terminal ID not valid */
 P_TERMCAP_SYSTEM_FAILURE /* General problem in terminal capabilities service

or in underlying network */

 };

 exception TpTermCapException {
 TpTerminalCapabilitiesError error;
 };

 /* TpTerminalCapabilities: Structure containing status code and terminal

3GPP

3G TS 29.198 1.0.0 (2000-03)1223G TS 29.198 version 1.0.0

 capabilities. */
 struct TpTerminalCapabilities {
 /* statusCode: Indicates whether or not the terminalCapabilities
 are available. */
 TpBoolean statusCode;
 /* terminalCapabilities: Specifies the latest available capabilities of the user´s terminal.

This information, if available, is returned as CC/PP headers as specified in W3C [12] and
adopted in the WAP UAProf specification [13]. It contains URLs; terminal attributes and
values, in RDF format; or a combination of both. */

 TpString terminalCapabilities;
 };

 interface IpTerminalCapabilities {
 /* Method: getTerminalCapabilities()
 This method is used by an application to get the capabilities of a
 user's terminal. Direction: Application to Network

 In parameter TerminalIdentity: Identifies the terminal. It may be
 a logical address known by the WAP Gateway/PushProxy.
 Out parameter, see TerminalCapabilityStruct*/
 void getTerminalCapabilities (
 in TpString terminalIdentity,
 out TpTerminalCapabilities result
)
 raises (TpTermCapException, TpGeneralException);

 };

};};};};

#endif

3GPP

3G TS 29.198 1.0.0 (2000-03)1233G TS 29.198 version 1.0.0

10 History
 Date Version Comment

February 2000 0.1.0 Initial Draft based on stable material on the Call Control, User Interaction, User
Location and User Status SCFs. Initial first draft on the Framework SCF has
been contributed but needs further electronic review.

February 2000 0.2.0 Chelo’s input on the Framework API are included, mainly the STDs and the
IDLs based on the described Framework functionality in version 0.1.0

March 2000 0.3.0 Inputs based on the meeting in Antwerp 28/2 – 1/3
Enhancements to FW, CC, UI, NUL, NUS and TermCap SCFs added.
Improvements to introduction sections 1-5.

March 2000 1.0.0 Email comments included into the document and version upgraded to 1.0.0 as
decided on the email exploder (d.d. 10-03-2000)

3GPP

3G TS 29.198 1.0.0 (2000-03)1243G TS 29.198 version 1.0.0

11 Editors
 Name Company Tel & Email Parts
1 Yun-Chao Hu Ericsson Radio

Systems
+46 8 508 78153
Yun-Chao.Hu@era.ericsson.se

Introduction, SDL

2 Chelo Abarca Alcatel +33 1 69 63 14 11
Chelo.Abarca@alcatel.fr

Framework SCF

3 Ard-Jan
Moerdijk

Ericsson
Netherlands

+31 161 24 2777
Ard-Jan.Moerdijk@etm.ericsson.se

Call Control & User Interaction
SCF

4 Stephane
Desrochers

Ericsson
Canada

+1 514 345-7900
Stephane.Desrochers@lmc.ericsson.se

User Location & User Status SCF,
Common

5 Erwin van
Rijssen

Ericsson
Sweden

+ 46 8 404 5930
Erwin.van.Rijssen@era.ericsson.se

Terminal Capabilities

