3G TS 29.xxx 0.2.0 (2000-02)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;
Open Service Architecture;
Application Programming Interface;
Part 1

(3G TS 29.xxx version 0.2.0)

[image: image1.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Reference

DTS/TSGN-0229xxxU

Keywords

OSA, API

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

htT://www.3gpp.org

Contents

7Foreword

1
Scope
8
2
References
8
2.1
Normative references
8
2.2
Informative references
9
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
10
4
Open Service Architecture
10
5
General methodology used in this specification
11
5.1
Tools and Languages
11
5.2
Packaging
11
5.3
Colours
11
5.4
NamingScheme
11
5.5
Error results
12
5.6
References
12
5.7
Number of out parameters
12
5.8
Strings, Lists and Sets
12
5.9
Prefixes
13
5.10
Naming space across CORBA modules
13
6
Class diagrams
14
6.1
Class diagrams for the Framework service capability feature
14
6.1.1
Top level Framework packages
14
6.1.2
Framework sub-packaging
14
6.1.3
Framework interfaces
15
6.2
Class diagrams for non-Framework service capability features
16
6.2.1
Call Control
16
6.2.2
Generic User Interaction
18
6.2.3
Network User Location
20
6.2.4
User Status
20
7
State Transition Diagrams
21
7.1
Framework
21
7.2
Call Control
22
7.2.1
CallControlManager
22
7.2.1.1
Active state
22
7.2.1.2
Notification terminated state
22
7.2.2
Call
23
7.2.2.1
Incoming state
23
7.2.2.2
Outgoing Setup state.
23
7.2.2.3
Active state
23
7.2.2.4
Releasing state
23
7.3
User Interaction
24
7.3.1
UIManager
24
7.3.1.1
Active state
24
7.3.2
UI
24
7.3.2.1
Active state
24
7.3.3
UICall
25
7.3.3.1
Active state
25
7.3.3.2
Release pending state
25
7.4
Network User Location
26
7.5
User Status
26
8
SDL specifications
28
9
Data Definitions
29
9.1
Framework Data Definitions
29
9.1.1
Common Framework Data Definitions
29
9.1.2
Event Notification Data Definitions
32
9.1.3
Trust and Security Management Data Definitions
32
9.1.4
Integrity Management Data Definitions
34
9.2
Call Control Data Definitions
36
9.2.1
Interface definitions
37
9.2.1.1
IpAppCall
37
9.2.1.2
IpAppCallRef
37
9.2.1.3
IpAppCallRefRef
37
9.2.1.4
IpAppCallControlManager
37
9.2.1.5
IpAppCallControlManagerRef
37
9.2.1.6
IpCall
37
9.2.1.7
IpCallRef
37
9.2.1.8
IpCallRefRef
37
9.2.1.9
IpCallControlManager
37
9.2.1.10
IpCallControlManagerRef
37
9.2.2
Event Notification data definitions
37
9.2.2.1
TpCallEventName
37
9.2.2.2
TpCallEventCriteria
38
9.2.2.3
TpCallEventInfo
38
9.2.3
Generic Call Control Type definitions
39
9.2.3.1
TpCallAlertingMechanism
39
9.2.3.2
TpCallAppInfo
39
9.2.3.3
TpCallAppInfoType
39
9.2.3.4
TpCallAppInfoSet
40
9.2.3.5
TpCallBearerService
40
9.2.3.6
TpCallChargePlan
40
9.2.3.7
TpCallError
40
9.2.3.8
TpCallAdditionalErrorInfo
40
9.2.3.9
TpCallErrorType
40
9.2.3.10
TpCallFault
41
9.2.3.11
TpCallIdentifier
41
9.2.3.12
TpCallIdentifierRef
41
9.2.3.13
TpCallInfoReport
41
9.2.3.14
TpCallInfoType
41
9.2.3.15
TpCallInterworkingIndicators
42
9.2.3.16
TpCallMonitorMode
42
9.2.3.17
TpCallNetworkAccessType
42
9.2.3.18
TpCallOverloadType
42
9.2.3.19
TpCallPartyCategory
42
9.2.3.20
TpCallReleaseCause
42
9.2.3.21
TpCallServiceCode
43
9.2.3.22
TpCallTeleService
43
9.2.3.23
TpCallSuperviseVolume
43
9.2.3.24
TpCallSuperviseReport
43
9.2.3.25
TpCallSuperviseTreatment
43
9.2.3.26
TpCallReport
44
9.2.3.27
TpCallAdditionalReportInfo
44
9.2.3.28
TpCallReportRequest
44
9.2.3.29
TpCallReportAdditionalCriteria
44
9.2.3.30
TpCallReportRequestSet
45
9.2.3.31
TpCallReportType
45
9.3
User Interaction Data Definitions
46
9.3.1
Interface definitions
46
9.3.1.1
IpUI
46
9.3.1.2
IpUIRef
46
9.3.1.3
IpUIRefRef
46
9.3.1.4
IpUIManager
46
9.3.1.5
IpUIManagerRef
46
9.3.1.6
IpAppUI
46
9.3.1.7
IpAppUIRef
46
9.3.1.8
IpAppUIRefRef
46
9.3.1.9
IpAppUIManager
46
9.3.1.10
IpAppUIManagerRef
46
9.3.2
Type definitions
46
9.3.2.1
TpUICallIdentifier
46
9.3.2.2
TpUICallIdentifierRef
47
9.3.2.3
TpUICollectCriteria
47
9.3.2.4
TpUIError
47
9.3.2.5
TpUIEventCriteria
48
9.3.2.6
TpUIEventInfo
48
9.3.2.7
TpUIFault
48
9.3.2.8
TpUIIdentifier
48
9.3.2.9
TpUIIdentifierRef
49
9.3.2.10
TpUIInfo
49
9.3.2.11
TpUIInfoType
49
9.3.2.12
TpUIMessageCriteria
49
9.3.2.13
TpUIReport
49
9.3.2.14
TpUIResponseRequest
50
9.3.2.15
TpUIVariableInfo
50
9.3.2.16
TpUIVariablePartType
50
9.4
Mobility Management Data definitions
51
9.4.1
Interface Definitions
51
9.4.2
Common Type Definitions
51
9.4.2.1
TpGeographicalPosition
51
9.4.2.2
TpLocationPriority
52
9.4.2.3
TpLocationReq
52
9.4.2.4
TpLocationResponseIndicator
53
9.4.2.5
TpLocationResponseTime
53
9.4.2.6
TpLocationType
53
9.4.2.7
TpLocationUncertaintyShape
53
9.4.2.8
TpMobilityDiagnostic
53
9.4.2.9
TpMobilityError
54
9.4.2.10
TpMobilityStopAssignmentData
54
9.4.2.11
TpMobilityStopScope
54
9.4.2.12
TpTerminalType
55
9.4.3
Network User Location Data Definitions
55
9.4.3.1
TpLocationCellIDOrLAI
55
9.4.3.2
TpLocationTriggerNetwork
55
9.4.3.3
TpUserLocationNetwork
55
9.4.3.4
TpUserLocationNetworkSet
56
9.4.4
User Status Data Definitions
56
9.4.4.1
TpUserStatus
56
9.4.4.2
TpUserStatusSet
56
9.4.4.3
TpUserStatusIndicator
56
10
IDL Interface Definitions
57
10.1
Generic IDL
57
10.2
Framework IDL
57
10.2.1
Scope
57
10.2.2
Trust and Security Management: Framework Interfaces
57
10.2.2.1
Initial Contact
57
10.2.2.2
Authentication
57
10.2.2.3
Access
57
10.2.2.4
Accessing a Service
57
10.2.2.5
Interface Class: IpInitial
57
10.2.2.6
Interface Class: IpAuthentication
57
10.2.2.7
Interface Class: IpAccess
57
10.2.3
Trust and Security Management: Application Interfaces
57
10.2.3.1
Interface Class: IpAppAuthentication
57
10.2.3.2
Interface Class: IpAppAccess
57
10.2.4
Service Discovery: Framework Interface
57
10.2.4.1
Interface Class: IpServiceDiscovery
57
10.2.5
Event Notification: Framework Interface
57
10.2.5.1
Interface Class: IpEventNotification
57
10.2.6
Event Notification: Application Interface
57
10.2.6.1
Interface Class: IpAppEventNotification
57
10.2.7
Integrity Management - Load Manager: Framework Interface
57
10.2.7.1
Interface Class: IpLoadManager
57
10.2.8
Integrity Management - Load Manager: Application Interface
57
10.2.8.1
Interface Class: IpAppLoadManager
57
10.2.9
Integrity Management - Fault Manager: Framework Interface
57
10.2.9.1
Interface Class: IpFaultManager
57
10.2.10
Integrity Management - Fault Management Application Interface
57
10.2.10.1
Interface Class: IpAppFaultManager
57
10.2.11
Integrity Management - Heartbeat Management: Framework Interface
57
10.2.11.1
Interface Class; IpHeartBeatMgmt
57
10.2.12
Integrity Management - Heartbeat Management: Application Interface
57
10.2.12.1
Interface Class: IpAppHeartBeatMgmt
57
10.2.13
Integrity Management – Heartbeat: Framework Interface
57
10.2.13.1
Interface Class: IpHeartBeat
57
10.2.14
Integrity Management: Heartbeat Application Interface
57
10.2.14.1
Interface Class: IpAppHeartBeat
57
10.2.15
Integrity Management - OAM: Framework and Application Interfaces
57
10.2.15.1
Framework Interface Class: IpOAM
57
10.2.15.2
Application Interface Class: IpAppOAM
57
10.3
Call Control
73
10.3.1
Common Data Types for Call Control
73
10.3.2
Call Control IDL
73
10.4
User Interaction
81
10.4.1
Common Data types for User Interaction
81
10.4.2
User Interaction IDL
81
10.5
Mobility Management
88
10.5.1
Common data types for mobility management
88
10.5.2
Network User Location IDL
91
10.6
User Status IDL
93
11
History
95
12
Editors
97

Foreword

This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version 3.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
Indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the specification;

1 Scope

This document specifies the stage 3 of the Open Service Architecture (OSA) Application Programming Interface (API).

The OSA defines an architecture that enables operator and third party applications to make use of network functionality through an open standardised interface (the OSA API). OSA API provides the glue between applications and service capabilities provided by the network. In this way applications become independent from the underlying network technology. The applications constitute the top level of the Open Service Architecture (OSA). This level is connected to the Service Capability Servers (SCSs) via the OSA interface. The SCSs map the OSA API onto the underlying telecom specific protocols (e.g. MAP, CAP, WAP etc.) and are therefore hiding the network complexity from the applications.

Applications are outside the Core Network and make use of network associated service capability features and/or terminal associated service capability features. Applications can be network/server centric applications and/or terminal centric applications that uses service capability features that are offered through the OSA API interface. Terminal centric applications interact with service capability features that are associated to the Mobile Station (MS), examples are MExE and SAT applications. Network/server centric applications make use of service capability features offered by the core network. (Note that applications may belong to the network operator domain although running outside the core network. Outside the core network means that the applications are executed in Application Servers that are physically separated from the core network entities).

As mentioned previously, this document specifies stage 3 of the Open Service Architecture – Application Programming Interface and as such it contains class diagrams, data definitions and the interface definitions in IDL for all OSA APIs defined in Release 99.

The OSA API Stage 3 activity is performed jointly with ETSI SPAN3’s Service Provider Access activity. The contents of this document is related to the jointly owned 3GPP & ETSI document referred as the API Master document, which contains the API interface descriptions that are common and differentiated between ETSI & 3GPP.

2 References

References may be made to:

a)
Specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or

b)
All versions up to and including the identified version (identified by "up to and including" before the version identity); or

c)
All versions subsequent to and including the identified version (identified by "onwards" following the version identity); or

d)
Publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

2.1 Normative references

 [1]
TS 21.004 ”Digital cellular telecommunication system (Phase 2+); Abbreviations and acronyms”. < Editor's note: check whether title is correct >.
 [2]
TS 22.057: ”Digital cellular telecommunication system (Phase 2+); Mobile Station Application Execution Environment (MExE); Service description”. < Editor's note: check whether title is correct >
[3]
TS 23.057: " Digital cellular telecommunication system (Phase 2+); Mobile Station Application Execution Environment (MExE); Service description - Stage2”. < Editor's note: check whether title is correct >
[4]
TS 22.078: " Digital cellular telecommunication system (Phase 2+); Customised Applications for Mobile network Enhanced Logic (CAMEL); Service definition - Stage 1" [5]
GSM 03.78: ”Digital cellular telecommunication system (Phase 2+); Customised Applications for Mobile network Enhanced Logic (CAMEL); Service definition - Stage 2”. < Editor's note: check whether title is correct >
 [6]
GSM 11.14: ”Digital cellular telecommunication system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment; (SIM - ME) interface” < Editor's note: check whether reference to 22.038 has to be included >
 [7]
UMTS TS 22.101: ”Universal Mobile Telecommunications System (UMTS): Service Aspects; Service Principles”

 [8]
UMTS TS 22.105: ”Universal Mobile Telecommunications System (UMTS); Services and Service Capabilities”

 [9]
UMTS TS 22.121: ”Universal Mobile Telecommunications System (UMTS); Virtual Home Environment”

[10]
UMTS TR 22.905: “….

[11]
TS 23.127: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; “Virtual Home Environment/Open Service Architecture

2.2 Informative references

[1]
UMTS TR 22.70: ”Universal Mobile Telecommunications System (UMTS); Virtual Home Environment”

[2]
World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side framework for content negotiation (www.w3.org)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this TS, the following definitions apply:

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home Environment to provide services.
Local Service: A service, which can be exclusively provided in the current serving network by a Value added Service Provider.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within networks and under network control.

Service Capability Feature: Functionality offered by service capabilities that are accessible via the standardised OSA interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

Services: Services are made up of different service capability features.

Applications: Services, which are designed using service capability features.

OSA Interface: Standardised Interface used by application to access service capability features.
Personal Service Environment: contains personalised information defining how subscribed services are provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Home Environment: responsible for overall provision of services to users

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the terminal and serving network.

User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

Value Added Service Provider: provides services other than basic telecommunications service for which additional charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and between terminals.

Service Factory: this entity is responsible for creation of the initial interface for a certain Service Capability Feature on request of the application.

Gateway: synonym for Service Capability Server. From the viewpoint of applications, a Service Capability Server can be seen as a gateway to the core network.

Further UMTS related definitions are given in 3G TS 22.101.

3.2 Abbreviations

For the purposes of this TS the following abbreviations apply:

CAMEL
Customised Application For Mobile Network Enhanced Logic

CSE
Camel Service Environment

HE
Home Environment

HE-VASP
Home Environment Value Added Service Provider

HLR
Home Location Register

IDL
Interface Description Language

MAP
Mobile Application Part

ME
Mobile Equipment

MExE
Mobile Station (Application) Execution Environment

MS
Mobile Station

MSC
Mobile Switching Centre

OSA
Open Service Architecture

PLMN
Public Land Mobile Network

PSE
Personal Service Environment

SAT
SIM Application Tool-Kit

SCP
Service Control Point

SIM
Subscriber Identity Module
Short Message Service

USIM
User Service Identity Module

VASP
Value Added Service Provider

VHE
Virtual Home Environment

Further GSM related abbreviations are given in GSM 01.04. Further UMTS related abbreviations are given in 3G T 22.905.

4 Open Service Architecture

In order to implement not known end user services/applications today, a highly flexible Open Service Architecture (OSA) is required. The Open Service Architecture (OSA) is the architecture enabling applications to make use of network capabilities. The applications will access the network through the OSA interface that is specified in this Technical Specification.

The access to network functionality is offered by different Service Capability Servers (SCSs) and appear as service capability features in the OSA interface. These are the capabilities that the application developers have at their hands when designing new applications (or enhancements/variants of already existing ones). The different features of the different SCSs can be combined as appropriate. The exact addressing (parameters, type and error values) of these features is described in stage 3 descriptions. These interface descriptions (“IDLs”) are open and accessible to application developers, who can design services in any programming language. The service logic executes toward the OSA interfaces, while the underlying core network functions use their specific protocols.

The aim of OSA is to provide an extendible and scalable architecture that allows for inclusion of new service capability features and SCSs in future releases with a minimum impact on the applications using the OSA interface.

To make it possible for application developers to rapidly design new and innovative applications, an architecture with open interfaces is imperative. By using object oriented techniques, like CORBA, it will be possible to use different operating systems and programming languages in application servers and service capability servers. The different servers interwork via the OSA interfaces. The service capability servers will serve as gateways between the network entities and the applications

5 General methodology used in this specification

5.1 Tools and Languages

The Unified Modelling Language (UML) is used as a way to specify the class diagrams and state transition diagrams.

OMG IDL as the interface definition language. IDL files can be generated manually from class diagrams and tailored to OMG’s IDL style. Of course a sophisticated UML tool can be used to generate the initial IDL drafts but these will probably still need to be customised manually.

IDL correctness can be verified with any CORBA2 (orbos/97-02-25) compliant IDL compiler. A suggested reference implementation is Sun’s IDL compiler freely available from http://www.javasoft.com/products/jdk/idl/index.html.

5.2 Packaging

In order to avoid polluting the name space, it is suggested to use a hierarchical packaging scheme. For instance, we could use a root package called org.threegpp.osa. This would yield the following sub-packages.

· org.threegpp.osa.appframework.IAppAuthentication

(authentication)

· org. threegpp.osa.framework.Iauthentication

(authentication)

· org. threegpp.osa.framework.IDiscovery

(discovery)

· org. threegpp.osa.gccs.ICallControlManager

· org. threegpp.osa.appgccs.IAppCallControlManager

· …

For clarity purposes, it is recommended that the CORBA module hierarchy defined in the IDLs parallels the package hierarchy depicted in the other VHE/OSA documents.

5.3 Colours

For clarity, it is suggested that class diagrams follows a certain colour scheme. Blue for application interface packages and yellow for all the others.

5.4 NamingScheme

Suggested is the following naming scheme for documentation and IDLs.

packages

lowercase.

Consider using the recommended domain-based (For example, org.threegpp.osa)

classes, structures and types. Start with T

TCapitalizedWithInternalWordsAlsoCapitalized

Exception class:

ClassNameEndsWithException.

Interface. Start with I:

IThisIsAnInterface

constants:

UPPER_CASE_WITH_UNDERSCORES

methods:

firstWordLowerCaseButInternalWordsCapitalized()

method’s parameters

firstWordLowerCaseButInternalWordsCapitalized

sequences, array or lists types

SequencesEndsWithList

class/structure members

firstWordLowerCaseButInternalWordsCapitalized

Note that spaces in between words are not allowed.

5.5 Error results

As OMG IDL supports exception handling it is more efficient to throw exceptions for all of the VHE/OSA interface methods and make the return type void than returning an error result. Suggested user-defined exceptions thrown by the VHE/OSA CORBA methods are GeneralException, GCCSException and GUISException. For clarity purposes, it is recommended that the return type of VHE/OSA methods be GeneralResult in the documentation and GeneralException in IDLs.

5.6 References

When parameters are to be passed by reference, in the interface specifications this is shown by parameters that have the extension “Ref” added to the datatype (e.g. IanInterfaceRef anInterface).

In IDL, however, the following rules apply:

· Interfaces are implicitly passed by reference.

· out parameters are also implicitly passed by reference.

This leads to:

· Interface as an in parameter: Passed by Reference.

· Structure or primitive type as an in parameter: Passed by Value.

· Structure or primitive type as an out parameter: Passed by Reference.

· Interface as an out parameter: As reference passed by reference.

To simplify the documentation without adding ambiguities (i.e.: avoiding redundant information), parameters (interfaces, structures and primitive data types) should be used as is when specified as in or out parameters in the IDL. This means that there will be no “Ref” added after the datatypes of parameters in the IDL.

5.7 Number of out parameters

In order to support mapping to as many languages as possible it is proposed to have only 1 out parameter per IDL operation.

5.8 Strings, Lists and Sets

For string data type, it is suggested to only use the data type String, without regard to the maximum length of the string. In IDL, the data type String can be typedefed from the CORBA primitive string. This CORBA primitive is made of a length and a variable array of byte.

For Lists or sequences of one particular data type where the number of data elements are always known, it is suggested to use a naming scheme like <datatype>List. In OMG IDL, it maps to a sequence of the datatype. A sequence contains a length and a variable array of elements of the same type.

Example: typedef sequence<SessionID> SessionIDList;

For Sets, describing a data type which comprises an integer which indicates the number of data elements in the set (the number part), and an set of data elements (the data part), it is suggested to use a naming scheme like <datatype>Set.

In OMG IDL, it also maps to a sequence of the datatype. A sequence contains a length and a variable array of elements of the same type.

Example: typedef sequence<SessionID> SessionIDSet;

Both the List and the Set data type can be implemented (for example, in C++) as a structure containing an integer for the number part, and an array for the data part.
Example:

The TAddressSet data type may be defined in C++ as:

typedef struct {

 short number;

 TAddress address [];

} TAddressSet;

The array "Address" is allocated dynamically with the exact number of required TAddress elements based on "number".

5.9 Prefixes

It is preferable that OSA constants and data types not be defined in the global name space. We suggest defining them in the org.threegpp.osa module. By doing so, it is no longer needed to prefix them with “OSA_” because the module where they are defined provides the appropriate naming context. See example in following section.

5.10 Naming space across CORBA modules

The following shows the naming space used in this specification.

module org {

module threegpp { // cannot use 3gpp, names need to start with letter
module osa {

// The fully qualified name of the following constant

// is org::threegpp::osa::THIS_IS_AN_OSA_GLOBAL_CONST

const long THIS_IS_AN_OSA_GLOBAL_CONST= 1999;

// Add other OSA global constants and types here

module appframework {

// no scoping required to access THIS_IS_AN_OSA_GLOBAL_CONST

const long APP_FRAMEWORK_CONST= THIS_IS_AN_OSA_GLOBAL_CONST;

};

module framework {

// scoping required to access APP_FRAMEWORK_CONST

const long FRAMEWORK_CONST= appframework::APP_FRAMEWORK_CONST;

};

};

};

};
6 Class diagrams

6.1 Class diagrams for the Framework service capability feature

< Editor's note: This section needs to be commented >
This section specifies the class diagrams that define the framework SCF, and proposes a way to package them.

Class diagrams are specified in UML: interface classes are shown as interface names within shaded rectangular boxes; relationships ans generalizations as lines connecting pairs of interface classes.

All OSA interface classes should be packed into the org.threegpp.osa module. Further sub-packaging is an implementation decision, but this section proposes a way to do it. Using this recommended packaging, a top-down approach is followed in the subsequent sections, where the last step provides the interface class diagrams for the framework.

6.1.1 Top level Framework packages

The top level view of the Framework SCF consists of the following two packages:

[image: image2.wmf]PAppFramework

PFramework

Figure 2: Framework top level packages

These two packages are de-composed in the following way:

[image: image3.wmf]PAppFramework

Consists of

·

PappTrustAndSecurityMgmt

·

PappEventNotification

·

PAppIntegrityMgmt

[image: image4.wmf]PFramework

Consists of

·

PServiceDiscovery

·

PTrustAndSecurityMgmt

·

PEventNotification

·

PIntegrityMgmt

6.1.2 Framework sub-packaging

The top-level packages are de-composed as described above; between some of the resulting sub-packages there are dependencies, that reflect dependencies between any two classes in the sub-package. The following figure shows all this.

[image: image5.wmf]PAppIntegrityMgmt

PAppEventNotification

PTrustAndSecurityMgmt

PIntegrityMgmt

PAppTrustAndSecurityMgmt

PEventNotification

PServiceDiscovery

PAppFramework

PFramework

Figure 3: Framework sub-packages

6.1.3 Framework interfaces

The packages in the previous section are made up of interfaces, that are in turn related. The communication between them is done through the +use channels, except for interfaces IpDiscovery and IpOAM, where it is done via the application login and is not shown in the figures.

[image: image7.wmf]IpAppAuthentication

<<Interface>>

IpAccess

<<Interface>>

+

uses

IpInitial

<<Interface>>

IpAuthentication

<<Interface>>

+

uses

IpAppAccess

<<Interface>>

PAppTrustAndSecurityMgmt

PTrustAndSecurityMgmt

Figure 4: Trust and Security Management – Application and Framework Class Diagrams

[image: image8.wmf]IpHeartBeatMgmt

<<Interface>>

+

uses

IpAppHeartbeat

<<Interfa

ce>>

IpHeartbeat

<<Interfa

ce>>

+

use

s

IpAppHeartBeatMgmt

<<Interface>>

PAppIntegrityMgmt

PIntegrityMgmt

IpAppLoadManager

<<Interface>>

IpLoadManager

<<Interface>>

+

uses

IpAppFaultManager

<<Interface>>

IpFaultManager

<<Interface>>

+

uses

IpAppOAM

<<Interf

ace>>

IpOAM

<<Interf

ace>>

1

1

0

..*

1

0

..*

Figure 5: Integrity Management – Application and Framework Class Diagrams

6.2 Class diagrams for non-Framework service capability features

6.2.1 Call Control

Generic Call Control provides the basic call control capabilities for the API. It allows calls to be instantiated from the network and routed through the network. The call model is based around a central call model that has zero to two call legs that are active (i.e., being routed or connected), each of which represents the logical relationship between the call and an address. However, the application does not have direct access to the call legs. Generic Call Control supports enough functionality to allow call routing and call management for today's Intelligent Network (IN) services in the case of a switched telephony network, or equivalent for packet based networks.

Generic Call Control is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback mechanism.

[image: image9.wmf]appgccs

gccs

Figure 1 : Generic Call Control Packages

[image: image10.wmf]IpCall

routeCallToDestinationReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

superviseCallReq()

<<Interface>>

IpCallControlManager

enableCallNotification()

disableCallNotification()

<<Interface>>

0

..*

1

0

..*

1

IpAppCall

routeCallToDestinationRes()

routeCallToDestinationErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

<<Interface>>

1

1

<<

uses>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationTerminated()

<<Interface>>

1

1

<<

uses>>

0

..*

1

0

..*

1

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

 Figure 2 : Generic Call Control Class diagram
6.2.2 Generic User Interaction

The Generic User Interaction interface (GUIS) is used by applications to interact with end users.

The GUIS is represented by the IpUIManager, IpUI and IpUICall interfaces that interface to services provided by the network.

The IpUI Interface provides functions to send information to, or gather information from the user. An application can use this interface independently of other services. In principle this interface allows applications to send SMS and USSD messages.

The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.
To handle responses and reports, the developer must implement IpAppUIManager, IpAppUI and IpAppUICall interfaces to provide the callback mechanism.

[image: image11.wmf]appguis

guis

Figure 3 : Generic User Interaction Packages

[image: image12.wmf]IpUICall

abortActionReq()

<<Interface>>

IpAppUICall

abortActionRes()

abortActionErr()

<<Interface>>

1

1

<<

uses>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionEventNotify()

<<Interface>>

0

..*

1

0

..*

1

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<Interface>>

1

1

<<

uses>>

IpUIManager

createUI()

createUICall()

enableUINotification()

disableUINotification()

<<Interface>>

1

1

<<

uses>>

0

..*

1

0

..*

1

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

 Figure 4 : Generic User interaction Class diagram

As already mentioned, the IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call. This means that there is a relationship between a specific Call object and a UICall object. This is shown in the figure below.
[image: image13.wmf]IpUICall

<<Interface>>

IpCall

<<Interface>>

1

1

1

1

Figure 5: Relation between the UICall and the Call object.

6.2.3 Network User Location

[image: image14.wmf]

<<Interface>>

IpOsa

<<Interface>>

IpService

<<Interface>>

I

p

UserLocation

Network

locationReportReq()

periodicLocationReportingStartReq()

periodicLocationReportingStop()

triggeredLocationReportingStartReq()

tri

ggeredLocationReportingStop()

<<Interface>>

I

p

AppUserLocation

Network

locationReportRes()

locationReportErr()

periodicLocationReport()

periodicLocationReportErr()

triggeredLocationReport()

triggered

LocationReportErr()

uses

6.2.4 User Status

[image: image15.wmf]

<<Interface>>

I

p

AppUserStatus

statusReportRes()

statusReportErr()

triggeredStatusReport()

triggeredStatusReportErr()

<<Interface>>

I

pO

sa

<<Interface>>

I

p

Service

<<Interface>>

I

p

UserStatus

statusReportReq()

triggeredStatusReportingStartReq()

triggeredStatusReportingStop()

uses

7 State Transition Diagrams

7.1 Framework

[image: image16.wmf]access

session

service

session

endAccess

IpInitial.requestAcces

s

service

waiting

endAccess

signServiceAgreeme

nt

endServiceAgreeme

nt

endAccess

selectServic

e

7.1.1 Access State

This is the state where the Framework and the client application are mutually authenticated, but there is not a service session going on.

7.1.2 Service Waiting

This is the state where the client application has already decided to start a session of a certain service, but service agreement negotiation is not yet finished.

7.1.3 Service State

This is the state where there is a service session established between the client application and the network. When the service session is finished the transition is to state Access, since the mutual authentication between Framework and client application is still valid.

7.2 Call Control

7.2.1 CallControlManager

[image: image17.wmf]Active

exit/ release Call objects

"new"

IpAccess.terminateServiceAgreement

enableCallNotification

disableCallNotification

Creation of

CallControlManager

by Service Factory

Notification terminated

entry/ ^IpAppCallControlManager.callNotificationTerminated

"notifications not possible"

IpAccess.terminateServiceAgreement

"notifications possible again"

disableCallNotification

7.2.1.1 Active state

In this state a relation between the Application and the Generic Call Control Service Capability has been established. It allows the application to request triggers / events for incoming calls.

7.2.1.2 Notification terminated state

When the Call Control manager is in the Notification terminated state, triggers / events will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications than defined in the Service Level Agreement. Another example is that the SCS has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

7.2.2 Call

[image: image18.wmf]Releasing

ALL

STATES

Active

Outgoing

Setup

Incoming

getCallInfoRes / routeCallToDestinationRes[final report]

IpCallControlManager.callEventNotify

getCallInfoReq

disconnect from called party ^routeCallToDestinationRes,

getCallInfoRes(intermediate report)

routeCallToDestinationReq

Only send event

when requested

by Application.

This means that

application has no more

outstanding requests for

events.

A final report is the last report that is send to the

application. It can either be a report capturing call

related information requested with getCallInfoReq or a

report on certain network events requested with

routeCallToDestination.

answer from called party

^routeCallToDestinationRes

connection to called party unsuccessful

^routeCallToDestinationRes

deassignCall

release

disconnect from calling party

getCallInfoRes / routeCallToDestinationRes[final report]

7.2.2.1 Incoming state

When the Call is in the incoming state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeCallToDestination(). Furthermore the Application can request for certain events by calling getCallInfoReq(). It is also allowed to request supervision of the call by calling superviseCallReq().

7.2.2.2 Outgoing Setup state.

When the Application has requested a connection to be established between the calling party and the called party and there is not yet any response from the called party side, the Call object is in state Outgoing Setup. In case the call could not be established, the Call object will go to state Incoming and the Application is allowed to setup a new call.

7.2.2.3 Active state

A connection between two parties has been established.

7.2.2.4 Releasing state

In this state the Application has requested the gateway to release the call. The gateway will keep the object until requested events are send to the application.

7.3 User Interaction

7.3.1 UIManager

[image: image19.wmf]Active

exit/ release UI objects

Creation of UIManager

by Service Factory

"new"

createUI

createUICall

enableUINotification

disableUINotification

IpAccess.terminateServiceAgreement

7.3.1.1 Active state

In this state a relation between the Application and the User Interaction Service Capability has been established. The application is now able to request creation of UI and UICall objects.

7.3.2 UI

[image: image20.wmf]Active

sendInfoReq

sendInfoAndCollectReq

release

IpUIManager.CreateUI

7.3.2.1 Active state

In this state the UI object is available for requesting messages to be send to the network.

7.3.3 UICall

[image: image21.wmf]Active

Release

Pending

Already requested

announcements will

continue.

Report error on all

requested UI for which a

result is expected.

Abort all ongoing UI

IpUIManager:createUICall

sendInfoReq

sendInfoAndCollectReq

abortActionReq

'announcement end' ^sendInfoRes

'user input received' ^sendInfoAndCollectRes

'user input received'[not

last report]

^sendInfoAndCollectRes

'announcement end'[not last report] ^sendInfoRes

'user input received'[last report]

^sendInfoAndCollectRes

'announcement end'[last report] ^sendInfoRes

This means that

application has no

more outstanding

requests on

events.

A final report is the last report that is send to the

application.

sendInfoReq[final request]

sendInfoRes (final report)

release

IpCall.deassign

IpCall.release

^sendInfoAndCollectErr or

sendInfoErr

sendInfoAndCollectRes (final report)

7.3.3.1 Active state

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from the end-user.

7.3.3.2 Release pending state

A transition to this state is made when the Application has indicated that after a certain announcement no further announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object is destroyed.

7.4 Network User Location

[image: image22.wmf]Active

exit/ release

ULN objects

"

new"

terminateServiceAgreement

locationReportReq

periodicLocationReportingStartReq

periodicLocationReportingStop

triggeredLocationReportingStartReq

triggeredLocationReportingStop

Creation of User Location

Camel by Service Factory

The Service Factory allows access to a user location service among other things. It is used during the signServiceAgreement, in order to return a user location interface reference which is user as the initial point of contact for the application.

7.4.1 Active state

In this state, a relation between the Application and the Network User Location Service Capability has been established. It allows the application to request a specific user location reports, subscribe to periodic user location reports or subscribe to triggers that generate location report when a location update occurs inside the current VLR area or when the user moves to another VLR area or both.

7.5 User Status

[image: image23.wmf]Active

exit/ release US objects

"

new"

terminateServiceAgreement

statusReportReq

triggeredStatusReportingStartReq

triggeredStatusReportingStop

Creation of User Status by

Service Factory

7.5.1 Active state

In this state, a relation between the Application and the User Status Service Capability has been established. It allows the application to request a specific user status report or subscribe to triggers that generate status reports when the status of one of the monitored user changes.

8 SDL specifications

To be introduced for OSA Release 2000.

<Editor’s Note: If so, why do we need this chapter. Informative SDLs if finished in time with reasonable quality needs to be in an informative appendix>

9 Data Definitions

9.1 Framework Data Definitions

This section provides the framework specific data definitions necessary to support the OSA interface specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is the following:

· Data type, that shows the name of the data type.

· Description, that describes the data type.

· Tabular specification, that specifies the data types and values of the data type.

· Example, if relevant, shown to illustrate the data type.

9.1.1 Common Framework Data Definitions

IpServiceRef

This data type is identical to IpInterfaceRef.

TpClientAppID

This is an identifier for the client application. It is used to identify the client to the framework. This data type is identical to TpString.

TpClientAppIDList

This data type defines a Numbered Set of Data Elements

 of type TpClientAppID.

TpEntOpID

This data type is identical to TpString.

TpEntOpIDList

This data type defines a Numbered Set of Data Elements
 of type TpEntOpID.

TpService

This data type is a Sequence_of_Data_Elements which describes a registered service. It is a structured type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

serviceID
TpServiceID

servicePropertyList
TpServicePropertyList

TpServiceList

This data type defines a Numbered Set of Data Elements

 of type TpService.

TpServiceDescription

This data type is a Sequence_of_Data_Elements which describes a registered service. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

serviceTypeName
TpServiceTypeName

ServicePropertyList
TpServicePropertyList

TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a service interface. The string is automatically generated by the Framework, and comprises a TpServiceSpecString

, which are concatenated using a forward separator (/) as the separation character.
TpServiceNameString

, and a number of relevant TpUniqueServiceNumber

,
Example

A service ID generated by the framework for the INAP-1 Call Control service will be of the form:

80569847/P_CALL_CONTROL/P_INAP1

TpServiceIDList

This data type defines a Numbered Set of Data Elements

 of type TpServiceID.

TpServiceIDRef

Defines a Reference to type TpServiceId.

TpServiceNameString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of a service interface. Other operator specific capabilities may also be used, but should be preceded by the string "OP_".The following values are defined for OSA release 99.

Character String Value
Description

NULL
An empty (NULL) string indicates no service name

P_CALL_CONTROL
The name of the Call Control Service

P_MESSAGING
The name of the Messaging Service

P_USER_INTERACTION
The name of the User Interaction Service

TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of a service specialisation interface. Other operator specific capabilities may also be used, but should be preceded by the string "OP_".The following values are defined for OSA release 99.

Character String Value
Description

NULL
An empty (NULL) string indicates no service specialisation

P_INAP1
The INAP-1 specialisation of the of the Call Control Service

P_VMAIL
The Voice Mail specialisation of the of the Messaging Service

P_EMAIL
The E-mail specialisation of the of the Messaging Service

P_CALL
The Call specialisation of the of the User Interaction Service

TpUniqueServiceNumber

This data type is identical to a TpString, and is defined as a string of characters that represents a unique number.

TpPropertyStruct

This data type is a Sequence_of_Data_Elements which describes a service property. It consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

ServicePropertyName
TpServiceTypeName

ServicePropertyMode
TpServicePropertyMode

ServicePropertyTypeName
TpServicePropertyTypeName

TpPropertyStructList

This data type defines a Numbered Set of Data Elements

 of type TpPropertyStruct.

TpServicePropertyMode

This defines service property modes.

Name
Value
Documentation

NORMAL
0
The value of the corresponding service property type may optionally be provided

MANDATORY
1
The value of the corresponding service property type must be provided at service registration time

READONLY
2
The value of the corresponding service property type is optional, but once given a value it may not be modified

MANDATORY_READONLY
3
The value of the corresponding service property type must be provided and subsequently it may not be modified.

TpServicePropertyTypeName

This data type is identical to TpString.

TpServicePropertyName

This data type is identical to TpString.

TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements

 of type TpServicePropertyName.

TpServicePropertyValue

This data type is identical to TpString.

TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements

 of type TpServicePropertyValue
TpServiceProperty

This data type is a Sequence_of_Data_Elements which describes a “service property”. It is a structured data type which consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

servicePropertyName
TpServicePropertyName

ServicePropertyValueList
TpServicePropertyValueList

servicePropertyMode
TpServicePropertyMode

TpServicePropertyList

This data type defines a Numbered Set of Data Elements

 of type TpServiceProperty.

TpServiceTypeDescription

This data type is a Sequence_of_Data_Elements which describes a service type. It is a structured data type. It consists of:

Sequence Element

Name
Sequence Element

Type
Documentation

PropertyStructList
TpPropertyStructList
a sequence of property name and property mode tuples associated with the service type

ServiceTypeNameList
TpServiceTypeNameList
the names of the super types of the associated service type

EnabledOrDisabled
TpBoolean
an indication whether the service type is enabled or disabled

TpServiceTypeName

This data type is identical to TpString
TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements

 of type TpServiceTypeName.

9.1.2 Event Notification Data Definitions

TpFwEventName

Defines the name of event being notified. In OSA release 99 no framework events are supported.

Name
Value
Description

EVENT_NAME_UNDEFINED
0
Undefined

TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated. In OSA release 99 no framework events are supported.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

TpFwEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification. In OSA release 99 no framework events are supported.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

EVENT_NAME_UNDEFINED

TpDefaultInfo

EventNameUndefined

TpDefaultInfo

Defines the Sequence of Data Elements that specify the default information returned to the application.

Sequence Element Name
Sequence Element Type

DefaultInfo
TpString

9.1.3 Trust and Security Management Data Definitions

TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application. If they request P_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "OP_". The following values are defined for OSA release 99:

String Value
Description

NULL
An empty (NULL) string indicates the default access type

P_ACCESS
Access using the OSA Access Interfaces: IpAccess and IpAppAccess

TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides operators and client's with the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security. OSA Authentication is the default authentication method. Other operator specific capabilities may also be used, but should be preceded by the string “OP_”. The following values are defined for OSA release 99:

String Value
Description

NULL
An empty (NULL) string indicates the default authentication method: OSA Authentication.

P_AUTHENTICATION
Authenticate using the OSA Authentication Interfaces: IpAuthentication and IpAppAuthentication

TpAuthCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the authentication capabilities that could be supported by the OSA. Other operator specific capabilities may also be used, but should be preceded by the string "OP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined for OSA release 99.

String Value
Description

NULL
An empty (NULL) string indicates no client capabilities.

P_DES_56
A simple transfer of secret information that is shared between the client application and the framework with protection against interception on the link provided by the DES algorithm with a 56bit shared secret key

P_RSA_512
A public-key cryptography system providing authentication without prior exchange of secrets using 512 bit keys

P_RSA_1024
A public-key cryptography system providing authentication without prior exchange of secrets using 1024bit keys

TpAuthCapabilityList

This data type is identical to a TpString. It is a string of multiple TpAuthCapability concatenated using a comma (,)as the separation character.

TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the framework capabilities that are be supported by the OSA API. Other operator specific capabilities may also be used, but should be preceded by the string "OP_".The following values are defined for OSA release 99.

Character String Value
Description

NULL
An empty (NULL) string indicates no interface.

P_DISCOVERY
The name for the Discovery interface.

P_EVENT_NOTIFICATION
The name for the Event Notification interface.

P_OAM
The name for the OA&M interface.

P_INTEGRITY_MANAGEMENT
The name for the Integrity Management interface.

TpServiceAccessControl

This is Sequence of Data Elements containing the access control policy information controlling access to the service feature, and the trustLevel that the service provider has assigned to the client application.

structure TpServiceAccessControl {

policy:
TpString;

trustLevel:
TpString;

};

The policy parameter indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

The trustLevel parameter indicates the trust level that the service provider has assigned to the client application.

TpServiceToken

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a selected service. This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgrRef {

digitalSignature:
TpStringRef;

serviceMgrInterface:
TIpInterfaceRef;

};

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that must be used. Other operator specific capabilities may also be used, but should be preceded by the string "OP_". The following values are defined for OSA release 99.

String Value
Description

NULL
An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA_512
MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512 bit key.

P_MD5_RSA_1024
MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024 bit key

9.1.4 Integrity Management Data Definitions

TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are framework operator specific.

TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Name
Sequence Element Type

Period
TpTimeInterval

FaultRecords
TpFaultStatsSet

TpFaultStatsSet

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Name
Sequence Element Type

Fault
TpInterfaceFault

Occurrences
TpInt32

MaxDuration
TpInt32

TotalDuration
TpInt32

NumberOfClientsAffected
TpInt32

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the framework.
TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

TpInterfaceFault

Defines the cause of the interface fault detected.

Name
Value
Description

INTERFACE_FAULT_UNDEFINED
0
Undefined

INTERFACE_FAULT_LOCAL_FAILURE
1
A fault in the local API software or hardware has been detected

INTERFACE_FAULT_GATEWAY_FAILURE
2
A fault in the gateway API software or hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR
3
An error in the protocol used on the client-gateway link has been detected

TpSvcUnavailReason

Defines the reason why a Service is unavailable.

Name
Value
Description

SERVICE_UNAVAILABLE_UNDEFINED
0
Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE
1
The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE
2
The gateway API software or hardware has failed

SERVICE_UNAVAILABLE_OVERLOADED
3
The service is fully overloaded

SERVICE_UNAVAILABLE_CLOSED
4
The service has closed itself (e.g. to protect from fraud or malicious attack)

TpAPIUnavailReason

Defines the reason why the API is unavailable.

Name
Value
Description

API_UNAVAILABLE_UNDEFINED
0
Undefined

API_UNAVAILABLE_LOCAL_FAILURE
1
The Local API software or hardware has failed

API_UNAVAILABLE_GATEWAY_FAILURE
2
The gateway API software or hardware has failed

API_UNAVAILABLE_OVERLOADED
3
The gateway is fully overloaded

API_UNAVAILABLE_CLOSED
4
The gateway has closed itself (e.g. to protect from fraud or malicious attack)

API_UNAVAILABLE_PROTOCOL_FAILURE
5
The protocol used on the client-gateway link has failed

TpLoadLevel

Defines the Sequence of Data Elements that specify the pair of load level and load threshold value.

Name
Value
Description

LOAD_LEVEL_NORMAL
0
Normal load

LOAD_LEVEL_OVERLOAD
1
Overload

LOAD_LEVEL_SEVERE_OVERLOAD
2
Severe Overload

TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and service dependent, so is their relationship with load level.

Sequence Element Name
Sequence Element Type

LoadThreshold
TpFloat

TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element Name
Sequence Element Type

LoadLevel
TpLoadLevel

LoadThreshold
TpLoadThreshold

TpTimeInterval

Defines the Sequence of Data Elements that specify a time interval.

Sequence Element Name
Sequence Element Type

StartTime
TpDateAndTime

StopTime
TpDateAndTime

TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name
Sequence Element Type

LoadPolicy
TpString

TpLoadStatistic

Defines the Sequence of Data Elements that specify the load statistic record at given timestamp.

Sequence Element Name
Sequence Element Type

ServiceID
TpServiceID

LoadValue
TpFloat

LoadLevel
TpLoadLevel

TimeStamp
TpDateAndTime

LoadValue is expressed in percentage.

TpLoadStatList

Defines a Numbered Set of Data Elements of TpLoadStatistic.

TpLoadStatusError

Defines the error code for getting the load status.

Name
Value
Description

LOAD_STATUS_ERROR_UNDEFINED
0
Undefined error

LOAD_STATUS_ERROR_UNAVAILABLE
1
Unable to get the load status

TpLoadStatError

Defines the Sequence of Data Elements that specify the error for getting the load status at given timestamp.

Sequence Element Name
Sequence Element Type

ServiceID
TpServiceID

LoadStatusError
TpFloat

TimeStamp
TpDateAndTime

TpLoadStatErrList

Defines a Numbered Set of Data Elements of TpLoadStatisticError.*

9.2 Call Control Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.vheosa.gccs package.

9.2.1 Interface definitions

9.2.1.1 IpAppCall

Defines the address of an IAppCall Interface.

9.2.1.2 IpAppCallRef

Defines a Reference to type IAppCall
9.2.1.3 IpAppCallRefRef

Defines a Reference to type IAppCallRef.

9.2.1.4 IpAppCallControlManager

Defines the address of an IAppCallControlManager Interface.

9.2.1.5 IpAppCallControlManagerRef

Defines a Reference to type IAppCallControlManager.

9.2.1.6 IpCall

Defines the address of an ICall Interface.

9.2.1.7 IpCallRef

Defines a Reference to type ICall.

9.2.1.8 IpCallRefRef

Defines a Reference to type ICallRef.

9.2.1.9 IpCallControlManager

Defines the address of an ICallControlManager Interface.

9.2.1.10 IpCallControlManagerRef

Defines a Reference to type ICallControlManager.

9.2.2 Event Notification data definitions

9.2.2.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications.

Name
Value
Description

P_EVENT_NAME_UNDEFINED
0
Undefined

P_EVENT_GCCS_OFFHOOK_EVENT
1
GCCS – Offhook event.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT
2
GCCS – Address information collected

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT
4
GCCS – Address information is analysed.

P_EVENT_GCCS_CALLED_PARTY_BUSY
8
GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE
16
GCCS – Called party is unreachable

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY
32
GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE
64
GCCS – Failure in routing the call

9.2.2.2 TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Sequence Element Name
Sequence Element Type
Description

DestinationLowerAddress
TpAddress
Lower destination address in an address rannge

DestinationUpperAddress
TpAddress
Upper destination address in an address range

OriginatingLowerAddress
TpAddress
Lower originatin address in an address range

OriginationUpperAddress
TpAddress
Upper origination address in an address range

CallEventName
TpCallEventName
Name of the event(s)

9.2.2.3 TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Call event notification.

Sequence Element Name
Sequence Element Type

DestinationAddress
TpAddress

OriginatingAddress
TpAddress

OriginalDestinationAddress
TpAddress

RedirectingAddress
TpAddress

CallAppInfo
TpCallAppInfoSet

CallEventName
TpCallEventName

9.2.3 Generic Call Control Type definitions

9.2.3.1 TpCallAlertingMechanism

This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values of this data type are operator specific.

9.2.3.2 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify call application-related specific information.

Tag Element Type

TpCallAppInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_APP_ALERTING_MECHANISM
TpCallAlertingMechanism
CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE
TpCallNetworkAccessType
CallAppNetworkAccessType

P_CALL_APP_INTERWORKING_INDICATORS
TpCallInterworkingIndicators
CallAppInterworking
Indicators

P_CALL_APP_TELE_SERVICE
TpCallTeleService
CallAppTeleService

P_CALL_APP_BEARER_SERVICE
TpCallBearerService
CallAppBearerService

P_CALL_APP_PARTY_CATEGORY
TpCallPartyCategory
CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS
TpAddress
CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO
TpString
CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS
TpAddress
CallAppAdditionalAddress

9.2.3.3 TpCallAppInfoType

Defines a specific call event report type.

Name
Value
Description

P_CALL_APP_UNDEFINED
0
Undefined

P_CALL_APP_ALERTING_MECHANISM
1
The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE
2
The network access type (e.g. ISDN)

P_CALL_APP_INTERWORKING_INDICATORS
3
Indicators to enable service interworking

P_CALL_APP_TELE_SERVICE
4
Indicates the tele-service (e.g. speech) and related info such as clearing programme

P_CALL_APP_BEARER_SERVICE
5
Indicates the bearer service (e.g. 64kb/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY
6
The category of the call party

P_CALL_APP_PRESENTATION_ADDRESS
7
The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO
8
Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS
9
Indicates an additional address

9.2.3.4 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

9.2.3.5 TpCallBearerService

This data type is identical to a TpString, and defines the bearer service associated with the call (e.g. 64kb/s unrestricted data). The values of this data type are operator specific.
9.2.3.6 TpCallChargePlan

This data type is identical to a TString, and defines the call charge plan to be used for the call. The values of this data type are operator specific.

9.2.3.7 TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error.

Sequence Element Name
Sequence Element Type

ErrorTime
TpDateAndTime

ErrorType
TpCallerrorType

AdditionalErrorInfo
TpCallAdditionalErrorInfo

9.2.3.8 TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors.

Tag Element Type

TpCallErrorType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_ERROR_UNDEFINED
NULL
Undefined

P_CALL_ERROR_ROUTING_ABORTED
TpCallReleaseCause
CallErrorRoutingAborted

P_CALL_ERROR_CALL_ABANDONED
TpCallReleaseCause
CallErrorCallAbandoned

P_CALL_ERROR_INVALID_ADDRESS
TpAddressError
CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE
NULL
Undefined

P_CALL_ERROR_INVALID_CRITERIA
NULL
Undefined

9.2.3.9 TpCallErrorType

Defines a specific call error.

Name
Value
Description

P_CALL_ERROR_UNDEFINED
0
Undefined

P_CALL_ERROR_ROUTING_ABORTED
1
Call routing failed and was aborted by the network

P_CALL_ERROR_CALL_ABANDONED
2
The requested operation failed because the controlling party abandoned the call before the operation was completed

P_CALL_ERROR_INVALID_ADDRESS
3
The operation failed because an invalid address was given

P_CALL_ERROR_INVALID_STATE
4
The call was not in a valid state for the requested operation

P_CALL_ERROR_INVALID_CRITERIA
5
Invalid criteria were specified for the requested operation

9.2.3.10 TpCallFault

Defines the cause of the call fault detected.

Name
Value
Description

P_CALL_FAULT_UNDEFINED
0
Undefined

P_CALL_FAULT_USER_ABORTED
1
This fault occurs when a call is has been triggered by the network but the user has finalised the call before any message could be sent by the application.

P_TIMEOUT_ON_RELEASE
2
This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific.

P_TIMEOUT_ON_INTERRUPT
3
This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

9.2.3.11 TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

Sequence Element Name
Sequence Element Type
Sequence Element Description

CallReference
IpCallRef
This element specifies the interface reference for the call object.

CallSessionID
TpSessionID
This element specifies the call session ID of the call created.

9.2.3.12 TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

9.2.3.13 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested may be undefined or not present.

Sequence Element Name
Sequence Element Type

CallInfoType
TpCallInfoType

CallInitiationStartTime
TpDateAndTime

CallConnectedToResourceTime
TpDateAndTime

CallConnectedToDestinationTime
TpDateAndTime

CallEndTime
TpDateAndTime

Cause
TpCallReleaseCause

9.2.3.14 TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_INFO_UNDEFINED
00h
Undefined

P_CALL_INFO_TIMES
01h
Relevant call times

P_CALL_INFO_RELEASE_CAUSE
02h
Call release cause

P_CALL_INFO_INTERMEDIATE
04h
Send only intermediate reports (i.e., when a party leaves the call)

9.2.3.15 TpCallInterworkingIndicators

This data type is identical to a TpString, and defines indicators for application interworking. The values of this data type are operator specific.

9.2.3.16 TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name
Value
Description

P_CALL_MONITOR_MODE_INTERRUPT
0
The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

P_CALL_MONITOR_MODE_NOTIFY
1
The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

9.2.3.17 TpCallNetworkAccessType

This data type is identical to a TString, and defines the type of network access being used (e.g. ISDN, Dial-up Internet, xDSL). The values of this data type are operator specific.

9.2.3.18 TpCallOverloadType

Defines the type of call overload that has been detected (and possibly acted upon) by the network.
Name
Value
Description

P_CALL_OVERLOAD_TYPE_UNDEFINED
0
Infinite interval

(do not admit any calls)

P_CALL_OVERLOAD_TYPE_NEW_CALLS
1
New calls to the application are causing overload (i.e. inbound overload)

P_CALL_OVERLOAD_TYPE_ROUTED_CALLS
2
Calls being routed to destination or origination addresses by the application are causing overload (i.e. outbound overload)

9.2.3.19 TpCallPartyCategory

This data type is identical to a TpString, and defines the category of a call party (e.g. call priority, payphone, prepaid). The values of this data type are operator specific.

9.2.3.20 TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element Name
Sequence Element Type

Value
TpInt32

Location
TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

9.2.3.21 TpCallServiceCode

Defines the service code received during a call. For example, this may be a digit sequence, user-user information, recall, flash-hook or ISDN Facility Information Element.

This data type is identical to a TpString. The coding of this data type is operator specific.

9.2.3.22 TpCallTeleService

This data type is identical to a TpString, and defines the tele-service associated with the call (e.g. speech, video, fax, file transfer, browsing). The values of this data type are operator specific.

9.2.3.23 TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection.

Sequence Element Name
Sequence Element Type
Sequence Element Description

VolumeQuantity
TpInt32
This data type is identical to a TInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection.

VolumeUnit
TpInt32
This data type is identical to a TInt32, and defines the unit of the granted volume that can be transmitted for the specific connection.

Unit must be specified as 10^n number of bytes, where

n denotes the power.

When the unit is for example in kilobytes, VolumeUnit must be set to 3.

9.2.3.24 TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_SUPERVISE_TIMEOUT
01h
The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED
02h
The call has ended, either due to timer expiry or call party release

P_CALL_SUPERVISE_TONE_APPLIED
04h
A warning tone has been applied

9.2.3.25 TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_SUPERVISE_RELEASE
01h
Release the call when the call supervision timer expires

P_CALL_SUPERVISE_RESPOND
02h
Notify the application when the call supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE
04h
Send a warning tone to the controlling party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period.

9.2.3.26 TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.
Sequence Element Name
Sequence Element Type

MonitorMode
TpCallMonitorMode

CallEventTime
TpDateAndTime

CallReportType
TpCallReportType

AdditionalReportInfo
TpCallAdditionalReportInfo

9.2.3.27 TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information.

Tag Element Type

TpCallReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_REPORT_UNDEFINED
NULL
Undefined

P_CALL_REPORT_PROGRESS
NULL
Undefined

P_CALL_REPORT_ROUTING_SUCCESS
NULL
Undefined

P_CALL_REPORT_ANSWER
NULL
Undefined

P_CALL_REPORT_REFUSED_BUSY
TpCallReleaseCause
RefusedBusy

P_CALL_REPORT_NO_ANSWER
NULL
Undefined

P_CALL_REPORT_DISCONNECT
TpCallReleaseCause
CallDisconnect

P_CALL_REPORT_REDIRECTED
TpAddress
ForwardAddress

P_CALL_REPORT_SERVICE_CODE
TpCallServiceCode
ServiceCode

P_CALL_REPORT_ROUTING_FAILURE
TpCallReleaseCause
RoutingFailure

P_CALL_REPORT_CALL_ENDED
TpCallReleaseCause
CallEnded

9.2.3.28 TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name
Sequence Element Type

MonitorMode
TpCallMonitorMode

CallReportType
TpCallReportType

AdditionalReportcriteria
TpCallReportAdditionalCriteria

9.2.3.29 TpCallReportAdditionalCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type

TpCallReportType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_REPORT_UNDEFINED
NULL
Undefined

P_CALL_REPORT_PROGRESS
NULL
Undefined

P_CALL_REPORT_ROUTING_SUCCESS
NULL
Undefined

P_CALL_REPORT_ANSWER
NULL
Undefined

P_CALL_REPORT_REFUSED_BUSY
NULL
Undefined

P_CALL_REPORT_NO_ANSWER
TpCallNoAnswerDuration
NoAnswerDuration

P_CALL_REPORT_DISCONNECT
NULL
Undefined

P_CALL_REPORT_REDIRECTED
NULL
Undefined

P_CALL_REPORT_SERVICE_CODE
TpCallServiceCode
ServiceCode

P_CALL_REPORT_ROUTING_FAILURE
NULL
Undefined

P_CALL_REPORT_CALL_ENDED
NULL
Undefined

9.2.3.30 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

9.2.3.31 TpCallReportType

Defines a specific call event report type.

Name
Value
Description

P_CALL_REPORT_UNDEFINED
0
Undefined

P_CALL_REPORT_PROGRESS
1
Call routing progress event

P_CALL_REPORT_ROUTING_SUCCESS
2
Call successfully routed to address

P_CALL_REPORT_ANSWER
3
Call answered at address

P_CALL_REPORT_REFUSED_BUSY
4
Called address refused call due to busy

P_CALL_REPORT_NO_ANSWER
5
No answer at called address

P_CALL_REPORT_DISCONNECT
6
Call disconnect requested by address

P_CALL_REPORT_REDIRECTED
7
Call redirected to new address

P_CALL_REPORT_SERVICE_CODE
8
Mid-call service code received

P_CALL_REPORT_ROUTING_FAILURE
9
Call routing failed - re-routing is possible

P_CALL_REPORT_CALL_ENDED
10
Call has ended (disconnected)

9.3 User Interaction Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.vheosa.guis package.

9.3.1 Interface definitions

9.3.1.1 IpUI

Defines the address of an IUI Interface.

9.3.1.2 IpUIRef

Defines a Reference to type IUI.

9.3.1.3 IpUIRefRef

Defines a Reference to type IUIRef.

9.3.1.4 IpUIManager

Defines the address of an IUIManager Interface.

9.3.1.5 IpUIManagerRef

Defines a Reference to type IUIManager.

9.3.1.6 IpAppUI

Defines the address of an IAppUI Interface.

9.3.1.7 IpAppUIRef

Defines a Reference to type IAppUI.

9.3.1.8 IpAppUIRefRef

Defines a Reference to type IAppUIRef.

9.3.1.9 IpAppUIManager

Defines the address of an IAppUIManager Interface.

9.3.1.10 IpAppUIManagerRef

Defines a Reference to type IAppUIManager.

9.3.2 Type definitions

9.3.2.1 TpUICallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UICall object

Structure Element Name
Structure Element Type
Structure Element Description

UICallRef
IpUICallRef
This element specifies the interface reference for the UICall object.

UserInteractionSessionID
TpSessionID
This element specifies the user interaction session ID.

9.3.2.2 TpUICallIdentifierRef

Defines a reference to type TpUICallIdentifier.

9.3.2.3 TpUICollectCriteria

Defines the Sequence of Data Elements that specify the additional properties for the collection of information, such as the end character, first character timeout, inter-character timeout, and maximum interaction time.

Structure Element Name
Structure Element Type

MinLength
TpInt32

MaxLength
TpInt32

EndSequence
TpString

StartTimeout
TpDuration

InterCharTimeout
TpDuration

The structure elements specify the following criteria:

MinLength:
Defines the minimum number of characters (e.g. digits) to collect.

MaxLength:
Defines the maxmum number of characters (e.g. digits) to collect.

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phonenumbers.

StartTimeout:
specifies the value for the first character time-out timer. The timer is started when the announcement has been completed or has been interrupted. The user should enter the start of the response (e.g. first digit) before the timer expires. If the start of the response is not entered before the timer expires, the input is regarded to be erroneous. After receipt of the start of the response, which may be valid or invalid, the timer is stopped.

InterCharTimeOut:
specifies the value for the inter-character time-out timer.The timer is started when a response (e.g. digit) is received, and is reset and restarted when a subsequent response is received. The responses may be valid or invalid. the announcement has been completed or has been interrupted.

 Input is considered successful if the following applies:

If the EndSequence is not present (i.e. NULL):

· when the InterCharTimeOut timer expires; or

· when the number of valid digits received equals the MaxLength.

If the EndSequence is present:

· when the InterCharTimeOut timer expires; or

· when the EndSequence is received; or

· when the number of valid digits received equals the MaxLength.

In the case the number of valid characters received is less than the MinLength when the InterCharTimeOut timer expires or when the EndSequence is received, the input is considered erroneous.

The collected characters (including the EndSequence) are sent to the client application when input hs been successful.

9.3.2.4 TpUIError

Defines the UI call error codes.
Name
Value
Description

P_UI_ERROR_UNDEFINED
0
Undefined error

P_UI_ERROR_ILLEGAL_ID
1
The information id specified is invalid

P_UI_ERROR_ID_NOT_FOUND
2
A legal information id is not known to the the User Interaction service

P_UI_ERROR_RESOURCE_UNAVAILABLE
3
The information resources used by the User Interaction service are unavailable, e.g. due to an overload situation.

P_UI_ERROR_ILLEGAL_RANGE
4
The values for minimum and maximum collection length are out of range

P_UI_ERROR_IMPROPER_CALLER_RESPONSE
5
Improper user response

P_UI_ERROR_ABANDON
6
The specified leg is disconnected before the send information completed

P_UI_ERROR_NO_OPERATION_ACTIVE
7
There is no active user interaction for the specified leg. Either the application did not start any user interaction or the user interaction was already finished when the abortAction_Req() was called.

P_UI_ERROR_NO_SPACE_AVAILABLE
8
There is no more storage capacity to record the message when the recordMessage() operation was called

The call user interaction object will be automatically de-assigned if the error P_UI_ERROR_ABANDON is reported, as a corresponding call or call leg object no longer exists.

9.3.2.5 TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification

Structure Element Name
Structure Element Type

UserAddress
TpString

ServiceCode
TpString

UserAddress:
defines the address of the end-user for which notification shall be handled

ServiceCode:
defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

9.3.2.6 TpUIEventInfo

Defines the Sequence of Data Elements that specify a UI notification

Structure Element Name
Structure Element Type

UserAddress
TpString

ServiceCode
TpString

UserAddress:
defines the address of the end-user for which notification shall be handled

ServiceCode:
defines a 2 digit code indicating the UI to be triggered. The value is operator specific.

9.3.2.7 TpUIFault

Defines the cause of the UI fault detected.

Name
Value
Description

P_UI_FAULT_UNDEFINED
0
Undefined

P_UI_CALL_DEASSIGNED
1
The related Call object has been deassigned. No further interaction is possible. Already requested announcements will continue but no requested reports will be send to the application.

9.3.2.8 TpUIIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UI object

Structure Element Name
Structure Element Type
Structure Element Description

UIRef
IpUIRef
This element specifies the interface reference for the UI object.

UserInteractionSessionID
TpSessionID
This element specifies the user interaction session ID.

9.3.2.9 TpUIIdentifierRef

Defines a reference to type TpUIIdentifier.

9.3.2.10 TpUIInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user.

Tag Element Type

TpUIInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_UI_INFO_ID
TpInt32
InfoId

P_UI_INFO_TEXT
TpString
InfoText

P_UI_INFO_ADDRESS
TpURL
InfoAddress

The choice elements represents the following:

InfoID:
defines the ID of the user information script or stream to send to an end-user. The values of this data type are operator specific.

InfoText:
defines the text to be send to an end-user. The text is free-format and the encoding is depending on the resources being used..

InfoAddress:
defines the URL of the text or stream to be send to an end-user.

9.3.2.11 TpUIInfoType

Defines the type of the information to be send to the user.
Name
Value
Description

P_UI_INFO_ID
1
The information to be send to an end-user consists of an ID

P_UI_INFO_TEXT
2
The information to be send to an end-user consists of a text string

P_UI_INFO_ADDRESS
3
The information to be send to an end-user consists of a URL.

9.3.2.12 TpUIMessageCriteria

Defines the Sequence of Data Elements that specify the additional properties for the recording of a message

Structure Element Name
Structure Element Type

EndSequence
TpString

MaxMessageTime
TpDuration

MaxMessageSize
TpInt32

The structure elements specify the following criteria:

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phonenumbers.

MaxMessageTime:
specifies the maximum duration in seconds of the message that is to be recorded.

MaxMessageSize:
If this parameter is non-zero, it specifies the maximum size in bytes of the message that is to be recorded.

9.3.2.13 TpUIReport

Defines the UI call reports if a response was requested.
Name
Value
Description

P_UI_REPORT_UNDEFINED
0
Undefined report

P_UI_REPORT_ANNOUNCEMENT_ENDED
1
Confirmation that the announcement has ended

P_UI_REPORT_LEGAL_INPUT
2
Information collected., meeting the specified criteria.

P_UI_REPORT_NO_INPUT
3
No information collected. The user immediately entered the delimiter character. No valid information has been returned

P_UI_REPORT_TIMEOUT

4
No information collected. The user did not input any response before the input timeout expired

P_UI_REPORT_MESSAGE_STORED
5
A message has been stored successfully

P_UI_REPORT_MESSAGE_NOT_STORED
6
The message has not been stored successfully

9.3.2.14 TpUIResponseRequest

Defines the situations for which a response is expected following the user interaction.
Name
Value
Description

P_UI_RESPONSE_REQUIRED
1
The User Interaction Call must send a response when the announcement has completed.

P_UI_LAST_ANNOUNCEMENT_IN_A_ROW
2
This is the final announcement within a sequence. It might, however, be that additional announcements will be requested at a later moment. The User Interaction Call service may release any used resources in the network. The UI object will not be released.

P_UI_FINAL_REQUEST
4
This is the final request. The UI object will be released after the information has been presented to the user.

This parameter represent a so-called bitmask, i.e. the values can be added to derived the final meaning.

9.3.2.15 TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user.

Tag Element Type

TpUIVariableType

Tag Element Value
Choice Element Type
Choice Element Name

P_UI_VARIABLE_PART_INT
TpInt32
VariablePartInteger

P_UI_VARIABLE_PART_ADDRESS
TpString
VariablePartAddress

P_UI_VARIABLE_PART_TIME
TpTime
VariablePartTime

P_UI_VARIABLE_PART_DATE
TpDate
VariablePartDate

P_UI_VARIABLE_PART_PRICE
TpPrice
VariablePartPrice

9.3.2.16 TpUIVariablePartType

Defines the type of the variable parts in the information to send to the user.

Name
Value
Description

P_UI_VARIABLE_PART_INT
0
Variable part is of type integer

P_UI_VARIABLE_PART_ADDRESS
1
Variable part is of type address

P_UI_VARIALBE_PART_TIME
2
Variable part is of type time

P_UI_VARIABLE_PART_DATE
3
Variable part is of type date

P_UI_VARIABLE_PART_PRICE
4
Variable part is of type price

9.4 Mobility Management Data definitions

9.4.1 Interface Definitions

<Editor’s Note: Interface definitions are needed?>
9.4.2 Common Type Definitions

The constants and types defined in the following sections are defined in the org.threegpp.vhe.mm package.

9.4.2.1 TpGeographicalPosition

Defines the structure of a geographical position that specifies a possible position. An ellipsoid point with uncertainty shape defines the horizontal location. The reference system chosen for the coding of locations is the World Geodetic System 1984 (WGS 84).

The structure member typeOfUncertaintyShape describes the type of the uncertainty shape and longitude/latitude defines the position of the uncertainty shape. The following table defines the meaning of the data elements that describe the uncertainty shape for each uncertainty shape type.

Type of uncertainty shape
Uncertainty
Outer
Semi
Major
Uncertainty
Outer
Semi
Minor
Uncertainty
Inner
Semi
Major
Uncertainty
Inner
Semi
Minor
Angle Of Semi Major
Segment Start Angle
Segment End Angle

None
-
-
-
-
-
-
-

Circle
radius of circle
-
-
-
-
-
-

Circle Sector
radius of circle
-
-
-
-
start angle of circle segment
end angle of circle segment

Circle Arc Stripe
radius of outer circle
-
radius of inner circle
-
-
start angle of circle arc stripe
end angle of circle arc stripe

Ellipse
length of semi-major axis
length of semi-minor axis
-
-
rotation of ellipse measured clockwise from north
-
-

Ellipse Sector
length of semi-major axis
length of semi-minor axis
-
-
rotation of ellipse measured clockwise from north
start angle of ellipse segment
end angle of ellipse segment

Ellipse Arc Stripe
length of semi-major axis, outer ellipse
length of semi-minor axis, outer ellipse
length of semi-major axis, inner ellipse
length of semi-minor axis, inner ellipse
rotation of ellipse measured clockwise from north
start angle of ellipse arc stripe
end angle of ellipse arc stripe

[image: image24.wmf]angle of

semi major

North

segment

end angle

segment

start angle

inner

semi-minor

axis

outer

semi-minor

axis

outer

semi-major

axis

inner semi-

major axis

Area

Figure 6 Description of an Ellipse Arc

Structured Member Name
Structured Member Type

longitude
TpFloat

latitude
TpFloat

typeOfUncertaintyShape
TpLocationUncertaintyShape

uncertaintyInnerSemiMajor
TpFloat

uncertaintyOuterSemiMajor
TpFloat

uncertaintyInnerSemiMinor
TpFloat

uncertaintyOuterSemiMinor
TpFloat

angleOfSemiMajor
TpInt32

segmentStartAngle
TpInt32

segmentEndAngle
TpInt32

9.4.2.2 TpLocationPriority

Defines the priority of a location request.

Name
Value
Description

P_M_NORMAL
0
Normal

P_M_HIGH
1
High

9.4.2.3 TpLocationReq

Defines the structure of a location request to the location service.

Structured Member Name
Structured Member Type
Description

requestedAccuracy
TpFloat
Requested accuracy in meters.

requestedResponseTime
TpLocationResponseTime
Requested response time as a classified reqirement or as an absolute timer.

altitudeRequested
TpBoolean
Altitude request flag.

type
TpLocationType
The kind of location that is requested.

priority
TpLocationPriority
Priority of location request.

requestedLocationMethod
TpString
The kind of location method that is requested.

9.4.2.4 TpLocationResponseIndicator

Defines a response time requirement.

Name
Value
Description

P_M_NO_DELAY
0
No delay: return either initial or last known location of the user.

P_M_LOW_DELAY
1
Low delay: return the current location with minimum delay. The mobility service shall attempt to fulfil any accuracy requirement, but in doing so shall not add any additional delay.

P_M_DELAY_TOLERANT
2
Delay tolerant: obtain the current location with regard to fulfilling the accuracy requirement.

P_M_USE_TIMER_VALUE
3
Use timer value: obtain the current location with regard to fulfilling the response time requirement.

9.4.2.5 TpLocationResponseTime

Defines the structure that specifies the application’s requirements on the mobility service’s response time.

Structured Member Name
Structure Member Type
Description

responseTime
TpLocationResponseIndicator
Indicator for wich kind of response time that is required, see TLocationResponseIndicator.

timerValue
TpInt32
Optional timer used in combination when ResponseTime equals USE_TIMER_VALUE.

9.4.2.6 TpLocationType

Defines the type of location requested.

Name
Value
Description

P_M_CURRENT
0
Current location

P_M_CURRENT_OR_LAST_KNOWN
1
Current or last known location

P_M_INITIAL
2
Initial location for an emergency services call

9.4.2.7 TpLocationUncertaintyShape

Defines the type of uncertainty shape.

Name
Value
Description

P_M_SHAPE_NONE
0
No uncertainty shape present.

P_M_SHAPE_CIRCLE
1
Uncertainty shape is a circle.

P_M_SHAPE_CIRCLE_SECTOR
2
Uncertainty shape is a circle sector.

P_M_SHAPE_CIRCLE_ARC_STRIPE
3
Uncertainty shape is a circle arc stripe.

P_M_SHAPE_ELLIPSE
4
Uncertainty shape is an ellipse.

P_M_SHAPE_ELLIPSE_SECTOR
5
Uncertainty shape is an ellipse sector.

P_M_SHAPE_ELLIPSE_ARC_STRIPE
6
Uncertainty shape is an ellipse arc stripe.

9.4.2.8 TpMobilityDiagnostic

Defines a diagnostic value that is reported in addition to an error by one of the mobility services.

Name
Value
Description

P_M_NO_INFORMATION
0
No diagnostic information present. Valid for all type of errors.

P_M_APPL_NOT_IN_PRIV_EXCEPT_LST
1
Application not in privacy exception list. Valid for ‘Unauthorised Application’ error.

P_M_CALL_TO_USER_NOT_SETUP
2
Call to user not set-up. Valid for ‘Unauthorised Application’ error.

P_M_PRIVACY_OVERRIDE_NOT_APPLIC
3
Privacy override not applicable. Valid for ‘Unauthorised Application’ error.

P_M_DISALL_BY_LOCAL_REGULAT_REQ
4
Disallowed by local regulatory requirements. Valid for ‘Unauthorised Application’ error.

P_M_CONGESTION
5
Congestion.. Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_RESOURCES
6
Insufficient resources. Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_MEAS_DATA
7
Insufficient measurement data. Valid for ‘Position Method Failure’ error.

P_M_INCONSISTENT_MEAS_DATA
8
Inconsistent measurement data. Valid for ‘Position Method Failure’ error.

P_M_LOC_PROC_NOT_COMPLETED
9
Location procedure not completed. Valid for ‘Position Method Failure’ error.

P_M_LOC_PROC_NOT_SUPBY_USER
10
Location procedure not supported by user. Valid for ‘Position Method Failure’ error.

P_M_QOS_NOT_ATTAINABLE
11
Quality of service not attainable. Valid for ‘Position Method Failure’ error.

9.4.2.9 TpMobilityError

Defines an error that is reported by one of the mobility services.

Name
Value
Description
Fatal

P_M_OK
0
No error occurred while processing the request.
N/A

P_M_SYSTEM_FAILURE
1
System failure.
The request can not be handled because of a general problem in the mobility service or the underlying network.
Yes

P_M_UNAUTHORIZED_NETWORK
2
Unauthorised network,
The requesting network is not authorised to obtain the user’s location or status.
No

P_M_UNAUTHORIZED_APPLICATION
3
Unauthorised application.
The application is not authorised to obtain the user’s location or status.
Yes

P_M_UNKNOWN_SUBSCRIBER
4
Unknown subscriber.
The user is unknown, i.e. no such subscription exists.
Yes

P_M_ABSENT_SUBSCRIBER
5
Absent subscriber.
The user is currently not reachable.
No

P_M_POSITION_METHOD_FAILURE
6
Position method failure.
The mobility service failed to obtain the user’s position.
No

9.4.2.10 TpMobilityStopAssignmentData

Defines the structure that specifies a request to stop whole or parts of an assignment. Assignments are used for periodic or triggered reporting of a users location or status. Observe that the parameter users is optional, if the parameter stopScope is set to M_ALL_IN_ASSIGNMENT the parameter stopScope is undefined. If the parameter stopScope is set to M_SPECIFIED_USERS, then the assignment shall be stopped only for the users specified in the users list.

Sequence Element Name
Sequence Element Type
Description

assignmentId
TpSessionID
Identity of the session that shall be stopped.

stopScope
TpMobilityStopScope
Specify if only a part of the assignment or if whole the assignment shall be stopped.

users
TpAddressSet
Optional parameter describing which users a stop request is addressing when only a part of an assignment is to be stopped.

9.4.2.11 TpMobilityStopScope

This enumeration is used in requests to stop mobility reports that are sent from a mobility service to an application.

Name
Value
Description

P_M_ALL_IN_ASSIGNMENT
0
The request concern all users in an assignment.

P_M_SPECIFIED_USERS
1
The request concern only the users that are explicitly specified in a list.

9.4.2.12 TpTerminalType

Defines which kind of terminal is used.

Name
Value
Description

P_M_FIXED
0
Fixed terminal.

P_M_MOBILE
1
Mobile terminal.

P_M_IP
2
IP terminal.

9.4.3 Network User Location Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.vhe.mm.ulw package.

9.4.3.1 TpLocationCellIDOrLAI

This data type is identical to a TString. It specifies the Cell Global Identification or the Location Area Identification (LAI).

The Cell Global Identification (CGI) is defined as the string of characters in the following format:

MCC-MNC-LAC-CI

where:

MCC
Mobile Country Code (three decimal digits)

MNC
Mobile Network Code (two or three decimal digits)

LAC
Location area code (four hexadecimal digits)

CI
Cell Identification (four hexadecimal digits)

The Location Area Identification (LAI) is defined as a string of characters in the following format:

MCC-MNC-LAC

where:

MCC
Mobile Country Code (three decimal digits)

MNC
Mobile Network Code (two or three decimal digits)

LAC
Location area code (four hexadecimal digits)

9.4.3.2 TpLocationTriggerNetwork
Defines the structure that specifies the criteria for a triggered location report to be generated.

Structured Member Name
Structured Member Type
Description

updateInsideVlr
TpBoolean
Generate location report when it occurs an location update inside the current VLR area.

updateOutsideVlr
TpBoolean
Generate location report when the user moves to another VLR area.

9.4.3.3 TpUserLocationNetwork
Defines the structure that specifies the location of a mobile telephony user. Observe that if the statusCode is indicating an error, then neither geographicalPosition, timestamp, vlrNumber, locationNumber, cellIdOrLai or their presense flags is defined.
Structured Member Name
Structure Member Type
Description

userID
TpAddress
The address of the user.

statusCode
TpMobilityError
Indicator of error.

geographicalPositionPresent
TpBoolean
Flag indicating if the geographical position is present.

geographicalPosition
TpGeographicalPosition
Specification of a position and an area of uncertainty.

timestampPresent
TpBoolean
Flag indicating if the timestamp is present.

timestamp
TpDateAndTime
Timestamp indicating when the request was proccessed.

vlrNumberPresent
TpBoolean
Flag indicating if the VLR number is present.

vlrNumber
TpAddress
Current VLR number for the user.

vocationNumberPresent
TpBoolean
Flag indicating if the location number is present.

locationNumber

TpAddress
Current location number.

cellIdOrLaiPresent
TpBoolean
Flag indicating if cell-id or LAI of the user is present.

cellIdOrLai
TpLocationCellIDOrLAI
Cell-id or LAI of the user.

9.4.3.4 TpUserLocationNetworkSet

Defines a set of elements of type TUserLocationNetwork.

9.4.4 User Status Data Definitions

The constants and types defined in the following sections are defined in the org.threegpp.vhe.mm.us package.

9.4.4.1 TpUserStatus

Defines the Sequence of Data Elements that specify the identity and status of a user.

Sequence Element Name
Sequence Element Type
Description

userID
TpAddress
The user address.

statusCode
TpMobilityError
Indicator of error.

status
TpUserStatusIndicator
The current status of the user.

terminalType
TpTerminalType
The kind of terminal used by the user.

9.4.4.2 TpUserStatusSet

Defines a Numbered Array of Data Elements of TUserStatus.

9.4.4.3 TpUserStatusIndicator

Defines the status of a user.

Name
Value
Description

P_US_REACHABLE
0
User is reachable

P_US_NOT_REACHABLE
1
User is not reachable

P_US_BUSY

2
User is busy (only applicable for interactive user status request, not when triggers are used)

10 IDL Interface Definitions

The OSA API definitions have been divided into several CORBA modules. The common data definitions are placed in the root module while each of the specific service capability feature API definitions are being assigned their own module directly under that root. Each specific SCF functions, like User Status, have their data and interface definitions collocated. This structure has the advantage that definitions do not require any explicit scoping.

The IDLs defined for the specific SCFs assumes that the OSA common definitions (interfaces and data) are provided in the org.threegpp.osa module within a file name called OSA.idl

Module Name
Description
IDL file name

org.threegpp.osa
Common data/interface definitions
OSA.idl

org.threegpp.osa.mm
Common mobility data definitions (root)
MM.idl

org.threegpp.osa.mm.uln
Network User Location (ULN)
MMuln.idl

org.threegpp.osa.mm.us
User Status (US)
MMus.idl

org.threegpp.osa.gccs
Call Control
GCCS.idl

org.threegpp.osa.guis
User Interaction
GUIS.idl

10.1 Generic IDL

10.2 Framework IDL

The interfaces that are implemented by the Framework are denoted as 'Framework Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

10.2.1

·
·
·
·
·
·
·
·
·
·
·
10.2.2

·
·
·
·

1.
2.
3.

·
·
·
10.2.2.1

10.2.2.2

1.
2.
3.
10.2.2.3

10.2.2.4

10.2.2.5

10.2.2.6

10.2.2.7

10.2.3

10.2.3.1

10.2.3.2

10.2.4

10.2.4.1

·
·

·
·

·
·
·
·
·

10.2.5

10.2.5.1

10.2.6

10.2.6.1

10.2.7

10.2.7.1

10.2.8

10.2.8.1

10.2.9

10.2.9.1

10.2.10

10.2.10.1

10.2.11

10.2.11.1

10.2.12

10.2.12.1

10.2.13
10.2.13.1

10.2.14
10.2.14.1

10.2.15

10.2.15.1

10.2.15.2

10.2.16 Common Data Types for Framework

#include <OSA.idl>

module org{

module thregpp{

module osa{

module fw{

typedef IpInterfaceRef
IpServiceRef;

typedef TpString

TpClientAppID;

// Identifies the client application to the framework.

typedef sequence <TpClientAppID>
TpClientAppIDList;

typedef TpString

TpEntOpID;

typedef sequence < TpEntOpID >

TpEntOpIDList;

struct TpService {

// Describes a registered service.

TpServiceID

ServiceID;

TpServicePropertyList
ServicePropertyList;

};

typedef sequence <TpService>
TpServiceList;

struct TpServiceDescription {

// Describes the properties of a registered servicec.

TpServiceTypeName
ServiceTypeName;

TpServicePropertyList
ServicePropertyList;

};

typedef TpString

TpServiceID;
// A string of characters, generated

// automatically by the Framework and

// comprising a TpUniqueServiceNumber

,

// TpServiceNameString

, and a number of

// relevant TpServiceSpecString

,

// concatenated using a forward separator (/),

// that uniquely identifies an instance of a

// service interface.

typedef sequence <TpServiceID>

TpServiceIDList;

typedef TpString

TpServiceNameString;

// Uniquely identifies the name of a service

// interface. For OSA release 99 the following

// values have been defined: NULL (no service

// name), P_CALL_CONTROL,

// P_MESSAGING and

// P_USER_INTERACTION.

typedef TpString

TpServiceSpecString;

// Uniquely identifies the name of a service

// specialisation interface. For OSA release 99

// the following values have been defined:

// NULL (no service specialisation), P_INAP1,

// P_VMAIL, P_EMAIL and P_CALL.

typedef TpString

TpUniqueServiceNumber;

// A string of characters that represents a

// unique number.

struct TpPropertyStruct {

// Describes a service property.

TpServiceTypeName

ServicePropertyName;

TpService PropertyMode

ServicePropertyMode;

TpServicePropertyTypeName
ServicePropertyTypeName;

};

typedef sequence <TpPropertyStruct>
TpPropertyStructList;

enum TpServicePropertyMode {

NORMAL,

// The value of the corresponding service property

// type may optionally be provided.

MANDATORY,

// The value of the corresponding service property

// type must be provided at service registration.

READONLY,

// The value of the corresponding service property

// is optional, nut once given a value it may not be

// modified.

MANDATORY_READONLY

// The value of the corresponding service property

// type must be provided and may not be modified

// subsequently.

};

typedef TpString

TpServicePropertyTypeName;

typedef TpString

TpServicePropertyName;

typedef sequence <TpServicePropertyName>
TpServicePropertyNameList;

typedef TpString

TpServicePropertyValue;

typedef sequence <TpServicePropertyValue>
TpServicePropertyValueList;

struct TpServiceProperty {

// Describes a service property

TpServicePropertyName

ServicePropertyName;

TpServicePropertyValueList
ServicePropertyValueList;

TpServicePropertyMode

ServicePropertyMode;

};

typedef sequence <TpServiceProperty>

TpServicePropertyList;

struct TpServiceTypeDescription {

// Describes a service type.

TpPropertyStructList

PropertyStructList;

TpServiceTypeNameList

ServiceTypeNameList;

TpBoolean

EnabledOrDisabled;

};

typedef TpString

TpServiceTypeName;

typedef sequence <TpServiceTypeName>

TpServiceTypeNameList;

};};};};

10.2.17 Event Notification IDL

#include <fw.idl>

module org{

module thregpp{

module osa{

module fw{

module event_notif{

/***/

// Data definitions //

/***/

enum TpEventName {

// The name of the event being notified. In OSA rel. 99

// no framework events are supported.

EVENT_NAME_UNDEFINED

// Undefined.

};

union TpFwEventCriteria switch (TpFwEventName) {
// The criteria for an event notification to be

// generated. In OSA release 99 no framework

// events are supported.

};:

union TpFwEventInfo switch (TpFwEventName) {
// Information returned to the application in an event

// notification. In OSA release 99 no Framework events

// are supported.

EVENT_NAME_UNDEFINED:
TpDefaultInfo
EventNameUndefined;

};

struct TpDefaultInfo {

// Default information returned to the application.

TpString

DefaultInfo;

};

/***/

// Interface definitions //

/***/

/* The Event Notification Framework interface is used by the client application to notify the application of

generic service related events that have occurred. */

interface IpEventNotification {

/* This method is invoked by the client application to enable generic notifications so that events can be sent

to it. */

TpResult enableNotification (

in TpFwEventCriteria eventCriteria,
// Specifies the criteria used by the application to define the event

// required.

out TpAssignmentIDRef assignmentID // Specifies the ID assigned by the Framework to

 // this newly enabled event notification.

);

/* This method is invoked by the client application to disable generic notifications from the Framework. */

TpResult disableNotification (

in TpAssignmentID assignmentID // Specifies the assignment ID given by the Framework to

 // this event notification.

);

};

/* The Event Notification client application interface is used by the Framework to inform the application

of a generic service-related event. */

interface IpAppEventNotification {

/* This method is invoked by the Framework to notify the application of the arrival of a generic event. */

TpResult eventNotify (

in TpFwEventInfo eventInfo,
 // Specifies specific data associated with this event.

in TpAssignmentID assignmentID // Specifies the assignment id which was returned by the

 // framework during the enableNotification() method.

);

/* This method is invoked by the Framework to indicate to the application that

all generic event notifications have been terminated. */

TpResult notificationTerminated();

};

};};};};};

10.2.18 Service Discovery IDL

#include <fw.idl>

module org{

module thregpp{

module osa{

module fw{

module discovery{

/***/

// Interface definitions //

/***/

/* The Service Discovery Framework interface is used by the client application to

know what types of services are supported by the Framework, and what are their

properties; and to obtain the services its subscription allows access to. */

interface IpServiceDiscovery {

 /* This method is invoked by the client application to obtain the names of all service types

 that are in the Framework repository. */

 TpResult listServiceTypes (

 out TpServiceTypeNameListRef listTypes // The names of the requested service types.

);

 /* This method is invoked by the client application to obtain the detailed description of a particular service

 type. */

 TpResult describeServiceType (

 in TpServiceTypeName name,

// Identifies the service type to

// be described.

 out TpServiceTypeDescriptionRef serviceTypeDescription
// Describes the specified service

// type.

);

 /* This method is invoked by the client application to obtain the IDs of the services that meet its

 requirements. */

 TpResult discoverService (

 in TpServiceTypeName serviceTypeName, // Type of the required service.

 in TpServicePropertyList desiredPropertyList, // Properties that the discovered set of services should

 // satisfy.

 in TpInt32 max, // Maximum number of services that are to be returned.

 out TpServiceListRef serviceList // A list of matching services.

);

 /* This method is invoked by the client application to obtain a list of subscribed services that they are

 allowed to access. */

 TpResult listSubscribedServices (

 out TpServiceListRef serviceList // A list of subscribed services.

);

};

};};};};};

10.2.19 Trust and Security Management IDL

#include <fw.idl>

module org{

module thregpp{

module osa{

module fw{

module discovery{

/***/

// Data definitions //

/***/

typedef TpString

TpAccessType;

// The type of access interface requested by the client

// application. For OSA release 99 the following values

// have been defined: NULL (indicates the default access

// type) and P_ACCESS.

typedef TpString

TpAuthType;

// The type of authentication mechanism requested by the

// client. For OSA release 99 the following values have

// been defined: NULL (indicates OSA authentication),

// P_AUTHENTICATION (indicates use of the OSA

// authentication interfaces.

typedef TpString
TpAuthCapability;

// The authentication capabilities that could be supported

// by the OSA. For OSA release 99 the following values

// have been defined: NULL (indicates no client

// capabilities, P_DES_56, P_RSA_512 and

// P_RSA_1024).

typedef TpString

TpAuthCapabilityList;
// A string of multiple TpAuthCapability concatenated

// using a commas.

typedef TpString

TpInterfaceName;
// Identifies the names of the framework capabilities that

// are be supported by the OSA API. For release 99 these

// are NULL, P_DISCOVERY,

// P_EVENT_NOTIFICATION, P_OAM,

// P_INTEGRITY_MANAGEMENT.

struct TpServiceAccessControl {

TpString

policy;

// Access control policy information controlling access to

// the service feature.

TpString

trustLevel;

// The level of trust that the service provider has assigned

// to the client application.

};

typedef TpString

TpServiceToken;

// Uniquely identifies a service.

struct TpSignatureAndServiceMgrRef {

TpStringRef

digitalSignature;

// The digital signature of the Framework for the

// service agreement.

TpIpInterfaceRef

serviceMgrInterface;

};

typedef TpString

TpSigningAlgorithm;

// Identifies the signing algorithm that must

// be used. For OSA release 99 the follwong

// values have been defined: NULL (indicates

// no signing algorithm is required),

// P_MD5_RSA_512 and P_MD5_RSA_1024.

/***/

// Interface definitions //

/***/

/* The Initial Framework interface is used by the client application to initiate the mutual

authentication with the Framework and, when this is finished successfully, to request access to it. */

interface IpInitial {

/* This method is invoked by the client application to start the process of mutual authentication

with the framework, and request the use of a specific authentication method. */

TResult initiateAuthentication (

in TpClientAppID clientAPPID,
// Identifies the client to the framework.

in TpAuthType authType,
// Allows the client application to request a specific

// type of authentication mechanism.

in IInfertaceRef appAuthInterface,
// Provides a reference to the client application

// authentication interface.

out TpFwAuthRef fwAuth
// Provides a framework identifier, and a reference to

// framework authentication interface.

);

/* This method is invoked by the client application, once mutual authentication is achieved, to request

access to the framework and specify the type of access desired. */

TpResult requestAccess (

in TpAccessType accessType,
// Identifies the type of access interface requested by the

// client application.

in IInterfaceRef appAccessInterface,
// Provides a reference to the access interface of the client

// application.

out IinterfaceRefRef fwAccessInterface
// Provides a reference to call the access interface of the

// framework.

);

};

/* The Access Framework interface is used by the client application to perform the mechanisms necessary for it to obtain access to services. */

interface IpAccess {

/* This method is invoked by the client application to obtain interface references to other framework interfaces. */

TpResult obtainInterface (

in TpInterfaceName interfaceName,
// The name of the framework interface to which a reference

// to the interface is requested.

out IInterfaceRefRef fwInterface
// The requested interface reference.

);

/* This method is invoked by the client application to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. */

TpResult obtainInterfaceWithCallback (

in TpInterfaceName interfaceName,
// The name of the framework interface to which a reference

// to the interface is requested.

in IInterfaceRef appInterface,
// This is the reference to the client application interface which

// is used for callbacks.

out IinterfaceRefRef fwInterface
// The requested interface reference.

);

/* This method may be invoked by the client application to check whether it has been granted permission to

access the specified service and, if granted, the level of trust that will be applied. */

TpResult accessCheck (

in TpString securityContext,

// A group of security relevant attributes.

in TpString securityDomain,

// The security domain in which the client

// application is operating.

in TpString group,

// Used to define the access rights associated

// with all clients that belong to that group.

in TpString serviceAccessTypes,

// Defined by the specific security model in use.

out TpServiceAccessControlRef serviceAccessControl
// The access control policy information

// controlling access to the service feature,

// and the trustLevel that the service provider

// has assigned to the client application.

);

/* This method is invoked by the client application to identify the service that it wishes to use. */

TpResult selectService (

in TpServiceID serviceID,

// Identifies the service.

in TpServicePropertyList serviceProperties,
// List the properties that the service should support.

out TpServiceTokenRef serviceToken
// A free format text token returned by the framework,

// which can be signed as part of a service agreement.

);

/* This method is invoked by the client application to request that the framework sign an agreement on the

service, which allows the client application to use the service. */

TpResult signServiceAgreement (

in TpServiceToken serviceToken,

// Used to identify the service instance

// requested by the client application.

in TpString agreementText,

// The agreement text to be signed by

// the framework.

in TpSigningAlgorithm signingAlgorithm,

// The algorithm used to compute the

// digital signature.

out TpSignatureAndServiceMgrRef signatureAndServiceMgr
// A reference to a structure that

// contains the digital signature of

// the framework for the service

// agreement, and a reference to the

// service manager interface of the

// service.

);

/* This method is invoked by the client application to terminate an agreement for the specified service. */

TpResult terminateServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the service agreement to be terminated.

in TpString terminationText,

// Describes the reason for the termination of the service

// agreement.

in TpString digitalSignature

// Used by the framework to check that the terminationText

// has been signed by the client.

);

/* This method is invoked by the client application to end the access session

 with the Framework. */

TpResult endAccess ();

};

/* The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to service access. */

interface IpAppAccess {

/* This method is invoked by the Framework to request that client application sign an agreement on a specified service. */

TpResult signServiceAgreement (

in TpServiceToken serviceToken,

// Identifies the service instance to which this service

// agreement corresponds.

in TpString agreementText,

// Agreement text that has to be signed by the client

// application.

in TpSigningAlgorithm signingAlgorithm,

// Algorithm used to compute the digital signature.

out TpStringRef digitalSignature

// Signed version of a hash of the service token and

// agreement text given by the framework.

);

/* This method is invoked by the Framework to terminate an agreement for a specified service. */

TpResult terminateServiceAgreement (

in TpServiceToken serviceToken,
// Identifies the service agreement to be terminated.

in TpString terminationText,
// Describes the reason for the termination.

in TpString digitalSignature

// Used by the Framework to confirm its identity to the client.

);

/* This method is invoked by the Framework to end the client application's access session with the

framework. */

TpResult terminateAccess (

in TpString terminationText,

// Describes the reason for the termination of the access

// session.

in TpSigningAlgorithm signingAlgorithm,

// The algorithm used to compute the digital signature.

in TpStringRef digitalSignature

// Used by the Framework to confirm its identity to the

// client.

);

};

/* The Authentication Framework interface is used by client application to perform its part of the mutual

authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework. */

interface IpAuthentication {

/* This method is invoked by the client application to start the authentication process, informed the

Framework of the authentication mechanisms it supports, and be informed by its of its preferred choice. */

TpResult selectAuthMethod (

in TpAuthCapabiltyList authCapability,

// Informs the Framework of the authentication

// mechanisms supported by the client application.

out TpAuthCapabilityRef prescribedMethod
// Indicates the mechanism preferred by the framework.

);

/* This method is invoked by the client application to authenticate the framework using the mechanism

indicated in the parameter prescribedMethod. */

TpResult authenticate (

in TpAuthCapability prescribedMethod,
// Specifies the method accepted by that the framework for

// authentication.

in TpString challenge,
// The challenge presented by the client application to be

// responded to by the framework.

out TpStringRef response
// The response of the framework to the challenge of the client

// application.

);

/* This method is invoked by the client application to to abort the authentication process.

TpResult abortAuthentication();

};

/* The Authentication client application interface is used by the Framework to authenticate the client application. */

interface IpAppAuthentication {

/* This method is invoked by the Framework to authenticate the client application using the mechanism

indicated in prescribedMethod. */

TpResult authenticate (

in TpAuthCapability prescribedMethod,

// The agreed authentication method.

in TpString challenge,

out TpStringRef response

// The challenge presented by the Framework. */

);

/* This method is invoked by the Framework to abort the authentication process. */

TpResult abortAuthentication();

};

};};};};};

10.2.20 Integrity Management IDL

#include <fw.idl>

module org{

module thregpp{

module osa{

module fw{

module discovery{

/***/

// Data definitions //

/***/

typedef TpString

TpActivityTestRes;

// An implementation specific result, whose

// values are Framework operator specific.

struct TpFaultStatsRecord {

// The set of fault information records to be returned for the

// requested time period.

TpTimeInterval

Period;

TpFaultStatsSet

FaultRecords;

};

struct TpFaultStatsSet {

// Statistics on a per fault type basis.

TpInterfaceFault

Fault;

TpInt32

Occurrences;

// The number of separate instances of

// this fault during the period.

TpInt32

MaxDuration;

// The duration in seconds of the

// longest fault.

TpInt32

TotalDuration;

// The cumulative total during the

// period.

TpInt32

NumberOfClientsAffected;
// Those informed of the fault by the

// Framework.

};

typedef TpInt32

TpActivityTestUD;
// Used as a token to match activity test requests with

// their results.

enum TpInterfaceFault {

// The cause of the interface fault detected.

INTERFACE_FAULT_UNDEFINED,

// Undefined.

INTERFACE_FAULT_LOCAL_FAILURE,
// A fault in the local API software or

// hardware has been detected.

INTERFACE_FAULT_GATEWAY_FAILURE,
// A fault in the gateway API software

// or hardware has been detected.

INTERFACE_FAULT_PROTOCOL_ERROR
// An error in the protocol used on the

// client-gateway link has been detected.

};

enum TpSvcUnavailReason {

// The reason why a service is unavailable.

SERVICE_UNAVAILABLE_UNDEFINED,

// Undefined.

SERVICE_UNAVAILABLE_LOCAL_FAILURE,

// The local API software or hardware

// has failed.

SERVICE_UNAVAILABLE_GATEWAY_FAILURE,
// The gateway API software or

// hardware has failed.

SERVICE_UNAVAILABLE_OVERLOADED,

// The service is fully overloaded.

SERVICE_UNAVAILABLE_CLOSED

// The service has closed itself.

};

enum TpAPIUnavailReason {

// The reason why the API is unavailable.

API_UNAVAILABLE_UNDEFINED,

// Undefined.

API_UNAVAILABLE_LOCAL_FAILURE,
// The local API software or hardware

// has failed.

API_UNAVAILABLE_GATEWAY_FAILURE,
// The gateway API software or

// hardware has failed.

API_UNAVAILABLE_OVERLOADED,

// The gateway is fully overloaded.

API_UNAVAILABLE_CLOSED,

// The gateway has closed itself.

API_UNAVAILABLE_PROTOCOL_FAILURE
// The protocol used on the client-gateway

// link has failed.

};

enum TpLoadLevel {

// The load level values.

LOAD_LEVEL_NORMAL,

// Normal load.

LOAD_LEVEL_OVERLOAD,

// Overload.

LOAD_LEVEL_SEVERE_OVERLOAD

// Severe overload.

};

struct TpLoadThreshold{

// The load threshold value.

TpFloat

LoadThreshold;

};

struct TpLoadInitVal {
// The pair of load level and associated load threshold values.

TpLoadLevel

LoadLevel;

TpLoadThreshold
LoadThreshold;

};

struct TpTimeInterval {

// A time interval.

TpDateAndTime

StartTime;

TpDateAndTime

StopTime;

};

struct TpLoadPolicy {

// The load balancing policy.

TpString

LoadPolicy;

};

struct TpLoadStatistic {

// The load statistic record at given timestamp.

TpServiceID

ServiceID;

TpFloat

LoadValue;

// Expressed in percentage.

TpLoadLevel

LoadLevel;

TpDateAndTime

TimeStamp;

};

typedef sequence <TpLoadStatistic>
TpLoadStatList;

enum TpLoadStatusError {
// The error code for getting the load status.

LOAD_STATUS_ERROR_UNDEFINED,

// Undefined error.

LOAD_STATUS_ERROR_UNAVAILABLE
// Unable to get the load status.

};

struct TpLoadStatError {

// The error for getting the load status at given timestamp.

TpServiceID

ServiceID;

TpFloat

LoadStatusError;

TpDateAndTime

TimeStamp;

};

typedef sequence <TpLoadStatError>
TpLoadStatErrList;

/***/

// Interface definitions //

/***/

/* The Heartbeat Management Framework interface is used by the client application to initialise a heartbeat

supervision of the client application. */

interface IpHeartBeatMgmt {

/* This method is invoked by the client application to register at the Framework for heartbeat supervision. */

TpResult enableHeartBeat (

in TpDuration duration,

// Duration in milliseconds between heartbeats.

in IpAppHeartBeatRef appInterface,
// The callback interface the heartbeat is calling.

out TpSessionIDRef session
// The heartbeat session.

);

/* This method is invoked by the client application to stop its heartbeat supervision. */

TpResult disableHeartBeat (

in TpSessionID session
// The heartbeat session.

);

/* This method is invoked by the client application to change the heartbeat period. */

TpResult changeTimePeriod (

in TpDuration duration,
// Duration in milliseconds between heartbeats.

in TpSessionID session
// The heartbeat session.

);

};

/* The Heartbeat Management client application interface is used by the Framework to initialise its heartbeat

supervision of the Framework. */

interface IpAppHeartBeatMgmt {

/* This method is invoked by the Framework to register at the client application for its heartbeat

supervision. */

TpResult enableAppHeartBeat (

in TpDuration duration,

// Time interval in milliseconds between the heartbeats.

in IpHeartBeatRef interface,
// The callback interface the heartbeat is calling.

in TpSessionID session
// The heartbeat session.

);

/* This method is invoked by the Framework to stop the heartbeat supervision by the application. */

TpResult disableAppHeartBeat (

in TpSessionID session
// The heartbeat session.

);

/* This method is invoked by the Framework to change the heartbeat period. */

TpResult changeTimePeriod (

in TpDuration duration,
// Interval in milliseconds between the heartbeats.

in TpSessionID session
// The heartbeat session.

);

};

/* The Heartbeat Framework interface is used by the client application to supervise the Framework or a

service. */

interface IpHeartBeat {

/* This method is invoked by the client application to make the service or Framework supervision. */

TpResult send (

in TpSessionID session
// The heartbeat session.

);

};

/* The Heartbeat client application interface is used by the Framework to supervise the client application. */

interface IpAppHeartBeat {

/* This method is invoked by the Framework to make the client application supervision. */

TpResult send (

in TpSessionID session
// The heartbeat session. */

);

};

/* The Load Manager Framework interface is used by the client application for load balancing management. */

interface IpLoadManager {

/* This method is invoked by the client application to notify framework its current load level (0,1, or 2) when

the load level on the application has changed. */

TpResult reportLoad (

in TpClientAppID requester,
// The identifier of the client application for callbacks from the load

// balancing service.

in TpLoadLevel loadLevel
// The application's load level.

);

/* This method is invoked by the client application to request load statistic records for the framework and

specified services. */

TpResult queryLoadReq (

in TpClientAppID requester,
// The identifier of the client application for callbacks from the load

// balancing service.

in TpServiceIDList serviceIDs,
// Specifies the framework and services for which the load statistics

// shall be reported.

in TpTimeInterval timeInterval
// The time interval within which the load statistics are generated.

);

/* This method is invoked by the client application to report load statistics back to the framework that

requested the information. */

TpResult queryAppLoadRes (

in TpLoadStatisticList loadStatistics
// The application's load statistics.

);

/* This method is invoked by the client application to return an error response to the framework that

requested the application's load statistics information. */

TpResult queryAppLoadErr (

in TpLoadStatisticErrorList loadStatisticsError
// The error code associated with the failed attempt to

// retrieve the application's load statistics.

);

/* This method is invoked by the client application to register the client application for load management

under various load conditions. */

TpResult registerLoadController (

in TpClientAppID requester,
// Identifies the client application for callbacks from the load

// balancing service.

in TpServiceIDList serviceIDs
// Specifies the framework and services to be registered for load

// control.

);

/* This method is invoked by the client application to unregister for load management. */

TpResult unregisterLoadController (

in TpClientAppID requester,
// Identifies the client application for callbacks from the

// load balancing service.

in TpServiceIDList serviceIDs
// Specifies the framework or services to be unregistered for

// load control.

);

/* This method is invoked by the client application to resume load management notifications to it from the

framework and specified services. */

TpResult resumeNotification (

in TpServiceIDList serviceIDs

// Specifies the framework and services for which notifications

// are to be resumed.

);

/* This method is invoked by the client application to suspend load management notifications to it from

the framework and specified services, while it handles a temporary load condition. */

TpResult suspendNotification (

in TpServiceIDList serviceIDs

// Specifies the framework and services for which notifications

// are to be suspended.

);

};

/* The Load Manager client application interface is used by the Framework to access the application load

balancing service. */

interface IpAppLoadManager {

/* This method is invoked by the Framework to request for load statistic records produced by a specified

application. */

TpResult queryAppLoadReq (

in TpServiceIdList serviceIDs,
// Specifies the services or application for which the load statistics

// shall be reported.

in TpTimeInterval timeInterval
// The time interval within which the load statistics are generated.

);

/* This method is invoked by the Framework to return load statistics to the application which requested

the information. */

TpResult queryLoadRes (

in TpLoadStatList loadStatistics
// The load statistics supplied by the Framework.

);

/* This method is invoked by the Framework to return an error code to the application that requested

load statistics. */

TpResult queryLoadErr (

in TpLoadStatErrList loadStatisticsError
// The error code supplied by the Framework.

);

/* This method is invoked by the Framework to disable load control activity at the client application based

on policy, after the load level of the Framework or service which has been registered for load control moves

back to normal. */

TpResult disableLoadControl (

in TpServiceIdList serviceIDs

// Specifies the framework and services for which the load

// has changed to normal.

);

/* This method is invoked by the Framework to enable load management activity at the client application

based on the policy, upon detecting load condition change. */

TpResult enableLoadControl (

in TpLoadStatList loadStatistics
// The new load statistics.

);

/* This method is invoked by the Framework to resume the notification from an application for its load status

after the detection of load level change at the Framework and the evaluation of the load balancing policy. */

TpResult resumeNotification();

/* This method is invoked by the Framework to suspend the notification from an application for its load

status after the detection of load level change at the Framework and the evaluation of the load balancing

policy. */

TpResult suspendNotification();

};

/* The Fault Manager Framework interface is used by the client application to inform the Framework of events

that affect the integrity of the Framework and services, and to request information about the integrity of the

system. */

interface IpFaultManager {

/* This method may be invoked by the client application to test that the Framework or a service is

operational. */

TpResult activityTestReq (

in TpActivityTestID activityTestID,
// Identifier provided by the client application to correlate the

// response with this request.

in TpServiceID svcID,
// Identifies for which service the client application is requesting

// the activity test be done.

in TpClientAppID appID
// Identifies which client application is requesting the activity test

// (and therefore which application receives the results).

);

/* This method is invoked by the client application to return the result of a previously requested activity

test. */

TpResult appActivityTestRes (

in TpActivityTestID activityTestID,
// Used by the Framework to correlate this response with the

// original request.

in TpActivityTestRes activityTestResult // Result of the activity test.

);

/* This method is invoked by the client application to inform the Framework that it can no longer use the

indicated service. */

TpResult serviceUnavailableInd (

in TpServiceID serviceId,
// Identity of the service which can no longer be used.

in TpClientAppID appID
// Identity of the application sending the indication.

);

/* This method is invoked by the client application to request fault statistics from the Framework. */

TpResult genFaultStatsRecordReq (

in TpTimeInterval timePeriod,
// The period over which the fault statistics are to be generated.

in TpServiceIDList serviceIDList,
// The services that the application would like to have included in

// the general fault statistics record.

in TpClientAppID appID
// Identifies which client application is requesting the statistics

record (and therefore should receive it).

);

};

/* The Fault Manager client application interface is used by the Framework to

inform the application of events that affect the integrity of the Framework,

service or client application. */

interface IpAppFaultManager {

/* This method is invoked by the Framework, in response to an activityTestReq, to return the result of the

activity test in this method. */

TpResult activityTestRes (

in TpActivityTestID activityTestID,

// The identifier provided to correlate this response with

// the original request.

in TpActivityTestRes activityTestResult

// Result of the activity test.

);

/* This method is invoked by the Framework to request that the client application carries out an activity test

to check that is it operating correctly. */

TpResult appActivityTestReq (

in TpActivityTestID activityTestID

// The identifier provided to correlate this response with

// the original request.

);

/* This method is invoked by the Framework to notify the client application of a failure within the

Framework. */

TpResult fwFaultReportInd (

in TpInterfaceFault fault

// The fault that has been detected.

);

/* This method is invoked by the Framework to notify the client application that a previously reported fault

has been rectified. */

TpResult fwFaultRecoveryInd (

in TpInterfaceFault fault

// The fault from which the framework has recovered.

);

/* This method is invoked by the Framework to inform the client application that it can no longer use the

indicated service due to a failure. */

TpResult svcUnavailableInd (

in TpServiceID serviceId,

// Identity of the service which can no longer be used.

in TpSvcUnavailReason reason

// The reason why the service is no longer available.

);

/* This method is invoked by the Framework to provide fault statistics to a client application in response to a

genFaultStatsRecordReq. */

TpResult genFaultStatsRecordRes (

in TpFaultStatsRecord faultStatistics,
// The fault statistics record.

in TpServiceIDList serviceIDs
// The services that have been included in the general fault

// statistics record.

);

};

/* The OAM Framework interface is used by the client application to query the system date and time, for

synchronisation purposes. */

interface IpOAM {

/* This method is invoked by the client application to interchange the system an client application date and

time. */

TpResult systemDateTimeQuery (

in TpDateAndTime clientDateAndTime,

// The date and time of the client.

out TpDateAndTimeRef systemDateAndTime

// The date and time of the system.

);

};

/* The OAM client application interface is used by the Framework to query the application date and time, for

synchronisation purposes. */

interface IpAppOAM {

/* This method is invoked by the Framework to interchange the system an client application date and time. */

TpResult systemDateTimeQuery (

in TpDateAndTime systemDateAndTime,

// The date and time of the system.

out TpDateAndTimeRef clientDateAndTime

// The date and time of the client.

);

};

};};};};};

10.3 Call Control

10.3.1 Common Data Types for Call Control

Reserved for to future use.

10.3.2 Call Control IDL

// GenericCall Data description

/* Send only intermediate reports (i.e., when a party leaves the call). */

const TpInt32 P_CALL_INFO_INTERMEDIATE = 4;

/* Call release cause. */

const TpInt32 P_CALL_INFO_RELEASE_CAUSE = 2;

/* Relevant call times */

const TpInt32 P_CALL_INFO_TIMES = 1;

/* Undefined */

const TpInt32 P_CALL_INFO_UNDEFINED = 0;

/* Send a warning tone to the controlling party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period */

const TpInt32 P_CALL_SUPERVISE_APPLY_TONE = 4;

/* The call has ended, either due to timer expiry or call party release. */

const TpInt32 P_CALL_SUPERVISE_CALL_ENDED = 2;

/* Release the call when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_RELEASE = 1;

/* Notify the application when the call supervision timer expires. */

const TpInt32 P_CALL_SUPERVISE_RESPOND = 2;

/* The call supervision timer has expired. */

const TpInt32 P_CALL_SUPERVISE_TIMEOUT = 1;

/* A warning tone has been applied. */

const TpInt32 P_CALL_SUPERVISE_TONE_APPLIED = 4;

/* This data type is identical to a TpString, and defines indicators for application interworking. The values of this data type are operator specific. */

typedef TpString TpCallInterworkingIndicators;

typedef TpString TpCallNetworkAccessType;

/* Defines a specific call error. */

/* This data type is identical to a TpString, and defines the category of a call party (e.g. call priority, payphone, prepaid). The values of this data type are operator specific. */

typedef TpString TpCallPartyCategory;

enum TpCallErrorType {

P_CALL_ERROR_UNDEFINED,

/* Undefined */

P_CALL_ERROR_ROUTING_ABORTED,

/* Call routing failed and was aborted by the network */

P_CALL_ERROR_CALL_ABANDONED,

/* The requested operation failed because the controlling party abandoned the call before the operation was completed */

P_CALL_ERROR_INVALID_ADDRESS,

/* The operation failed because an invalid address was given */

P_CALL_ERROR_INVALID_STATE,

/* The call was not in a valid state for the requested operation */

P_CALL_ERROR_INVALID_CRITERIA

/* Invalid criteria were specified for the requested operation */

};

/* Defines the Sequence of Data Elements that specify the cause of the release of a call.*/

struct TpCallReleaseCause {

TpInt32 Value;

/* Note: the Value and Location are specified as in ITU-T recommendation Q.850. */

TpInt32 Location;

};

/* Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and call information errors. */

union TpCallAdditionalErrorInfo switch(TpCallErrorType) {

case P_CALL_ERROR_ROUTING_ABORTED: TpCallReleaseCause CallErrorRoutingAborted;

case P_CALL_ERROR_CALL_ABANDONED: TpCallReleaseCause CallErrorCallAbandoned;

case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;

};

/* Defines a specific call event report type. */

enum TpCallReportType {

P_CALL_REPORT_UNDEFINED,

/* Undefined */

P_CALL_REPORT_PROGRESS,

/* Call routing progress event */

P_CALL_REPORT_ROUTING_SUCCESS,

/* Call successfully routed to address */

P_CALL_REPORT_ANSWER,

/* Call answered at address */

P_CALL_REPORT_REFUSED_BUSY,

/* Called address refused call due to busy */

P_CALL_REPORT_NO_ANSWER,

/* No answer at called address */

P_CALL_REPORT_DISCONNECT,

/* Call disconnect requested by address */

P_CALL_REPORT_REDIRECTED,

P_CALL_REPORT_SERVICE_CODE,

P_CALL_REPORT_ROUTING_FAILURE,

P_CALL_REPORT_CALL_ENDED

};

/* Defines the Tagged Choice of Data Elements that specify additional call report information. */

union TpCallAdditionalReportInfo switch(TpCallReportType) {

case P_CALL_REPORT_REFUSED_BUSY: TpCallReleaseCause RefuseBusy;

case P_CALL_REPORT_DISCONNECT: TpCallReleaseCause CallDisconnect;

case P_CALL_REPORT_REDIRECTED: TpAddress ForwardAddress;

case P_CALL_REPORT_SERVICE_CODE: TpCallReleaseCause ServiceCode;

case P_CALL_REPORT_ROUTING_FAILURE: TpCallReleaseCause RoutingFailure;

case P_CALL_REPORT_CALL_ENDED: TpCallReleaseCause CallEnded;

};

/* This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values of this data type are operator specific. */

typedef TpInt32 TpCallAlertingMechanism;

/* This data type is identical to a TpString, and defines the bearer service associated with the call (e.g. 64kb/s unrestricted data). The values of this data type are operator specific. */

typedef TpString TpCallBearerService;

/* This data type is identical to a TpString, and defines the call charge plan to be used for the call. The values of this data type are operator specific. */

typedef TpString TpCallChargePlan;

/* Defines the Sequence of Data Elements that specify the additional information relating to an undefined call error. */

struct TpCallError {

TpCallAdditionalErrorInfo AdditionalErrorInfo;

TpCallErrorType ErrorType;

TpDateAndTime ErrorTime;

};

/* This data type is identical to a TpString, and defines the tele-service associated with the call (e.g. speech, video, fax, file transfer, browsing). The values of this data type are operator specific. */

typedef TpString TpCallTeleService;

union TpCallAppInfo switch(TpCallAppInfoType) {

case P_CALL_APP_TELE_SERVICE:

TpCallTeleService CallAppTeleService;

case P_CALL_APP_BEARER_SERVICE:

TpCallBearerService CallAppBearerService;

case P_CALL_APP_PARTY_CATEGORY:

TpCallPartyCategory CallAppPartyCategory;

case P_CALL_APP_PRESENTATION_ADDRESS:

TpAddress CallAppPresentationAddress;

case P_CALL_APP_GENERIC_INFO:

TpString CallAppGenericInfo;

case P_CALL_APP_ADDITIONAL_ADDRESS:

TpAddress CallAppAdditionalAddress;

case P_CALL_APP_ALERTING_MECHANISM:

TpCallAlertingMechanism CallAppAlertingMechanism;

case P_CALL_APP_NETWORK_ACCESS_TYPE:

TpCallNetworkAccessType CallAppNetworkAccessType;

case P_CALL_APP_INTERWORKING_INDICATORS:

TpCallInterworkingIndicators CallAppInterworkingIndicators;

};

/* Defines a specific call event report type. */

enum TpCallAppInfoType {

P_CALL_APP_UNDEFINED,

/* Undefined */

P_CALL_APP_ALERTING_MECHANISM,
/* The alerting mechanism or pattern to use */

P_CALL_APP_NETWORK_ACCESS_TYPE,
/* The network access type (e.g. ISDN) */

P_CALL_APP_INTERWORKING_INDICATORS,
/* Indicators to enable service interworking */

P_CALL_APP_TELE_SERVICE,

/* Indicates the tele-service (e.g. speech) and related info such as clearing programme */

P_CALL_APP_BEARER_SERVICE,

/* Indicates the bearer service (e.g. 64kb/s unrestricted data). */

P_CALL_APP_PARTY_CATEGORY,

/* The category of the call party */

P_CALL_APP_PRESENTATION_ADDRESS,
/* The address to be presented to other call parties */

P_CALL_APP_GENERIC_INFO,

/* Carries unspecified service-service information */

P_CALL_APP_ADDITIONAL_ADDRESS

/* Indicates an additional address */

};

typedef sequence <TpCallAppInfo> TpCallAppInfoSet;

typedef TpInt32 TpCallEventName;

/*Defines the names of event being notified. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications.*/

const TpInt32 P_EVENT_NAME_UNDEFINED = 0;
//Undefined

const TpInt32 P_EVENT_GCCS_OFFHOOK_EVENT = 1;
//GCCS - Offhook event

const TpInt32 P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT = 2;
/*GCCS - Address information collected

const TpInt32 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT = 4;
/*GCCS - Address information is analysed */

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_BUSY = 8;
/*GCCS - Called party is busy */

const TpInt32 P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE = 16;
/*GCCS - Called party is unreachable */

const TpInt32 P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY = 32;
/*GCCS - No answer from called party */

const TpInt32 P_EVENT_GCCS_ROUTE_SELECT_FAILURE = 64;
/*GCCS - Failure in routing the call */

struct TpCallEventCriteria {

TpAddress DestinationLowerAddress;
/*Lower destination address in an address rannge*/

TpAddress DestinationUpperAddress;
/*Upper destination address in an address range*/

TpAddress OriginatingLowerAddress;
/*Lower originatin address in an address range */

TpAddress OriginationUpperAddress;
/*Upper origination address in an address range */

TpCallEventName CallEventName;

/*Name of the event(s) */

};

/* Defines the Sequence of Data Elements that specify the information returned to the application in a New Call event notification.*/

struct TpCallEventInfo {

TpAddress DestinationAddress;

TpAddress OriginatingAddress;

TpAddress OriginalDestinationAddress;

TpAddress RedirectingAddress;

TpCallAppInfoSet CallAppInfo;

TpCallEventName CallEventName;

};

/* Defines the cause of the call fault detected. */

enum TpCallFault {

P_CALL_FAULT_USER_ABORTED,

/* This fault occurs when a call is has been triggered by the network but the user has finalised the call before any message could be sent by the application. */

P_CALL_FAULT_UNDEFINED,

/* Undefined */

P_CALL_TIMEOUT_ON_RELEASE,

/* This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time. The timer value is operator specific. */

P_CALL_TIMEOUT_ON_INTERRUPT

/* This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific */

};

/* Defines the Sequence of Data Elements that unambiguously specify the Generic Call object */

struct TpCallIdentifier { /* This element specifies the interface reference for the call object. */

IpCall CallReference;

/* This element specifies the call session ID of the call created. */

TpSessionID CallSessionID;

};

typedef TpInt32 TpCallInfoType;

/* Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested may be undefined or not present. */

struct TpCallInfoReport {

TpDateAndTime CallConnectedToDestinationTime;

TpDateAndTime CallEndTime;

TpCallReleaseCause Cause;

TpCallInfoType CallInfoType;

TpDateAndTime CallInitiationStartTime;

TpDateAndTime CallConnectedToResourceTime;

};

/* Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event. */

enum TpCallMonitorMode {

P_CALL_MONITOR_MODE_INTERRUPT,

/* The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release) */

P_CALL_MONITOR_MODE_NOTIFY,

/* The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues */

P_CALL_MONITOR_MODE_DO_NOT_MONITOR

/* Do not monitor for the event */

};

/* Defines the type of call overload that has been detected (and possibly acted upon) by the network. */

enum TpCallOverloadType {

P_CALL_OVERLOAD_TYPE_UNDEFINED,

/* Infinite interval

(do not admit any calls) */

P_CALL_OVERLOAD_TYPE_NEW_CALLS,

/* New calls to the application are causing overload (i.e. inbound overload) */

P_CALL_OVERLOAD_TYPE_ROUTED_CALLS

/* Calls being routed to destination or origination addresses by the application are causing overload (i.e. outbound overload) */

};

struct TpCallReport {

TpCallMonitorMode MonitorMode;

TpDateAndTime CallEventTime;

TpCallAdditionalReportInfo AdditionalReportInfo;

};

/* Defines the service code received during a call. For example, this may be a digit sequence, user-user information, recall, flash-hook or ISDN Facility Information Element. This data type is identical to a TpString. The coding of this data type is operator specific. */

typedef TpString TpCallServiceCode;

/* Defines the Tagged Choice of Data Elements that specify specific criteria. */

union TpCallReportAdditionalCriteria switch(TpCallReportType) {

case P_CALL_REPORT_NO_ANSWER: TpDuration NoAnswerDuration;

case P_CALL_REPORT_SERVICE_CODE: TpCallServiceCode ServiceCode;

};

/* Defines the Sequence of Data Elements that specify the criteria relating to call report requests. */

struct TpCallReportRequest {

TpCallMonitorMode MonitorMode;

TpCallReportAdditionalCriteria AdditionalReportCriteria;

};

/* Defines a Numbered Set of Data Elements of TpCallReportRequest. */

struct TpCallReportRequestSet {

/* To be finalised !. */

TpCallReportRequest MrYMCA;

};

/* Defines the following responses from the call control service for calls that are supervised:

P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_CALL_ENDED

P_CALL_SUPERVISE_TONE_APPLIED

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallSuperviseReport;

/* Defines the following treatment of the call by the call control service when the call supervision timer expires.

P_CALL_SUPERVISE_RELEASE

P_CALL_SUPERVISE_RESPOND

P_CALL_SUPERVISE_APPLY_TONE

These values may be combined by a logical 'OR' function. */

typedef TpInt32 TpCallSuperviseTreatment;

/* Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection. */

struct TpCallSuperviseVolume {

/* This data type is identical to a TpInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection. */

TpInt32 VolumeQuantity;

/* This data type is identical to a TpInt32, and defines the unit of the granted volume that can be transmitted for the specific connection. Unit must be specified as 10^n number of bytes, where n denotes the power. When the unit is for example in kilobytes, VolumeUnit must be set to 3. */

TpInt32 VolumeUnit;

};

/* Defines the Tagged Choice of Data Elements that specify call application-related specific information. */

/* Define the possible Exceptions. */

exception TpGCCSException {

TpInt32 exceptionType;

};

const TpInt32 P_GCCS_SERVICE_INFORMATION_MISSING = 256;

const TpInt32 P_GCCS_SERVICE_FAULT_ENCOUNTERED = 257;

const TpInt32 P_GCCS_UNEXPECTED_SEQUENCE = 258;

const TpInt32 P_GCCS_INVALID_ADDDRESS = 259;

const TpInt32 P_GCCS_INVALID_STATE = 260;

const TpInt32 P_GCCS_INVALID_CRITERIA = 261;

const TpInt32 P_GCCS_INVALID_NETWORK_STATE = 262;

const TpInt32 P_GCCS_NETWORK_DEASSIGN = 263;

// GenericCall Interface description

/* The simple call interface is implemented by the client application developer and is used to handle call request responses and state reports. */

interface IpAppCall : IpOSA {

/* This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.). If the call is answered, then a (passive) call leg object will be created for that leg of the call.*/

void routeCallToDestinationRes (

in TpSessionID callSessionID,

in TpCallReport eventReport

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).*/

void routeCallToDestinationErr (

in TpSessionID callSessionID,
/*Specifies the call session ID of the call. */

in TpCallError errorIndication
/*Specifies the error which led to the original request failing.*/

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method indicates that the request to route a call to the first call party was successful, and indicates the response of that party (for example, the call was answered, not answered, refused due to busy, etc.). If the call is answered, then a (controlling) call leg object will be created for that leg of the call.*/

void routeCallToOriginiationRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReport eventReport
/*Specifies the result of the request to route the call to the origination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.*/

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method indicates that the request to route the call to the originating party was unsuccessful (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).*/

void routeCallToOriginationErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
/*Specifies the error which led to the original request failing.*/

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.*/

void getCallInfoRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoReport callInfoReport
//Specifies the call information requested.

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

void getCallInfoErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication)
/*Specifies the error which led to the original request failing.*/

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method reports a call supervision event to the application. This method is called when the supervision event occurs and the treatement indicates P_CALL_SUPERVISE_RESPOND. It is also called when the connection is terminated before the supervision event occurs.*/

void superviseCallRes (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallSuperviseReport report,
/*Specifies the situation which triggered the sending of the call supervision response.*/

in TpDuration usedTime,
/*Specifies the used time for the call supervision (in milliseconds).*/

in TpCallSuperviseVolume usedVolume
/*Specifies the used volume for the call supervision (in the same units as specified in the request).*/

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method reports a call supervision error to the application.*/

void superviseCallErr (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallError errorIndication
/*Specifies the error which led to the original request failing*/

)

raises (TpGCCSException, TpGeneralException);

/* This method indicates to the application that a fault in the network has been detected which can't be communicated by a network event, e.g., when the user aborts before any routing method is called by the application.*/

void callFaultDetected (

in TpSessionID callSessionID,

in TpCallFault fault

)

raises (TpGCCSException, TpGeneralException);

};

/* The generic call control manager application interface provides the application call control management functions to the generic call control service. */

interface IpAppCallControlManager : IpOSA {
/* This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application. */

void callAborted (

in TpCallIdentifier callReference
/*Specifies the call interface that has aborted or terminated abnormally.*/

)

raises (TpGCCSException, TpGeneralException);

/* This method notifies the application of the arrival of a call-related event. */

void callEventNotify (

in TpCallIdentifier callReference,
/*Specifies the reference to the call interface to which the notification relates*/

in TpCallEventInfo eventInfo,
/*Specifies data associated with this event.*/

in TpAssignmentID assignmentID,
/*Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.*/

out IpAppCall appInterface
/*Specifies a reference to the application interface which implements the callback interface for the new call.*/

)

raises (TpGCCSException, TpGeneralException);

/* This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).*/

void callNotificationTerminated ()

raises (TpGCCSException, TpGeneralException);

};

/* This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to create call objects and to enable or disable call-related event notifications. */

interface IpCallControlManager { /* This method is used to create a new call object.*/

void createCall (

in IpAppGenericCall appCall,

out TpCallIdentifier callReference

);

/* This method is used to enable call notifications so that events can be sent to the application. If another application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA. If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the callEventNotify (e.g., due to overload or failure).*/

void enableCallNotification (

in IpAppGenericCallControlManager appInterface,

/*If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.*/

in TpCallEventCriteria eventCriteria,
/*Specifies the event specific criteria used by the application to define the event required.*/

out TpAssignmentID assignmentID
/*Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.*/

)

raises (TpGCCSException, TpGeneralException);

/* This method is used by the application to disable call notifications.*/

void disableCallNotification (

in TpAssignmentID assignmentID
/*Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.*/

)

raises (TpGCCSException, TpGeneralException);

};

/* This interface provides the means to create a simple call consisting of one or two legs that are connected or being routed. More complex call can be established with the interface IpEnhancedCall. */

interface IpCall : IpService { /* This asynchronous method requests routing of the call (and inherently attached parties) to the destination party, via a passive call leg (which is implicitly created).*/

void routeCallToDestinationReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReportRequestSet responseRequested,
/*Specifies the set of observed events that will result in zero or more routeCallToDestinationRes() being generated. E.g., when both answer and disconnect is monitored the result can be received two times.*/

in TpAddress targetAddress,
/*Specifies the destination party to which the call should be routed.*/

in TpCallAppInfoSet appInfo,
/*Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).*/

out TpAssignmentID assignmentID
/*Specifies the ID assigned by the gateway. The same ID will be returned in the routeCallToDestinationRes or Err. This allows the application to correlate the request and the result. This parameter is only relevant when multiple routeCallToDestinations are executed in parallel, e.g., in the enhanced call control service.*/

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method requests routing of a call to the first call party, via a controlling call leg (which is implicitly created). The call object must already have been created. The extra addressinformation specified (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is treated by the gateway as if it has been received from the incoming party. This means that it is this information is used in the signalling to the terminating party (or parties), e.g., when a routeCallToDestinationReq is called. The provided information will be checked and may be modified by the gateway and/or the underlying network.. If the application developer don't want to deal with the redirectingAdress, originalDestinationAddess and originatingAddress than these parameter may be set to empty strings for convenience. Setting of TargetAddress is mandatory.*/

void routeCallToOriginationReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReportRequestSet responseRequested,
/*Specifies the set of observed events that will result in a routeCallToOriginationRes() will be generated. Some events must be monitored in this case. When no response is requested, a P_INVALID_PARAMETER_VALUE error is generated.*/

in TpAddress targetAddress,
/*Specifies the origination party to which the call should be routed.*/

in TpAddress originatingAddress,
/*Specifies the address of the originating (calling) party.*/

in TpAddress redirectingAddress,
/*Specifies the last address from which the call was redirected.*/

in TpAddress originalDestinationAddress,
/*Specifies the original destination address of the call.*/

in TpCallAppInfoSet appInfo
/*Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).*/

)

raises (TpGCCSException, TpGeneralException);

/* This method requests the release of the call and associated objects.*/

void release (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallReleaseCause cause
//Specifies the cause of the release.

)

raises (TpGCCSException, TpGeneralException);

/* This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded. Note that when the last requested report has been sent to the application and the related event was not monitored in interrupt mode, this is regarded as an implicit deassignCall, i.e., the call object and related objects will be purged and no further communication with the application is possible. */

void deassignCall (

in TpSessionID callSessionID
//Specifies the call session ID of the call.

)

raises (TpGCCSException, TpGeneralException);

/* This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports. A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports. Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call using routeCallToDestinationReq.*/

void getCallInfoReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallInfoType callInfoRequested
/*Specifies the call information that is requested.*/

)

raises (TpGCCSException, TpGeneralException);

/* Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls. */

void setCallChargePlan (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpCallChargePlan callChargePlan
//Specifies the charge plan to use.

)

raises (TpGCCSException, TpGeneralException);

/* The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeCallToDestinationReq() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system. */

void superviseCallReq (

in TpSessionID callSessionID,
//Specifies the call session ID of the call.

in TpDuration time,
/*Specifies the granted time in milliseconds for the connection. When specified as 0, volume based supervision is applied. Either bytes (volume) or time should be specified.*/

in TpCallSuperviseTreatment treatment,
/*Specifies how the network should react after the granted connection time expired.*/

in TpCallSuperviseVolume bytes
/*Specifies the granted number of bytes that can be transmitted for the connection. When the quantity is specified as 0, time based supervision is applied. Either bytes (volume) or time should be specified.*/

)

raises (TpGCCSException, TpGeneralException);

};

10.4 User Interaction

10.4.1 Common Data types for User Interaction

10.4.2 User Interaction IDL

#include "CommonData.idl"

#include “GCCSData.idl”

#include “EnhancedCallControlServiceData.idl”

module GUIS {

// GUIS Data description

/* Defines the Sequence of Data Elements that specify the additional properties for the collection of information, such as the end character, first character timeout, inter-character timeout, and maximum interaction time. */

struct TpUICollectCriteria { /* Defines the minimum number of characters (e.g. digits) to collect */

TpInt32 MinLength;

/* Defines the maxmum number of characters (e.g. digits) to collect */

TpInt32 MaxLength;

/* Defines the character or characters which terminate an input of variable length, e.g. phonenumbers. */

TpString EndSequence;

/*defines a duration (in seconds) for use with User Interaction related interactions. A value of zero (0) specifies that the default duration should be used. The timer is started when the announcement has been completed or has been interrupted. The user should enter the start of the response (e.g. first digit) before the timer expires. If the start of the response is not entered before the timer expires, the input is regarded to be erroneous. After receipt of the start of the response, which may be valid or invalid, the timer is stopped. */

TpDuration StartTimeout;

/* specifies the value for the inter-character time-out timer.The timer is started when a response (e.g. digit) is received, and is reset and restarted when a subsequent response is received. The responses may be valid or invalid. the announcement has been completed or has been interrupted. */

TpDuration InterCharTimeout;

};

/* Defines the UI call error codes. */

enum TpUIError {

P_UI_ERROR_UNDEFINED,

/* Undefined error */

P_UI_ERROR_ILLEGAL_ID,

/* The information id specified is invalid */

P_UI_ERROR_ID_NOT_FOUND,

/* A legal information id is not known to the the User Interaction service */

P_UI_ERROR_RESOURCE_UNAVAILABLE,

/* The information resources used by the User Interaction service are unavailable, e.g. due to an overload situation. */

P_UI_ERROR_ILLEGAL_RANGE,

/* The values for manimum and maximum collection length are out of range */

P_UI_ERROR_IMPROPER_CALLER_RESPONSE,

/* Improper user reswponse */

P_UI_ERROR_ABANDON,

/* The specified leg is disconnected before the send information completed */

P_UI_ERROR_NO_OPERATION_ACTIVE,

/* There is no active user interaction for the specified leg. Either the application did not start any user interaction or the user interaction was already finished when the abortLegActionReq() was called. */

P_UI_ERROR_NO_SPACE_AVAILABLE

/* There is no more storage capacity to record the message when the recordMessage() operation was called */

};

/* Defines the cause of the UI fault detected. */

enum TpUIFault {

P_UI_FAULT_UNDEFINED,

/* Undefined */

P_UI_CALL_DEASSIGNED

/* The related Call object has been deassigned. No further interaction is possible. Already requested announcements will continue but no requested reports will be send to the application. */

};

/* Defines the type of information send to the end-user */

enum TpUIInfoType {

P_UI_INFO_ID,

/* The information to be send to an end-user consists of an ID */

P_UI_INFO_TEXT,

/* The information to be send to an end-user consists of a text string */

P_UI_INFO_ADDRESS

/* The information to be send to an end-user consists of a URL. */

};

/* Defines the Tagged Choice of Data Elements that specifies the information to be send to a end-user. This information can:

- identify an announcement or text to be presented

- the text directly

· an URL pointing to the information to be presented */

union TpUIInfo switch(TpUIInfoType) {

case P_UI_INFO_ID: TpInt32 InfoID;
/*Defines the ID of the user information script or stream to send to an end-user. The values of this data type are operator specific.*/

case P_UI_INFO_TEXT: TpString InfoText;
/*Defines the text to be send to an end-user. The text is free-format and the encoding is depending on the resources being used.*/

case P_UI_INFO_ADDRESS: TpURL InfoAddress;
/*Defines the URL of the text or stream to be send to an end-user*/

};

/* Defines the criteria for recording of messages */

struct TpUIMessageCriteria {

/* Defines the character or characters which terminate an input of variable length, e.g. phonenumbers. */

TpString EndSequence;

/* If this parameter is non-zero, it specifies the maximum allowed duration in seconds of the message that is to be recorded. */

TpDuration MaxMessageTime;

/* If this parameter is non-zero, it specifies the maximum allowed size in bytes of the message that is to be recorded. */

TpInt32 MaxMessageSize;

};

/* Defines the UI call reports if a response was requested. */

enum TpUIReport {

P_UI_REPORT_UNDEFINED,

/* Undefined report */

P_UI_REPORT_ANNOUNCEMENT_ENDED,

/* Confirmation that the announcement has ended */

P_UI_REPORT_LEGAL_INPUT,

/* Information collected., meeting the specified criteria. */

P_UI_REPORT_NO_INPUT,

/* No information collected. The user immediately entered the delimiter character. No valid information has been returned */

P_UI_REPORT_TIMEOUT,

/* No information collected. The user did not input any response before the input timeout expired */

P_UI_REPORT_MESSAGE_STORED,

/* A message has been stored successfully */

P_UI_REPORT_MESSAGE_NOT_STORED
/* The message has not been stored successfully */

};

/* Defines the situations for which a response is expected following the user interaction. */

enum TpUIResponseRequest {

P_UI_RESPONSE_REQUIRED,

/* The User Interaction Call must send a response when the announcement has completed. */

P_UI_ LAST_ANNOUNCEMENT_IN_A_ROW,
/* This is the final announcement within a sequence. It might, however, be that additional announcements will be requested at a later moment. The User Interaction Call service may release any used resources in the network. The UI object will not be released. */

P_UI_FINAL_REQUEST

/* This is the final request. The UI object will be released after the information has been presented to the user and no response shall be generated. */

};

/* Defines the type of the variable parts in the information to send to the user. */

enum TpUIVariablePartType {

P_UI_VARIABLE_PART_INT,

/* Variable part is of type integer */

P_UI_VARIABLE_PART_ADDRESS,

/* Variable part is of type address */

P_UI_VARIABLE_PART_TIME,

/* Variable part is of type time */

P_UI_VARIABLE_PART_DATE,

/* Variable part is of type date */

P_UI_VARIABLE_PART_PRICE

/* Variable part is of type price */

};

/* Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user. */

union TpUIVariableInfo switch(TpUIVariablePartType) {

case P_UI_VARIABLE_PART_INT: TpInt32 VariablePartInteger;

case P_UI_VARIABLE_PART_ADDRESS: TpString VariablePartAddress;

case P_UI_VARIABLE_PART_TIME: TpTime VariablePartTime;

case P_UI_VARIABLE_PART_DATE: TpDate VariablePartDate;

case P_UI_VARIABLE_PART_PRICE: TpPrice VariablePartPrice;

};

/* Defines the Sequence of Data Elements that unambiguously specify the UICall object. */

struct TpUICallIdentifier {

/* This element specifies the interface reference for the UICall object. */

IpUICall UICallRef;

/* This element specifies the user interaction session ID. */

TpSessionID UserInteractionSessionID;

};

/* Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification */

struct TpUIEventCriteria {

/* Defines the address of the end-user for which notification shall be handled */

TpString UserAddress;

/* Defines a 2 digit code indicating the UI to be triggered. The value is operator specific. */

TpString ServiceCode;

};

/* Defines the Sequence of Data Elements that specify a UI notification */

struct TpUIEventInfo {

/* Defines the address of the end-user for which notification shall be handled */

TpString UserAddress;

/* Defines a 2 digit code indicating the UI to be triggered. The value is operator specific. */

TpString ServiceCode;

};

/* Defines the Sequence of Data Elements that unambiguously specify the UI object */

struct TpUIIdentifier {

/* This element specifies the user interaction session ID. */

TpSessionID UserInteractionSessionID;
/* This element specifies the interface reference for the UI object. */

IpUI UIRef;

};

/* Define the possible Exceptions. */

exception TpGUISException {

TpInt32 exceptionType;

};

const TpInt32 P_GUIS_INVALID_CRITERIA = 768; /* Invalid criteria specified */

const TpInt32 P_GUIS_ILLEGAL_ID = 769;
/* Information id specified is invalid */

const TpInt32 P_GUIS_ID_NOT_FOUND = 770;
/* A legal information id is not known to the User Interaction Service */

const TpInt32 P_GUIS_ILLEGAL_RANGE = 771;
/* The values for minimum and maximum collection length are out of range */

const TpInt32 P_GUIS_INVALID_COLLECTION_CRITERIA = 772; /* Invalid collection criteria specified */

const TpInt32 P_GUIS_NETWORK_DEASSIGN = 773; /* The relation between the network and the gateway is terminated. Therefore, the gateway can no longer perform UI operations. This can happen after the last requested report is sent to the application. To prevent this error, the application should ensure that it has requested events which are not yet reported.*/

const TpInt32 P_GUIS_INVALID_NETWORK_STATE = 774; /* Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it. E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.*/

// GUIS Interface description

/* Inherits from the Generic Service Interface.

The User Interaction Service Interface provides functions to send information to, or gather information from the user. An application can use the User Interaction Service Interface independently of other services. */

interface IpUI : IpService {

/* This asynchronous method plays an announcement or sends other information to the user.*/

void sendInfoReq (

in TpSessionID userInteractionSessionID,

in TpUIInfo info,

in TpUIVariableInfo variableInfo,

in TpInt32 repeatIndicator,

in TpUIResponseRequest responseRequested,

out TpAssignmentID assignmentID

)

raises (TpGUISException, TpGeneralException);

/* This asynchronous method plays an announcement or sends other information to the user and collects some information from the user. The announcement usually prompts for a number of characters (for example, these are digits or text strings such as "YES" if the user's terminal device is a phone). The announcement will be interrupted when the user starts entering characters. */

void sendInfoAndCollectReq (

in TpSessionID userInteractionSessionID,
/*Specifies the user interaction session ID of the user interaction.*/

in TpUIInfo info,

/*Specifies the ID of the information to send to the user */

in TpUIVariableInfo variableInfo,
/*Defines the variable part of the information to send to the user.*/

in TpUICollectCriteria criteria,
/*Specifies additional properties for the collection of information, such as the maximum and minimum number of characters, end character, first character timeout and inter-character timeout.*/

out TpAssignmentID assignmentID
/*Specifies the ID assigned by the generic user interaction interface for a user interaction request.*/

)

raises (TpGUISException, TpGeneralException);

/* This method requests that the relationship between the application and the user interaction object be released. It causes the release of the used user interaction resources and interrupts any ongoing user interaction. */

void release (

in TpSessionID userInteractionSessionID
//Specifies the user interaction session ID of the user interaction created.

)

raises (TpGUISException, TpGeneralException);

};

/* The Call User Interaction Service Interface provides functions to send information to, or gather information from, the user (or call party) to which a call leg is connected. An application can use the Call User Interaction Service Interface only in conjunction with another service interface which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability. */

interface IpUICall : IpUI {
/* This asynchronous method allows the recording of a message. The recorded message can be played back at a later time with the sendInfoReq() method.*/

void recordMessageReq (

in TpSessionID userInteractionSessionID,

in TpUIInfo info,

in TpUIMessageCriteria criteria,

out TpAssignmentID assignmentID

)

raises (TpGUISException, TpGeneralException);

/* This asynchronous method aborts the specified user interaction operation, e.g. a sendInfoCallReq(). The call and call leg are otherwise unaffected. */

void abortActionReq (

in TpSessionID userInteractionSessionID,

in TpAssignmentID assignmentID

)

raises (TpGUISException, TpGeneralException);

};

/* The User Interaction Application Interface is implemented by the client application developer and is used to handle generic user interaction request responses and reports. */

interface IpAppUI : IpOSA {

/* This asynchronous method informs the application about the start or the completion of a sendInfoCallReq(). This response is called only if the responseRequested parameter of the sendInfoCallReq()method was set to P_UICALL_RESPONSE_REQUIRED.*/

void sendInfoRes (

in TpSessionID userInteractionSessionID,
/*Specifies the user interaction session ID of the user interaction.*/

in TpAssignmentID assignmentID,

/*Specifies the ID assigned by the generic user interaction interface for a user interaction request */

in TpUIReport response
/*Specifies the type of response received from the user.*/

)

raises (TpGUISException, TpGeneralException);

/* This asynchronous method indicates that the request to send information was unsuccessful. */

void sendInfoErr (

in TpSessionID userInteractionSessionID,
//Specifies the user interaction session ID of the user interaction.

in TpAssignmentID assignmentID,
//Specifies the ID assigned by the generic user interaction interface for a user interaction request.

in TpUIError errorIndication
//Specifies the error which led to the original request failing.

)

raises (TpGUISException, TpGeneralException);

/* This asynchronous method returns the information collected to the application. */

void sendInfoAndCollectRes (

in TpSessionID userInteractionSessionID,

in TpAssignmentID assignmentID,

in TpUIReport response,

in TpString info

)

raises (TpGUISException, TpGeneralException);

/* This asynchronous method indicates that the request to send information and collect a response was unsuccessful.

@roseuid 37BF32C500CA */

void sendInfoAndCollectErr (

in TpSessionID userInteractionSessionID,

in TpAssignmentID assignmentID,

in TpUIError error

)

raises (TpGUISException, TpGeneralException);

/* This method indicates to the application that a fault has been detected in the user interaction. */

void userInteractionFaultDetected (

in TpSessionID userInteractionSessionID,

in TpUIFault fault

)

raises (TpGUISException, TpGeneralException);

};

/* The Generic User Interaction Service manager application interface provides the application call management functions to the Generic User Interaction Service. */

interface IpAppUIManager : IpOSA {

/* This method indicates to the application that the User Interaction service instance has terminated or closed abnormally. No further communication will be possible between the User Interaction service instance and application. */

void userInteractionAborted (

in TpUIIdentifier userInteraction

)

raises (TpGUISException, TpGeneralException);

/* This method notifies the application of an user initiated request for user interaction. */

void userInteractionEventNotify (

in TpUIIdentifier ui,

in TpUIEventInfo eventInfo,

in TpAssignmentID assignmentID,

out IpAppUI appInterface

)

raises (TpGUISException, TpGeneralException);

};

/* The Call User Interaction Application Interface is implemented by the client application developer and is used to handle call user interaction request responses and reports. */

interface IpAppUICall : IpAppUI {/* This method returns whether the message is successfully recorded or not. In case the message is recorded, the ID of the message is returned.*/

void recordMessageRes (

in TpSessionID userInteractionSessionID,

in TpAssignmentID assignmentID,

in TpUIReport response,

in TpInt32 messageID

)

raises (TpGUISException, TpGeneralException);

/* This method indicates that the request for recording of a message was not successful. */

void recordMessageErr (

in TpSessionID userInteractionSessionID,
//Specifies the user interaction session ID of the user interaction.

in TpAssignmentID assignmentID,
//Specifies the ID assigned by the call user interaction interface for a user interaction request.

in TpUIError error
//Specifies the error which led to the original request failing.

)

raises (TpGUISException, TpGeneralException);

/* This asynchronous method confirms that the request to abort a user interaction operation on a call leg was successful. */

void abortActionRes (

in TpSessionID userInteractionSessionID,
/*Specifies the user interaction session ID of the user interaction.*/

in TpAssignmentID assignmentID

/*Specifies the ID assigned by the call user interaction interface for a user interaction request.*/

)

raises (TpGUISException, TpGeneralException);

/* This asynchronous method indicates that the request to abort a user interaction operation on a call leg resulted in an error.*/

void abortActionErr (

in TpSessionID userInteractionSessionID,
/*Specifies the user interaction session ID of the user interaction.*/

in TpAssignmentID assignmentID,

/*Specifies the ID assigned by the call user interaction interface for a user interaction request.*/

in TpUIError error

/*Specifies the error which led to the original request failing.*/

)

raises (TpGUISException, TpGeneralException);

};

/* Inherits from the Generic Service Interface.

This interface is the 'service manager' interface for the Generic User Interaction Service and provides the management functions to the Generic User Interaction Service. */

interface IpUIManager {

/* This method is used to create a new user interaction object for non-call related purposes */

void createUI (

in IpAppUI appUI,

in TpAddress userAddress,

out TpUIIdentifier userInteraction

)

raises (TpGUISException, TpGeneralException);

/* This method is used to create a new user interaction object for call related purposes. The user interaction can take place to the specified party (CallLegSessionID) or to all parties in a call (CallSessionID). Note that for certain implementation user interaction can only be performed towards the controlling call party, which shall be the only party in the call. Only one of CallIdentifier or CallLegidentifier may be defined (the other should be set to 0*/

void createUICall (

in IpAppUICall appUI,

in TpCallIdentifier callIdentifier,

in TpCallLegIdentifier callLegIdentifier,

out TpCallIdentifier userInteraction

)

raises (TpGUISException, TpGeneralException);

/* This method is used to enable the reception of user initiated user interaction, e.g., when the subscriber sends a SMS message or initiates a USSD dialogue. */

void enableUINotification (

in IpAppUIManager appInterface,
/*If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.*/

in TpUIEventCriteria eventCriteria,
/*SSpecifies the event specific criteria used by the application to define the event required, like user address and service code.*/

out TpAssignmentID assignmentID
/*Specifies the ID assigned by the generic user interaction manager interface for this newly enabled event notification.*/

)

raises (TpGUISException, TpGeneralException);

/* This method is used by the application to disable UI notifications. */

void disableUINotification (

in TpAssignmentID assignmentID
/*Specifies the assignment ID given by the generic user interaction manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.*/

)

raises (TpGUISException, TpGeneralException);

};

#endif

10.5 Mobility Management

10.5.1 Common data types for mobility management

/*

 * This is a Public Document of The 3gpp Organisation

 *

 * VHE/OSA API Specification ?.?

 * OMG IDL Specification (part of) - File: MM.idl

 *

 * STATUS : For Industry Comment

 * ISSUE : 1.0

 * DATE : 5 January 2000

 *

 * REVISION CONTROL

 * Revisions of this document are controlled using a numeric system where the first number

 * represents major revisions (changes resulting from formal steering committee review) and

 * the second number represents minor revisions (changes resulting from formal steering

 * committee review).

 *

 * ISSUE DATE REASON FOR CHANGE

 * 1.0 5 Jan 2000 First Release - For Industry Comment

 *

 * The master copy of this document is held in electronic format on the 3gpp website at

 * http://www.3gpp.org.

 *

 * SPECIFICATION STATUS

 * This document is a part of R99 of the VHE/OSA API Specification.

 *

 *

 * CONTACT INFORMATION

 * Contact information for the 3gpp organisation can be found on the 3gpp website at

 * http://www.3gpp.org.

 *

 * All product names mentioned within this specification are the trademarks of their

 * respective owners.

 */

/**/

// Common Mobility Data Definitions

// The following data definitions are used for several of the mobility services.

/**/

#include <OSA.idl>

module org {

module threegpp {

module osa {

module mm {

 // Defines the type of uncertainty shape.

 enum TpLocationUncertaintyShape {

 P_M_SHAPE_NONE, // No uncertainty shape present.

 P_M_SHAPE_CIRCLE, // Uncertainty shape is a circle.

 P_M_SHAPEa_CIRCLE_SECTOR, // Uncertainty shape is a circle sector.

 P_M_SHAPE_CIRCLE_ARC_STRIPE, // Uncertainty shape is a circle arc stripe.

 P_M_SHAPE_ELLIPSE, // Uncertainty shape is an ellipse.

 P_M_SHAPE_ELLIPSE_SECTOR, // Uncertainty shape is an ellipse sector.

 P_M_SHAPE_ELLIPSE_ARC_STRIPE // Uncertainty shape is an ellipse arc stripe.

 };

 // Defines the structure that specify a geographical position.

 // The horizontal location is defined by an "ellipsoid point with uncertainty

 // shape". The reference system chosen for the coding of locations is the

 // World Geodetic System 1984 (WGS 84).

 struct TpGeographicalPosition {

 TpFloat longitude;

 TpFloat latitude;

 TpLocationUncertaintyShape typeOfUncertaintyShape;

 TpFloat uncertaintyInnerSemiMajor;

 TpFloat uncertaintyOuterSemiMajor;

 TpFloat uncertaintyInnerSemiMinor;

 TpFloat uncertaintyOuterSemiMinor;

 TpInt32 angleOfSemiMajor;

 TpInt32 segmentStartAngle;

 TpInt32 segmentEndAngle;

 };

 // Defines the priority of a location request.

 enum TpLocationPriority {

 P_M_NORMAL,

 P_M_HIGH

 };

 // Defines a response time requirement.

 enum TpLocationResponseIndicator {

 P_M_NO_DELAY, // Return either initial or last known location of the user.

 P_M_LOW_DELAY, // Return the current location with minimum delay.

 // The mobility service shall attempt to fulfil any

 // accuracy requirement, but in doing so shall not add

 // any additional delay.

 P_M_DELAY_TOLERANT, // Obtain the current location with regard to

 // fulfilling the accuracy requirement.

 P_M_USE_TIMER_VALUE // Obtain the current location with regard to

 // fulfilling the response time requirement.

 };

 // Defines the structure that specify the application's requirements on the

 // mobility service's response time.

 struct TpLocationResponseTime {

 // Indicator for wich kind of response time that is required, see

 // TLocationResponseIndicator.

 TpLocationResponseIndicator responseTime;

 // Optional timer used in combination when responseTime equals

 // USE_TIMER_VALUE.

 TpInt32 timerValue;

 };

 // Defines the type of location requested.

 enum TpLocationType {

 P_M_CURRENT, // Current location

 P_M_CURRENT_OR_LAST_KNOWN, // Current or last known location

 P_M_INITIAL // Initial location for an emergency services call

 };

 // Defines the structure that specify a location request.

 struct TpLocationReq {

 TpFloat requestedAccuracy;// Requested accuracy in meters.

 TpLocationResponseTime requestedResponseTime; // Requested response time

 // as a classified reqirement or as an absolute timer.

 TpBoolean altitudeRequested; // Altitude request flag.

 TpLocationType type; // The kind of location that is requested.

 TpLocationPriority priority; // Priority of location request.

 TpString requestedLocationMethod; // The kind of location

 // method that is requested.

 };

 // Defines a diagnostic value that is reported in addition to an error by

 // one of the mobility services.

 enum TpMobilityDiagnostic {

 P_M_NO_INFORMATION, // No diagnostic information present.

 // Valid for all type of errors.

 P_M_APPL_NOT_IN_PRIV_EXCEPT_LST, // Application not in privacy exception list.

 // Valid for 'Unauthorised Application' error.

 P_M_CALL_TO_USER_NOT_SETUP, // Call to user not set-up. Valid for

 // 'Unauthorised Application' error.

 P_M_PRIVACY_OVERRIDE_NOT_APPLIC, // Privacy override not applicable. Valid for

 // 'Unauthorised Application' error.

 P_M_DISALL_BY_LOCAL_REGULAT_REQ, // Disallowed by local regulatory requirements.

 // Valid for 'Unauthorised Application' error.

 P_M_CONGESTION, // Congestion. Valid for 'Position Method

 // Failure' error.

 P_M_INSUFFICIENT_RESOURCES, // Insufficient resources. Valid for 'Position

 // Method Failure' error.

 P_M_INSUFFICIENT_MEAS_DATA, // Insufficient measurement data. Valid for

 // 'Position Method Failure' error.

 P_M_INCONSISTENT_MEAS_DATA, // Inconsistent measurement data. Valid for

 // 'Position Method Failure' error.

 P_M_LOC_PROC_NOT_COMPLETED, // Location procedure not completed. Valid for

 // 'Position Method Failure' error.

 P_M_LOC_PROC_NOT_SUPP_BY_USER, // Location procedure not supported by user.

 // Valid for 'Position Method Failure' error.

 P_M_QOS_NOT_ATTAINABLE // Quality of service not attainable. Valid for

 // 'Position Method Failure' error.

 };

 // Defines an error that is reported by one of the mobility services.

 enum TpMobilityError {

 P_M_OK, // No error occurred while processing the request.

 P_M_SYSTEM_FAILURE, // System failure. The request can not be handled because

 // of a general problem in the mobility service or the

 // underlying network. Fatal

 P_M_UNAUTHORIZED_NETWORK, // Unauthorised network, The requesting network is

 // not authorised to obtain the user's location or

 // status. Non fatal

 P_M_UNAUTHORIZED_APPLICATION, // Unauthorised application. The application is

 // not authorised to obtain the user's location

 // or status. Fatal

 P_M_UNKNOWN_SUBSCRIBER, // Unknown subscriber. The user is unknown, i.e. no

 // such subscription exists. Fatal

 P_M_ABSENT_SUBSCRIBER, // Absent subscriber. The user is currently not

 // reachable. Non fatal

 P_M_POSITION_METHOD_FAILURE // Position method failure. The mobility service

 // failed to obtain the user's position. Non fatal

 };

 // This enumeration is used in requests to stop mobility reports that are

 // sent from a mobility service to an application.

 enum TpMobilityStopScope {

 P_M_ALL_IN_ASSIGNMENT, // The request concern all users in an assignment.

 P_M_SPECIFIED_USERS // The request concern only the users that are

 // explicitly specified in a list.

 };

 // Defines the structure that specify a request to stop whole or parts of an

 // assignment. Assignments are used for periodic or triggered reporting of a

 // users location or status. Observe that the parameter 'Users' is optional,

 // if the parameter 'stopScope' is set to ALL_IN_ASSIGNMENT the parameter

 // 'stopScope' is undefined. If the parameter stopScope is set to

 // SPECIFIED_USERS, then the assignment shall be stopped only for the users

 // specified in the 'users' list.

 struct TpMobilityStopAssignmentData {

 // Identity of the session that shall be stopped.

 TpSessionID assignmentId;

 // Specify if only a part of the assignment or if whole the assignment

 // shall be stopped.

 TpMobilityStopScope stopScope;

 // Optional parameter describing which users a stop request is

 // addressing when only a part of an assignment is to be stopped.

 TpAddressSet users;

 };

 // Defines which kind of terminal is used.

 enum TpTerminalType {

 P_M_FIXED, // Fixed terminfal.

 P_M_MOBILE, // Mobile terminal.

 P_M_IP // IP terminal.

 };

}; }; }; };

10.5.2 Network User Location IDL

/*

 * This is a Public Document of The 3gpp Organisation

 *

 * VHE/OSA API Specification ?.?

 * OMG IDL Specification (part of) - File: MMuln.idl

 *

 * STATUS : For Industry Comment

 * ISSUE : 1.0

 * DATE : 18 January 2000

 *

 * REVISION CONTROL

 * Revisions of this document are controlled using a numeric system where the first number

 * represents major revisions (changes resulting from formal steering committee review) and

 * the second number represents minor revisions (changes resulting from formal steering

 * committee review).

 *

 * ISSUE DATE REASON FOR CHANGE

 * 1.0 18 Jan 2000 First Release - For Industry Comment

 *

 * The master copy of this document is held in electronic format on the 3gpp website at

 * http://www.3gpp.org.

 *

 * SPECIFICATION STATUS

 * This document is a part of R99 of the VHE/OSA API Specification.

 *

 *

 * CONTACT INFORMATION

 * Contact information for the 3gpp organisation can be found on the 3gpp website at

 * http://www.3gpp.org.

 *

 * All product names mentioned within this specification are the trademarks of their

 * respective owners.

 */

/**/

// Mobility Management Data Definitions & Interfaces

// Network User Location

/**/

#include <MM.idl>

module org {

module threegpp {

module osa {

module mm {

module ulc {

 /**/

 // Data definitions

 /**/

 // This data type is identical to a TString. It specifies the Cell Global

 // Identification or the Location Area Identification (LAI).

 // The Cell Global Identification (CGI) is defined as the string of characters

 // in the following format:

 // MCC-MNC-LAC-CI

 // where:

 // MCC Mobile Country Code (three decimal digits)

 // MNC Mobile Network Code (two or three decimal digits)

 // LAC Location area code (four hexadecimal digits)

 // CI Cell Identification (four hexadecimal digits)

 //

 // The Location Area Identification (LAI) is defined as a string of characters

 // in the following format:

 // MCC-MNC-LAC

 // where:

 // MCC Mobile Country Code (three decimal digits)

 // MNC Mobile Network Code (two or three decimal digits)

 // LAC Location area code (four hexadecimal digits)

 typedef TpString TpLocationCellIDOrLAI;

 // Defines the sequence that specify the criteria for a

 // triggered location report to be generated.

 struct TpLocationTriggerNetwork {

 TpBoolean updateInsideVlr; // Generate location report when it occurs an

 // location update inside the current VLR area.

 TpBoolean updateOutsideVlr;// Generate location report when the user moves

 // to another VLR area.

 };

 // Defines the structure that specify the location of a mobile

 // telephony user. Observe that if the StatusCode is indicating an error ,

 // then neither GeographicalPosition, Timestamp, VlrNumber, LocationNumber,

 // CellIdOrLai or their presense flags is defined.

 struct TpUserLocationNetwork {

 TpAddress userID; // The address of the user.

 TpMobilityError statusCode; // Indicator of error.

 TpBoolean geographicalPositionPresent; // Flag indicating if the

 // geographical position is present.

 TpGeographicalPosition geographicalPosition; // Specification of a position

 // and an area of uncertainty.

 TpBoolean timestampPresent; // Flag indicating if the timestamp is present.

 TpDateAndTime timestamp; // Timestamp indicating when the request

 // was proccessed.

 TpBoolean vlrNumberPresent; // Flag indicating if the VLR number is present.

 TpAddress vlrNumber; // Current VLR number for the user.

 TpBoolean locationNumberPresent; // Flag indicating if the location

 // number is present.

 TpAddress locationNumber; // Current location number.

 TpBoolean cellIdOrLaiPresent; // Flag indicating if cell-id or

 // LAI of the user is present.

 TpLocationCellIDOrLAI cellIdOrLai; // Cell-id or LAI of the user.

 };

 typedef sequence <TpUserLocationNetwork> TpUserLocationNetworkSet;

 /**/

 // Interface definitions

 /**/

 interface IpAppUserLocationNetwork; // Forward definition

 // Inherits from the generic service interface.

 // This interface is the 'service manager' interface for ULC.

 interface IpUserLocationNetwork : IpService {

 // Request for mobile-related location information on one or several wireles users.

 void locationReportReq(

 in IpAppUserLocationNetwork appLocationNetwork,

 in TpAddressSet users,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // Request for periodic mobile location reports on one or several users.

 void periodicLocationReportingStartReq(

 in IpAppUserLocationNetwork appLocationNetwork,

 in TpAddressSet users,

 in TpDuration reportingInterval,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // This method stops the sending of periodic mobile location reports for

 // one or several users.

 void periodicLocationReportingStop(

 in TpMobilityStopAssignmentData stopRequest)

 raises (TpGeneralException);

 // Request for user location reports, containing mobile related information,

 // when the location is changed (the report is triggered by the location change).

 void triggeredLocationReportingStartReq(

 in IpAppUserLocationNetwork appLocationNetwork,

 in TpAddressSet users,

 in TpLocationTriggerNetwork trigger,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // Request that triggered mobile location reporting should stop.

 void triggeredLocationReportingStop(

 in TpMobilityStopAssignmentData stopRequest)

 raises (TpGeneralException);

 };

 // Inherits from the generic service interface.

 // The network user location application interface is implemented by the client

 // application developer and is used to handle location reports that are

 // specific for mobile telephony users.

 interface IpAppUserLocationNetwork : IpOsa {

 // Delivery of a mobile location report. The report is containing

 // mobile-related location information for one or several users.

 void locationReportRes(

 in TpSessionID assignmentId,

 in TpUserLocationNetworkSet locations)

 raises (TpGeneralException);

 // This method indicates that the location report request has failed.

 void locationReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 // Periodic delivery of mobile location reports. The reports are

 // containing mobile-related location information for one or several users.

 void periodicLocationReport(

 in TpSessionID assignmentId,

 in TpUserLocationNetworkSet locations)

 raises (TpGeneralException);

 // This method indicates that a requested periodic location report has

 // failed. Note that errors only concerning individual users are reported

 // in the ordinary periodicLocationReport() message.

 void periodicLocationReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 // Delivery of a report that is indicating that one or several user's

 // mobile location has changed.

 void triggeredLocationReport(

 in TpSessionID assignmentId,

 in TpUserLocationNetwork location,

 in TpLocationTriggerNetwork criterion)

 raises (TpGeneralException);

 // This method indicates that a requested triggered location report has

 // failed. Note that errors only concerning individual users are reported

 // in the ordinary triggeredLocationReport() message.

 void triggeredLocationReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 };

};};};};};

10.6 User Status IDL

/*

 * This is a Public Document of The 3gpp Organisation

 *

 * VHE/OSA API Specification ?.?

 * OMG IDL Specification (part of) - File: MMus.idl

 *

 * STATUS : For Industry Comment

 * ISSUE : 1.0

 * DATE : 18 January 2000

 *

 * REVISION CONTROL

 * Revisions of this document are controlled using a numeric system where the first number

 * represents major revisions (changes resulting from formal steering committee review) and

 * the second number represents minor revisions (changes resulting from formal steering

 * committee review).

 *

 * ISSUE DATE REASON FOR CHANGE

 * 1.0 18 Jan 2000 First Release - For Industry Comment

 *

 * The master copy of this document is held in electronic format on the 3gpp website at

 * http://www.3gpp.org.

 *

 * SPECIFICATION STATUS

 * This document is a part of R99 of the VHE/OSA API Specification.

 *

 *

 * CONTACT INFORMATION

 * Contact information for the 3gpp organisation can be found on the 3gpp website at

 * http://www.3gpp.org.

 *

 * All product names mentioned within this specification are the trademarks of their

 * respective owners.

 */

/**/

// Mobility Management Data Definitions & Interfaces

// User Status

/**/

#include <MM.idl>

module org {

module threegpp {

module osa {

module mm {

module us {

 /**/

 // Data definitions

 /**/

 // Defines the status of a user.

 enum TpUserStatusIndicator {

 P_US_REACHABLE, // User is reachable

 P_US_NOT_REACHABLE, // User is not reachable

 P_US_BUSY // User is busy (only applicable for interactive user

 // status request, not when triggers are used)

 };

 // Defines the structure that specify the identity and status of a user.

 struct TpUserStatus {

 TpAddress userID; // The user address.

 TpMobilityError
 statusCode; // Indicator of error.

 TpUserStatusIndicator status; // The current status of the user.

 TpTerminalType terminalType; // The kind of terminal used by the user.

 };

 typedef sequence <TpUserStatus> TpUserStatusSet;

 /**/

 // Interface definitions

 /**/

 interface IpAppUserStatus; // Forward definition

 // Inherits from the generic service interface.

 // The user status interface represents the interface to the user status service.

 interface IpUserStatus : IpService {

 // Request for a report on the status of one or several users.

 void statusReportReq(

 in IpAppUserStatus appStatus,

 in TpAddressSet users,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // Request for triggered status reports when one or several user's

 // status is changed. The user status service will send a report when

 // the status changes.

 void triggeredStatusReportingStartReq (

 in IpAppUserStatus appStatus,

 in TpAddressSet users,

 out TpSessionID assignmentId)

 raises (TpGeneralException);

 // This method stops the sending of status reports for one or several users.

 void triggeredStatusReportingStop (

 in TpMobilityStopAssignmentData stopRequest)

 raises (TpGeneralException);

 };

 // Inherits from the base vhe interface.

 // The user-status application interface is implemented by the client

 // application developer and is used to handle user status reports.

 interface IpAppUserStatus : IpOsa {

 // Delivery of a report, that is containing one or several user's status.

 void statusReportRes(

 in TpSessionID assignmentId,

 in TpUserStatusSet status)

 raises (TpGeneralException);

 // This method indicates that the status report request has failed.

 void statusReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 // Delivery of a report that is indicating that a user's status has changed.

 void triggeredStatusReport(

 in TpSessionID assignmentId,

 in TpUserStatus status)

 raises (TpGeneralException);

 // This method indicates that a requested triggered status reporting has

 // failed. Note that errors only concerning individual users are reported

 // in the ordinary triggeredStatusReport() message.

 void triggeredStatusReportErr(

 in TpSessionID assignmentId,

 in TpMobilityError cause,

 in TpMobilityDiagnostic diagnostic);

 };

};};};};};

11 History

 Date
Version
Comment

February 2000
0.1.0
Initial Draft based on stable material on the Call Control, User Interaction, User Location and User Status SCFs. Initial first draft on the Framework SCF has been contributed but needs further electronic review.

February 2000
0.2.0
Chelo’s input on the Framework API are included, mainly the STDs and the IDLs based on the described Framework functionality in version 0.1.0

12 Editors

Section
Name
Company
Tel & Email
Parts

1
Main Editor, sections 1-5, 8
Yun-Chao Hu
Ericsson Radio Systems
+46 8 508 78153

Yun-Chao.Hu@era.ericsson.se
Introduction, SDL

2
Editor sections 6.1, 7.1, 9.1, 10.2

Chelo Abarca
Alcatel

Framework SCF

3
Editor sections 6.2, 6.2.1, 6.2.2, 7.2, 7.3, 9.2, 9.3, 10.3, 10.4
Ard-Jan Moerdijk
Ericsson Netherlands

Call Control & User Interaction SCF

4
Editor sections, 6.2.3, 6.2.4, 7.4, 7.5, 9.4, 9.5, 10.1, 10.5, 10.6
Stephane Desrochers
Ericsson Canada

User Location & User Status SCF, Common Data Types IDL

� The location number is the number to the MSC or in rare cases the roaming number.

� Only applicable to mobile (Wireless) telephony users.

_1011090562.doc

PAppFramework

Consists of

PappTrustAndSecurityMgmt

PappEventNotification

PAppIntegrityMgmt

_1011090862.doc

IpAppAuthentication

<<Interface>>

IpAccess

<<Interface>>

+uses

IpInitial

<<Interface>>

IpAuthentication

<<Interface>>

+uses

PTrustAndSecurityMgmt

PAppTrustAndSecurityMgmt

<<Interface>>

IpAppAccess

_1011162196.doc

IpCall

routeCallToDestinationReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

superviseCallReq()

<<Interface>>

IpCallControlManager

enableCallNotification()

disableCallNotification()

<<Interface>>

0..*

1

0..*

1

IpAppCall

routeCallToDestinationRes()

routeCallToDestinationErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

<<Interface>>

1

1

<<uses>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationTerminated()

<<Interface>>

1

1

<<uses>>

0..*

1

0..*

1

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

_1012397782.doc

PAppIntegrityMgmt

PAppEventNotification

PTrustAndSecurityMgmt

PIntegrityMgmt

PAppTrustAndSecurityMgmt

PEventNotification

PServiceDiscovery

PFramework

PAppFramework

_1012809481.doc

access session

service session

endAccess

IpInitial.requestAccess

service

waiting

endAccess

signServiceAgreement

endServiceAgreement

endAccess

selectService

_1011163545.doc

IpUICall

abortActionReq()

<<Interface>>

IpAppUICall

abortActionRes()

abortActionErr()

<<Interface>>

1

1

<<uses>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionEventNotify()

<<Interface>>

0..*

1

0..*

1

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<Interface>>

1

1

<<uses>>

IpUIManager

createUI()

createUICall()

enableUINotification()

disableUINotification()

<<Interface>>

1

1

<<uses>>

0..*

1

0..*

1

IpOSA

<<Interface>>

IpService

setCallback()

<<Interface>>

IpOSA

<<Interface>>

_1011160346.unknown

_1011160389.unknown

_1011091917.doc
[image: image1.wmf]1

+uses

<<Interface>>

IpAppHeartbeat

<<Interface>>

IpFaultManager

<<Interface>>

IpHeartBeatMgmt

<<Interface>>

+uses

<<Interface>>

IpAppLoadManager

IpHeartbeat

<<Interface>>

+uses

<<Interface>>

IpLoadManager

+uses

PIntegrityMgmt

PAppIntegrityMgmt

<<Interface>>

IpAppHeartBeatMgmt

IpAppFaultManager

1�

<<Interface>>

IpOAM

<<Interface>>

IpAppOAM

0..*

1

0..*

_1011090667.doc

PparlayAppIntegrityMgmt

PparlayAppEventNotification

PparlayTrustAndSecurityMgmt

PparlayIntegrityMgmt

PparlayAppTrustAndSecurityMgmt

PparlayEventNotification

PparlayServiceDiscovery

PFramework

PAppFramework

_1011085696.doc

PAppFramework

PFramework

_1011086908.doc

Consists of

PServiceDiscovery

PTrustAndSecurityMgmt

PEventNotification

PIntegrityMgmt

PFramework

_1008518689.doc

appguis

guis

_1010383256.doc

Active

exit/ release US objects

"new"

terminateServiceAgreement

statusReportReq

triggeredStatusReportingStartReq

triggeredStatusReportingStop

Creation of User Status by Service Factory

_1010560673.doc

Active

exit/ release ULN objects

"new"

terminateServiceAgreement

locationReportReq

periodicLocationReportingStartReq

periodicLocationReportingStop

triggeredLocationReportingStartReq

triggeredLocationReportingStop

Creation of User Location Camel by Service Factory

_1008518721.doc

appgccs

gccs

_1008394948.doc
[image: image1.png]

_1001500476.doc

angle of semi major

North

segment end angle

segment start angle

outer

semi-major axis

outer

semi-minor axis

inner semi-major axis

inner

semi-minor axis

Area

