API Specification 2.0

Sequence Diagrams

Contents

50
The sequence diagrams specification

0.1
Overview of service
5
0.2
Objects implementing the interfaces
5
0.3
Messages
5
0.4
Description of service
5
1
Service sequence diagrams
6
1.1
Generic Call Control Service
6
1.1.1
Alarm Call
6
1.1.2
Application Initiated Call
7
1.1.3
Number Translation1
9
1.1.4
Number Translation2
10
1.1.5
Number Translation3
12
1.1.6
Number Translation4
14
1.1.7
Call Barring1
16
1.1.8
additional callbacks
18
1.1.9
Pre-Paid with Advice of Charge (AoC)
20
1.2
Enhanced Call Control Service
24
1.2.1
CallBarring2
24
1.2.2
Prepaid
26
1.2.3
Complex Card Service
28
1.2.4
Application initiated call setup
31
1.3
Multi-Media Call Control Service
33
1.3.1
Barring for media, simple
34
1.3.2
Barring for media combined with call routing, alternative 1
35
1.3.3
Barring for media combined with call routing, alternative 2
36
1.3.4
Call Volume charging supervision
39
1.4
Conference Call Control Service
42
1.4.1
Resource Reservation
42
1.4.2
Meet-me conference without subconferencing
43
1.4.3
Non ad-hoc, add-on with subconferencing
45
1.5
Multi-Media Conference Call Control Service
48
1.5.1
Non ad-hoc, add-on multimedia
48
1.6
Generic User Interaction Service
51
1.6.1
Automated Collect Call
51
2
Connectivity Manager service sequence diagrams
55
2.1
Operator Selects Service Components and creates a new VPrP
55
2.2
Operator Browses SAP and Sites
56
2.3
Operator Browses Virtual Provisioned Pipe
57
3
Framework sequence diagrams
58
3.1
Accessing the framework
58
3.2
One-Way Authentication
60
3.3
Two-way Authentication
61
3.4
Enabling the framework’s event notification mechanism
62
3.5
Service Manager Factory
63
3.6
Integrity Management
64
3.6.1
Fault Management: Client Application requests a Framework Activity Test
64
3.6.2
Fault Management: Client Application requests a Service Activity Test
65
3.6.3
Fault Management: Service requests a Framework Activity Test
66
3.6.4
Fault Management: Service requests an Application Activity Test
67
3.6.5
Fault Management: Framework detects the service failure
68
3.6.6
Fault Management: Application detects the service is unavailable
69
3.6.7
Load Management: Application callback registration and load control
69
3.6.8
Load Management: Application and framework query load statistics
71
3.6.9
Load Management: Application or service reports load condition
71
3.6.10
Load Management: Suspend/resume notification from application
73
3.6.11
Load Management: Example of Framework managing both Client Application and Service Load.
74
3.6.12
Heartbeat: Start/perform/end HB supervision of Application
75
3.6.13
Heartbeat: Start/perform/end HB supervision of Service
76
3.7
Service Registration, Discovery and Subscription
77
3.7.1
Service Registration, Discovery, and Subscription Sequence Diagram
77
3.7.2
Service Type Creation, Deletion, and Management Sequence Diagram (Figure 1)
81
3.7.3
Service Registration Sequence Diagram(Figure 2)
82
3.7.4
Enterprise Operator and Client Application Subscription Management Sequence Diagram(Figure 3)
82
3.7.5
Service Discovery and Subscription Sequence Diagram(Figure 4)
83
4
Generic Messaging sequence diagrams
85
4.1
Open Mailbox
85
4.2
Close Mailbox
85
4.3
Prepare Mailbox
86
4.4
Get Message
87
4.5
Get Folder Information
88
5
Mobility sequence diagrams specification
89
5.1
Overview of service
89
5.2
Objects implementing the interfaces
89
5.3
Messages
89
5.4
Description of service
89
6
Definitions and Abbreviations
90
6.1
Definitions
90
6.2
Abbreviations
90
7
User Location Service sequence diagrams
91
7.1
User Location Interrogation – Interactive Request
91
7.2
User Location Interrogation – Periodic Request
92
7.3
User Location Interrogation – Triggered Request
93
7.4
User Location Interrogation – Parameter Error
94
7.5
User Location Interrogation – Network Error
95
8
User Location Camel Service sequence diagrams
96
9
User Location Emergency Service sequence diagrams
97
9.1
ULE – Subscription and Network Induced Location Reports
97
9.2
ULE – Network Induced Location Reports
97
9.3
ULE – Interactive Location Request
98
9.4
ULE – Interactive Request Parameter Error
99
9.5
ULE – Interactive Request Network Error
99
10
User Status Service sequence diagrams
100
10.1
US– Interactive Request
100
10.2
US – Triggered Request
101
10.3
US– Interactive Request Parameter Error
102
10.4
US– Interactive Request Network Error
102

0 The sequence diagrams specification

This document provides example use of the API services, through the use of sequence diagrams to illustrate typical sequences with which the application programmer will have to comply, that can be derived using version 2.0 of the API specification.

The general format of the sequence diagrams is described below.

0.1 Overview of service

Before each sequence diagram, a textual description of the service to follow is given.

0.2 Objects implementing the interfaces

These are given at the top of each sequence diagram and are shown as names within shaded rectangular boxes. Where given, the names of the objects implementing the interfaces are given before the colons. The interface types are given after the colons.

0.3 Messages

Messages flowing between objects are shown as numbered arrows. Sequence numbers indicate the ordering of messages. Each message is given a message name, which indicates the method call to be invoked on the object receiving the message.

It should be noted that the API is between the objects implementing the application interfaces (e.g. IpAppCallControlManager, IpAppCall, IpAppCallLeg, …) and the service interfaces (e.g. IpCallControlManager, IpCall, IpCallLeg, …). Intra application or intra service flows are implementation dependent.

0.4 Description of service

At the end of each sequence diagram, a detailed textual description, describing each of the message flows, for the service is given.

1 Service sequence diagrams

1.1 Generic Call Control Service

1.1.1 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image1.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpAppUICall

 :

IpAppLogic

1: new()

2: createCall()

3: new()

4: routeCallToOriginationReq ()

5: routeCallToOriginationRes()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

10: sendInfoRes()

11: 'forward event'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

1.1.2 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk to.

[image: image2.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppLogic

5: routeCallToOriginationRes()

1: new()

2: createCall()

3: new()

4: routeCallToOriginationReq ()

7: routeCallToDestinationReq ()

8: routeCallToDestinationRes()

6: 'forward event'

9: 'forward event'

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

1.1.3 Number Translation1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the service.

[image: image3.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 :

IpAppLogic

6: 'translate number'

7: routeCallToDestinationReq ()

8: routeCallToDestinationRes ()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

1.1.4 Number Translation2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically released.

[image: image4.wmf] :

IpAppLogic

 :

IpAppCallControlManager

 : IpAppCall

 :

IpCallControlManager

 : IpCall

6: 'translate number'

9: 'forward event'

8: routeCallToDestinationRes ()

7: routeCallToDestinationReq ()

10: release ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

1.1.5 Number Translation3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically routed to a voice mailbox.

[image: image5.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppCallControlManager

 :

IpAppLogic

8: routeCallToDestinationRes ()

6: 'translate number'

7: routeCallToDestinationReq ()

9: 'forward event'

10: 'translate number'

11: routeCallToDestinationReq ()

12: routeCallToDestinationRes ()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

1.1.6 Number Translation4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.

[image: image6.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppCallControlManager

 :

IpAppLogic

6: 'translate number'

7: getCallInfoReq ()

8: routeCallToDestinationReq ()

9: routeCallToDestinationRes ()

13: getCallInfoRes ()

14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

11: routeCallToDestinationRes ()

12: 'forward event'

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

1.1.7 Call Barring1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image7.wmf] :

IpAppLogic

 :

IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

13: routeCallToDestinationRes ()

12: routeCallToDestinationReq ()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall()

7: new()

11: release()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range are prompted for a password before the call is allowed to progress.

When a new call, that matches the event criteria set, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

1.1.8 additional callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is used instead.

[image: image8.wmf]first instance :

IpAppLogic

second instance :

IpAppLogic

 :

IpAppCallControlManager

 :

IpAppCallControlManager

 :

IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to handle callbacks for this first instance of the logic.

2: The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotfication request is sent as for the first instance of the logic.

Because both requests are associated with the same application, the second request is not rejected, but the specified callback object is stored as an additional callback.

5: When the trigger occurs one of the first instance of the application is notified.

The gateway may have different policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

CAP Call Control Service
1.1.9 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image9.wmf]Prepaid :

IpAppLogic

 : IpAppCAPCallControlManager

 : IpCAPCallControlManager

 : IpCAPCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 :

IpAppCAPCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeCallToDestinationReq ()

11: superviseCallReq ()

15: superviseCallReq ()

7: superviseCallReq()

24: superviseCallReq ()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()

23: "forward event"

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

25: superviseCallRes(TpSessionID, TpSuperviseReport, TpDuration)

26: "forward event:

6: setAdviceOfCharge()

19: createUICall()

20: new()

1: This message is used by the application to create an object implementing the IpAppCAPCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCAPCallControlManager. Assuming that the criteria for creating an object implementing the IpCAPCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the CAP Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again, at the tariff switch time,the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

1.2 Enhanced Call Control Service
1.2.1 CallBarring2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is rejected and the call is cleared.

[image: image10.wmf] :

IpAppLogic

 :

IpAppEnhancedCallControlManager

 :

IpAppEnhancedCall

 :

IpEnhancedCall

 : IpUICall

 :

IpUIManage

 :

IpEnhancedCallControlManager

 :

IpAppUICall

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoReq()

12: sendInfoRes()

15: release ()

6: getControlLeg()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

10: 'forward event'

13: 'forward event'

2: enableCallNotification()

7: createUICall()

14: release()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify..

6: This message requests the reference of the object implementing the controlling IpCallLeg interface, so that the necessary call barring service dialogue can be established with the calling party.

7: This message is used to create a UICall object that is associated with the controlling leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

1.2.2 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image11.wmf]Prepaid :

IpAppLogic

 :

IpAppEnhancedCallControlManager

 :

IpEnhancedCallControlManager

 :

IpEnhancedCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 :

IpAppEnhancedCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

5: new()

7: routeCallToDestinationReq ()

8: superviseCallRes()

9: "forward event"

10: superviseCallReq ()

11: superviseCallRes()

12: "forward event"

13: superviseCallReq ()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq ()

18: sendInfoReq()

19: sendInfoRes()

20: "forward event"

22: superviseCallReq()

23: superviseCallRes()

24: "forward event:

25: release()

17: createUICall()

16: getControlLeg()

21: release()

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: The application requests the controlling leg, in order to be able to play announcements to the associated party.

17: A new UICall object is created and associated with the controlling leg.

18: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit. The B-subscriber will not hear the announcement.

19: When the announcement is completed the applicaiton is informed.

20: The message is forwarded to the application.

21: The application releases the UICall object.

22: The user does not terminate so the application terminates the call after the next supervision period.

23: The supervision period ends

24: The event is forwarded to the logic.

25: The application terminates the call.

1.2.3 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.

[image: image12.wmf] :

IpAppLogic

 :

IpAppEnhancedCallControlManager

 :

IpAppEnhancedCall

 :

IpEnhancedCall

 : IpUICall

 :

IpUIManager

AppPartyA :

IpAppCallLeg

PartyB :

IpCallLeg

 :

IpEnhancedCallControlManager

PartyA :

IpCallLeg

 :

IpAppUICall

22: routeCallToDestinationRes ()

21: routeCallToDestinationReq ()

8: sendInfoAndCollectReq()

10: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoAndCollectRes()

13: eventReportReq ()

14: routeCallToDestinationReq ()

15: routeCallToDestinationRes ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

6: getControlLeg()

18: release ()

16: eventReportRes ()

17: getCallLegs()

19: sendInfoAndCollectReq()

20: sendInfoAndCollectRes()

12: setCallback()

2: enableCallNotification()

7: createUICall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range result in the caller being prompted for a password before the call is allowed to progress.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: : This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3.

6: This message requests the reference of the object implementing the controlling IpCallLeg interface, so that the necessary card service dialogue can be established with the calling party.

7: A UICall object is created and associated with the controlling leg of the call.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set.

14: The call is then forward routed to the destination party.

15: This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic.

16: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

17: This causes the application to obtain the reference to the called party, via message 18.

18: This message releases the called party.

19: Another dialogue is invoked using message 20.

20: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

21: The call is then forward routed to the new destination party.

22: This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic.

1.2.4 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is created first. Then party A's call leg is created before triggers are set on it for answer and then routed to the call. On answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being played, party B's call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled and party B is routed to the call.

[image: image13.wmf]PartyB :

IpCallLeg

 :

IpEnhancedCallControlManager

 :

IpAppEnhancedCall

 :

IpEnhancedCall

PartyA :

IpCallLeg

 :

IpAppLogic

4: setCallback()

1: new()

2: createCall()

3: new()

7: eventReportReq ()

 :

IpAppUICall

 : IpUICall

11: sendInfoReq()

15: eventReportReq ()

18: abortActionReq()

5: createCallLeg()

6: new()

13: createCallLeg()

14: new()

AppPartyA :

IpAppCallLeg

AppPartyB :

IpAppCallLeg

9: eventReportRes ()

17: eventReportRes ()

8: routeCallLegToOrigination ()

16: routeCallLegToDestination()

12: sendInfoRes()

 : IpUIManager

10: createUICall()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met it is created.

4: Once the object implementing the IpCall interface is created it is used to pass the reference of the object implementing the IpAppCall interface as the callback reference to the object implementing the IpCall interface.

Note that the reference to the callback interface could already have been passed in the createCall.

5: This message instructs the object implementing the IpCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party A.

1.3 Multi-Media Call Control Service

1.3.1 Barring for media, simple

This sequence illustrates how an application can block the establishment of video channels for a certain user.

[image: image14.wmf] : IpAppLogic

 :

IpAppMMCallControlManager

 :

IpMMCallControlManager

 : IpMMCall

 : IpMMCallLeg

1: new()

2: enableMediaChannelNotification()

3: mediaChannelEventNotify()

4: "forward event"

6: deassignCall()

5: mediaChannelAllow()

1: The application starts a new AppMMCallControlManager interface for reception of callbacks.

2: The application expresses interest in all calls from or to subscriber A that use video. The just created App interface is given as the callback interface.

3: Subscriber A makes a call with the H.323 faststart indicating video.

4: The message is forwarded to the application.

5: The application indicates that the setup of the channel is not allowed by not including the channel in the allowed list. This has the effect of supressing the video capabilities in the setup.

6: The application is no longer interested in the call.

New attempts to open video channels will again be indicated with an enableMediaNotification.

1.3.2 Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

In this sequence there is one application handling both the media barring and the routing of the call.

[image: image15.wmf] : IpAppLogic

 :

IpAppMMCallControlManager

 :

IpMMCallControlManager

 : IpMMCall

 : IpMMCallLeg

 :

IpAppMMCallLeg

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

5: getControlLeg()

11: routeCallToDestinationReq()

7: mediaChannelMonitorReq()

10: mediaChannelAllow()

8: mediaChannelMonitorRes ()

6: new()

9: "forward event"

12: mediaChannelMonitorRes ()

13: "forward event"

14: mediaChannelAllow()

1: The application creates a AppMMCallControlManager interface in order to handle callback methods.

2: The application expresses interest in all calls from subscriber A. Since enableCallNotification is used and not enableMediaNotification all calls are reported regardless of the media used.

3: A makes a call with the H.323 faststart indicating video. The application is notified.

4: The event is forwarded to the application.

5: The application requests the controlling leg from the call (corresponding to subscriber A).

6: The application creates a new AppMMCallLeg interface to receive callbacks.

7: The application sets a monitor on video media channel open for the controlling leg.

8: Since video was included in the faststart, the media channels monitored will be returned in the monitor result.

9: The event is forwarded to the application.

10: The application denies the video channel, i.e., it is not included in the allowed channels. This corresponds to removing the channel from the setup.

11: The application requests to reroute the call to a different destination (or the same one...)

There is a timing issue here: The outgoing setup should be delayed until both the mediaChannelAllow and the routeCallToDestinationReq are received.

12: Later in the call the A party tries to open a lower bandwidth video channel. This is again reported with MediaChannelMonitorRes.

13: The event is forwarded.

14: This time the application allows the setup of the channel by including the channel in the allowed list.

1.3.3 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media control and one for routing. This is also the way that it is shown here, for clarity.

However, an implementation of the application could combine the media logic and call logic in one object.

[image: image16.wmf]callLogic :

IpAppLogic

callAppLogic :

IpAppMMCallCont

 :

IpMMCallControl

 : IpMMCall

 : IpMMCallLeg

 :

IpAppMMCallLeg

mediaAppLogic

:

mediaLogic :

IpAppLogic

 : IpMMCallLeg

1: new()

2: enableCallNotification()

5: callEventNotify()

6: "forward event"

10: routeCallToDestinationReq()

15: deassignCall()

7: new()

13: routeCallToDestinationRes()

14: "forward event"

8: mediaChannelEventNotify(TpMMCallIdentifier, TpMMCallLegIdentifier, TpChannelSet, TpChannelEventType, TpAssignmentID, IpAppMMCallRefRef)

16: mediaChannelEventNotify(TpMMCallIdentifier, TpMMCallLegIdentifier, TpChannelSet, TpChannelEventType, TpAssignmentID, IpAppMMCallRefRef)

3: new()

4: enableMediaChannelNotification(IpAppMMCallControlManagerRef, TpChannelRequestSet, TpCallEventCriteria, TpCallMonitorMode, TpAssignmentIDRef)

9: "forward event"

11: mediaChannelAllow(TpSessionID, TpSessionIDSet)

12: deassignCall()

17: "forward event"

18: mediaChannelAllow(TpSessionID, TpSessionIDSet)

19: deassignCall()

1: The application creates a new AppMMCallControlManager interface.

2: The application expresses interest in all calls from subscriber A for rerouting purposes.

3: The application creates a new AppMMCallControlManager interface. This is is to be used for the media control only.

4: Separately the application expresses interest is some media channels for calls from and to A. The request indicates interrupt mode.

5: Subscriber A makes a call with the H.323 faststart indicating video. Since the media establishment is combined with the setup in the case of faststart, both applications are triggered (not necessarily in the order shown).

Here the call application is notified about the call setup.

6: The event is forwarded to the call control application.

7: The call control application creates a new AppMMCall interface.

8: The media application is notified about the call setup.

All media channels from the setup will be indicated.

9: The event is forwarded to the media application.

10: The call application decides to reroute the call to another address. Included in the request are monitors on answer and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media channels are confirmed or rejected.

11: The application allows the audio channe, but refuses the high bandwidth video, by excluding it from the allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue (with a changed faststart parameter reflecting the manipulated media).

12: The Media application is no longer interested in the call.

13: When the B subscriber answers the call application is notified.

14: The event is forwarded to the call application.

15: The call application is no longer interested in the call.

16: When later in the call A tries to establish a lower bandwidth video channel the media application is triggered.

17: The triggering is forwarded to the media application.

18: The application now allows the establishment of the channel by including the channel in the mediaChannelAllow list.

19: The media application is no longer interested in the call.

1.3.4 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

[image: image17.wmf] :

IpMMCallControlManager

 : IpAppMMCall

 : IpAppLogic

 : IpMMCall

 : IpUICall

 : IpAppUICall

2: createCall()

1: new()

3: routeCallToOriginationReq()

6: routeCallToDestinationReq()

7: RouteCallToDestinationRes()

8: "forward event"

4: routeCallToDestinationRes()

5: "forward event"

10: superviseCallRes(TpSessionID, TpSuperviseReport, TpDuration)

11: "forward event"

12: sendInfoAndCollectReq()

13: sendInfoAndCollectRes()

14: "forward event"

16: superviseCallReq

17: release ()

9: superviseCallReq ()

15: release()

1: The application creates a new interface to receive callback on the call.

2: The application requests the creation of a call.

3: The application initiates the call by routing to the origination. This will implicitly create a call leg. The application requests a notification when the party answers.

4: When the A party answers the application is notified.

5: The message is forwarded to the logic.

6: The application also routes the call to the destination. This implicitly creates a call leg. The application requests to be notified on answer of the B-party.

7: When the B-party answers the application is notified.

8: The message is forwarded to the logic.

9: The application requests to supervise the call. In the request the application specifies a limit on the amount of bytes that may be transferred. The application specifies that if the limit is reached the application should be notified.

10: When the limit is reached a notification is send to the application.

11: The message is forwarded to the logic.

12: The application plays an announcement to the user, asking whether the user wants to end the call or continue the call.

13: When the user answers whether the call should continue.

14: The message is forwarded to the logic.

15: The UIcall is released, since no further announcements are needed.

16: In case the user answers that the call should continue, the supervision is reset with a new maximum number of allowed bytes. (note this might have charging consequences, not shown)

17: If the user answered that the call should not continue, the call is released.

1.4 Conference Call Control Service

1.4.1 Resource Reservation

This sequence illustrates how an application can check and reserve resources for a meet-me conference.

[image: image18.wmf] : IpAppLogic

 :

IpAppMMConferenceCallControlManager

 :

IpMMConferenceCallControlManager

 :

IpMMConferenceCall

1: checkResources()

3: reserveResources()

4: freeResources()

5: reserveResources()

2: new()

6: conferenceCreated ()

7: "forward event"

1: The application checks if enough conference resources are available in a given time period.

2: The application creates a object to receive callback messages.

3: The application reserves resources for the time period. The callback object is in order to receive a notification when the conference is started.

4: Because the time was wrong by accident, the application cancels the earlier reservation.

5: The application makes a new reservation.

6: At the specified time, or when the first party joins the conference the application is notified.

7: The event is forwarded to the application.

1.4.2 Meet-me conference without subconferencing

This sequence illustrates a pre-arranged meet-me conference for a specified time period. During this timeslot parties can 'call in to' the meet-me conference by dialling a special number.

For each participant joining the conference, the application can decide to accept the participant in to the conference.

The application can also be notified when parties are leaving the conference.

[image: image19.wmf] : IpAppLogic

 :

IpAppConferenceCallControlManager

 :

IpAppConferenceCall

 :

IpConferenceCallControlManager

 :

IpConferenceCall

1: new()

5: new()

2: reserveResources()

7: leaveMonitorReq ()

9: partyJoined ()

10: "forward event"

3: conferenceCreated ()

4: "forward event"

12: leaveMonitorRes ()

13: "forward event"

11: attachCallLeg()

14: release ()

8: attachCallLeg()

6: partyJoined ()

1: The application creates a new object to receive the callbacks from the conference call control manager.

2: The application reserves resources for some time in the future.

With this same method the application registers interest in the creation of the conference (e.g. when the first party to joins the conference or at the specified start time, this is implementation dependant).

The reservation also includes the conference policy. One of the elements is whether joined parties must be explicity attached. If so, this is treated as an implicit joinMonitorReq.

3: The conference is created.

4: The message is forwarded to the application.

5: The application creates an object to receive the call back messages from the conference call.

6: The application is notified of the first party that joined the conference

7: The application also requests to be notified when parties leave the conference.

8: When the party is allowed to join the conference, the party is added.

Alternatively, the party could have been rejected with a releaseCallLeg.

9: A new party joins the conference and the application is notified.

10: The message is forwarded to the application.

11: This party also is allowed into the conference by attaching the leg.

12: A party leaves the conference.

13: The message is forwarded to the application.

14: The application decides to release the entire conference.

1.4.3 Non ad-hoc, add-on with subconferencing

This sequence illustrates a prearranged add-on conference. The end user that initiates the call, communicates with the conference application via a web interface (not shown). By dragging and dropping names from the address book, the end-user adds parties to the conference.

Also via the web-interface, the end-user can group parties in subconferences. Only parties in the same subconference can talk to eachother.

[image: image20.wmf] :

IpConferenceCallControlManager

 :

IpAppConferenceCall

 : IpAppLogic

 :

IpConferenceCall

first :

IpSubConferenceCall

second :

IpSubConferenceCall

2: createConference()

1: new()

3: getSubConferences()

4: routeCallToDestinationReq

5: routeCallToDestinationReq

6: routeCallToDestinationReq

8: routeCallToDestinationRes ()

10: routeCallToDestinationRes ()

12: routeCallToDestinationRes ()

9: "forward event"

11: "forward event"

13: "forward event"

16: splitSubConference()

7: routeCallToDestinationReq

14: routeCallToDestinationRes ()

15: "forward event"

17: moveCallLeg()

18: release ()

1: The application creates a new interface to receive the callbacks from the conference call.

2: The application initiates the conference. There has been no prior resource reservation, so there is a chance that no resources are available when parties are added to the conference.

The conferenceCall interface object is returned.

3: Together with the conference a subconference is implicitly created.

However, the subconference is not returned as a result of the createConference, therefore the application uses this method to get the subconference.

4: The application adds parties to the subconference.

Note that all the participants in the conference are called via the routeCallToDestinationReq, the routeCallToOriginationReq does not have to be used.

5: The application adds parties to the subconference.

6: The application adds parties to the subconference.

7: The application adds parties to the subconference.

8: When a party A answers the application is notified.

We assume that all parties answer.

9: The message is forwarded to the application.

10: When a party B answers the application is notified.

11: The message is forwarded to the application.

12: When a party C answers the application is notified.

13: The message is forwarded to the application.

14: When a party D answers the application is notified.

Now all four parties are in the same subconference and can communicate.

15: The message is forwarded to the application.

16: The application decides to split the conference. Party C&D are indicated in the message.

The gateway will create a new subconference and move party C and D to the new subconference.

The configuration is A&B are in speech, C&D are in speech. There is no bearer connection between the two subconferences.

17: The application moves on of the legs from the second subconference to the first. The configuration now is A,B&C are in speech configuration. D is alone in its own subconference.

18: The second subconference is released. Since party D was in this subconference, this callleg is also released.

This leaves one subconference with A,B & C.

1.5 Multi-Media Conference Call Control Service

1.5.1 Non ad-hoc, add-on multimedia

This sequence illustrates a prearranged add-on multi-media conference. The end user that initiates the call, communicates with the conference application via a web interface (not shown). By dragging and dropping names from the address book, the end-user adds parties to the conference.

Also via the web-interface, the end-user can do things that normally the chair would be able to do; e.g., determine who has the floor (e.g., whose video is being broadcast to the other participants) or inspect the video of participants who do not have the floor (e.g., to see how they react to the current speaker).

[image: image21.wmf] :

IpMMCallControlManager

 :

IpAppMMSubConferenceCall

 : IpAppLogic

 :

IpMMConferenceCall

 :

IpMMSubConferenceCall

2: createConference()

1: new()

3: getSubConferences()

4: routeCallToDestinationReq

5: routeCallToDestinationReq

6: routeCallToDestinationReq

8: routeCallToDestinationRes ()

9: "forward event"

11: routeCallToDestinationRes ()

12: "forward event"

13: routeCallToDestinationRes ()

14: "forward event"

7: routeCallToDestinationReq

15: routeCallToDestinationRes ()

16: "forward event"

10: chairSelection()

17: appointSpeaker()

18: inspectVideo()

19: inspectVideo()

20: inspectVideoCancel()

21: floorRequest()

22: "forward event"

23: appointSpeaker()

1: The application creates a new object for receiving callbacks from the MMSubConference.

2: When the user selects the appropriate option in the web interface, the application will create a conference without resource reservation. The policy for video is set to 'chairperson switched.

3: The application requests the subconference that was implicitly created together with the conference.

4: The application add parties to the conference and monitors on success.

Note that all the participants in the conference are called via the routeCallToDestinationReq, the routeCallToOriginationReq does not have to be used.

5: The application add parties to the conference and monitors on success.

6: The application add parties to the conference and monitors on success.

7: The application add parties to the conference and monitors on success.

8: When a party A answers the application is notified.

We assume that all parties answer.

9: The message is forwarded to the application logic.

10: We assume that A was the initiating party.

The initiating end-user is assigned the chairpersonship.

This message is needed to synchonise the chairpersonship in the application with the MCU chairpersonship, since the chair can also use H.323 messages to control the conference.

11: When a party B answers the application is notified.

12: The message is forwarded to the application logic.

13: When a party C answers the application is notified.

14: The message is forwarded to the application logic.

15: When a party D answers the application is notified.

16: The message is forwarded to the application logic.

17: Chairperson (A) decides via WWW interface that party B is the speaker. This means that the video of B is broadcast to the rest.

18: The chairperson select the video of C in order to judge their reactions on B's proposal.

19: The chairperson select the video of D in order to judge their reactions on B's proposal.

20: The chairperson goes back to receiving the broadcasted videostream (B)

21: User C requests the floor via the H.323 signals. The application is notified of this.

22: The message is forwarded to the application logic.

23: The chairperson (via the WWW interface) grants the request by appointing C as the speaker.

1.6 Generic User Interaction Service

1.6.1 Automated Collect Call

The following sequence shows an automated collect call application.

The end-user invokes a Collect Call Client application. The application requests the end-user to leave his name or a message and the number of the party that is to be called. Next, the application sets up a connection to the called party. An announcement is played that there is a collect call requested and the name or message of the calling party is played. In case the called party accepts the call and related charges, the application connects the calling and called party.

[image: image22.wmf] :

IpEnhancedCallControlManage

 :

IpAppEnhancedCallControlManager

 : IpAppLogic

 : IpEnhancedCall

PartyA :

IpCallLeg

PartyB :

IpCallLeg

 : IpUICall

 : IpUIManager

 : IpAppCallLeg

 : IpAppUICall

2: enableCallNotification

1: new()

26: release()

19: sendInfoAndCollectReq()

20: sendInfoAndCollectRes()

21: "forward event"

3: callEventNotify

4: "forward event"

7: sendInfoAndCollectReq()

8: sendInfoAndCollectRes()

9: "forward event"

10: recordMessageReq()

11: recordMessageRes()

12: "forward event"

13: createCallLeg

14: new

15: EventReportReq ()

16: routeCallLegToDestination()

17: EventReportRes ()

18: "forward event"

22: attachCallLeg

23: sendInfoReq()

24: sendInfoRes()

25: "forward event"

5: getControlLeg()

6: createUICall()

1: This message is used by the application to create an object implementing the IpAppEnhancedCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: The application is triggered by an end-user dialing the specific service number.

4: This message is used to forward the callEventNotifiy message to the IpAppLogic.

5: In order to play an announcement to the calling party, the application needs a reference to the CallLeg object of the calling party.

6: A new UIcall object is created by the application. This UIcall object is associated with the controlling leg object in the call control service.

7: With this method the application requests to play an announcement to the calling party. An announcement is played and the end-user is asked whether he wants to leave name and message.

8: End-user indicates that he is wants to start with recording the message.

9: This message is used to forward the previous message to the application.

10: The application requests to start with recording of the end-user message.

11: End-user records his name or a message and ends recording by pressing a key.

12: This message is used to forward the previous message to the application.

13: Applications initiates a connection to the B-party by creating a new CallLeg object

14: A new Call Leg object is created.

15: The application sets the criteria for the network events it is interested in. In this case the application needs to be informed about an answer from the calling party.

16: With this method the application requests the call to be routed to the destination.

17: The called party answers the call.

18: This message is used to forward the previous message to the application.

19: When B-party answers, a message is played. The message includes the recorded message and the related charges (variable phrases in announcement).

20: The calling party indicates that he will accept the call

21: This message is used to forward the previous message to the application.

22: The application requests that the called party is connected to the calling party.

23: In case the called party does not accept the call an announcement will be played to the calling party and the calling party is asked whether a new call should be made.

24: The calling party chooses not to proceed.

25: This message is used to forward the previous message to the application.

26: The application orders to release the call.

Connectivity Manager service sequence diagrams

1.7 Operator Selects Service Components and creates a new VPrP

The following sequence diagram shows how an enterprise operator client collects the information required to select a service, and then selects the service parameters, and finally submits it to the connectivity manager.

[image: image61.wmf] :

FrameworkOperator

 : IpAccess

 : IpServiceTypeRegistration

 : IpServiceDiscovery

obtainFrameworkInterface

addServiceType()

disableServiceType()

enableServiceType()

removeServiceType()

Service Type Registration

Auth. Phase

followed by

listServiceTypes()

describeServiceType()

obtainFrameworkInterface()

1.8 Operator Browses SAP and Sites

The following sequence diagram shows how an enterprise operator browses service access points and sites to retrieve information regarding a site and its SAP(s).

[image: image62.wmf] :

ParlayServiceSupplier

 : IpAccess

 : IpServiceDiscovery

obtainFrameworkInterface()

listServiceTypes()

describeServiceType()

 : IpServiceRegistration

registerService()

describeService()

unregisterService()

Service Registration

Auth. Phase

followed by

announceServiceAvailability()

obtainFrameworkInterface()

.

1.9 Operator Browses Virtual Provisioned Pipe

The following shows an enterprise operator client browses and collect information pertinent to an existing virtual provisioned pipe, including all the QoS parameters that have been set for this pipe.

[image: image63.wmf] :

EnterpriseOperator

 : IpAccess

 :

IpEntOpAccountManagement

 : IpEntOpAccountInfoQuery

 : IpClientAppManagement

 : IpClientAppInfoQuery

 :

FrameworkOperator

obtainFrameworkInterface()

createEntOpAccount()

getEntOpAccount()

modifyEntOpAccount()

obtainFrameworkInterface()

obtainFrameworkInterface()

createClientApp()

createSAG()

modifyClientApp()

modifySAG()

deleteClientApp()

modifySAG()

addSAGMembers()

removeSAGMembers()

listSAGs()

listSAGMembers()

deleteEntOpAccount()

Subscriber and User Registration

getEntOpAccount()

deleteEntOpAccount()

Auth. Phase

followed by

create more

CliantApps

obtainFrameworkInterface()

Framework sequence diagrams

1.10 Accessing the framework

The following sequence diagram shows a client application accessing the framework for the first time. In order to use the services, the client application must first authenticate itself with the framework and then discover an appropriate service.

[image: image23.wmf]

ParlayClient

IparlayInitial

IparlayAuthentication

IparlayAccess

IparlayDiscovery

ParlayFramework

Service Control

Interface

IparlayAppAcces

s

initialContact()

initiateAuthentication(

)

selectAuthenticationMethod(

)

authenticate()

(authenticate())

requestAccess()

obtainInterface(discovery)

listServiceTypes()

describeServiceType

()

discoverService()

selectService()

(access_check())

signServiceAgreement()

signServiceAgreement()

returns ref to service

control interface

The client application

can also authenticate the

Framework

1. Client invokes selectService on the service providers Access interface. The client identifies the service it wishes to use.

2. Client’s can, if they wish, invoke access_check on the Access interface. The client must forward a parameter list that describes the resources the wish to access. The Access interface will respond with either accessGranted or accessDenied. Failure to use this process may result in the client trying to access something(s) to which access has not be granted.

3. Where non-repudiation of the agreement to use the selected application is required, the Access interface invokes the signServiceAgreement.

4. The signing of the service agreement between the Client and the Access interface is invoked by the client. The nature of the exchanges will be determined by the initial agreements during initiateClientAuthentication and in particular by the parameter prescribedMechanism.

One-Way Authentication

[image: image24.wmf]

ParlayClient

IparlayInitial

IparlayAuthentication

IparlayAccess

IparlayAppAccess

initialContact()

initiateAuthentication()

requestAccess()

selectAuthenticationMethod()

authenticate()

(authenti

cate())

IparlayAppAccess interface

is passed to Framework, and

IparlayAccess is returned.

1.11 Two-way Authentication

[image: image25.wmf]

Parlay Client

IparlayInitial

IparlayAuthentication

IparlayAccess

Parlay

Framework

IparlayAppAuthentication

IparlayAppAccess reference

is passed to Framework, and

Ipar

layAccess is returned.

initialContact()

initiateAuthentication()

requestAccess()

selectAuthenticationMethod()

authenticate()

(authenticate())

IparlayAppAuthentication

reference is passed to

framework and

IparlayAuthentication

commences.

authen

ticate()

(authenticate())

This is an example of the

sequence of authenticate

operations. Different

authentication methods may

use different protocols and

result in a change to the

order of the operations.

1.12 Enabling the framework’s event notification mechanism

The following sequence diagram shows an application enabling the framework’s event notification mechanism. In order to enable the event notification mechanism, the application must have already authenticated itself with the framework.

[image: image26.wmf]

 : IparlayApp

Logic

 : IparlayApp

EventNotification

 : Iparlay

Authentication

 : IparlayEvent

Notification

1: obtainFrameworkInterface()

2: new()

3: new()

4: enableNotification()

1: This message is used to receive a reference to the object implementing the IEventNotification interface.

2: If there is currently no object implementing the IEventNotification interface, then one is created using this message.

3: This message is used to create an object implementing the IAppEventNotification interface.

4: This message is used to enable the notification mechanism so that subsequent framework events can be sent to the application.

1.13 Service Manager Factory

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding sections.

[image: image27.emf] :

IpAppCallControlManager

 : IpAppLogic : IpInitial : IpAccess :

IpCallControlManager

 : IpAppAccess GenericCallControlService :

IpServiceFactory

1: selectService()

3: signServiceAgreement()

4: getServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

1: The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The framework signs the service agreement.

3: The client application signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5: The service factory creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

6: The application creates a new IpAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

1.14 Integrity Management

1.14.1 Fault Management: Client Application requests a Framework Activity Test

[image: image28.emf]Client Application :

IpAppFaultManager

Parlay Framework :

IpFaultManager

Client application asks

framework to carry out an

activity test. The framework is

denoted as the target by a NULL

svcId parameter value.

Framework carries out test and

returns result to client application.

2: activityTestRes()

1: activityTestReq()

1. The client application asks the framework to do an activity test. The client identifies that it would like the activity test done for the framework, rather then a service, by supplying a NULL value for the svcId parameter.

2. The framework does the requested activity test and sends the result to the client application.

1.14.2 Fault Management: Client Application requests a Service Activity Test

[image: image29.emf]Client Application :

IpAppFaultManager

Parlay Framework :

IpFaultManager

Parlay Service :

IpSvcFaultManager

Parlay Framework :

IpFwFaultManager

1: activityTestReq()

The client application asks

the framework to carry out

the activity test on a service.

The Framework identifies which

service the test is directed at by

the svcID parameter, and

communicates internally with the

appropriate framework interface.

Which invokes the call on the

service.

Service does test and

returns the result.

3: svcActivityTestRes()

4: activityTestRes()

Framework passes result

internally from service facing

part to application facing

part, and sends the result to

the application.

2: svcActivityTestReq()

1. The client application asks the framework to invoke an activity test on a service, the service is identified by the svcId parameter.

2. The framework asks the service to do the activity test. It is assumed that there is internal communication between the application facing part of the framework (i.e IpFaultManager interface) and the part that faces the service.

3. The service does the activity test and returns the result to the framework.

4. The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application facing side, and sends the result to the client application.

1.14.3 Fault Management: Service requests a Framework Activity Test

[image: image30.emf]Parlay Framework :

IpFwFaultManager

Parlay Service :

IpSvcFaultManager

The Parlay Service requests that

the Framework does an activity

test. The Framework is identified as

the target of the test by a NULL

appId parameter value.

1: activityTestReq()

2: activityTestRes()

1. The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done for the framework, rather than an application, by supplying a NULL value for the appID parameter.

2. The framework carries out the test and returns the result to the service.

1.14.4 Fault Management: Service requests an Application Activity Test

[image: image31.emf]Client Application :

IpAppFaultManager

Parlay Framework :

IpFaultManager

Parlay Framework :

IpFwFaultManager

Parlay Service :

IpSvcFaultManager

1: activityTestReq()

2: appActivityTestReq()

The Framework checks appId

parameter to identify which

Application the test is directed at,

and commuicates internally to

Framework interface to the

Application.

Internal framework

communications.

4: activityTestRes()

The application

carries out

the activity test and

returns the result to

the framework.

3: appActivityTestRes()

1. The service asks the framework to invoke an activity test on a client application, the application is identified by the appId parameter.

2. The framework asks the application to do the activity test. It is assumed that there is internal communication between the service facing part of the framework (i.e IpFwFaultManager interface) and the part that faces the client application.

3. The application does the activity test and returns the result to the framework.

4. The framework internally passes the result from its application facing interface (IpFaultManager) to its service facing side, and sends the result to the service.

1.14.5 Fault Management: Framework detects the service failure

[image: image32.emf]Client Application :

IpAppFaultManager

Parlay Framework :

IpFaultManager

The framework should detect if

a service fails, for example via

an unreturned heartbeat. The

framework informs all

applications that are using the

service.

The application must

cease the use of this

service instance.

1: svcUnavailableInd()

1. The framework has detected that the service has failed (probably by the use of the heartbeat mechanism). The framework updates its own records and informs any client applications that are using the service to stop.

2. The framework informs each client application that is using the service instance that the service is unavailable. The client application is then expected to abandon use of this service instance and access a different service instance via the usual means (e.g. discovery, selectService etc.). The client application should not need to re-authenticate in order to discover and use an alternative service instance. The framework will also need to make the relevant updates to its internal records to make sure the service instance is removed from service and no client applications are still recorded as using it.

1.14.6 Fault Management: Application detects the service is unavailable

[image: image33.emf]Parlay Framework :

IpFaultManager

Client Application :

IpAppFaultManager

Parlay Service :

IpSvcFaultManager

Parlay Framework :

IpFwFaultManager

1: svcUnavailableInd()

The application detects that

the service is not responding,

so it informs the framework via

the svcUnavailableInd method

and then ceases use of the

service.

The framework informs the

service that the application

is no longer using it.

2: appRemovalInd()

1. The client application detects that the service instance is currently not available, i.e. the service instance is not responding to the client application in the normal way, so it informs the framework and takes action to stop using this service instance and change to a different one (via the usual mechanisms, such as discovery, selectService etc.). The client application should not need to re-authenticate in order to discover and use an alternative service instance.

2. The framework informs the service instance that the client application was unable to get a response from it and has ceased to be one of its users. The framework and service instance must carry out the appropriate updates to remove the client application as one of the users of this service instance. The service or framework may then decide to carry out an activity test to see whether there is a general problem with the service instance that requires further action.

1.14.7 Load Management: Application callback registration and load control

The following sequence diagram shows how an application registers itself and the framework invokes load management function based on policy.

[image: image34.emf]This is the

implementation detail

 : IpAppLoadManager : IpLoadManager

1: registerLoadControler()

Framework detects its

load condition change

and initiates load control

action

3: enableLoadControl()

2: load change detection & policy evaluation

This is the

implementation detail

5: disableLoadControl()

6: unregisterLoadControler()

4: load change detection & policy evaluation

1.14.8 Load Management: Application and framework query load statistics

The following sequence diagram shows how an application or service requests load statistics for the framework.
[image: image35.emf] : IpAppLoadManager : IpLoadManager

1: queryLoadReq ()

3: queryLoadRes()

2: get load information

This is the

implementation

detail

The following sequence diagram shows how framework requests load statistics for an application.

[image: image36.emf] : IpLoadManager : IpAppLoadManager

1: queryAppLoadReq()

2: get load information

3: queryAppLoadRes()

This is the

implementation

detail

1.14.9 Load Management: Application or service reports load condition

The following sequence diagram shows how an application or service reports its load condition to framework load manager .

[image: image37.wmf]

 : IpAppLoadManager

 : IpLoadManager

2: evaluate policy

This is the implementation

detail

1: reportLoad

1.14.10 Load Management: Suspend/resume notification from application

The following sequence diagram shows the scenario of suspending or resumingnotification from the application based on the evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

[image: image38.emf] : IpAppLoadManager : IpLoadManager

1: load change detection and policy evaluation

This is

implementation

detail

2: suspendNotification()

4: resumeNotification()

Load balancing service

makes a decision based

on pre-defined policy

3: load change detection and policy evaluatino

1.14.11 Load Management: Example of Framework managing both Client Application and Service Load.

[image: image39.emf]Depending on the load, the

framework may chose to stop

sending notifications to the

application, to allow its load to

reduce.

 : IpAppLoadManager : IpLoadManager : IpFwLoadManager : IpSvcLoadManager

1: queryAppLoadReq()

Framework checks

application load.

2: queryAppLoadRes()

3: suspendNotification()

The framework may then check

the load on the service, and take

action if (according to the load

balancing policy) if required.

4: querySvcLoadReq()

5: querySvcLoadRes()

1.14.12 Heartbeat: Start/perform/end HB supervision of Application

[image: image40.wmf]ParlayApp

 :

IpAppHeartbeat

 :

IpHeartBeatMgmt

1: enableHeartBeat ()

2: send()

3: send()

At a certain point of time

the application decides

to stop heartbeat

supervision

4: disableHeartBeat ()

1.14.13 Heartbeat: Start/perform/end HB supervision of Service

[image: image41.wmf]ParlayApp

 :

IpSvcHeartBeat

 :

IpFwHeartBeatMgmt

At a certain point of time the

service decides to stop

heartbeat supervision

1: enableSvcHeartBeat()

2: send()

3: send()

4: disableSvcHeartBeat()

1.15 Service Registration, Discovery and Subscription

The following sections provide the description of the sequence diagram scenarios for the use of the service registration, discovery, and subscription APIs defined in the corresponding sections of the Phase 2 interface document. These narrative use case descriptions augment the UML sequence diagrams.

In the following sections we show the sequence diagrams that describe:

· how the ServiceSuppliers register their services in the Framework;

· how the Enterprise Operators and ClientApplications discover the registered services,

· how the enterprise operators create subscription accounts for themselves and for the client applications within their domain, and how they manage these accounts, and

· how the Enterprise operators subscribes to the registered services, through the creation of service contracts and service profiles (for individual client applications or groups of them).

1.15.1 Service Registration, Discovery, and Subscription Sequence Diagram

This section describes the scenarios for the service registration, discovery and subscription through a set of sequence diagrams. The ordering of messages in the sequence diagram does not necessarily imply strict sequencing as illustrated. The reader is referred to the explanation given below to understand the sequence of message invocations.

Service Type Creation, Management, and Deletion Scenario (Service Type Registration) Framework Administrative Function Only- Not in the Scope of s): The sequence diagrams in figure 1 demonstrate the creation, management, and deletion of service types in the framework by the Framework Operator.

The framework hosts different types or categories of services. Each service belongs to a given service type. The framework operator, being the framework administrator, decides the types of services that it wants to host in its domain. It is responsible for the creation and deletion of service types. Before a service can be registered in the Framework, the corresponding service type must be supported by the framework. So the service types are created prior to the registration of the instances of those service types.

In this and the following section we describe the sequence diagrams for the “service type creation” by the framework operator and the “service registration” by the service supplier (i.e., the third party service providers).
The first step in any interaction with the framework is the mutual authentication of the framework invoker and the framework. Service suppliers, client applications, framework operator and the enterprise operator must be authenticated with the framework (and also authenticate the framework) before they can interact with the rest of the framework interfaces such as “IpServiceRegistration”, “IpServiceDiscovery”, etc.

Once authenticated, the invoker can access rest of the framework interfaces and other services.

In order to perform the creation, management or deletion of the service types, the framework operator obtains the reference to the “IpServiceTypeRegistration” interface (a non-, internal administration interface) of the framework by invoking “obtainFrameworkInterface()” method on the “IpAccess” interface.

The framework operator decides what service types to host in its domain. In order to introduce a new service type in its domain, the framework operator invokes “addServiceType()” method on the “IpServiceTypeRegistration”. This results in the creation of a new service type of the specified type and properties. An existing service type can be removed, at any time, by invoking a “removeServiceType()” method on the “IpServiceTypeRegistration” interface. This results in the deletion of all service offers that belong to that Type. This operation is invoked only when no services of the type are still registered and framework operator does not want to support the service type in its domain any more. At any time, the framework operator can obtain a list of existing service types in the repository by invoking “listServiceType()” on the “IpServiceDiscovery”. Similarly, the framework operator can obtain the details of a particular service Type by invoking “describeServiceType()”. This operation returns the type and the properties associated with the specified service Type.

The services provided by the service suppliers are registered against a given service Type. The framework operator may decide to disable a given service type temporarily by invoking “disableServiceType()” and later on enable it by invoking “enableServiceType()”. When a service type is disabled, the service suppliers are no longer able to register services of that type. The enabling of a service type resumes the registration of new services of that type.
Service Registration Scenario: The sequence diagrams in figure 2 demonstrates the registration of a new service, announcing the availability of a registered service to the framework, or deletion of an existing registered service from the framework, by the Service Supplier.

The Service Suppliers can register only those services which are supported by the framework (i.e., the corresponding service types are supported in the framework). The service registration function is supported by the “IpServiceRegistration” interface of the framework. As explained before, the service supplier and the framework must mutually authenticate each other before the service supplier can invoke the service registration, service availability announcement, or the service un-registration functions of the framework. Again, the service supplier obtains the reference to the “IpServiceRegistration” interface of the framework by invoking obtainFrameworkInterface() on the “IpAccess” interface of the framework. The Service Suppliers may first obtain a list of service types supported by the framework by invoking listServiceTypes() on the IpServiceDiscovery interface and then obtain a description of a given service type by invoking describeServiceType(). Once the supported service types and their description (i.e., the service properties applicable to each type) is obtained, the service suppliers can perform service registration.

In order to register a new service in the domain, the service supplier invokes registerService() method on the “IpServiceRegistration” interface by giving the service type name and the values of the service properties. The framework returns an “service-ID” which uniquely identifies the registered service within the framework. The act of service registration does not make the service discoverable. The services must be instantiated at an interface and then its interface reference together with its service ID be registered in the framework. This implies that the service in now available for use. The service supplier or the service itself invokes announceServiceAvailability() on the framework to announce the availability of the service identified by its “serviceID” at a particular interface. The annouceServiceAvailability() method may associate the serviceID either with the actual service interface or with the interface of the service manager (to achieve location transparency). A service may be withdrawn from the domain by the service supplier by invoking an “unregisterService()” on the “IpServiceRegistration”. The service is identified by the “service-id” which was originally returned by the Framework after service registration. At any time the service suppliers can obtain a description of services registered by them through describeService() method.

Enterprise Operator and Client Application Subscription Management Scenario: This scenario is shown in the sequence diagram in figure 3. The first step in the service subscription process is the creation of account for the enterprise operator and for all client applications in its domain within the framework. This is done by the enterprise operator (acting in the role of service subscriber). The enterprise operator obtains the reference to the IpEntOpManagement interface by invoking obtainFrameworkInterface() on the IpAccess interface. Then the enterprise operator creates a subscription account for itself in the framework by invoking createEntOpAccount() on the IpEntOpManagement interface. The enterprise operator at any time may inspect its subscription account by invoking getEntOpAccount on IpEntOpAccountInfoQuery interface and modify the subscriber-related information contained in its subscription account by invoking modifyEntOpAccount() on IpEntOpAccountManagement interface.

An enterprise operator usually has many client applications in its enterprise domain. These client applications must be registered within the framework so that the set of services subscribed by the enterprise operator (through createServiceContract()) can be assigned to these client applications by associating service profile (a restriction of service contracts) with the client applications or with a group of client applications, called a Subscription Assignment Group (SAG). In order to create an account for individual client applications, the enterprise operator invokes createClientApp() on IpClientAppManagement interface. The enterprise operator groups a related set of client applications in a SAG so that the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also performs other client application / SAG management functions such as modifyClientApp(), delateClientApp(), modifySAG(), listSAGs(), listSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.

Service Discovery and Subscription Scenario: This scenario is shown in the sequence diagram in figure 4. Services are subscribed by the enterprise operator on behalf of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services provided by the framework using the IpServiceDiscovery interface. Initially, the enterprise operator obtains a list of service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a particular service type. Subsequently it invokes discoverService() to discover the services of a given type which supports the desired set of property values. The discoverService() method returns a list of “serviceIDs” and their associated property values. The service discovery phase is followed by the service subscription phase. The enterprise operator uses the IpServiceContractManagement and IpServiceProfileManagement interfaces to perform service subscription.

The enterprise operator invokes the createServiceContract() on IpServiceContractManagement interface to susbcribe to a service. Depending upon the Frameowork Operator’s policy, the services may be subscribed by identifying them by their “serviceID” or by their service type. In the former case only the specific service can be used by the enterprise operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise operator may create multiple service profiles (each of which are a restriction of the service contract) by invoking createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different Subscription Assignment Group (SAG), using assign() method. This allows enterprise operator to assign different service privileges to different client application groups. During the life time of a service contract, the enterprise operator may perform service contract and service profile management functions, such as modifying the service profiles (modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profiles to a SAG (assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles (deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the client applications, can at any time obtain a list of currently subscribed services by invoking listSubscribedServices() method on the IpServiceDiscovery interface. This method returns a list of serviceIDs of the set of subscribed services. The service contract ceases to exist after the specified end date. The deleteServiceContract deletes the service contract object held in the framework.. It is up to the discretion of the Framework operator to allow the enterprise operator to delete a service contract before its specified end date.

After the service subscription is performed the client applications can access and use the set of subscribed services in addition to the set of freely available services. In order to start a service, the interface reference of the service is required. The discoverService() method or the listSubscribedServices() method, described above, return the “serviceID”. The interface reference of the service is obtained in the service access phase. The service access phase begins with the client applications selecting the service, via the selectService() method, and signing a service agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to identify the service that it wants to initiate. The input to the selectService() is the “serviceID” returned by the discoverService() or the listSubscribedServices() and the output is a “serviceToken”. The serviceToken is free format text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed by the enterprise operator, then a “service not subscribed”exception is raised. The signServiceAgreement() is invoked by the client application on the framework to sign an agreement on the service. The input to this method is the service token returned by the selectService() method. The sign service agreement is used as a way of non-repudiation of the intention to use the service by the client application. The successful completion of the signServiceAgreement() returns the interface reference to the service (or to its service manager). The client application can then use this interface reference to start the service.

1.15.2 Service Type Creation, Deletion, and Management Sequence Diagram (Figure 1)
[image: image64.wmf] :

EnterpriseOperator

 : IpAccess

 : IpServiceProfileManagement

s : IpServiceProfileInfoQuery

 :

ClientApplication

 : IpServiceContractInfoQuery

 : IpServiceContractManagement

 : IpServiceDiscovery

obtainFrameworkInterface()

listServiceTypes()

describeServiceType()

discoverService()

obtainFrameworkInterface()

createServiceProfile()

assign()

createServiceContract()

modifyServiceProfile()

assign()

getServiceProfile()

deleteServiceProfile()

modifyServiceContract()

Service Discovery and Subscription

listSubscribedServices()

getServiceContract()

deleteServiceContract()

Auth. Phase

followed by

listSubscribedServices()

create more

SPs in SC

Find desired

services

Subscribe

the services

1.15.3 Service Registration Sequence Diagram(Figure 2)

[image: image65.emf] : Operator

Client

 : IpConnectivity

Manager

 : IpQoSMenu : IpQo

STemplate

 : IpVPrN

getQoSMenu()

getTemplateList()

getTemplate()

getPipeQoSInfo ()

setPipeQoSInfo ()

getProvisionedQoSInfo()

setProvisionedQoSInfo()

getValidityInfo()

setValidityInfo()

createVPrP()

1.15.4 Enterprise Operator and Client Application Subscription Management Sequence Diagram(Figure 3)

[image: image66.emf] : Operator

Client

 : IpConnectivity

Manager

 : IpEnterprise

Network

 : IpEnterprise

NetworkSite

getEnterpriseNetwork()

getSiteList()

getSite()

getSAPList()

getSiteID ()

getSiteDescription()

getSAPIPSubnet()

getIPSubnet()

getSiteLocation()

1.15.5 Service Discovery and Subscription Sequence Diagram(Figure 4)

[image: image67.emf] : Operator

Client

 : IpConnectivity

Manager

 : IpEnterprise

Network

 : IpVPrN : IpVPrP

getVPrN()

getVPrPList()

getVPrP()

getEnterpriseNetwork()

getVPrPID()

getSlaID()

getProvisionedQoSInfo()

getValidityInfo()

getPipeQoSInfo()

getDsCodepoint()

getStatus()

2 Generic Messaging sequence diagrams

2.1 Open Mailbox

[image: image42.wmf] :

IpAppLogic

 :

IpMessagingManager

 : IpMailbox

1: openMailbox()

2: new()

1: This message requests the object implementing the IpMessagingManager interface to create an object implementing the IpMailbox interface.

2: Assuming that the criteria for creating an object implementing the IpMailbox interface is met, message 2 is used to create it.

2.2 Close Mailbox

[image: image43.wmf] :

IpAppLogic

 : IpMailbox

1: close ()

1: This message requests the object implementing the IpMailbox interface to de-assign.

2.3 Prepare Mailbox

[image: image44.wmf] : IpAppLogic

 : IpMessagingManager

 : IpAppMessagingManager

1: new()

3: messagingEventNotify()

4: 'forward event'

2: enableMessagingNotification()

1: This message is used by the application to create an object implementing the IpAppMessagingManager interface.

2: This message is used to enable the notification mechanism so that events can be sent to the application.

When new mail, that matches the event criteria set in message 2, arrives a message indicating the presence of new mail (not shown) is directed to the object implementing the IpMessagingManager.

3: This message is used to pass the new mail event to the object implementing the IpAppMessagingManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

2.4 Get Message

[image: image45.wmf] :

IpAppLogic

 : IpMailboxFolder

 : IpMessage

 : IpAppMessagingManager

4: getMessage()

1: openFolder()

2: getInfoAmount ()

3: getInfoProperties ()

5: new()

1: This message requests a folder to be opened and returns a reference to that folder.

2: This message requests the number of folder information properties of the opened folder.

3: This message requests all of the folder information properties.

4: This message requests a message from the opened mailbox folder.

5: Assuming that the criteria for creating an object implementing the IpMessage interface is met, the (internal) message 5 is used to create it.

2.5 Get Folder Information

[image: image46.wmf] : IpAppLogic

 : IpMailboxFolder

1: getInfoAmount ()

2: getInfoProperties ()

3: getInfoProperties ()

1: This message requests the number of folder information properties of the specified folder.

2: This message requests the first set of folder information properties.

3: This message requests the second set of folder information properties.

3 Mobility sequence diagrams specification

This document provides example use of the mobility services, through the use of sequence diagrams to illustrate typical sequences with which the application programmer will have to comply, that can be derived using version 2.0 of the API specification.

The general format of the sequence diagrams is described below.

3.1 Overview of service

Before each sequence diagram, a textual description of the service to follow is given.

3.2 Objects implementing the interfaces

These are given at the top of each sequence diagram and are shown as names within shaded rectangular boxes. Where given, the names of the objects implementing the interfaces are given before the colons. The interface types are given after the colons.

3.3 Messages

Messages flowing between objects are shown as numbered arrows. Sequence numbers indicate the ordering of messages. Each message is given a message name, which indicates the method call to be invoked on the object receiving the message.

It should be noted that the API is between the objects implementing the application interfaces (e.g. IpAppUserLocation, IpAppUserStatus,…) and the service interfaces (e.g. IpUserLocation, IpUserStatus,…). Intra-application or intra-service flows are implementation dependent.

3.4 Description of service

At the end of each sequence diagram, a detailed textual description, describing each of the message flows, for the service is given.

4 Definitions and Abbreviations

4.1 Definitions

For the purpose of the present document, the following definitions apply:

Mobility is a set of services that is commonly used to implement applications with a close relationship to mobility. The services in the set are User Location, User Location Camel, User Location Emergency and User Status.

4.2 Abbreviations

For the purpose of the present document, the following abbreviations apply:

M
Mobility

UL
User Location

ULC
User Location Camel

ULE
User Location Emergency

US
User Status

5 User Location Service sequence diagrams

5.1 User Location Interrogation – Interactive Request

The following sequence diagram shows how an application requests a location report from the User Location service.

[image: image47.wmf] :

IpAppUser

Location

 :

IpUser

Location

2:

locationReportRes

()

1:

locationReportReq

()

1: This message is used to request the location of one or several users.

2: This message passes the result of the location request to its callback object.

5.2 User Location Interrogation – Periodic Request

The following sequence diagram shows how an application requests periodic location reports from the User Location service.

[image: image48.wmf] :

IpApp

UserLocation

 :

IpUser

Location

1:

periodicLocationReportingStart

()

2:

periodicLocationReport

()

3:

periodicLocationReport

()

New reports are sent until the

periodic reporting is stopped

4:

periodicLocationReportingStop

()

1: This message is used to start periodic location reporting for one or several users.

2, 3,… : This message passes the location of one or several users to its callback object.
This is repeated at regular intervals until the application stops periodic location reporting (see next message).

4: This message is used to stop periodic location reporting.

5.3 User Location Interrogation – Triggered Request

The following sequence diagram shows how an application requests triggered location reports from the User Location service. When a user’s location changes, the service reports this to the application.

[image: image49.wmf] :

IpApp

TriggeredUserLocation

:

IpTriggered

UserLocation

1:

triggeredLocationReportingStart

()

4:

triggeredLocationReportingStop

()

2:

triggeredLocationReport

()

3:

triggeredLocationReport

()

New reports are sent until the

triggered reporting is stopped

1: This message is used to start triggered location reporting for one or several users.

2, 3,… : When the trigger condition is fulfilled then this message passes the location of the affected user to its callback object.
This is repeated until the application stops triggered location reporting (see next message).

4: This message is used to stop triggered location reporting.

5.4 User Location Interrogation – Parameter Error

The following sequence diagram show a scenario where the application is requesting a location report from the User Location service but there is at least one error in the parameters that is detected by the service. The scenarios for:

· extendedLocationReportReq
· periodicLocationReportingStartReq
are similar and therefore not shown.

[image: image50.wmf] :

IpAppUserLocation

 :

IpUserLocation

1:

locationReportReq

()

1: This message is used to request the location of one or several users but the service returns an error and the execution of the request is aborted.

5.5 User Location Interrogation – Network Error

The following sequence diagram show a scenario where the application is requesting a location report from the User Location service but a network error occurs. The scenarios for:

· extendedLocationReportReq
· periodicLocationReportingStartReq
are similar and therefore not shown.

[image: image51.wmf] :

IpAppUserLocation

 :

IpUserLocation

1:

locationReportReq

()

2:

locationReportErr

()

1: This message is used to request the location of one or several users.

2: This message passes information about the error in the location request from the network to the callback object.
6 User Location Camel Service sequence diagrams

The scenarios for User Location Camel are very similar to the scenarios in User Location Service sequence diagrams and therefore not shown.

7 User Location Emergency Service sequence diagrams

7.1 ULE – Subscription and Network Induced Location Reports

The following sequence diagram shows how an application subscribes to emergency location reports from the Emergency User Location service. When the User Location Emergency service receives Network Induced Location requests (triggered by emergency calls) it reports that to the application.

[image: image52.wmf] :

IpAppUserLocation

Emergency

 :

IpUserLocation

Emergency

1:

subscribeEmergencyLocationReports

()

2:

emergencyLocationReport

()

3:

emergencyLocationReport

()

4:

unSubscribeEmergencyLocationReports

()

New reports are sent until the

application

unsubscribes.

1: This message is used to subscribe to emergency location reports.
2, 3, etc.: When the mobility service receives a Network Induced Location Request (triggered by an emergency service call) then this message passes the location to its callback object. This is repeated until the application cancels its subscription to emergency location reports (see next message).
4: This message is used to cancel the emergency user location report subscription.

7.2 ULE – Network Induced Location Reports

This sequence diagram is a simplified version of the previous diagram. This diagram shows only the part where an emergency call triggers a location report in the network and the location report is passed via the User Location Emergency service to a dedicated emergency application.

[image: image53.wmf] :

IpAppUserLocation

Emergency

 :

IpUserLocation

Emergency

1:

emergencyLocationReport

()

1: When the mobility service receives a Network Induced Location Request (triggered by an emergency service call) then the available location information is passed to the emergency application in an emergency location report. Note that an emergency location report does not necessarily contain the user location, but in those cases, the user address, IMEI-address and/or a routing key (an identifier of the call) are passed to the application.

7.3 ULE – Interactive Location Request

This sequence diagram shows the scenario when an emergency application requests the location of a terminal based on information from a previous incomplete emergency location report.

[image: image54.wmf] :

IpAppUserLocationEmergency

 :

IpUserLocationEmergency

1:

emergencyLocationReportReq

()

2:

emergencyLocationReport

()

1: An emergency application makes an interactive request for a user location. This can sometimes be made with different parameters than the “ordinary” user location requests in the IpUserLocation interface, because a routing key and an IMSI might be used to identify the terminal (emergency call without SIM-card).

2: The emergency location information is reported back to the application.

7.4 ULE – Interactive Request Parameter Error

This sequence diagram shows the scenario when an emergency application is requesting the location of a terminal based on information from a previous “incomplete” emergency location report but the request cannot be processed because of parameter error.

[image: image55.wmf] :

IpAppUserLocationEmergency

 :

IpUserLocationEmergency

1:

emergencyLocationReportReq

()

1: An emergency application makes an interactive request for a user location but the method returns an error that was discovered immediately.
7.5 ULE – Interactive Request Network Error

This sequence diagram shows the scenario where an emergency application requests the location of a terminal based on information from a previous “incomplete” emergency location report, but the request cannot be processed because of a network error.

[image: image56.wmf] :

IpAppUserLocationEmergency

 :

IpUserLocationEmergency

1:

emergencyLocationReportReq

()

2:

emergencyLocationReportErr

()

1: An emergency application is making an interactive request for a user location. Because of a network error, an error report is sent instead of the location report.
8 User Status Service sequence diagrams

8.1 US– Interactive Request

The following sequence diagram shows how an application requests a status report from the User Status service.

[image: image57.wmf] :

IpApp

UserStatus

 :

IpUser

Status

1:

statusReportReq

()

2:

statusReportRes

()

1: This message is used to request the status of one or several users.
2: This message passes the result of the status request to its callback object.
8.2 US – Triggered Request

The following sequence diagram shows how an application request triggered status reports from the Status Location service. When users status changes, the service reports this to the application.

[image: image58.wmf] :

IpApp

UserStatus

 :

IpUser

Status

1:

triggeredStatusReportingStart

()

2:

triggeredStatusReport

()

3:

triggeredStatusReport

()

4:

triggeredStatusReportingStop

()

New reports are sent until the

triggered reporting is stopped

1: This message is used to start triggered status reporting for one or several users.
2, 3, etc.: When a user’s status changes then this message passes the status to its callback object.
This is repeated until the application stops triggered status reporting (see next message).
4: This message is used to stop triggered status reporting.

8.3 US– Interactive Request Parameter Error

The following sequence diagram shows how an application requests a status report from the User Status service, but the service discovers an error and returns an error code.

[image: image59.wmf] :

IpAppUserStatus

 :

IpUserStatus

statusReportReq()

The method returns an error

code.

8.4 US– Interactive Request Network Error

The following sequence diagram shows how an application requests a status report from the User Status service but later, when the request is processed, the service discover an error and calls an error method.

[image: image60.wmf] :

IpAppUserStatus

 :

IpUserStatus

1:

statusReportReq

()

2:

statusReportErr

()

An error has

occured while

processing the request and an

error method is called.

�

�

�

�

PAGE

_1007365005.doc

triggered reporting is stopped

New reports are sent until the

3: triggeredLocationReport()

2: triggeredLocationReport()

4: triggeredLocationReportingStop()

1: triggeredLocationReportingStart()

UserLocation

:IpTriggered

TriggeredUserLocation

 : IpApp

_1007365450.doc

()

emergencyLocationReport

1:

IpUserLocation�Emergency

 :

IpAppUserLocation�Emergency

 :

_1007365716.doc

2: statusReportRes()

1: statusReportReq()

Status

 : IpUser

UserStatus

 : IpApp

_1009005620.doc

 : IpAppLoadManager

 : IpLoadManager

2: evaluate policy

This is the implementation

detail

1: reportLoad

_1009108693.doc

ParlayClient

IparlayInitial

IparlayAuthentication

IparlayAccess

IparlayDiscovery

ParlayFramework

Service Control

Interface

IparlayAppAccess

The client application can also authenticate the Framework

initialContact()

initiateAuthentication()

selectAuthenticationMethod()

authenticate()

(authenticate())

requestAccess()

obtainInterface(discovery)

listServiceTypes()

describeServiceType()

discoverService()

selectService()

(access_check())

signServiceAgreement()

signServiceAgreement()

returns ref to service

control interface

_1007365805.doc

 :

IpAppUserStatus

 :

IpUserStatus

1: statusReportReq()

2: statusReportErr()

An error has occured while processing the request and an error method is called.

_1008599626.doc

 :

IpAppUserStatus

 :

IpUserStatus

statusReportReq()

The method returns an error code.

_1007365756.doc

triggered reporting is stopped

New reports are sent until the

4: triggeredStatusReportingStop()

3: triggeredStatusReport()

2: triggeredStatusReport()

1: triggeredStatusReportingStart()

Status

 : IpUser

UserStatus

 : IpApp

_1007365604.doc

 :

IpAppUserLocationEmergency

 :

IpUserLocationEmergency

1: emergencyLocationReportReq()

_1007365659.doc

 :

IpAppUserLocationEmergency

 :

IpUserLocationEmergency

1: emergencyLocationReportReq()

2: emergencyLocationReportErr()

_1007365571.doc

 :

IpAppUserLocationEmergency

 :

IpUserLocationEmergency

1: emergencyLocationReportReq()

2: emergencyLocationReport()

_1007365047.doc

 :

IpAppUserLocation

 :

IpUserLocation

1: locationReportReq()

2: locationReportErr()

_1007365428.doc

application unsubscribes.

New reports are sent until the

()

unSubscribeEmergencyLocationReports

4:

()

emergencyLocationReport

3:

()

emergencyLocationReport

2:

()

subscribeEmergencyLocationReports

1:

IpUserLocation�Emergency

 :

IpAppUserLocation�Emergency

 :

_1007365027.doc

 :

IpAppUserLocation

 :

IpUserLocation

1: locationReportReq()

_1006940735.doc
[image: image1.emf]ParlayApp :

IpAppHeartbeat

 :

IpHeartBeatMgmt

1: enableHeartBeat ()

2: send()

3: send()

At a certain point of time

the application decides

to stop heartbeat

supervision

4: disableHeartBeat ()

_1007364959.doc

1: locationReportReq()

2: locationReportRes()

Location

 : IpUser

 : IpAppUser�Location

_1007364981.doc

4: periodicLocationReportingStop()

periodic reporting is stopped

New reports are sent until the

3: periodicLocationReport()

2: periodicLocationReport()

1: periodicLocationReportingStart()

Location

 : IpUser

UserLocation

 : IpApp

_1006941714.doc
[image: image1.emf]ParlayApp :

IpSvcHeartBeat

 :

IpFwHeartBeatMgmt

At a certain point of time the

service decides to stop

heartbeat supervision

1: enableSvcHeartBeat()

2: send()

3: send()

4: disableSvcHeartBeat()

_1005996514.doc

Parlay Client

IparlayInitial

IparlayAuthentication

IparlayAccess

Parlay

Framework

IparlayAppAuthentication

IparlayAppAccess reference

is passed to Framework, and

IparlayAccess is returned.

initialContact()

initiateAuthentication()

requestAccess()

selectAuthenticationMethod()

authenticate()

(authenticate())

IparlayAppAuthentication reference is passed to framework and IparlayAuthentication commences.

authenticate()

(authenticate())

This is an example of the sequence of authenticate operations. Different authentication methods may use different protocols and result in a change to the order of the operations.

_1005996553.doc

 : IparlayApp

Logic

 : IparlayApp

EventNotification

 : Iparlay

Authentication

 : IparlayEvent

Notification

1: obtainFrameworkInterface()

2: new()

3: new()

4: enableNotification()

_1005996464.doc

ParlayClient

IparlayInitial

IparlayAuthentication

IparlayAccess

IparlayAppAccess

initialContact()

initiateAuthentication()

requestAccess()

selectAuthenticationMethod()

authenticate()

(authenticate())

IparlayAppAccess interface

is passed to Framework, and

IparlayAccess is returned.

