56
8

SPAN- EN SPAN3 0-3070 Part 1 Revised with phase 2.0 Draft V0.0.0 (99-11)
APIs for Third Party Service Applications

Service Interface Descriptions

[image: image1.png]
European Telecommunications Standards Institute

Reference

APIs for Third Party Service Applications

Keywords

APIs, Interface Classes, Framework, IDL

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr

http://www.etsi.fr

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute .

All rights reserved.

Contents

111.
Scope

2.
References
11
2.1
Normative References
11
2.2
Informative References
11
3.
Definitions, Symbols and Abbreviations
11
3.1
Definitions
11
3.2
Symbols
11
3.3
Abbreviations
11
4.
Introduction
11
4.1
Generic Service Interfaces
12
4.2
Framework Interfaces
12
4.3
Generic Service Data Definitions
12
4.4
Framework Data Definitions
12
4.5
Common Data Definitions
12
4.6
Sequence Transition Diagrams (STDs)
12
4.7
OMG IDL
13
5.
Interface Specifications
13
5.1
Architecture of the API specification
14
6.0
The Service Interface Specifications
14
Interface Class
14
Method descriptions
15
Parameter descriptions
15
State Model
15
6
Base Interface
15
Interface Class
15
7
Service Interfaces
15
Overview
15
Scope
15
9.
Generic Service Interface
16
Interface Class
16
10.
Generic Call Control Service
16
10.1
Generic Call Control Manager Service Interface (IpCallControlManager)
16
Interface Class
16
10.2
Generic Call Control Manager Application Interface (IpAppCallControlManager)
18
Interface Class
18
10.3
Generic Call Service Interface (IpCall)
19
Interface Class
19
10.4
Generic Call Application Interface (IpAppCall)
24
Interface Class
24
11.
INAP1 Call Control Service
28
11.1
INAP1 Call Control Manager Service Interface (IpINAP1CallControlManager)
28
Interface Class
28
11.2
INAP1 Call Control Manager Application Interface (IpAppINAP1CallControlManager)
28
Interface Class
28
11.3
INAP1 Call Service Interface (IpINAP1Call)
29
Interface Class
29
11.4
INAP1 Call Application Interface (IpAppINAP1Call)
29
Interface Class
29
12.
CAP Call Control Service
30
12.1
CAP Call Control Manager Service Interface (IpCAPCallControlManager)
30
Interface Class
31
12.2
CAP Call Control Manager Application Interface (IpAppCAPCallControlManager)
31
Interface Class
31
12.3
CAP Call Service Interface (IpCAPCall)
31
Interface Class
31
12.4
CAP Call Application Interface (IpAppCAPCall)
32
Interface Class
32
13.
Enhanced Call Control Service
32
13.1
Enhanced Call Control Manager Service Interface (IpEnhancedCallControlManager)
33
Interface Class
33
13.2
Enhanced Call Control Manager Application Interface (IpAppEnhancedCallControlManager)
34
Interface Class
34
13.3
Enhanced Call Service Interface (IpEnhancedCall)
34
Interface Class
35
13.4
Enhanced Call Application Interface (IpAppEnhancedCall)
37
Interface Class
37
14.
Call Leg Service Interface (IpCallLeg)
37
Interface Class
37
14.1
Call Leg Application Interface (IpAppCallLeg)
41
Interface Class
41
15.
Multi Media Call Control Service
42
15.1
Multi-Media Call Control Manager Service Interface (IpMMCallControlManager)
43
Interface Class
43
15.2
Multi-Media Call Control Manager Application Interface (IpAppMMCallControlManager)
44
Interface Class
44
15.3
Multi-Media Call Service Interface (IpMMCall)
45
Interface Class
45
15.4
Multi-Media Call Application Interface (IpAppMMCall)
46
Interface Class
46
15.5
Multi-Media Call Leg Service Interface (IpMMCallLeg)
46
Interface Class
46
15.6
Multi-Media Call Leg Application Interface (IpAppMMCallLeg)
47
Interface Class
48
15.7
Mult-Media Channel Service Interface (IpMMChannel)
48
Interface Class
48
16.
Conference Call Control Service
49
16.1
Conference Call Control Manager Service Interface (IpConferenceCallControlManager)
49
Interface Class
49
16.2
Conference Call Control Manager Application Interface (IpAppConferenceCallControlManager)
52
Interface Class
52
17.
Conference Call Service Interface (IpConferenceCall)
52
Interface Class
53
17.1
Conference Call Application Interface (IpAppConferenceCall)
54
Interface Class
54
18.
SubConference Call Service Interface (IpSubConferenceCall)
55
Interface Class
56
18.1
SubConference Call Application Interface (IpAppSubConferenceCall)
57
Interface Class
57
19.
Multi Media Conference Call Service
58
19.1
Multi Media Conference Call Control Manager Service Interface (IpMMConferenceCallControlManager)
58
Interface Class
58
19.2
Multi Media Conference Call Control Application Interface (IpAppMMConferenceCallControlManager)
59
Interface Class
59
19.3
Multi Media Conference Call Service Interface (IpMMConferenceCall)
59
Interface Class
59
19.4
Multi Media Conference Call Application Interface (IpAppMMConferenceCall)
59
Interface Class
60
19.5
Multi Media SubConference Call Service Interface (IpMMSubConferenceCall)
60
Interface Class
60
19.6
Multi Media SubConference Application Interface (IpAppMMSubConferenceCall)
62
Interface Class
62
20.
Generic User Interaction Service
64
20.1
Generic User Interaction Manager Service Interface
64
Interface Class
64
20.2
Generic User Interaction Manager Application Interface
65
Interface Class
66
20.3
Generic User Interaction Service Interface
66
Interface Class
67
20.4
Generic User Interaction Application Interface
68
Interface Class
68
21.
Call User Interaction Service
70
21.1
Call User Interaction Service Interface
70
Interface Class
70
21.2
Call User Interaction Application Interface
72
Interface Class
72
22.
Generic Messaging Service Interface
75
22.1
Generic Messaging Manager: Service Interface (IMessagingManager)
75
Interface Class
76
22.2
Generic Messaging Manager: Application Interface (IAppMessagingManager)
77
Interface Class
77
22.3
Generic Mailbox: Service Interface (IMailbox)
78
Interface Class
78
22.4
Generic MailboxFolder: Service Interface (IMailboxFolder)
82
Interface Class
82
22.5
Generic Mailbox Message: Service Interface (IMessage)
85
Interface Class
85
23.
Mobility Service Properties
88
General Service Properties
88
General Properties Description
88
Service Instance ID
88
Service Name
88
Service Version
88
Service Instance Description
88
Product Name
88
Product Version
88
Supported Interfaces
88
Mobility Properties Description
88
Emergency Application Subtypes
89
Value Added Application Subtypes
89
PLMN Operator Application Subtypes
89
Lawful Intercept Application Subtypes
89
Altitude Obtainable
89
Location Methods
90
Priorities
90
Max Interactive Requests
90
Max Triggered Users
90
Max Periodic Users
90
Min Periodic Interval Duration
90
24.
User Location Service (UL)
90
24.1
User Location: Service Interface
91
Interface Class
91
24.2
User Location: Application Interface
94
Interface Class
94
24.3
Triggered User Location: Service Interface
97
Interface Class
97
24.4
Triggered User Location: Application Interface
99
Interface Class
99
24.5
User Location Service Properties
100
Example
100
25.
User Location Camel Service (ULC)
101
25.1
User Location Camel: Service Interface
102
Interface Class
102
25.2
User Location Camel: Application Interface
105
Interface Class
105
25.3
User Location Camel Service Properties
107
26.
User Location Emergency Service (ULE)
107
26.1
User Location Emergency: Service Interface
108
Interface Class
108
26.2
User Location Emergency: Application Interface
110
Interface Class
110
26.3
User Location Emergency Service Properties
111
27.
User Status Service (US)
111
27.1
User Status: Service Interface
112
Interface Class
112
27.2
User Status: Application Interface
114
Interface Class
114
27.3
User Status Service Properties
115
28.
Connectivity Manager Interfaces
116
Introduction
116
Scope
118
Acronyms
119
Terms
120
Data Types
120
28.1
Connectivity Manager: Connectivity Manager Interface
122
Interface Class
122
28.2
Connectivity Manager: Enterprise Network Interface
123
Interface Class
123
28.3
Connectivity Manager: Enterprise Network Site Interface
125
Interface Class
125
28.4
Connectivity Management: Virtual Provisioned Network Interface
127
Interface Class
127
28.5
Connectivity Management: Virtual Provisioned Pipe Interface
129
Interface Class
129
28.6
Connectivity Management: Quality of Service Menu Interface
133
Interface Class
133
28.7
Connectivity Management: Provisioned Quality of Service Template Interface
134
Interface Class
134
29.
State Transition diagrams applicable to 3GPP OSA
143
29.1
Call control Manager
143

144
Active state
144
Notification terminated state
144
29.2
Call
144
Incoming state
145
Outgoing Setup state.
145
Active state
146
Releasing state
146
Network deassigned state
146
29.3
UIManager
146

146
Active state
146
29.4
UI
146
Active state
147
29.5
UICall
147
Active state
148
Release pending state
148
Network Deassigned state
148
29.6
User Location
148
29.7
User Location Camel
149
29.8
User Location Emergency
149
29.9
User Status
150

1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilised for this purpose. This document forms the first part of the IDL specification on access to Third Party Service Applications via a suitable API. SPAN 6 have considered the ETSI Standard [SPAN 060504] which contains example services represented using Sequence diagrams ?????????. These sequence diagrams utilise a number of Interface classes. The relationship and inheritance of these classes is defined within this document.

This European Norm expands each of the Interface classes describing each of the method invocations in detail. The data types associated with each method invocation is also described in detail. The process by which this task is accomplished is through the use of Object modelling techniques described by the Unified Modelling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

2. References

2. Normative References

2. Informative References

3. Definitions, Symbols and Abbreviations

3. Definitions

3. Symbols

3. Abbreviations

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API. The API is divided into a number of separate parts, these being:

· Generic Service Interfaces

· Framework Interfaces

· Service Data Definitions

· Framework Data Definitions

· Common Data Definitions

· Sequence Transition Diagrams

· OMG IDL

The following text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management.

 Each of these parts define the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of third party applications over the interface e.g. Messaging type service.

The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2. The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2. The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery. The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface. For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the ‘Generic Call Control Service Interface’ part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service. They are used to enhance the understanding of each service in more detail.

4. OMG IDL

The section provides an OMG IDL version of the whole API. It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today.

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:

[image: image2.wmf]SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

5. Interface Specifications

The general format of an interface specification is described below:

· Interface Class

This is a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces to capabilities within the network are denoted by classes with name I<name>. The callback interfaces to the applications are denoted by classes with name IApp<name>.

· Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the developer must implement the relevant IApp<name> interfaces to provide the callback mechanism.

· Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those which must have a value when the method is called. Those described as 'out' are those which contain the return result of the method when the method returns.

· State Model

If relevant, a state model is shown to illustrate the states of the objects which implement the described interface.

5. Architecture of the API specification

The API is object-oriented and consists of several categories of interfaces as shown in Figure . Phase 1 addressed public interfaces between enterprise-based client applications and services (interface 2) and the Framework (interface 1), where:

· Service Interfaces offer applications access to a range of network capabilities.

· Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable.

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of services by third party vendors (interfaces 3 & 5).

The Call Control service interface is represented by interface 2.

[image: image3.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

Telecom Network

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

2

2

6

6

Client

Application

Not in

 scope

of Parlay

Phase 2

Figure 2 Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the group at this time.

6.0 The Service Interface Specifications

This document defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

6 Base Interface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

Interface Class

<<Interface>>

IInterface

7 Service Interfaces

Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

Scope

The service interfaces defined in this document are:

· Generic Service (section 5)

· Generic Call Control Service (section 6)

· INAP1 Call Control Service (section 7)

· CAP Call Control Service (section 8)

· Enhanced Call Control Service (section 9)

· Multi-Media Call Control Service (section 10)

· Conference Call Control Service (section 11)

· Multi-Media Conference Call Control Service (section 12)

9. Generic Service Interface

Inherits from the base interface.

All service interfaces inherit from the following interface.

Interface Class

<<Interface>>

IpService

setCallback(appInterface : in IInterfaceRef) : TResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

10. Generic Call Control Service

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third party model, which allows calls to be instantiated from the network and routed through the network. The call model is based around a central call model that has zero to two call legs that are active (i.e., being routed or connected), each of which represents the logical relationship between the call and an address. However, the application does not have direct access to the call legs; this is provided in the Enhanced call control service. The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network (IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation Protocol, or any other call control technology.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback mechanism.

10.1 Generic Call Control Manager Service Interface (IpCallControlManager)
Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service.

The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to create call objects and to enable or disable call-related event notifications.

 Interface Class

<<Interface>>

IpCallControlManager

createCall(appCall : in IpAppGenericCallRef , callReference : out TpCallIdentifierRef) : TpResult

enableCallNotification(appInterface : in IpAppGenericCallControlManagerRef , eventCriteria : in TpCallEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableCallNotification(assignmentID : in TpAssignmentID) : TpResult

Method

createCall ()

This method is used to create a new call object.

Parameters

appCall : in IpAppGenericCallRef

Specifies the application interface for callbacks from the call created.

callReference : out TpCallIdentifierRef

Specifies the interface reference and sessionID of the call created.

Method

enableCallNotification ()

This method is used to enable call notifications so that events can be sent to the application. If another application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.
If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the callEventNotify (e.g., due to overload or failure).

Parameters

appInterface : in IpAppGenericCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Method

disableCallNotification ()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
10.2 Generic Call Control Manager Application Interface (IpAppCallControlManager)
Inherits from: IInterface

The generic call control manager application interface provides the application call control management functions to the generic call control service.

 Interface Class

<<Interface>>

IpAppCallControlManager

callAborted(callReference : in TpSessionID) : TpResult

callEventNotify(callReference : in TpCallIdentifier , eventInfo : in TpCallEventInfo , assignmentID : in TpAssignmentID , appInterface : out IpAppCallRefRef) : TpResult

callNotificationTerminated() : TpResult

Method

callAborted ()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.
Method

callEventNotify ()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

appInterface : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.

Method

callNotificationTerminated ()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Parameters

10.3 Generic Call Service Interface (IpCall)
Inherits from: IpService

This interface provides the means to control a simple call consisting of one or two legs. Note that the legs are implicit and are not visible in the Generic Call Service interfaces. More complex call features can be established with the interface IpEnhancedCall.

 Interface Class

<<Interface>>

IpCall

routeCallToDestinationReq(callSessionID : in TpSessionID , responseRequested : in TpCallReportRequestSet , targetAddress : in TpAddress , appInfo : in TpCallAppInfoSet , assignmentID : out TpAssignmentIDRef) : TpResult

routeCallToOriginationReq(callSessionID : in TpSessionID , responseRequested : in TpCallReportRequestSet , targetAddress : in TpAddress , originatingAddress : in TpAddress , redirectingAddress : in TpAddress , originalDestinationAddress : in TpAddress , appInfo : in TpCallAppInfoSet , originatingAddress : in TpAddress) : TpResult

release(callSessionID : in TpSessionID , cause : in TpCallReleaseCause) : TpResult

deassignCall(callSessionID : in TpSessionID) : TpResult

getCallInfoReq(callSessionID : in TpSessionID , callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan(callSessionID : in TpSessionID , callChargePlan : in TpCallChargePlan) : TpResult

superviseCallReq(callSessionID : in TpSessionID , time : in TpDuration , treatment : in TpCallSuperviseTreatment , bytes : in TpCallSuperviseVolume) : TpResult

Method

routeCallToDestinationReq ()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party, via a passive call leg (which is implicitly created).
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeCallToDestinationRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports.

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by gatway. The same ID will be returned in the routeCallToDestinationRes or Err. This allows the application to correlate the request and the result.

This parameter is only relevant when multiple routeCallToDestination() calls are executed in parallel, e.g., in the enhanced call control service.

Method

routeCallToOriginationReq ()

This asynchronous method requests routing of a call to the first call party, via a controlling call leg (which is implicitly created). The call object must already have been created.
The extra addressinformation specified (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is treated by the gateway as if it has been received from the incoming party. This means that it is this information is used in the signalling to the terminating party (or parties), e.g., when a routeCallToDestinationReq is called. The provided information will be checked and may be modified by the gateway and/or the underlying network.
. If the application developer does not want to deal with the redirectingAdress, originalDestinationAddess and originatingAddress than these parameter may be set to empty strings for convenience.
Setting of TargetAddress is mandatory.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in a routeCallToOriginationRes() will be generated.

Some events must be monitored in this case. When no response is requested, a P_INVALID_PARAMETER_VALUE error is generated.

targetAddress : in TpAddress

Specifies the origination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

Method

release ()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Method

deassignCall ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Method

getCallInfoReq ()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.
A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.
Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call using routeCallToDestinationReq.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Method

setCallChargePlan ()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Method

superviseCallReq ()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeCallToDestinationReq() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

When specified as 0, volume based supervision is applied.

Either bytes (volume) or time should be specified.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

bytes : in TpCallSuperviseVolume

Specifies the granted number of bytes that can be transmitted for the connection.

When the quantity is specified as 0, time based supervision is applied.

Either bytes (volume) or time should be specified.
States

[image: image4.emf]IDLE

RELEASED

ACTIVE

createCall

routeCallToDestinationReq

[call accepted]

getCallInfoReq

setChargePlan

routeCallToOriginiationReq

[call accepted]

superviseCallReq

release

ALL STATES

deassignCall

setChargePlan

superviseCallReq

After all final

reports have been

sent

release

10.4 Generic Call Application Interface (IpAppCall)

Inherits from: IInterface

The simple call interface is implemented by the client application developer and is used to handle call request responses and state reports.

 Interface Class

<<Interface>>

IpAppCall

routeCallToDestinationRes(callSessionID : in TpSessionID , eventReport : in TpCallReport) : TpResult

routeCallToDestinationErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

routeCallToOriginiationRes(callSessionID : in TpSessionID , eventReport : in TpCallReport) : TpResult

routeCallToOriginationErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

getCallInfoRes(callSessionID : in TpSessionID , callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

superviseCallRes(callSessionID : in TpSessionID , report : in TpSuperviseReport , usedTime : in TpDuration , usedVolume : in TpCallSuperviseVolume) : TpResult

superviseCallErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

callFaultDetected(callSessionID : in TpSessionID , fault : in TpCallFault) : TpResult

Method

routeCallToDestinationRes ()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.). If the call is answered, then a (passive) call leg object will be created for that leg of the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Method

routeCallToDestinationErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call..

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

routeCallToOriginiationRes ()

This asynchronous method indicates that the request to route a call to the first call party was successful, and indicates the response of that party (for example, the call was answered, not answered, refused due to busy, etc.). If the call is answered, then a (controlling) call leg object will be created for that leg of the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the origination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Method

routeCallToOriginationErr ()

This asynchronous method indicates that the request to route the call to the originating party was unsuccessful (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

getCallInfoRes ()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method

getCallInfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

superviseCallRes ()

This asynchronous method reports a call supervision event to the application.
This method is called when the supervision event occurs and the treatement indicates P_CALL_SUPERVISE_RESPOND. It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

report : in TpSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

usedVolume : in TpCallSuperviseVolume

Specifies the used volume for the call supervision (in the same units as specified in the request).

Method

superviseCallErr ()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

callFaultDetected ()

This method indicates to the application that a fault in the network has been detected which can't be communicated by a network event, e.g., when the user aborts before any routing method is called by the application.
The system purges the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

11. INAP1 Call Control Service

The INAP-1 Call Control service (ICCS-1) enhances the functionality of the Generic Call Control Service.

Using the ICCS-1 functions, an application programmer can

· request more dialled digits

This helps application programmers to write more sophisticated network applications.

The ICCS-1 represents a call state model similar to the ETSI CORE INAP CS-1 call state model. Therefore, ICCS-1 does not support a full leg management.

The ICCS-1 interfaces inherit the methods from the following generic interfaces:

· Generic Call Control Manager Service Interface (IpCallControlManager)

· Generic Call Control Manager Application Interface (IpAppCallControlManager)

· Generic Call Service Interface (IpCall)

· Generic Call Application Interface (IpAppCall)

These are specialised for ICCS--1by the interfaces IpINAP1Call, IpAppINAP1Call, as defined below:

1. Interface IpINAP1Call, inherits from IpCall
Specialises the Generic Call Control for use on INAP-based networks. This interface provides methods for the call control related functionality.

2. Interface IpAppINAP1Call, inherits from IpAppCall
This interface provides the callback methods for IpINAP1Call. It is implemented by the application and receives the responses from requests executed by IpCallINAP1.

Inherits from the Generic Call Service. This service must be used as a specialised version of the Generic Call Service if the INAP-1 specific functionality is needed.

The INAP-1 call service represents the interface to the INAP-1 call model. It provides a structure to allow simple and complex call behaviour to be used.

11.1 INAP1 Call Control Manager Service Interface (IpINAP1CallControlManager)

Inherits from: IpCallControlManager

The INAP-1 call control manager interface implements the service interface for the INAP-1 call control service. It can be used to set event notifications for INAP calls and to create INAP calls.

 Interface Class

<<Interface>>

IpINAP1CallControlManager

11.2 INAP1 Call Control Manager Application Interface (IpAppINAP1CallControlManager)

Inherits from: IpAppCallControlManager

The INAP call control application interface can be used to receive call notifications for INAP calls.

 Interface Class

<<Interface>>

IpAppINAP1CallControlManager

11.3 INAP1 Call Service Interface (IpINAP1Call)

Inherits from: IpCall

The INAP-1 call interface represents the interface to the INAP-1 call model. It provides a structure to allow simple and complex call behaviour to be used.

 Interface Class

<<Interface>>

IpINAP1Call

getMoreDialledDigitsReq(callSessionID : in TpSessionID , Iength : in TpInt32) : TpResult

Method

getMoreDialledDigitsReq ()

This asynchronous method requests the call control service to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data.
The application should use this method if it requires more dialled digits, e.g. to perform screening.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

11.4 INAP1 Call Application Interface (IpAppINAP1Call)

Inherits from: IpAppCall

The INAP-1 application call interface is implemented by the client application developer and is used to handle call request responses and state reports.

 Interface Class

<<Interface>>

IpAppINAP1Call

getMoreDialledDigitsRes(callSessionID : in TpSessionID , digits : in TpString) : TpResult

getMoreDialledDigitsErr(callSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

Method

getMoreDialledDigitsINAP1Res ()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method

getMoreDialledDigitsINAP1Err ()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

12. CAP Call Control Service

The Camel Application Part(CAP) Call Control service enhances the functionality of the Generic Call Control Service.

Using the CAP functions, an application programmer can

· Present charging information towards an end-user

· Provide application specific charging information to the operator

This helps application programmers to write more sophisticated network applications.

The CAP Call Control represents a call state model similar to the CAMEL call state model. Therefore, it does not support full leg management.

The CAP Call Control interfaces inherit the methods from the following generic interfaces:

· Generic Call Control Manager Service Interface (IpCallControlManager)

· Generic Call Control Manager Application Interface (IpAppCallControlManager)

· Generic Call Service Interface (IpCall)

· Generic Call Application Interface (IpAppCall)

12.1 CAP Call Control Manager Service Interface (IpCAPCallControlManager)

Inherits from: IpCallControlManager

Provides the service interface for the Camel Application Part Call Control Service.

No additional methods are defined.

 Interface Class

<<Interface>>

IpCAPCallControlManager

12.2 CAP Call Control Manager Application Interface (IpAppCAPCallControlManager)

Inherits from: IpAppCallControlManager

No additional methods are defined.

 Interface Class

<<Interface>>

IpAppCAPCallControlManager

12.3 CAP Call Service Interface (IpCAPCall)

Inherits from: IpCall

The CAP call service interface gives the application more control over charging in mobile networks. It allows for advice of charge information to be sent to terminals that are capable of receiving this information and allows access to the call detail records.

 Interface Class

<<Interface>>

IpCAPCall

setCallDetailRecordInfo(callSessionID : in TpSessionID , callDetailRecordInfo : in TpString) : TpResult

setAdviceOfCharge(callSessionID : in TpSessionID , aOCInfo : in TpAoCInfo , tariffSwitch : in TpDuration) : TpResult

Method

setCallDetailRecordInfo ()

Allows the application to insert application specific charging information into a network generated Call Detail Record (CDR). The information is free-format, but has to be agreed with the network operator.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callDetailRecordInfo : in TpString

Free-format string containing the application specific charging information.

Method

setAdviceOfCharge ()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.
Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter according to GSM.

tariffSwitch : in TpDuration

Specifies the duration (in milliseconds) until the the second set of AoC parameters becomes valid.

12.4 CAP Call Application Interface (IpAppCAPCall)

Inherits from: IpAppCall

No additional methods are defined.

 Interface Class

<<Interface>>

IpAppCAPCall

13. Enhanced Call Control Service

The Enhanced Call Control service enhances the functionality of the Generic Call Control Service with leg management.

The Enhanced Call Control Service supports enough functionality to allow call routing and leg management for today's Intelligent Network (IN) services in the case of a switched telephony network, or equivalent for packet based networks.

The Enhanced Call Control Service is represented by the IpEnhancedCallControlManager, IpEnhancedCall, IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppEnhancedCallManager, IpAppEnhancedCall and IpAppCallLeg to provide the callback mechanism.

13.1 Enhanced Call Control Manager Service Interface (IpEnhancedCallControlManager)

Inherits from: IpCallControlManager

The Enhanced Call Control Manager enhances the Generic Call Control manager with overload control functionality.

 Interface Class

<<Interface>>

IpEnhancedCallControlManager

setCallLoadControl(duration : in TpDuration , mechanism : in TpCallLoadControlMechanism , treatment : in TpCallTreatment , addressRangeLower : in TpAddress , addressRangeUpper : in TpAddress , assignmentID : out TpAssignmentIDRef) : TpResult

Method

setCallLoadControl ()

This method imposes or removes load control on calls made to a particular address range within the generic call control service.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.

addressRangeLower : in TpAddress

Specifies the lower address of the address range to which the overload control should be applied or removed.

addressRangeUpper : in TpAddress

Specifies the upper address of the address range to which the overload control should be applied or removed.

assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeised methods with the request.

13.2 Enhanced Call Control Manager Application Interface (IpAppEnhancedCallControlManager)

Inherits from: IpAppCallControlManager

Provides the callback methods for the Enhanced Call Control Manager.

 Interface Class

<<Interface>>

IpAppEnhancedCallControlManager

callOverloadEncountered(assignmentID : in TpAssignmentID , overloadType : in TpCallOverloadType) : TpResult

callOverloadCeased(assignmentID : in TpAssignmentID , overloadType : in TpCallOverloadType) : TpResult

Method

callOverloadEncountered ()

This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the enhanced call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.

overloadType : in TpCallOverloadType

Specifies the type of overload encountered.

Method

callOverloadCeased ()

This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the enhanced call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased.

overloadType : in TpCallOverloadType

Specifies the type of overload that has ceased.

13.3 Enhanced Call Service Interface (IpEnhancedCall)

Inherits from: IpCall

The enhancedCall provides the possibility to manage legs explicitly.

The enhanced call also allows multiple legs to be active (i.e., connected or being routed) in the call.

If an application uses this interface it may call the method routeCallToDestinationReq several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one passive (destination) call leg. However, there can only be at most one active (controlling) call leg at any time.

In contrast to the conference service it is not possible to move legs to another call object.

 Interface Class

<<Interface>>

IpEnhancedCall

getCallLegs(callSessionID : in TpSessionID , callLegList : out TpCallLegIdentifierSetRef) : TpResult

getControlLeg(callSessionID : in TpSessionID , allLeg : out TpCallLegIdentifierRef) : TpResult

detachCallLeg(callSessionID : in TpSessionID , callLeg : in TpSessionID) : TpResult

attachCallLeg(callSessionID : in TpSessionID , callLeg : in TpSessionID) : TpResult

createCallLeg(callSessionID : in TpSessionID , appCallLeg : in IpAppCallLegRef , callLeg : out TpCallLegIdentifierRef) : TpResult

Method

getCallLegs ()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references..

Method

getControlLeg ()

This method requests the identification of the controlling call leg of this call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the controlling call leg of this call.

Method

detachCallLeg ()

This method will detach the call leg from the call, i.e., this will prevent transmission on any associated bearer connections to other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLeg : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Method

attachCallLeg ()

This method requests that the call leg be attached to the call object. This will allow transmission on all associated bearer connections to other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLeg : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Method

createCallLeg ()

This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachCallLeg) when the call leg is in the connected state (i.e. it has been answered).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.

States

[image: image5.emf]IDLE

RELEASED

ACTIVE

getCallInfoReq

setChargePlan

createCall

routeCallToDestinationReq

[call accepted]

INACTIVE

getControlLeg

getControlLeg

routeCallToOriginiationReq

[call accepted]

createLeg

attachLeg[

first leg]

ALL STATES

superviseCallReq

getCallLegs

getCallLegs

release

deassignCall

detachLeg

[last leg]

13.4 Enhanced Call Application Interface (IpAppEnhancedCall)

Inherits from:IpAppCall

The enhanced call interface is implemented by the client application developer and is used to handle call request responses and state reports for the enhanced calls.

No additional methods are defined.

 Interface Class

<<Interface>>

IpAppEnhancedCall

14. Call Leg Service Interface (IpCallLeg)

Inherits from: IpService

The generic call leg interface represents the logical call leg associating a call with an address. The call leg tracks it own states and allows charging summaries to be accessed.

An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.

 Interface Class

<<Interface>>

IpCallLeg

routeCallLegToOrigination(callLegSessionID : in TpSessionID , targetAddress : in TpAddress , originatingAddress : in TpAddress , originalCalledAddress : in TpAddress , redirectingAddress : in TpAddress , appInfo : in TpCallAppInfoSet) : TpResult

routeCallLegToDestination(callLegSessionID : in TpSessionID , targetAddress : in TpAddress , appInfo : in TpCallAppInfoSet) : TpResult

eventReportReq(callLegSessionID : in TpSessionID , eventReportsRequested : in TpCallReportRequestSet) : TpResult

release(callLegSessionID : in TpSessionID , cause : in TpCallReleaseCause) : TpResult

getInfoReq(callLegSessionID : in TpSessionID , callLegInfoRequested : in TpCallLegInfoType) : TpResult

getType(callLegSessionID : in TpSessionID , callLegType : out TpCallLegTypeRef) : TpResult

getCall(callLegSessionID : in TpSessionID , callReference : out TpCallIdentifierRef) : TpResult

Method

routeCallLegToOrigination ()

This method initiates routing of the call leg to the given target address. The outcome of the call routing attempt can be requested and reported, using EventReportReq before routing the call and EventReportRes / EventReportErr, respectively.
Some events must be monitored before routing the leg to origination. When no monitors are set using EventReportReq, a P_GCCS_UNEXPECTED_SEQUENCE error is generated.
 If the application developer does not want to deal with the redirectingAdress, originalDestinationAddess and originatingAddress than these parameter may be set to empty strings for convenience.
Note that only one of the legs can be routed to the origination. This leg then becomes the controlling leg. There can be at most one controlling leg in the call.
Setting of TargetAddress is mandatory.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.

redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Method

routeCallLegToDestination ()

This is the leg equivalent to the method routeCallToDestination().
There can be multiple legs that are routed with this method. Each of these legs will become a passive leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Method

eventReportReq ()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventReportsRequested : in TpCallReportRequestSet

Specifies the events that the call leg object will observe and report.

Method

release ()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Method

getInfoReq ()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Method

getType ()

This method requests whether the call leg is a controlling or passive call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegType : out TpCallLegTypeRef

Specifies the call leg type.

Method

getCall ()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callReference : out TpCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.

States

[image: image6.emf]IDLE

CALL_PROCEEDINGRELEASED

CONNECTED

ALL STATES

EventReportReq

EventReportRes[call leg released]

routeCallLegToOrigination

FAILED

Call::createLeg

EventReportRes[no answer]

getInfoReq

routeCalllegToDestination

deassignCall

Call::release

release

EventReportRes[call leg released]

EventReportRes[answer/call leg ringing]

EventReportRes[busy/out of service]

14.1 Call Leg Application Interface (IpAppCallLeg)

Inherits from:IInterface

The generic application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able receive leg specific information and events.

 Interface Class

<<Interface>>

IpAppCallLeg

eventReportRes(callLegSessionID : in TpSessionID , eventReport : in TpCallReport) : TpResult

eventReportErr(callLegSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

getInfoRes(callLegSessionID : in TpSessionID , callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr(callLegSessionID : in TpSessionID , errorIndication : in TpCallError) : TpResult

Method

eventReportRes ()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Method

eventReportErr ()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

getInfoRes ()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method

getInfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

15. Multi Media Call Control Service

The Multi-Media Call Control Service enhances the enhanced call control service. The multi-media call control service gives the application control over the media-channels associated with the legs in a multi-media call in the following way:

· the application can be triggered on the establishment of a media channel that meets the application defined characteristics.

· the application can monitor on the establishment or release of media channels of an ongoing call.

· the application can allow or deny the establishment of media channels.

· the application can explicitly close already established media channels.

The following interfaces enhance the corresponding enhanced call interfaces:

· Multi-Media Call (IpMMCall); does not add any new methods. However, when dealing with a multi-media call the application should be aware that all the legs associated with the call are multi-media call legs and can be used as such by the application.

· Multi-Media Call application interface (IpAppMMCall); this interface is implemented by the application and receives responses for requests executed by the multi-media call.

· Multi-Media Call leg (IpMMCallLeg); adds support for monitoring on the media channels. The application can allow or deny channel establishment when monitored in interrupt mode. Furthermore, the application can request the set of media channels currently associated with the multi-media call leg.

· Multi-Media Call leg application interface (IpAppMMCallLeg); this interface is implemented by the application and receives responses for requests executed by the multi-media call leg.

· Multi-Media Call Control Manager (IpMMCallControlManager); adds support for request of notifications on the establishment or release of media channels meeting application defined criteria.

· Multi-media Call Control Manager application interface (IpAppMMCallControlManager); adds support for receiving notifications on the establishment or release of media channels meeting application defined criteria.

· Media Channel (IpMMChannel); this is a new interface. It represents a unidirectional media stream. Via this interface the application can close media channels.

15.1 Multi-Media Call Control Manager Service Interface (IpMMCallControlManager)
Inherits from: IpEnhancedCallControlManager

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. It also allows eventNotifications on the mediaChannel events.

 Interface Class

<<Interface>>

IpMMCallControlManager

enableMediaChannelNotification(appInterface : in IpAppMMCallControlManagerRef , channelEventCriteria : in TpChannelRequestSet , callEventCriteria : in TpCallEventCriteria , monitorMode : in TpCallMonitorMode , assignmentID : out TpAssignmentIDRef) : TpResult

disableMediaChannelNotification(assignmentID : in TpAssignmentID) : TpResult

Method

enableMediaChannelNotification ()

This method is used to enable media channel notifications so that events can be sent to the application.
This applies both to callsetup media (e.g., SIP initial INVITE or H.323 with faststart) and for media setup during the call.

Parameters

appInterface : in IpAppMMCallControlManagerRef

Specifies a reference to the application interface, which is used for callbacks.

channelEventCriteria : in TpChannelRequestSet

Specifies the event specific criteria used by the application to define the event required. This is the media portion of the criteria. Only events that meet both the call- and the channelEventCriteria are reported reported

callEventCriteria : in TpCallEventCriteria

Specifies the call event criteria used by the application to define the call event required. This is the call portion of the criteria. Only events that meet both the call- and the channelEventCriteria are reported.

monitorMode : in TpCallMonitorMode

Specifies the monitor mode. If in interrupt mode the application has to specify which channels are allowed by calling mediaChannelAllow on the callLeg.

.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic MultiMedia call control manager interface for this newly-enabled event notification. This can be used to correlate the received callbacks with the enable Notification request.

Method

disableMediaChannelNotification ()

This method is used by the application to disable Multi Media Channel notifications

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the Multi Media call control manager interface when the previous enable..Notification was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.

15.2 Multi-Media Call Control Manager Application Interface (IpAppMMCallControlManager)
Inherits from: IpAppEnhancedCallControlManager

The Multi Media call control manager application interface provides the application call control management functions to the multi media call control service.

 Interface Class

<<Interface>>

IpAppMMCallControlManager

mediaChannelEventNotify(callReference : in TpMMCallIdentifier , callLeg : in TpMMCallLegIdentifier , channels : in TpChannelSet , type : in TpChannelEventType , assignmentID : in TpAssignmentID , appInterface : out IpMMCallRefRef) : TpResult

Method

mediaChannelEventNotify ()

This method is used to inform the application about the establishment of media channels.
If the corresponding monitor was in interrupt mode, then the application has to allow or deny the channels using mediaChannelAllow.

Parameters

callReference : in TpMMCallIdentifier

Specifies the call interface on which the media channels were closed or requested to be opened. It also gives the corresponding sessionID.

callLeg : in TpMMCallLegIdentifier

Specifies the callLeg (interface and sessionID) for which the media channels were opened or closed.

channels : in TpChannelSet

Specifies all the media channels that are opened. Note that this can be more channels then requested in the enableMediaNotify, e.g., when faststart is used in H.323.

type : in TpChannelEventType

Refers to the type of event on the media channel, i.e., open or close.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

appInterface : out IpAppMMCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.

15.3 Multi-Media Call Service Interface (IpMMCall)

Inherits from: IpEnhancedCall

The multi-media call interface allows the application to manipulate multi-media calls. A multi-media call is currently defined as a call containing multi-media call legs. Although inherited functions user call legs of the generic type, the application can use the legs as multi-media call legs (after the appropriate cast).

The multi-media call interface does not currently define any specialised methods.

 Interface Class

<<Interface>>

IpMMCall

15.4 Multi-Media Call Application Interface (IpAppMMCall)

Inherits from: IpAppEnhancedCall

The application multi-media call interface contains the callbacks that will be used from the multi-media call interface for asynchronous results to requests performed by the application. The application should implement this interface.

 Interface Class

<<Interface>>

IpAppMMCall

15.5 Multi-Media Call Leg Service Interface (IpMMCallLeg)

Inherits from: IpCallLeg

The MM call leg represents the signalling relationship between the call and an address. Associcated with the signalling relationship there can be multiple media channels.

Media channels can be started and stopped by the terminals themselves. The application can monitor on these changes and influence them.

 Interface Class

<<Interface>>

IpMMCallLeg

mediaChannelAllow(callLegSessionID : in TpSessionID , channelList : in TpSessionIDSet) : TpResult

getMediaChannels(callLegSessionID : in TpSessionID , channels : out TpChannelSetRef) : TpResult

mediaChannelMonitorReq(callLegSessionID : in TpSessionID , channelEventCriteria : in TpChannelRequestSet , monitorMode : in TpCallMonitorMode) : TpResult

Method

mediaChannelAllow ()

This method can be used to allow setup of a media channel that was reported by a mediaChannelMonitor.
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

channelList : in TpSessionIDSet

Refers to the channels (sessionIDs) as received in the mediaChannelMonitorRes() or in the mediaChannelEventNotify() that is allowed to be opened.

Method

getMediaChannels ()

This method is used to return all currently open media channels for the leg,

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg.

channels : out TpChannelSetRef

Specifies all the media channels that are open.

Method

mediaChannelMonitorReq ()

With this method the application can set monitors on the opening and closing of media channels. The monitors can either be general or restricted to certain types of codecs.
Monitoring on open can be done in either interrupt of notify mode. In the first case the application has to allow or deny the establishment of the channel with mediaChannelAllow.
Monitoring on close is only allowed in notify mode.

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the MM call leg.

channelEventCriteria : in TpChannelRequestSet

Specifies the event specific criteria used by the application to define the event required.

monitorMode : in TpCallMonitorMode

Specifies the monitor mode in which to monitor. This can be in interrupt or in notify mode. If in interrupt mode the application has to respond with mediaChannelAllow().

15.6 Multi-Media Call Leg Application Interface (IpAppMMCallLeg)

Inherits from: IpAppCallLeg

The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for asynchronous results to requests performed by the application. The application should implement this interface.

 Interface Class

<<Interface>>

IpAppMMCallLeg

mediaChannelMonitorRes(callLegSessionID : in TpSessionID , channels : in TpChannelSet , type : in TpChannelEventType) : TpResult

Method

mediaChannelMonitorRes ()

This method is used to inform the application about the media channels that are being opened or closed.
If the corresponding request was done in interrupt mode, the application has to allow or deny the channels using mediaChannelAllow().

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg for which the media channels are opened or closed.

channels : in TpChannelSet

Specifies all the media channels that are opened. Note that this can be more channels than requested in the enableMediaNotify, e.g., when faststart is used in H.323.

type : in TpChannelEventType

Refers to the type of event on the media channel, i.e., open or close.

15.7 Mult-Media Channel Service Interface (IpMMChannel)

Inherits from: IpService

The Multi Media Channel Interface represents a unidirectional data stream associated with a call leg. Currently, the only available method is to close the channel.

 Interface Class

<<Interface>>

IpMMChannel

close(channelSessionID : in TpSessionID) : TpResult

Method

close ()

This method can be used to close the multi-media channel.

Parameters

channelSessionID : in TpSessionID

Specifies the sessionID for the channel.

16. Conference Call Control Service

The Conference Call Control Service enhances the enhanced call control service. The conference call control service gives the application the ability to manipulate subconferences within a conference. A subconference defines the grouping of legs within the overall conference call. Only parties in the same subconference can speak to each other. The application can:

· create new subconferences within the conference, either as an empty subconference or by splitting an existing subconference in two subconferences.

· move legs between subconferences.

· merge subconferences.

· get a list of all subconferences in the call.

Furthermore the conference call control service adds support for the reservation of resources needed for conferencing. The application can:

· reserve resources for a predefined time period.

· free reserved resources.

· search for the availability of conference resources based on a number of criteria.

There are two ways to initiate a conference:

· the conferences can be started on the pre-arranged time by the service, at the start time indicated in the reservation. The application is notified about this.

· the conference can be created directly on request of the application using the createConference method to the IpConferenceCallControlManager interface.

16.1 Conference Call Control Manager Service Interface (IpConferenceCallControlManager)
Inherits from: IpEnhancedCallControlManager

The conference Call Control Manager is the factory interface for creating conferences. Additionally it takes care of resource management.

 Interface Class

<<Interface>>

IpConferenceCallControlManager

createConference(appConferenceCall : in IpAppConferenceCallRef , numberOfSubConferences : in TpInt32 , conferencePolicy : in TpConferencePolicy , numberOfParticipants : in TpInt32 , duration : in TpDuration , conference : out TpConfCallIdentifierRef) : TpResult

checkResources(searchCriteria : in TpConfSearchCriteria , result : out TpConfSearchResultRef) : TpResult

reserveResources(appInterface : in IpAppConfCallControlManagerRef , startTime : in TpDateAndTime , numberOfParticipants : in TpInt32 , duration : in TpDuration, conferencePolicy : in TpConferencePolicy , resourceID : out TpAddressRef) : TpResult

freeResources(resourceID : in TpAddress) : TpResult

Method

createConference ()

This method is used to create a new conference. It is similar to createCall, but with extra parameters, e.g., the number of subconferences (>= 1)

Parameters

appConferenceCall : in IpAppConferenceCallRef

Specifies the callback interface for the conference created

numberOfSubConferences : in TpInt32

Speicies the number of subconferences that the user wants to create automatically. The references to the interfaces of the subconferences can later be requested with getSubConferences.

The number of subconferences should be 1 or higher.

conferencePolicy : in TpConferencePolicy

Specifies the policy to be applied for the conference, e.g., are parties allowed to join (call into) the conference?

Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the IpAppConferenceCall interface.

numberOfParticipants : in TpInt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these resources are not guaranteed, i.e., anything exceeding this will be best effort only and the conference service may drop or reject participants in order to fulfil other committed resource requests.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this, but after the duration, the resources are no longer guaranteed, i.e., parties may be dropped or rejected by the service in order to satisfy other committed resource requests.

When the conference is released before the allocated duration, the reserved resources are released and can be used to satisfy other resource requests.

conference : out TpConfCallIdentifierRef

Specifies the interface reference and sessionID of the created conference.

Method

checkResources ()

This method is used to check for the availability of conference resources.
The input is the search period (start and stop time and date) - mandatory.
Furthermore, a conference duration and number of participants can be specified - optional.
The search algorithm will search the specified period for availability of conference resources and tries to find an optimal solution.
When a match is found the actual number of available resources, the actual start and the actual duration for which these are available is returned. These values can exceed the requested values.
When no match is found a best effort is returned, still the actual start time, duration, number of resources are returned, but these values now indicate the best that the conference bridge can offer, e.g., one or more of these values will not reach the requested values.

Parameters

searchCriteria : in TpConfSearchCriteria

result : out TpConfSearchResultRef

Method

reserveResources ()

This method is used to reserve conference resources for a given time period. Conferences can be created without first reserving resources, but in that case no guarantees can be made.

Parameters

appInterface : in IpAppConfCallControlManagerRef

Specifies the callback interface to be used when the conference is created in the network. The applicaiton will receive the ConferenceCreated message when a conference is created in the network.

startTime : in TpDateAndTime

Specifies the time at which the conference resources should be reserved, i.e., the start time of the conference.

numberOfParticipants : in TpInt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these resources are not guaranteed, i.e., anything exceeding this will be best effort only and the conference service may drop or reject participants in order to fulfil other committed resource requests.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this, but after the duration, the resources are no longer guaranteed, i.e., parties may be dropped or rejected by the service in order to satisfy other committed resource requests.

When the conference is released before the allocated duration, the reserved resources are released and can be used to satisfy other resource requests.

conferencePolicy : in TpConferencePolicy

The policy to be applied for the conference, e.g., are parties allowed to join (call into) the conference?

Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the appConferenceCall.

resourceID : out TpAddressRef

Specifies the address with which the conference can be addressed, both in the methods of the interface and in the network, i.e., if joinAllowed is TRUE, parties can use this address to join the conference.

If no match is found the resourceID contains an empty address.

Method

freeResources ()

This method can be used to cancel an earlier made reservation of conference resources.
This also means that no ConferenceCreated events will be received for this conference.

Parameters

resourceID : in TpAddress

Specifies the resourceID that was received during the reservation.

16.2 Conference Call Control Manager Application Interface (IpAppConferenceCallControlManager)
Inherits from: IpAppEnhancedCallControlManager

The conference call control manager application interface provides the application with additional callbacks when a conference is created by the network (based on an earlier reservation)

 Interface Class

<<Interface>>

IpAppConferenceCallControlManager

conferenceCreated(conferenceCall : in TpConfCallIdentifier , appInterface : out IpAppConfCallRefRef) : TpResult

Method

conferenceCreated ()

This method is called when a conference is created from an earlier resource reservation.

Parameters

conferenceCall : in TpConfCallIdentifier

Specifies the reference to the conference call interface to which the notification relates and the associated sessionID.

appInterface : out IpAppConfCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new conference.

17. Conference Call Service Interface (IpConferenceCall)

Inherits from: IpEnhancedCall

The conference call manages the subconferences. It also provides some convenience methods to hide the fact of multiple subconferences from the applications that do not need it.

Note that the conference call always contains one subconference.

The following inherited method call methods apply to the conference as a whole, with the specified semantics:

· setCallback; changes the callback interface reference.

· release; releases the entire conference, including all the subconferences and detached legs.

· deassignCall; de-assigns the complete conference. No callbacks will be received by the application, either on the conference, or on any of the contained subconferences or call legs.

· getCallInfoReq; request information over the complete conference. The conference duration is defined as the time when the first party joined the conference until when the last party leaves the conference or the conference is released.

· setCallChargePlan; set the chargeplan for the conference. This chargeplan will apply to all the subconferences, unless another chargeplan is explicitly overridden on the subconference.

· superviseCallReq; supervise the duration of the complete conference.

· getCallLegs; return all the call legs used within the conference. I.e., both detached legs and all legs attached to some subconference of the conference.

· getControlLeg; return the controlling leg. Note that a conference does not have to have a controlling leg.

· createCallLeg; create a call leg associated with the conference, but not attached to any of the subconferences.

Other methods apply to the default subconference. When using multiple subconference, it is recommended that the application calls these methods directly on the subconference since this makes it more explicit what the effect of the method is:

· routeCallToDestinationReq

· routeCallToOriginationReq

· detachCallLeg

· attachCallLeg

 Interface Class

<<Interface>>

IpConferenceCall

getSubConferences(conferenceSessionID : in TpSessionID , subConferenceList : out TpSubConfCallIdentifierSetRef) : TpResult

createSubConference(conferenceSessionID : in TpSessionID , appSubConference : in IpAppSubConfCallRef , conferencePolicy : in TpConferencePolicy , subConference : out TpSubConfCallIndentifierRef) : TpResult

leaveMonitorReq(conferenceSessionID : in TpSessionID) : TpResult

Method

getSubConferences ()

This method returns all the subconferences of the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the sessionID of the conference.

subConferenceList : out TpSubConfCallIdentifierSetRef

Specifies the list of all the subconferences of the conference.

Method

createSubConference ()

This method is used to create a new subconference. Note that one subconference is already created together with the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the sessionID of the conference.

appSubConference : in IpAppSubConfCallRef

Specifies the call back interface for the created subconference.

conferencePolicy : in TpConferencePolicy

Conference Policy to be used in the subconference.

Optional; if not provided the policy of the conference is used. Note that not all policy elements have to be applicable for subconferences.

subConference : out TpSubConfCallIndentifierRef

Specifies the created subconference (interface and sessionID).

Method

leaveMonitorReq ()

This method is used to request a notification when a party leaves the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the conference.

17.1 Conference Call Application Interface (IpAppConferenceCall)
Inherits from: IpAppEnhancedCall

The Conference Call application interface allows the application to handle call responses and state reports. Additionally it allows the application to handle parties entering and leaving the conference.

 Interface Class

<<Interface>>

IpAppConferenceCall

partyJoined(conferenceSessionID : in TpSessionID , callLeg : in TpCallLegIdentifier , eventInfo : in TpJoinEventInfo , appCallLeg : out IpCallLegRefRef) : TpResult

leaveMonitorRes(conferenceSessionID : in TpSessionID , callLeg : in TpSessionID) : TpResult

Method

partyJoined ()

This asynchronous method indicates that a new party (leg) has joined the conference. This can be used in, e.g., a meetme conference where the participants dial in to the conference.
The method will only be called when joinAllowed is indicated in the conference policy.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the confererence that the party wants to join.

callLeg : in TpCallLegIdentifier

Specifies the interface and sessionID of the call leg that joined the conference.

eventInfo : in TpJoinEventInfo

Specifies the address information of the party that wants to join the conference.

appCallLeg : out IpCallLegRefRef

Specifies the call back interface that should be used for callbacks from the new call Leg.

Method

leaveMonitorRes ()

This asynchronous method indicates that a party (leg) has left the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the conference that the party wants to leaves.

callLeg : in TpSessionID

Specifies the sessionID of the call leg that left the conference.

18. SubConference Call Service Interface (IpSubConferenceCall)

Inherits from: IpEnhancedCall

The subconference is an additional grouping mechanism within a conference. Parties (legs) that are in the same subconference have a speech connection with each other.

Note that the subconference only contains attached legs. De-attached legs belong to the overall conference.

The following inherited method call methods apply to the subconference as a whole, with the specified semantics:

· setCallback; changes the callback interface reference.

· release; releases the subconference, including all currently attached legs. When the last subconference in the conference is released, the conference is implicitly released as well.

· deassignCall; de-assigns the subconference. No callbacks will be received by the application on this subconference, nor will the gateway accept any methods on this subconference or accept any methods using the subconfernece as a parameter (e.g., merge). When the subconference is the last subconference in the conference, the conference is deassigned as well. In general it is recommended to only use deassignCall for the complete conference.

· getCallInfoReq; request information over the subconference. The subconference duration is defined as the time when the first party joined the subconference until when the last party leaves the subconference or the subconference is released.

· setCallChargePlan; set the charge plan for the subconference.

· superviseCallReq; supervise the duration of the subconference. It is recommended that this method is only used on the complete conference.

· getCallLegs; return all the call legs attached to the subconference.

· getControlLeg; return the controlling leg. When the controlling leg is not attached to the subconfernece, NULL is returned.

· createCallLeg; create a call leg in detached state. The leg is not associated with the subconference. It is recommended to only use this method on the conference.

· routeCallToDestinationReq; implicitly create a leg and route the leg to the specified destination.

· routeCallToOriginationReq; implicitly create a leg and route the leg to the specified origination. Note that per conference there can be zero or exactly one originating leg.

· detachCallLeg; detach the leg from the subconference, i.e., the other parties in the subconference no longer have a speech connection with the rest of the legs in the subconference. If this is the last leg in the subconference, the subconference is released.

· attachCallLeg; attach the call leg to the subconference, i.e., establish a speech connection between the leg and all other legs in the subconference.

 Interface Class

<<Interface>>

IpSubConferenceCall

splitSubConference(subConferenceSessionID : in TpSessionID , callLegList : in TpSessionIDSet , appSubConferenceCall : in IpAppSubConfCallRef , newSubConferenceCall : out TpSubConfCallIdentifierRef) : TpResult

mergeSubConference(subConferenceCallSessionID : in TpSessionID , targetSubConferenceCall : in TpSessionID) : TpResult

moveCallLeg(subConferenceCallSessionID : in TpSessionID , targetSubConferenceCall : in TpSessionID , callLeg : in TpSessionID) : TpResult

Method

splitSubConference ()

This method is used to create a new subconference and move some of the legs to it.
Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference.

callLegList : in TpSessionIDSet

Specifies the sessionIDs of the legs that will be moved to the new subconference.

appSubConferenceCall : in IpAppSubConfCallRef

Specifies the application call back interface for the new subconference.

newSubConferenceCall : out TpSubConfCallIdentifierRef

Specifies the new subconference that is implicitly created as a result of the method.

Method

mergeSubConference ()

This method is used to merge two subconferences, i.e., move all our legs from this subconference to the other subconference followed by a release of this subconference.

Parameters

subConferenceCallSessionID : in TpSessionID

Specifies the session ID of the subconference.

targetSubConferenceCall : in TpSessionID

The session ID of target subconference with which the current subconference will be merged.

Method

moveCallLeg ()

This method moves one leg from this subconference to another subconference. This is similar to a detachCallLeg on this subconference, followed by an attachCallLeg on the other subconference.

Parameters

subConferenceCallSessionID : in TpSessionID

Specifies the session ID of the source subconference.

targetSubConferenceCall : in TpSessionID

Specifies the sessionID of the target subconference.

callLeg : in TpSessionID

Specifies the sessionID of the call leg to be moved.

18.1 SubConference Call Application Interface (IpAppSubConferenceCall)
Inherits from: IpAppEnhancedCall

The Sub Conference Call application interface allows the application to handle call responses and state reports from a sub conference.

 Interface Class

<<Interface>>

IpAppSubConferenceCall

19. Multi Media Conference Call Service

The Multi-Media Conference Call Control Service enhances the conference and multi-media call control services. The multi-media conference call control service gives the application, in addition to the normal conference and multi-media capabilities, the possibility to manipulate typical multi-media conference details, such as:

· interworking with network signalled conference protocols (e.g., H.323)

· manipulation of the media in the MCU, e.g., broadcasting of video.

· handling of multi-media conference policies, e.g., how video should be handled, voice controlled switched or chair controlled.

19.1 Multi Media Conference Call Control Manager Service Interface (IpMMConferenceCallControlManager)
Inherits from: IpConferenceCallControlManager and IpMMCallControlManager

The Multi Media Conference Call Control Manager is the factory interface for creating Multi Media Conferences. Additionally it takes care of resource management.

 Interface Class

<<Interface>>

IpMMConferenceCallControlManager

createMMConference(appConferenceCall : in IpAppMMConfCallRef , numberOfSubConferences : in TpInt32 , conferencePolicy : in TpMMConferencePolicy , numberOfParticipants : in TpInt32 , duration : in TpDuration , conference : out TpMMConfCallIdentifierRef) : TpResult

Method

createMMConference ()

This method is used to cerate a new multi media conference. It is similar to createConference, but allows for a multi-media conference policy.

Parameters

appConferenceCall : in IpAppMMConfCallRef

Specifies the callback interface for the conference created

numberOfSubConferences : in TpInt32

Specifies the number of subconferences that the user wants to create automatically. The references to the interfaces of the subconferences can later be requested with getSubConferences.

conferencePolicy : in TpMMConferencePolicy

New Conference Policy to be used in the subconference.

numberOfParticipants : in TpInt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these resources are not guaranteed, i.e., anything exceeding this will be best effort only and the conference service may drop or reject participants in order to fulfil other committed resource requests.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this, but after the duration, the resources are no longer guaranteed, i.e., parties may be dropped or rejected by the service in order to satisfy other committed resource requests.

When the conference is released before the allocated duration, the reserved resources are released and can be used to satisfy other resource requests.

conference : out TpMMConfCallIdentifierRef

The interface reference of the conference created.

19.2 Multi Media Conference Call Control Application Interface (IpAppMMConferenceCallControlManager)
Inherits from: IpAppMMCallControlManager and IpAppConferenceCallControlManager

The Multi Media Conference call control manager application interface provides the application call control management functions to the multi media conference call control service.

 Interface Class

<<Interface>>

IpAppMMConferenceCallControlManager

19.3 Multi Media Conference Call Service Interface (IpMMConferenceCall)
Inherits from: IpConferenceCall and IpMMCall

The Multi Media Conference Call manages the multi media subconferences. It inherits from the both the multimedia call and the conference call.

 Interface Class

<<Interface>>

IpMMConferenceCall

19.4 Multi Media Conference Call Application Interface (IpAppMMConferenceCall)
Inherits from:IpAppMMCall and IpAppConferenceCall

The application multi-media conference call interface contains the callbacks that will be called from the multi-media conference call for asynchronous results to requests performed by the application. The application should implement this interface.

 Interface Class

<<Interface>>

IpAppMMConferenceCall

19.5 Multi Media SubConference Call Service Interface (IpMMSubConferenceCall)
Inherits from: IpSubConferenceCall and IpMMCall

The multi media subconference is a specialisation of the subconference that adds the concept of multimedia and chair control to the conference. Parties (legs) that are in the same multi-media subconference can have a media connection with each other.

Note that the subconference only contains attached legs. De-attached legs are associated to the conference class.

 Interface Class

<<Interface>>

IpMMSubConferenceCall

inspectVideo(subConferenceSessionID : in TpSessionID , inspectedCallLeg : in TpSessionID) : TpResult

inspectVideoCancel(subConferenceSessionID : in TpSessionID) : TpResult

appointSpeaker(subConferenceSessionID : in TpSessionID , speakerCallLeg : in TpSessionID) : TpResult

chairSelection(subConferenceSessionID : in TpSessionID , chairCallLeg : in TpSessionID) : TpResult

changeConferencePolicy(conferencePolicy : in TpMMConferencePolicy , subConferenceSessionID : in TpSessionID) : TpResult

Method

inspectVideo ()

This method can be used by the application to select which video should be sent to the party that is currently selected as the chair.
Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

inspectedCallLeg : in TpSessionID

Specifies the sessionID of call leg of the party whose video stream should be sent to the chair.

Method

inspectVideoCancel ()

This method cancels a previous inspectVideo. The chair will receive the broadcasted video.
Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

Method

appointSpeaker ()

This method indicates which of the participants in the conference has the floor. The video of the speaker will be broadcast to the other parties.
Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

speakerCallLeg : in TpSessionID

Specifies the sessionID of the call leg of the party whose video stream should be broadcast.

Method

chairSelection ()

This method is used to indicate which participant in the conference is the chair. E.g., the terminal of this participant will be the destination of the video of the inspectVideo method.
Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

chairCallLeg : in TpMMCallLegIdentifier

Specifies the sessionID of the call leg of the party that will become the chair.

Method

changeConferencePolicy ()

This method can be used to change the conference policy in an ongoing conference.
· Multi media conference policy options available. E.g.;
· chair controlled video / voice switched video
· closed conference / open conference
· Composite video (different types) / only speaker
Parameters

conferencePolicy : in TpMMConferencePolicy

New Conference Policy to be used in the subconference.

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

19.6 Multi Media SubConference Application Interface (IpAppMMSubConferenceCall)
Inherits from: IpAppSubConferenceCall and IpAppMMCall

The application multi-media sub conference call interface contains the callbacks that will be called from the multi-media sub conference call for asynchronous results to requests performed by the application. The application should implement this interface.

 Interface Class

<<Interface>>

IpAppMMSubConferenceCall

chairSelection(subConferenceSessionID : in TpSessionID , chair : out TpMMCallLegIdentifierRef) : TpResult

floorRequest(subConferenceSessionID : in TpSessionID , floorRequestor : out TpMMCallLegIdentifierRef) : TpResult

Method

chairSelection ()

This method is used to inform the application about the chair selection requests from the network. It is used to interwork with H.323 conference signalling. The application can grant the request by calling the selectChair method on the subconference.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference where the chair request originates.

chair : out TpMMCallLegIdentifierRef

Specifies the reference to the interface of the leg that wants to become the chair.

Method

floorRequest ()

This method is used to inform the application about the floor requests from the network. It is used to interwork with H.323 conference signalling. The application can grant the request by calling the appointSpeaker method.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference where the floor request originates.

floorRequestor : out TpMMCallLegIdentifierRef

Specifies the reference to the interface of the leg that requests the floor.

20. Generic User Interaction Service

The Generic User Interaction Service interface (GUIS) is used by applications to interact with end users.

The GUIS is represented by the IUIManager, IUI and IUICall interfaces that interface to services provided by the network. To handle responses and reports, the developer must implement IAppUIManager and IAppUI interfaces to provide the callback mechanism.

20.1 Generic User Interaction Manager Service Interface

Inherits from the Generic Service Interface.

This interface is the 'service manager' interface for the Generic User Interaction Service and provides the management functions to the Generic User Interaction Service.
 Interface Class

<<Interface>>

IpUIManager

createUI(appUI : in IpAppUIRef , userAddress : in TpAddress , userInteraction : out TpUIIdentifierRef) : TpResult

createUICall(appUI : in IpAppUICallRef , callIdentifier : in TpCallIdentifier ,
callLegIdentifier : in TpCallLegIdentifier , userInteraction : out TpUICallIdentifierRef) : TpResult

enableUINotification(appInterface : in IpAppUIManagerRef ,
eventCriteria : in TpUIEventCriteria , assignmentID : out TpAssignmentIDRef) : TpResult

disableUINotification(assignmentID : in TpAssignmentID) : TpResult

Method

createUI ()

This method is used to create a new user interaction object for non-call related purposes

Parameters

appUI : in IpAppUIRef

Specifies the application interface for callbacks from the user interaction created.

userAddress : in TpAddress

Indicates the end-user whom to interact with.

userInteraction : out TpUIIdentifierRef

Specifies the interface and sessionID of the user interaction created.

Method

createUICall ()

This method is used to create a new user interaction object for call related purposes.
The user interaction can take place to the specified party (CallLegSessionID) or to all parties in a call (CallSessionID). Note that for certain implementation user interaction can only be performed towards the controlling call party, which shall be the only party in the call. Only one of CallIdentifier or CallLegidentifier may be defined (the other should be set to 0).
Parameters

appUI : in IpAppUIRef

Specifies the application interface for callbacks from the user interaction created.

callIdentifier : in TpCallIdentifier

Specifies the call on which to perform the user interaction.

callLegIdentifier : in TpCallLegIdentifier

 Specifies the call leg on which to perform the user interaction .

userInteraction : out TpUIIdentifierRef

Specifies the interface and sessionID of the user interaction created.

Method

enableUINotification ()

This method is used to enable the reception of user initiated user interaction, e.g., when the subscriber sends a SMS message or initiates a USSD dialogue.
Parameters

appInterface : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpUIEventCriteria

Specifies the event specific criteria used by the application to define the event required, like user address and service code.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction manager interface for this newly enabled event notification.

Method

disableUINotification ()

This method is used by the application to disable UI notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic user interaction manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.

20.2 Generic User Interaction Manager Application Interface

The Generic User Interaction Service manager application interface provides the application callback functions to the Generic User Interaction Service.

 Interface Class

<<Interface>>

IpAppUIManager

userInteractionAborted(userInteraction : in TpUIIdentifier) : TpResult

userInteractionEventNotify(ui : in TpUIIdentifier , eventInfo : in TpUIEventInfo ,
assignmentID : in TpAssignmentID , appInterface : out IpAppUIRefRef) : TpResult

Method

userInteractionAborted ()

This method indicates to the application that the User Interaction service instance has terminated or closed abnormally. No further communication will be possible between the User Interaction service instance and application.

Parameters

userInteraction : in TpUIIdentifier

Specifies the interface and sessionID of the user interaction service that has terminated.

Method

userInteractionEventNotify ()

This method notifies the application of an user initiated request for user interaction.

Parameters

ui : in TpUIIdentifier

Specifies the reference to the interface and the sessionID to which the notification relates.

eventInfo : in TpUIEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

appInterface : out IpAppUIRefRef

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

20.3 Generic User Interaction Service Interface

Inherits from the Generic Service Interface.

The User Interaction Service Interface provides functions to send information to, or gather information from the user. An application can use the User Interaction Service Interface independently of other services.

 Interface Class

<<Interface>>

IpUI

sendInfoReq(userInteractionSessionID : in TpSessionID , info : in TpUIInfo ,
variableInfo : in TpUIVariableInfo , repeatIndicator : in TpInt32 ,
responseRequested : in TpUIResponseRequest , assignmentID : out TpAssignmentIDRef) : TpResult

sendInfoAndCollectReq(userInteractionSessionID : in TpSessionID , info : in TpUIInfo ,
variableInfo : in TpUIVariableInfo , criteria : in TpUICollectCriteria ,
assignmentID : out TpAssignmentIDRef) : TpResult

release(userInteractionSessionID : in TpSessionID) : TpResult

Method

sendInfoReq ()

This asynchronous method plays an announcement or sends other information to the user.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).

variableInfo : in TpUIVariableInfo

 Defines the variable part of the information to send to the user.

repeatIndicator : in TpInt32

Defines how many times the information shall be send to the end-user. A value of zero (0) indicates that the announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.

responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
Method

sendInfoAndCollectReq ()

This asynchronous method plays an announcement or sends other information to the user and collects some information from the user. The announcement usually prompts for a number of characters (for example, these are digits or text strings such as "YES" if the user's terminal device is a phone). The announcement will be interrupted when the user starts entering characters.
Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo

Specifies the ID of the information to send to the user.

variableInfo : in TpUIVariableInfo

Defines the variable part of the information to send to the user.

criteria : in TpUICollectCriteria

Specifies additional properties for the collection of information, such as the maximum and minimum number of characters, end character, first character timeout and inter-character timeout.

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
Method

release ()

This method requests that the relationship between the application and the user interaction object be released. It causes the release of the used user interaction resources and interrupts any ongoing user interaction.
Parameters

userInteractionSessionID : in TpSessionIDRef

Specifies the user interaction session ID of the user interaction created.

20.4 Generic User Interaction Application Interface

The User Interaction Application Interface is implemented by the client application developer and is used to handle generic user interaction request responses and reports.

 Interface Class

<<Interface>>

IpAppUI

sendInfoRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
response : in TpUIReport) : TpResult

sendInfoErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
error : in TpUIError) : TpResult

sendInfoAndCollectRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID, response : in TpUIReport , info : in TpString) : TpResult

sendInfoAndCollectErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID, error : in TpUIError) : TpResult

userInteractionFaultDetected(userInteractionSessionID : in TpSessionID , fault : in TpUIFault) : TpResult

Method

sendInfoRes ()

This asynchronous method informs the application about the start or the completion of a sendInfoCall_Req(). This response is called only if the responseRequested parameter of the sendInfoCall_Req() method was set to _UICALL_RESPONSE_REQUIRED.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the user.

Method

sendInfoErr ()

This asynchronous method indicates that the request to send information was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.

Method

sendInfoAndCollectRes ()

This asynchronous method returns the information collected to the application.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the user.

info : in Tpstring

Specifies the information collected from the user.

Method

sendInfoAndCollectErr ()

This asynchronous method indicates that the request to send information and collect a response was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.

Method

userInteractionFaultDetected ()

This method indicates to the application that a fault has been detected in the user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the interface and sessionID of the user interaction service in which the fault has been detected.

fault : in TpUIFault

Specifies the fault that has been detected.

21. Call User Interaction Service

21.1 Call User Interaction Service Interface

Inherits from the Generic User Interaction Service Interface

The Call User Interaction Service Interface provides functions to send information to, or gather information from the user (or call party) to which a call leg is connected. An application can use the Call User Interaction Service Interface only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability.

 Interface Class

<<Interface>>

IpUICall

recordMessageReq(userInteractionSessionID : in TpSessionID , info : in TpUIInfo ,
criteria : in TpUIMessageCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

abortActionReq(userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : TpResult

Method

recordMessageReq ()

This asynchronous method allows the recording of a message. The recorded message can be played back at a later time with the sendInfoReq() method.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).

criteria : in TpUIMessageCriteria

 Defines the criteria for recording of messages

assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Method

abortActionReq ()

This asynchronous method aborts a user interaction operation, e.g. a sendInfo_Req(), from the specified call leg. The call and call leg are otherwise unaffected. The user interaction call service interrupts the current action on the specified leg.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the user interaction request to be cancelled.

States

[image: image7.emf]ACTIVE

RELEASE

_PENDING

NETWORK_DEASSIGNED

IpUIManager:createUICall

sendInfoReq

sendInfoAndCollectReq

abortActionReq

recordMessageReq

'announcement end' ^sendInfoRes

'user input received' ^sendInfoAndCollectRes

'user input received'

 ^sendInfoAndCollectRes or

recordMessageRes

'announcement end' ^sendInfoRes

'user input received'[last report]

^sendInfoAndCollectRes

 or recordMessageRes

'announcement end'[last report] ^sendInfoRes

Already requested

announcements

will continue.

release

sendInfoReq[final request]

'final report'

IpCall:deassign

IpCall:release or IpcallLeg:release

^SendInfoAndCollectErr,

sendInfoErr,

recordMessageErr

Report error on all

requested UI for

which a result is

expected.

Abort all ongoing

UI

any method call ^error(P_NETWORK_DEASSIGNED)

release

IpCall:deassign

This state diagrams shows the behaviour of the UICall interface, when the UICall is active the application can request UI operations and will receive the corresponding results (possible error results are not shown).

When the application indicated the final_request, it can no longer request UI operations, but any requested reports will still be forwarded to the application.

The NETWORK_DEASSIGN can occur in some networks/gateway implementations after the final requested report (for both UI and call service) is sent to the application. The result can be that the network releases the dialogue with the gateway and no further operations are possible. The only option left to the application is to release the UICall or deassign the associated call. A release will in this case not result in the termination of ongoing announcements.
In order to avoid this situation, the application should ensure that there are still reports which have not been reported. E.g., it is recommended that the application performing the UI also monitors on the disconnection or the related call or call leg object.

In state ACTIVE, when the application releases the UICall object, any ongoing User Interaction is stopped, but no errors will be send to the application. When the associated call is deassigned, the UICall will be deassigned as well. This means that any requested UI will still continue, but no reports will be sent to the application. When the associated call or callLeg object is released, an error is sent for all ongoing and requested UI operations for which a result was expected.

21.2 Call User Interaction Application Interface

Inherits from the Generic User Interaction Application Interface.

The Call User Interaction Application Interface is implemented by the client application developer and is used to handle call user interaction request responses and reports.

 Interface Class

<<Interface>>

IpAppUICall

recordMessageRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID, response : in TpUIReport , messageID : in TpInt32) : TpResult

recordMessageErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID,
error : in TpUIError) : TpResult

abortActionRes(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID) : TpResult

abortActionErr(userInteractionSessionID : in TpSessionID , assignmentID : in TpAssignmentID ,
error : in TpUIError) : TpResult

Method

recordMessageRes ()

This method returns whether the message is successfully recorded or not. In case the message is recorded, the ID of the message is returned.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the device where the message is stored.

messageID : in TpInt32

Specifies the ID that was assigned to the message by the device where the message is stored.

Method

recordMessageErr ()

This method indicates that the request for recording of a message was not successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.

Method

abortActionRes ()

This asynchronous method confirms that the request to abort a user interaction operation on a call leg was successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg associated with the abort user interaction operation. If the value of this parameter is NULL, then the controlling call leg is assumed.

Method

abortActionErr ()

This asynchronous method indicates that the request to abort a user interaction operation on a call leg resulted in an error.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg associated with the abort user interaction operation. If the value of this parameter is NULL, then the controlling call leg is assumed.

error : in TpUIError

Specifies the error which led to the original request failing.

22. Generic Messaging Service Interface

The Generic Messaging Service interface (GMS) is used by applications to send, store and receive messages. The Phase 2 API has voice mail and electronic mail as the messaging mechanisms, no further functionality has been added. The messaging service interface can be used by both.

A messaging system is assumed to have the following entities:

· Mailboxes. This is the application’s main entry point to the messaging system. The framework may or may not need to authenticate an application before it accesses a mailbox

· Folders. A mailbox has at least the inbox and the outbox as folders. The name of the inbox is “INBOX”, and the name of the outbox is “OUTBOX”. These folders may have sub-folders. The names of these sub-folders are appended to their parent’s names with ‘/’ as the delimiter. For instance, if there is a sub-folder in INBOX called ‘Personal’ and a sub-folder in that folder called ‘archive’ then the fully qualified names, which are required for all operations, of the four folders are ‘INBOX’, ‘OUTBOX’, ‘INBOX/Personal’, and ‘INBOX/Personal/archive’. The names are case sensitive. A messaging service may have other folders other than the inbox and the outbox.

· Messages. Messages are stored in folders. Messages usually have properties associated with them.

The GMS is represented by the IMessagingManager, IMailbox, IMailboxFolder and IMessage interfaces to services provided by the network. To handle responses and reports, the developer must implement IAppMessagingManager to provide the callback mechanism for the Messaging service manager.

22.1 Generic Messaging Manager: Service Interface (IMessagingManager)

Inherits from:

IService

This interface is the 'service manager' interface for the Generic Messaging Service.
The generic messaging manager interface provides the management functions to the generic messaging service. The application programmer can use this interface to open and delete mailbox objects and also to enable or disable event notifications
 Interface Class

<<Interface>>

IMessagingManager

openMailbox(mailboxID : in TAddress , authenticationInfo : in TString , mailboxReference : out TMailboxIdentifierRef) : TResult

enableMessagingNotification(appInterface : in IAppMessagingManagerRef , eventCriteria : in TMessagingEventCriteria , assignmentID : out TAssignmentIDRef) : TResult

disableMessagingNotification(assignmentID : in TAssignmentID) : TResult

Method

openMailbox ()

This method opens a mailbox for the application. The session ID for use by the application is returned. Authentication information may be needed to open the mailbox.
The application can open more than one mailbox at the same time. The application is not allowed to open the same mailbox more than once at the same time.
Parameters

mailboxID : in TAddress

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the error code P_GMS_INVALID_MAILBOX is returned.

authenticationInfo : in TString

Authentication information needed for the application to open a mailbox in the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be null. If the authentication information is not valid, the error code P_GMS_INVALID_AUTHENTICATION_INFORMATION is returned.

mailboxReference : out TMailboxIdentifierRef

Specifies the reference to the opened mailbox.

Method

enableMessagingNotification ()

This method is used to enable messaging notifications so that events can be sent to the application.

Parameters

appInterface : in IAppMessagingManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TMessagingEventCriteria

Specifies the event specific criteria used by the application to define the event required.

assignmentID : out TAssignmentIDRef

Specifies the ID assigned by the generic messaging manager interface for this newly-enabled event notification.

Method

disableMessagingNotification ()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TAssignmentID

Specifies the assignment ID given by the generic messaging manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.

22.2 Generic Messaging Manager: Application Interface (IAppMessagingManager)

Inherits from:

I

The generic messaging manager application interface provides the application messaging management functions to the generic messaging service.

 Interface Class

<<Interface>>

IAppMessagingManager

mailboxTerminated(mailbox : in IMailboxRef , mailboxSessionID : in TSessionID) : TResult

mailboxFaultDetected(mailbox : in IMailboxRef , mailboxSessionID : in TSessionID , fault : in TMessagingFault) : TResult

messagingEventNotify(messagingManager : in IMessagingManagerRef , eventInfo : in TMessagingEventInfo , assignmentID : in TAssignmentID) : TResult

messagingNotificationTerminated() : TResult

Method

mailboxTerminated ()

This method indicates to the application that the mailbox has terminated or closed abnormally. No further communication will be possible between the mailbox and application.

Parameters

mailbox : in IMailboxRef

Specifies the interface of the mailbox that has terminated.

mailboxSessionID : in TSessionID

Specifies the mailbox session ID of the mailbox that has terminated.

Method

mailboxFaultDetected ()

This method indicates to the application that a fault has been detected in the mailbox.

Parameters

mailbox : in IMailboxRef

Specifies the interface of the mailbox in which the fault has been detected.

mailboxSessionID : in TSessionID

Specifies the mailbox session ID of the mailbox in which the fault has been detected.

fault : in TMessagingFault

Specifies the fault that has been detected.

Method

messagingEventNotify ()

This method notifies the application of the arrival of a messaging-related event.

Parameters

messagingManager : in IMessagingManagerRef

Specifies the reference to the messaging manager interface to which the notification relates.

eventInfo : in TMessagingEventInfo

Specifies data associated with this event.

assignmentID : in TAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

Method

messagingNotificationTerminated ()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

22.3 Generic Mailbox: Service Interface (IMailbox)

Inherits from:

IService

Interface Class

<<Interface>>

IMailbox

close(mailboxSessionID : in TSessionID ,) : TResult

lock(mailboxSessionID : in TSessionID ,) : TResult

unlock(mailboxSessionID : in TSessionID ,) : TResult

getInfoAmount(mailboxSessionID : in TSessionID , numberOfProperties : out TInt32Ref) : TResult

getInfoProperties(mailboxSessionID : in TSessionID , firstProperty : in TInt32 , numberOfProperties : in TInt32 , mailboxInfoProperties : out TMailboxInfoPropertySetRef) : TResult

setInfoProperties(mailboxSessionID : in TSessionID , firstProperty : in TInt32 , mailboxInfoProperties : in TMailboxInfoPropertySet) : TResult

openFolder(mailboxSessionID : in TSessionID , folderID : in TString , folderReference : out TMailboxFolderIdentifier) : TResult

createFolder(mailboxSessionID : in TSessionID , folderID : in TString) : TResult

delete(mailboxID : in TAddress , authenticationInfo : in TString) : TResult

Method

close ()

This method closes the mailbox. After closing, the interfaces to the mailbox and any associated folders are automatically de-assigned and are no longer valid. Any open folders will also be automatically closed.

Parameters

mailboxSessionID : in TSessionID

The session ID of the open mailbox previously opened by openMailbox. From now on, the session ID is no longer valid. If by coincidence an identical session ID is returned by a subsequent openMailbox, the session ID will be associated with the new session and has nothing to do with the closed session. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

Method

lock ()

This method locks the mailbox so that only the requesting application can have access to this mailbox. Updates to the mailbox by other applications or the network are not permitted until the mailbox has been unlocked - attempts to do so result in the error code P_GMS_MAILBOX_LOCKED. When the application exits, however, all mailboxes locked by the application are unlocked automatically.
The service returns an error code P_GMS_LOCKING_LOCKED_MAILBOX when the application attempts to lock a mailbox that is locked.
Parameters

mailboxSessionID : in TSessionID

This is the session ID of the open mailbox. If the session ID is not valid, the error code P_GMS_INVALID_SESSIONID is returned.

Method

unlock ()

This method unlocks a previously locked mailbox. An error is returned if the mailbox is already unlocked.

Parameters

mailboxSessionID : in TSessionID

This is the session ID of the locked mailbox. If the sessionID does not correspond to a locked mailbox, the error code P_GMS_UNLOCKING_UNLOCKED_MAILBOX is returned. If the application attempts to unlock a mailbox that is already locked by another application, the error code P_GMS_CANNOT_UNLOCK_MAILBOX is returned.

Method

getInfoAmount ()

This method returns the number of mailbox information properties of the specified mailbox.

Parameters

mailboxSessionID : in TSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

numberOfProperties : out TInt32Ref

The number of properties associated with the folder. The number of properties is zero or positive.

Method

getInfoProperties ()

This method returns the properties of a mailbox.

Parameters

mailboxSessionID : in TSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

firstProperty : in TInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the mailbox is located. Properties are numbered from zero.

numberOfProperties : in TInt32

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned.

mailboxInfoProperties : out TMailboxInfoPropertySetRef

The mailbox information properties (names and values) present in the folder.

Method

setInfoProperties ()

Sets the properties of a mailbox.

Parameters

mailboxSessionID : in TSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

firstProperty : in TInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be updated in the mailbox is located. Properties are numbered from zero.

mailboxInfoProperties : in TMailboxInfoPropertySet

This specifies the mailbox information properties (names and values) to be set in the mailbox. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.

Method

openFolder ()

This method opens a folder for the application, and returns a folder session ID and a reference to the interface of the folder opened.
The application can open more than one folder at the same time. The application is not allowed to open the same folder more than once at the same time. If the folder is already open, the error code P_GMS_FOLDER_IS_OPEN is returned.
Parameters

mailboxSessionID : in TSessionID

This is the session ID of the open mailbox.

folderID : in TString

Specifies the identity of the folder. If the folder ID given is not present, the error code P_GMS_INVALID_FOLDER is returned.

folderReference : in TMailboxFolderIdenti

Specifies the reference to the opened folder.

Method

createFolder ()

This method creates a new folder in the mailbox.

Parameters

mailboxSessionID : in TSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

folderID : in TString

Specifies the identity of the folder. If the folder ID given is already present, the error code P_GMS_INVALID_FOLDER is returned.

Method

delete ()

This method deletes a mailbox from the messaging system for the application. Authentication information may be needed to delete the mailbox. If the application does not have sufficient privilege to delete the mailbox, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned.

Parameters

mailboxID : in TAddress

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the error code P_GMS_INVALID_MAILBOX is returned. If the mailbox is locked then the error code P_GMS_MAILBOX_LOCKED is returned. If the mailbox is open then the error code P_GMS_MAILBOX_OPEN is returned.

authenticationInfo : in TString

Authentication information needed for the application to delete a mailbox in the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be null. If the authentication information is not valid, the error code P_GMS_INVALID_AUTHENTICATION_INFO is returned.

22.4 Generic MailboxFolder: Service Interface (IMailboxFolder)

Inherits from:

IService

Interface Class

<<Interface>>

IMailboxFolder

getInfoAmount(folderSessionID : in TSessionID , numberOfProperties : out TInt32Ref) : TResult

getInfoProperties(folderSessionID : in TSessionID , firstProperty : in TInt32 , numberOfProperties : in TInt32 , folderInfoProperties : out TFolderInfoPropertySetRef) : TResult

setInfoProperties(folderSessionID : in TSessionID , firstProperty : in TInt32 , folderInfoProperties : in TFolderInfoPropertySet) : TResult

putMessage(folderSessionID : in TSessionID , message : in TMessage , messageInfoProperties : in TMessageInfoPropertySet) : TResult

getMessage(folderSessionID : in TSessionID , messageID : in TString , deleteMessage : in TBoolean , message : out TMessageRef) : TResult

close(mailboxSessionID : in TSessionID, folderSessionID : in TSessionID) : TResult

delete(mailboxSessionID : in TSessionID , folderID : in TString) : TResult

Method

getInfoAmount ()

This method returns the number of folder information properties of the specified folder.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

numberOfProperties : out TInt32Ref

The number of properties associated with the folder. The number of properties is zero or positive.

Method

getInfoProperties ()

This method returns the properties of a folder.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

firstProperty : in TInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the folder is located. Properties are numbered from zero.

numberOfProperties : in TInt32

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned.

folderInfoProperties : out TFolderInfoPropertySetRef

The folder information properties (names and values) present in the folder. Folder properties include parent folder, sub folders, number of messages contained, date created, date last accessed, and read/write access.

Method

setInfoProperties ()

Sets the properties of a folder.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

firstProperty : in TInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be updated in the folder is located. Properties are numbered from zero.

folderInfoProperties : in TFolderInfoPropertySet

This specifies the folder information properties (names and values) to be set in the folder. Folder properties that may be changed include parent folder, sub folders and read/write access. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.

Method

putMessage ()

This method puts a message into an open mailbox folder. The message and the headers are transferred to the Messaging service. In Phase 1 of the API, the message will be taken as is. No checking is done on the message. Further more, the message is assumed to be a simple message, that is, with no attachments. If the application knows the messaging system and understands the format to send attachments, it can do so. The service will not flag any inconsistencies if the formatting of the message is not correct.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

message : in TMessage

The message to put into the mailbox.

messageInfoProperties : in TMessageInfoPropertySet

This specifies the message information properties (names and values).

Method

getMessage ()

This method gets a message from an open mailbox folder. The message ID can be obtained by calling the getFolderInfo and getFolderInfoProperties or embedded in an event notification from the messaging service, with information on the mailbox and notifications contained in that operation.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

messageID : in TString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE is returned.

deleteMessage : in TBoolean

Specifies whether to delete (TRUE) the message once retrieved or leave a copy in the folder (FALSE).

message : out TMessageRef

The message associated with the messageID.

Method

close ()

This method closes a specified folder. All subfolders of the folder are also closed.

Parameters

mailboxSessionID : in TSessionID
This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

folderSessionID : in TSessionID
Specifies the folder session ID of the folder to close.

Method

delete ()

This method deletes a folder from the mailbox. All subfolders of the folder are also deleted. The folder must be already closed, otherwise the error code P_GMS_FOLDER_IS_OPEN is returned. If the application does not have sufficient privilege to delete the folder, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned.

Parameters

mailboxSessionID : in TSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

folderID : in TString

Specifies the identity of the folder. If the folder ID given is not present, the error code P_GMS_INVALID_FOLDER is returned.

22.5 Generic Mailbox Message: Service Interface (IMessage)

Inherits from:

IService

Interface Class

<<Interface>>

IMessage

getInfoAmount(folderSessionID : in TSessionID , messageID : in TString , numberOfProperties : out TInt32Ref) : TResult

getInfoProperties(folderSessionID : in TSessionID , messageID : in TString , firstProperty : in TInt32 , numberOfProperties : in TInt32 , messageInfoProperties : out TMessageInfoPropertySetRef) : TResult

setInfoProperties(folderSessionID : in TSessionID , messageID : in TString , firstProperty : in TInt32 , messageInfoProperties : in TMessageInfoPropertySet) : TResult

delete(folderSessionID : in TSessionID , messageID : in TString) : TResult

Method

getInfoAmount ()

This method returns the number of message information properties of the specified message.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

messageID : in TString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE is returned.

numberOfProperties : out TInt32Ref

The number of properties associated with the message. The application can then use the information contained to decide whether to get the message or the message information properties from a mailbox folder. The number of properties is zero or positive.

Method

getInfoProperties ()

This method returns the properties of a message.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

messageID : in TString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE is returned.

firstProperty : in TInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the message is located. Properties are numbered from zero.

numberOfProperties : in TInt32

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_GMS_NUMBER_NOT_POSITIVE is returned.

messageInfoProperties : out TMessageInfoPropertySetRef

The message information properties (names and values) present in the message. Message properties include message format, read/unread, sent/unsent, message size, relevant dates and times, subject and addressees.

Method

setInfoProperties ()

This method sets the properties of a message.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

messageID : in TString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE is returned.

firstProperty : in TInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the message is located. Properties are numbered from zero.

messageInfoProperties : in TMessageInfoPropertySet

This specifies the message information properties (names and values) to be set in the message. Message properties that may be changed include read/unread status, subject and importance. If the properties cannot be changed, then the error code P_GMS_PROPERTY_NOT_SET is returned.

Method

delete ()

This method deletes a message from the open mailbox folder. If the application does not have sufficient privilege to delete the message, the error code P_GMS_INSUFFICIENT_PRIVILEGE is returned.

Parameters

folderSessionID : in TSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_GMS_INVALID_SESSIONID is returned.

messageID : in TString

Specifies the identity of the message. If the message ID given is not present, the error code P_GMS_INVALID_MESSAGE is returned.

The message ID can be obtained by calling the getFolderInfo and getFolderInfoProperties or embedded in an event notification from the messaging service, with information on the mailbox and notifications contained in that operation. If the message cannot be deleted, the error code P_GMS_MESSAGE_NOT_DELETED is returned.

23. Mobility Service Properties

General Service Properties

[This part might change when Kazi is done with the general service properties!]
Each service instance has the following general properties:

· Service name
· Service version
· Service instance ID
· Service instance description
· Product name
· Product version
· Supported interfaces
General Properties Description

Service Instance ID

This property uniquely identifies a specific instance of the service. The Framework generates this property.

Service Name

This property contains the name of the service, e.g. “UserLocation”, “UserStatus”, “UserLocationEmergency” or “UserLocationCamel”.

Service Version

This property contains the version of the specification to which the service is compliant, e.g. “2.0’.

Service Instance Description

This property contains a textual description of the service.

Product Name

This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

Product Version

This property contains the version of the product that provides the Paraly service, e.g. “3.1.11”.

Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. “IUserLocation”, “ITriggeredUserLocation”.

Mobility Properties Description

Emergency
 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

Value Added
 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

PLMN Operator
 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

Lawful Intercept
 Application Subtypes

This property contains a list of application subtypes that are permitted to use the service. The possible subtypes are (see definition of ‘LCS Client Internal ID’ in GSM 09.02 and chapter 6.4.1 in GSM 03.71):

- “Broadcast service”
- “O&M HPLMN service”
- “O&M VPLMN service”
- “Anonymous location”
- “Target MS subscribed service”

Altitude Obtainable

Indicates whether it is possible to obtain a user’s altitude.

Location Methods

List of supported location methods. Possible values (other values are permitted):

· “Time of Arrival”

· “Timing Advance”

· “GPS”

· “User Data Lookup”

Priorities

List of supported priorities for location requests. Possible values (no other values are permitted):

· “Normal”

· “High”

Max Interactive Requests

The maximum number of parallel outstanding location or status requests allowed per application. The value shall be possible to convert to a 32-bit integer.

Max Triggered Users

The maximum number of users allowed per application for which triggered location reporting can be requested. The value shall be possible to convert to a 32-bit integer.

Max Periodic Users

The maximum number of users allowed per application for which periodic location reporting can be requested. The value shall be possible to convert to a 32-bit integer.

Min Periodic Interval Duration

The minimal time in seconds allowed between two periodic reports. The value shall be possible to convert to a 32-bit integer.

24. User Location Service (UL)

The User Location service (UL) provides a general geographic location service. UL has functionality to allow applications to obtain the geographical location and the status of fixed, mobile and IP based telephony users.

UL is supplemented by User Location Camel service (ULC) to provide information about network related information. There is also some specialised functionality to handle emergency calls in the User Location Emergency service (ULE).

The UL service provides the IUserLocation and ITriggeredUserLocation interfaces. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IAppUserLocation and IAppTriggeredUserLocation interfaces to provide the callback mechanism.

When periodic or triggered location reporting is used, errors may be reported either when the recurrent reporting is requested, as an error per user in reports or in the corresponding err-method when the error concerns all subscribers in an assignment.

24.1 User Location: Service Interface

Inherits from the generic service interface.

This interface is the 'service manager' interface for the User Location Service.

The user location interface provides the management functions to the user location service. The application programmer can use this interface to obtain the geographical location of users.

Interface Class

<<Interface>>

IUserLocation

locationReportReq(appLocation : in IAppUserLocation, users : in TAddressSet, assignmentId : out TSessionIDRef) : TResult

extendedLocationReportReq(appLocation : in IAppUserLocation, users : in TAddressSet, request : in TLocationRequest, assignmentId : out TSessionIDRef) : TResult

periodicLocationReportingStartReq(appLocation : in IAppUserLocation, users : in TAddressSet, request : in TLocationRequest, reportingInterval : in TDuration, assignmentId : out TSessionIDRef) : TResult

periodicLocationReportingStop(stopRequest : in TMobilityStopAssignmentData) : TResult

Method

locationReportReq()

Request of report on the location for one or several users.

Parameters

appLocation : in IAppUserLocation

Specifies the application interface for callbacks from the User Location service.

users : in TAddressSet

Specifies the user(s) for which the location shall be reported.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the location-report request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

extendedLocationReportReq()

Advanced request of report on the location for one or several users.

Parameters

appLocation : in IAppUserLocation

Specifies the application interface for callbacks from the User Location service.

users : in TAddressSet

Specifies the user(s) for which the location shall be reported.

request : in TLocationRequest

Specifies among others the requested location type, accuracy, response time and priority.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the extended location-report request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

periodicLocationReportingStartReq()

Request of periodic reports on the location for one or several users.

Parameters

appLocation : in IAppUserLocation

Specifies the application interface for callbacks from the User Location service.

users : in TAddressSet

Specifies the user(s) for which the location shall be reported.

request : in TLocationRequest

Specifies among others the requested location type, accuracy, response time and priority.

reportingInterval : in TDuration

Specifies the requested interval in seconds between the reports.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the periodic location-reporting request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

periodicLocationReportingStop()

Termination of periodic reports on the location for one or several users.

Parameters

stopRequest : in TMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Errors

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

24.2 User Location: Application Interface

Inherits from the base interface.

The user-location application interface provides the application user location functions to the user location service.

Interface Class

<<Interface>>

IAppUserLocation

locationReportRes(assignmentId : in TSessionID, locations : in TUserLocationSet) : TResult

locationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

extendedLocationReportRes(assignmentId : in TSessionID, locations : in TUserLocationExtendedSet) : TResult

extendedLocationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

periodicLocationReport(assignmentId : in TSessionID, locations : in TUserLocationExtendedSet) : TResult

periodicLocationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

Method

locationReportRes()

A report containing locations for one or several users is delivered.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the location-report request.

locations : in TUserLocationSet

Specifies the location(s) of one or several users.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

locationReportErr()

This method indicates that the location report request has failed.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed location report request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method

extendedLocationReportRes()

A report containing extended location information for one or several users is delivered.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the extended location-report request.

locations : in TUserLocationExtendedSet

Specifies the location(s) of one or several users.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

extendedLocationReportErr()

This method indicates that the extended location report request has failed.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed extended location report request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method

periodicLocationReport()

A report containing periodic location information for one or several users is delivered.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the periodic location-reporting request.

locations : in TUserLocationExtendedSet

Specifies the location(s) of one or several users.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

periodicLocationReportErr()

This method indicates that a requested periodic location report has failed. Note that errors only concerning individual users are reported in the ordinary periodicLocationReport() message.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed periodic location reporting start request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

24.3 Triggered User Location: Service Interface

Inherits from the User Location: Service Interface. This interface can be used as an extended version of the User Location: Service Interface.

The triggered user location interface represents the interface to the triggered user location functions. The application programmer can use this interface to request user location reports that are triggered by location change.

Interface Class

<<Interface>>

ITriggeredUserLocation

triggeredLocationReportingStartReq(appLocation : in IAppUserLocation, users : in TAddressSet, request : in TLocationRequest, triggers : in TLocationTriggerSet, assignmentId : out TSessionIDRef) : TResult

triggeredLocationReportingStop(stopRequest : in TMobilityStopAssignmentData) : TResult

Method

triggeredLocationReportingStartReq()

Request for user location reports when the location is changed (reports are triggered by location change).

Parameters

appLocation : in IAppUserLocation

Specifies the application interface for callbacks from the User Location service.

users : in TAddressSet

Specifies the user(s) for which the location shall be reported.

request : in TLocationRequest

Specifies among others the requested location type, accuracy, response time and priority.

triggers : in TLocationTriggerSet

Specifies the trigger conditions.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the triggered location-reporting request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

triggeredLocationReportingStop()

Stop triggered user location reporting.

Parameters

stopRequest : in TMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Errors

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

24.4 Triggered User Location: Application Interface

Inherits from the User Location: Application Interface. This interface must be used as a specialised version of the User Location: Application Interface if the Triggered User Location: Service Interface is used.

The triggered user location application interface is implemented by the client application developer and is used to handle triggered location reports.

Interface Class

<<Interface>>

IAppTriggeredUserLocation

triggeredLocationReport (assignmentId : in TSessionID, location : in TUserLocationExtended, criterion : in TTriggerCriteria) : TResult

triggeredLocationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

Method

triggeredLocationReport()

A triggered report containing location for a user is delivered.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the triggered location-reporting request.

location : in TUserLocationExtended

Specifies the location of the user.

criterion : in TTriggerCriteria

Specifies the criterion that triggered the report.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

triggeredLocationReportErr()

This method indicates that a requested triggered location report has failed. Note that errors only concerning individual users are reported in the ordinary triggeredLocationReport() message.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed triggered location reporting start request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

24.5 User Location Service Properties

A specific User Location service shall set the following properties:

· (All properties listed in general section)

· Permitted application types
· Permitted application subtypes
· Priorities

· Altitude obtainable
· Location methods
· Max interactive requests
· Max triggered users
· Max periodic users
· Min periodic interval duration
Example

The example below describes the capabilities of two fictive User Location services:

Property Name
Property Value
Service 1
Property Value
Service 2

Service instance ID
0x80923AD0
0xF0ED85CB

Service name
UserLocation
UserLocation

Service version
2.0
2.0

Service description
Basic user location service.
Advanced high-performance user location service.

Product name
Find It
Locate.com

Product version
1.3
3.1

Supported interfaces
“IUserLocation”
“IUserLocation”, “IUserLocationTriggers”

Permitted application types
“Emergency service”, “Value added service”
“Emergency service”, “Value added service”, “Lawful intercept service”

Permitted application subtypes
?
?

Priorities
“Normal”
“Normal”, “High”

Altitude obtainable
False
True

Location methods
“Timing Advance”
 “GPS”, “Time Of Arrival”

Max interactive requests
2000
10000

Max triggered users
200
2000

Max periodic users
300
2000

Min periodic interval duration
600
30

25. User Location Camel Service (ULC)

The ULC provides location information, based on network-related information, rather than the geographical co-ordinates that can be retrieved via the general User Location Service.

Using the ULC functions, an application programmer can

· request the VLR Number, the location Area Identification and the Cell Global Identification and other mobile telephony specific location information

The ULC provides the IUserLocationCamel interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IAppUserLocationCamel interface to provide the callback mechanism.

25.1 User Location Camel: Service Interface

Inherits from the generic service interface.

This interface is the ‘service manager’ interface for ULC.

Interface Class

<<Interface>>

IUserLocationCamel

locationReportReq(appLocationCamel : in IAppUserLocationCamel, users : in TAddressSet, assignmentId : out TSessionIDRef) : TResult

periodicLocationReportingStartReq(appLocationCamel : in IAppUserLocationCamel, users : in TAddressSet, reportingInterval : in TDuration, assignmentId : out TSessionIDRef) : TResult

periodicLocationReportingStop(stopRequest : in TMobilityStopAssignmentData) : TResult

triggeredLocationReportingStartReq(appLocationCamel : in IAppUserLocationCamel, users : in TAddressSet, trigger : in TLocationTriggerCamel, assignmentId : out TSessionIDRef) : TResult

triggeredLocationReportingStop(stopRequest : in TMobilityStopAssignmentData) : TResult

Method

locationReportReq()

Request for mobile-related location information on one or several camel users.

Parameters

appLocationCamel : in IAppUserLocationCamel

Specifies the application interface for callbacks from the User Location Camel service.

users : in TAddressSet

Specifies the user(s) for which the location shall be reported.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the location-report request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

periodicLocationReportingStartReq()

Request for periodic mobile location reports on one or several users.

Parameters

appLocationCamel : in IAppUserLocationCamel

Specifies the application interface for callbacks from the User Location Camel service.

users : in TAddressSet

Specifies the user(s) for which the location shall be reported.

reportingInterval : in TDuration

Specifies the requested interval in seconds between the reports.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the periodic location-reporting request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

periodicLocationReportingStop()

This method stops the sending of periodic mobile location reports for one or several users.

Parameters

stopRequest : in TMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Errors

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

triggeredLocationReportingStartReq()

Request for user location reports, containing mobile related information, when the location is changed (the report is triggered by the location change).

Parameters

appLocationCamel : in IAppUserLocationCamel

Specifies the application interface for callbacks from the User Location Camel service.

users : in TAddressSet

Specifies the user(s) for which the location shall be reported.

trigger : in TLocationTriggerCamel

Specifies the trigger conditions.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the triggered location-reporting request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

triggeredLocationReportingStop()

Request that triggered mobile location reporting should stop.

Parameters

stopRequest : in TMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Errors

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

25.2 User Location Camel: Application Interface

Inherits from the generic service interface.

The user location camel application interface is implemented by the client application developer and is used to handle location reports that are specific for mobile telephony users.

Interface Class

<<Interface>>

IAppUserLocationCamel

locationReportRes(assignmentId : in TSessionID, locations : in TUserLocationCamelSet) : TResult

locationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

periodicLocationReport(assignmentId : in TSessionID, locations : in TUserLocationCamelSet) : TResult

periodicLocationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

triggeredLocationReport(assignmentId : in TSessionID, location : in TUserLocationCamel, criterion : in TLocationTriggerCamel) : TResult

triggeredLocationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

Method

locationReportRes()

Delivery of a mobile location report. The report is containing mobile-related location information for one or several users.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the location-report request.

locations : in TUserLocationCamelSet

Specifies the location(s) of one or several users.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

locationReportErr()

This method indicates that the location report request has failed.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed location report request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method

periodicLocationReport()

Periodic delivery of mobile location reports. The reports are containing mobile-related location information for one or several users.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the periodic location-reporting request.

locations : in TUserLocationCamelSet

Specifies the location(s) of one or several users.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

periodicLocationReportErr()

This method indicates that a requested periodic location report has failed. Note that errors only concerning individual users are reported in the ordinary periodicLocationReport() message.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed periodic location reporting start request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method

triggeredLocationReport()

Delivery of a report that is indicating that one or several user's mobile location has changed.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the triggered location-reporting request.

location : in TUserLocationCamel

Specifies the location of the user.

criterion : in TLocationTriggerCamel

Specifies the criterion that triggered the report.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

triggeredLocationReportErr()

This method indicates that a requested triggered location report has failed. Note that errors only concerning individual users are reported in the ordinary triggeredLocationReport() message.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed triggered location reporting start request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

25.3 User Location Camel Service Properties

A specific User Location Camel service shall set the following properties:

· (All properties listed in general section)

· Max interactive requests
· Max triggered users
· Max periodic users
· Min periodic interval duration
26. User Location Emergency Service (ULE)

In the case of emergency call, the network may locate the caller automatically. The resulting location is sent directly to an application that is dedicated to handle emergency user location. If the dedicated emergency call application is using , the location is send to the application using a callback method in the IAppUserLocationEmergency interface.

However, the networks does not always send the location immediately (probably when the location procedure is not finished when the call is set up). In this case the network will send an identifier of the caller that can be used to locate the caller using the interface IUserLocationEmergency.
26.1 User Location Emergency: Service Interface

Inherits from the generic service interface.

The user location emergency interface represents the interface to the emergency user location service.

Interface Class

<<Interface>>

IUserLocationEmergency

emergencyLocationReportReq(appEmergencyLocation : in IAppUserLocationEmergency, request : in TUserLocationEmergencyReq, assignmentId : out TSessionIDRef) : TResult

subscribeEmergencyLocationReports(appEmergencyLocation : in IAppUserLocationEmergency, assignmentId : out TSessionIDRef) : TResult

unSubscribeEmergencyLocationReports(assignmentId : in TSessionID) : TResult

Method

emergencyLocationReportReq()

Request of report on the location for one user that is making an emergency call.

Parameters

appEmergencyLocation : in IAppUserLocationEmergency

Specifies the application interface for callbacks from the User Location Emergency service.

request : in TUserLocationEmergencyReq

Specifies among others the identity of the user or terminal, requested location type, accuracy, response time and priority.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the emergency location-report request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

P_PARAMETER_MISSING
The user or terminal can not be identified since sufficient parameters are missing.

Method

subscribeEmergencyLocationReports()

Subscribe to network initiated emergency user location reports.

Parameters

appEmergencyLocation : in IAppUserLocationEmergency

Specifies the application interface for callbacks from the User Location Emergency service.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the subscription.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

unSubscribeEmergencyLocationReports()

This method cancels a subscription to network initiated emergency user location reports.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the subscription.

Errors

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

26.2 User Location Emergency: Application Interface

Inherits from the base interface.

The user-location emergency application interface is implemented by the client application developer and is used to handle emergency user location reports.

Interface Class

<<Interface>>

IAppUserLocationEmergency

emergencyLocationReport(assignmentId : in TSessionID, location : in TUserLocationEmergency) : TResult

emergencyLocationReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

Method

emergencyLocationReport()

Delivery of an emergency user location report.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the emergency location-report request or the emergency location report subscription.

location : in TUserLocationEmergency

Specifies the identity and location of the user that makes the emergency call.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

emergencyLocationReportErr()

This method indicates that the emergency location report request has failed.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed emergency location report request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

26.3 User Location Emergency Service Properties

A specific User Location Emergency service shall set the following properties:

· (All properties listed in general section)

· Permitted application types
· Permitted application subtypes
· Altitude obtainable
· Location methods
· Priorities

· Max interactive requests
27. User Status Service (US)

The User Status Service (US) provides a general user status service. US allow applications to obtain the status of fixed, mobile and IP-base telephony users.

The US provides the IUserStatus interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IAppUserStatus interface to provide the callback mechanism.

27.1 User Status: Service Interface

Inherits from the generic service interface.

The user status interface represents the interface to the user status service.

Interface Class

<<Interface>>

IUserStatus

statusReportReq(appStatus : in IAppUserStatus, users : in TAddressSet, assignmentId : out TSessionIDRef) : TResult

triggeredStatusReportingStartReq (appStatus : in IAppUserStatus, users : in TAddressSet, assignmentId : out TSessionIDRef) : TResult

triggeredStatusReportingStop (stopRequest : in TMobilityStopAssignmentData) : TResult

Method

statusReportReq()

Request for a report on the status of one or several users.

Parameters

appStatus : in IAppUserStatus

Specifies the application interface for callbacks from the User Status service.

users : in TAddressSet

Specifies the user(s) for which the status shall be reported.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the status-report request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

triggeredStatusReportingStartReq()

Request for triggered status reports when one or several user's status is changed. The user status service will send a report when the status changes.

Parameters

appStatus : in IAppUserStatus

Specifies the application interface for callbacks from the User Status service.

users : in TAddressSet

Specifies the user(s) for which the status changes shall be reported.

assignmentId : out TSessionIDRef

Specifies the assignment ID of the triggered status-reporting request.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

P_RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

Method

triggeredStatusReportingStop()

This method stops the sending of status reports for one or several users.

Parameters

stopRequest : in TMobilityStopAssignmentData

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Errors

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

27.2 User Status: Application Interface

Inherits from the base interface.

The user-status application interface is implemented by the client application developer and is used to handle user status reports.

Interface Class

<<Interface>>

IAppUserStatus

statusReportRes(assignmentId : in TSessionID, status : in TUserStatusSet) : TResult

statusReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

triggeredStatusReport(assignmentId : in TSessionID, status : in TUserStatus) : TResult

triggeredStatusReportErr(assignmentId : in TSessionID, cause : in TMobilityError, diagnostic : in TMobilityDiagnostic)

Method

statusReportRes()

Delivery of a report, that is containing one or several user's status.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the status-report request.

status : in TUserStatusSet

Specifies the status of one or several users.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

statusReportErr()

This method indicates that the status report request has failed.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed status report request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

Method

triggeredStatusReport()

Delivery of a report that is indicating that a user's status has changed.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the triggered status-reporting request.

status : in TUserStatus

Specifies the status of the user.

Errors

P_INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

P_INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method

triggeredStatusReportErr()

This method indicates that a requested triggered status reporting has failed. Note that errors only concerning individual users are reported in the ordinary triggeredStatusReport() message.

Parameters

assignmentId : in TSessionID

Specifies the assignment ID of the failed triggered status reporting start request.

cause : in TMobilityError

Specifies the error that led to the failure.

diagnostic : in TMobilityDiagnostic

Specifies additional information about the error that led to the failure.

27.3 User Status Service Properties

A specific User Location service shall set the following properties:

· (All properties listed in general section)

· Max interactive requests
· Max triggered users
28. Connectivity Manager Interfaces

Introduction

 API provides the enterprise network operator on-line access to provision quality of service measures that control the enterprise own traffic passing through the provider network . Using APIs the operator can create virtual provisioned pipes (VPrPs) in the provider network to carry the enterprise traffic and support it with pre-specified quality of service attributes. A VPrP can be thought of as a VLL provisioned to deliver pre-specified QoS. The provider may offer to the enterprise operator a set of templates that are used by the operator to specify a VPrP. For instance, the provider may offer templates for video conferencing, audio conferencing, Gold Service, Silver Service, etc. Using these templates the operator can select and provision a VPrP that specifies the quality of service attributes for this VPrP.

Element that can be specified for a VPrP include attributes such as packet delay and packet loss. Traffic characteristics that enters the VPrP at its access point to the provider network can be also specified with attributes such as maximum rate and burst rate.

The following is an example of a possible scenario:

· The provider prepares a template with operator-specified attributes, provider-specified attributes, and unspecified attributes, one for each QoS level.

· The provider generates for the enterprise network a list of all the current sites and their access points to the provider network.

· Enterprise operator logs into connectivity manager after being authenticated and authorised by the Framework service.

· Operator gets the list of the sites and service access points of the enterprise virtual private network (VPN) already provided to the enterprise by the provider.

· Enterprise operator retrieves the set of templates available to the enterprise (as supported by the SLA), selects one, and requests a template for constructing a new VPrP based upon the selected QoS.

· Enterprise operator completes the VPrP template: i.e. selects a value for delay, loss, jitter and excess traffic treatment action, enters the SLA ID against which the template could be validated, selects endpoints, load parameters and traffic flow direction, and selects the time requirements desired. The enterprise operator can choose or modify those attributes that are operator-specified attributes in the template. Provider-specified attributes can’t be modified and are inherent part of the service.

· Enterprise operator submits the completed VPrP template for validation by the CM service. Operator creates a new VPrP with pending-status that holds these selections.

· The provider responds after validating the requests, which may be an approval or a denial (e.g., the requested service is not available at this access point, or at the specified time).

· If the provider approves service, the operator may send packets marked with the templates DiffServ Codepoint that identify together with the endpoints the VPrP that carries these packets.

Some additional clarification points:

· a VPrN is associated with a single network provider

· a VPrP defines QoS parameters for traffic flowing through this provider network, between two specified enterprise endpoints, optionally during specified date/time period(s).

· The enterprise operator may be (providers choice) constrained to selecting QoS parameter values from a pre-defined set of values, and selecting endpoints from a predefined set of enterprise sites; where these sets were negotiated off-line between the enterprise and the network provider and possibly documented in a Service Level Agreement (SLA)

· The CM service validates each VPrP request submitted by the enterprise operator. The validation process is not specified here. Validation against the SLA is an example of such possible validation.

· If the CM service accepts the VPrP request, it adds it to the VPrN. The DiffServ Codepoint provided by the enterprise operator is then used by the enterprise for marking all packets belonging to any traffic flow associated with the VPrP.

The following is a summary of interfaces and methods supported by connectivity manager. The syntax method (interface) is used for this description.

There are Passives CM interface functions (CM1, CM2, CM4) that are used to retrieve information (read) relative to VPN, VPrN, and QoS templates provided by the service provider, and active (CM3) functions (read/write) used to provision new services.

CM1. Retrieve information on a Virtual Private Network, its sites and their service access points:
getEnterpriseNetwork(IConnectivityManager)
getSiteList(IEterpriseNetwork)
getSite(IEterpriseNetwork)
getSAPList(IEnterpriseNetworkSite)
getSiteID(IEnterpriseNetworkSite)
getSiteLocation(IEnterpriseNetworkSite)
getSiteDescription(IEnterpriseNetworkSite)
getSAPIPSubnet(IEnterpriseNetworkSite)
getSiteIPSubnet(IEnterpriseNetworkSite)

CM2. Retrieve QoS services offered by provider, stored in QoS templates:
getQoSMenu(IConnectivityManager)
getTemplateList(IQoSMenu)
getTemplate(IQoSMenu)
getTemplateType(IQoSTemplate)
getDescription(IQoSTemplate)
getPipeQoSInfo(IQoSTemplate)
getValidityInfo(IQoSTemplate)
getProvisionedQoSInfo(IQoSTemplate)
getDsCodepoint

CM3. Set up a new Virtual Provisioned Pipe:
createVPrP(IVPrN)
deleteVPrP(IVPrN)
setSlaID(IQoSTemplate)
setPipeQoSInfo(IQoSTemplate)
setValidityInfo(IQoSTemplate)
setProvisionedQoSInfo(IQoSTemplate)

CM4. Retrieve information on a Virtual Provisioned Network and its Virtual Provisioned Pipes:
getVPrN(IEterpriseNetwork)
getVPrPList(IVPrN)
getVPrP(IVPrN)
getVPrPID(IVPrP)
getSlaID(IVPrP)
getStatus(IVPrP)
getProvisionedQoSInfo(IVPrP)
getPipeQoSInfo(IVPrP)
getDsCodepoint(IVPrP)

Two typical scenarios:

1. To set up a new VPrP:

- The enterprise operator retrieves information regarding enterprise’s existing VPN (sites and SAPs), using as needed the methods listed in CM1 above

- Enterprise operator retrieves information on provider’s offered QoS services, using methods listed in CM2 above as needed

- Enterprise operator submits a request to set up a new VPrP, using methods listed in CM3 above as needed

- Enterprise operator checks the status of the request using the methods listed in CM4 above as needed

- If the request was approved by the network provider, the VPrP is put in an active mode, and packets that are marked in the enterprise network with appropriate marking in their packet header will travel the providers network through the new Virtual Provisioned Pipe that supports the requested QoS levels.

2. Retrieve information on current enterprise network services delivered to the enterprise by the provider network

· Enterprise operator retrieves information on current QoS services delivered to the enterprise network using CM4 methods listed above as needed

· Enterprise operator check if the providers offers new QoS services using CM2 listed above as needed.

Scope

The Version 2.0 Connectivity Manager includes the APIs between the enterprise operator and the provider network for the two parties to establish QoS parameters for enterprise network packets travelling through the provider network.

The Connectivity Manager service provides tools for enterprise operator to set up a Provisioned QoS service in the provider network. The QoS measures used in the enterprise network is outside the scope of service. does not require any specific QoS method to be used in the enterprise network, nor in the provider network. However, in order for Provisioned QoS service be applied to packets arriving from the enterprise network into the provider network, the packet have be to marked using DS Codepoint marking. Once the packets are so marked, they can enjoy the QoS service provisioned in the provider network.

Acronyms

CIM
Common Information Model

CM
Connectivity Manager

DiffServ

Differential Services

DMTF
Distributed Management Task Force

DS
Differential Services.

QoS:
Quality of Service

SAP
Service Access Point

SLA
Service Level Agreement Terms

TOS

Type of Service

VLL

Virtual Leased Line

VPN

Virtual Private Network

VPrN

Virtual Provisioned Network

VPrP

Virtual Provisioned Pipe

 Terms

Best Effort traffic
Traffic that is not carried by a VPrN established for the enterprise network by the provider.

Differentiated Services:
An effort in the Internet Engineering Task Force (IETF) to provide quietly of service in networks employing a small well defined building blocks from which variety of service may be built.

DS Codepoint
In refers to the marking associated with a specific VPrP.

Enterprise operator:
Administrator of the enterprise network. User of API interfaces. Also referred to as operator.

Operator:

Enterprise operator.

Provider network:
Provides a VPN and VPrP service to the enterprise network. Offers APIs for connectivity manager to the enterprise operator. Also referred to as network service provider.

Provider:
Entity that offers the VPR and VPrP services. Implements the APIs in the provider network.

Quality of Service:
A collection of service levels delivered by a provider network to an enterprise network. QoS can be characterised by various performance attributes such as: packet loss, packet delay; traffic policing measures such as maximum bandwidth and burst rate for traffic entering the providers network.

Service Access Point
Enterprise network is connected to the provider network through the enterprise network service access points. A SAP is typically the egress router from the enterprise network that connects to the provider network.

TOS bits:
IETF defined the use the TOS field in the IPv4 packet header as a signalling mechanism aimed at providing definitions of aggression of flows, where each aggregate is supported by the same level of QoS. TOS bits is the value held in the TOS field.

Virtual Private Network
A network that uses a provider network infrastructure to connect geographically separated sites of an enterprise. Such a network looks like a private network to the enterprise as the sites are connected using tunnelling and security technologies. With no QoS measures, VPN passes all packets among the sites with a best effort approach.

Virtual Leased Line
As VPN but connecting just two geographically separate sites.

Virtual Provisioned Network A collection of VPrP delivered as a service to a single enterprise network.

Virtual Provisioned Pipe
A service provided by the provider network to the enterprise network, which is a type of virtual leased line (VLL) provisioned with QoS levels. VPrP carries enterprise network traffic whose packets are marked with the specific DS Codepoint that is associated this VPrP. The enterprise operator using APIs can create on-line a VPrP.

Data Types

Data type specifications are included in this document for clarity and self-sufficiency. It is also copied into the CM data types document.

There is an extensive use of a specific data type for connectivity manager. This data type is discussed here to clarify how it is used by different interfaces and methods and toavoid repetition in various sections of the document.

The data type TNameDescrpTag is not explicitly specified in this document (it is shown in the class diagrams document) as it is inherited by various other data types, such as TNameDescrpTagDateTime, TNameDescrpTagdayof Week, TNameDescrpTagint, TNameDescrpTagString, and so forth. The TNameDescrpTag class includes three parameters that are inherited by all of its subclasses data types: The name parameter, the description parameter, and the tag parameter. These parameters were defined for the get method in the template interface, and were reused by other methods, with some semantic modifications. The three parameters are:

· The name parameter which names the parameter in a template.

· The description parameter describes the parameter as it relates to the QoS service, and could add explanations and restrictions regarding the use of a parameter, such as what values can be selected by the operator for the parameter in a given template.

· The tag parameter has the following values and interpretation:

· Provider specified: the operator can’t modify the value of this parameter as set in the template interface.

· Operator specified: enterprise operator may change the default value set by the provider in the template. The default value can be blank to indicate that there is no default value for this parameter. The operator may change it according with advice, if provided in the description parameters.

· Unspecified: the parameter is not used for this template, and the enterprise operator can’t change it.

Various interfaces and methods reuse these data types, since they require only a slight semantic modification while reusing the entire structure. The following specifies the modified semantics as used by the various methods.

For the QoS template interface and all the set methods that use the TNameDescrpTag data type, the tag values should be ignored by the CM implementation, as only the provider sets the tag value in all cases, and the operator can’t change it. Any parameter that is set to operator specified, the set method can modify the values set in the template, but not the associated tag. If the tag is set to provider specified, or unspecified, and the operator tries to modify it with a set method, the P_NOT_OPERATOR_SPECIFIED_VALUE exception is raised. However, the description and the can be modified by the set method if the tag is operator specified. The operator can use this feature to enter notes that would be later shown when retrieving VPrP information. However, the name parameter can not be changed as it might be unique in the providers network.

For VPrP interface, the tag value is irrelevant for all the get methods and may be ignored by the operator client.

28.1 Connectivity Manager: Connectivity Manager Interface

Inherits from the base interface.

The service Connectivity Manager Interface is the entry point to the Connectivity Manager service. After the enterprise operator client is authenticated and authorised, the client application discovers the Connectivity Manager interface, then the operator can use this interface to step through the process of provisioning a new VPrP. This interface has two methods, one to get the handle to the menu of QoS services offered by the provider, and the other one is a handle to the enterprise network interface that holds information about current services that the provider network delivers to the enterprise network.

Interface Class

<<Interface class>>

IConnectivityManager

getQoSMenu(menuRef : out TInterfaceRef) : TResult

getEnterpriseNetwork(operatorRef : out TInterfaceRef) : TResult

Method

getQoSMenu()

A client uses this method to get a reference to the QoS menu interface.

Parameters

menuRefRef : out TInterfaceRef

This parameter is a reference to the QoS menu.

· If no menu is found, P_Unknown_Menu exception is raised

Method

getEnterpriseNetwork()

This method is used to get a handle to the enterprise network interface, which holds information regarding network services that are already provisioned for the enterprise network in the provider network.

Parameters

enterpriseNetworkRefRef : out TInterfaceRef

This parameter is a reference to the enterprise network interface.

· If enterprise network is not found, P_Unknown_Enterprise_Network exception is raised.

28.2 Connectivity Manager: Enterprise Network Interface

Inherits from the basic class.

This interface stores enterprise network information maintained by the provider as it relates to the virtual private network service and the virtual provisioned network service that the enterprise had already established with the service provider network. The enterprise operator can only retrieve but not change the information stored with this interface. The methods of this interface enable the enterprise operator to obtain the handle to the interface that holds information regarding an existing VPrN, to list the sites connected to the VPN, and get the handle to a specific site interface that store information about the site.

Interface Class

<<Interface>>

IEnterpriseNetwork

getSiteList (siteList : out TStringList) : TResult

getSite (siteID : in TString, siteRef : out TInterfaceRef) : TResult

getVPrN (VPrNRef : out TInterfaceRef) : TResult

Method

getSiteList()

This method is used to get the list of enterprise network site IDs. These IDs identify the sites that are inter-connected through the provider network. These IDs were set when the VPN was provisioned in the provider network for the enterprise network.

Parameters

siteList : out TStringList

This parameter lists the site IDs (e.g., research, marketing, Middletown Building D5, London) of the enterprise network that are serviced by the provider network.

· If no site is found, then a P_Unknown_Sites exception is raised.

Data Types

TStringList

This data type is a list of elements, each of which is TString data type.

TStringList = (SEQUENCE (someID : TString)).

Method

getSite ()

This method is used to get a handle to an interface that holds information about a specific site.

Parameters

siteID : in TString

This parameter is the ID given to a particular site. The ID is not assigned via APIs, but previously when a new VPN (or VLL) is established for the enterprise on the provider network. These ID are typically names that refer to objects that are meaningful in the context of the enterprise network, such as: Marketing, New York, or Bulling 4. This site ID can be used as an endpoint of a provisioned virtual provisioned pipe (VPrP).

· If the string representation of the siteID does not obey the rules for site identification, then a P_Illegal_Site_ID exception is raised.

· If the site ID representation is legal but there is no site with this ID, then P_UnknownP_SiteP_Id exception is raised.

siteRefRef : out TInterfaceRef

This parameter is a reference to the site interface.

Method

getVPrN()

This method is used to get a handle to the interface that holds information regarding a previously provisioned Virtual Private Network (VPrN).

Parameters

vPrNRefRef : out TInterfaceRef

This parameter is a handle to the VPrN interface that holds information about previously provisioned VPrN.

· If no VPrN is found for this enterprise network, then a P_Unknown_VPrN exception is raised.

28.3 Connectivity Manager: Enterprise Network Site Interface

Inherits from the basic class.

This interface stores operator site information maintained by the provider.

Interface Class

<<Interface>>

IEnterpriseNetworkSite

getSAPList (sapList : out TStringList) : TResult

getSiteID (siteID : out TString) : TResult

getSiteLocatoin(siteLocation : TString) : TResult

getSiteDescription (siteDescription : out TString) : TResult

getIPSubnet (ipSubnet : out TIPSubnet) : TResult

getSAPIPSubnet(sapID : in TString, ipSubnet : out TIPSubnet)

Method

getSAPList()

This method is used to get the list of SAP IDs of the enterprise VPN (i.e., on the provider network) that have previously been established for this site with the provider network.

Parameters

sapList : out TStringList

This parameter is a list of SAP IDs. This SAP ID can be used as an endpoint of a provisioned virtual provisioned pipe (VPrP).

· If no SAPs are found for this site, then P_Unknown_SAPs exception is raised.

Method

getSAPIPSubnet()

This method is used to get the IP address of the SAP on the enterprise network.

Parameters

sapID : in TString

This parameter holds the SAP ID value.

· If the string representation of the sapID does not obey the rules for site identification, then a P_ILLEGAL_SITE_ID exception is raised.

· If the site ID representation is legal but there is no site with this ID, then P_UNKNOWN_SAP exception is raised.

· If no IP Subnet information is found for this SAP, then a P_Unknown_IPSubnet exception is raised.

ipSubnet : out TIPSubnet

This parameter holds the IP address information for the SAP.

Data Types

This data type follows the DMTF CIM specification for IP subnet.

TIPSubnet

Sequence Element Name
Sequence Element Type
Documentation

subnetNumber
TString
IP address, IPv4 example 2.3.4.15

subnetMask
TString
IPv4 example,255.255.255.0

AddressType
Enum(A,B,C,D,E)
Iv4 address format

IversionSupport
TEnum(Unknown, IPv4, IPv6)

Method

getSiteID()

This method is used to get the site ID for this site.

Parameters

siteID : out TString
This parameter holds the value for the site ID.

· If no site ID is found for this site, then P_Unknown_Site_ID exception is raised.

Method

getSiteLocation()

This method is used to get the site location.

Parameters

siteLocation : out TString
This parameter holds the value for the site location.

· If no site location is found for this site, then P_Unknown_Site_LOCATION exception is raised.

Method

getSiteDescription()

This method is used to get the description associated with this site.

Parameters

siteDescription : out TString

This parameter is a string that holds the site description.

· If no description is found for this site, then P_Unknown_Site_Description exception is raised.

Method

getIPSubnet()

This method is used to get IP subnet information for this site.

Parameters

ipSubnet : out TIPSubnet

This parameter lists the subnet information.

· If no IP Subnet information is found for this site, then a P_Unknown_IPSubnet exception is raised.

28.4 Connectivity Management: Virtual Provisioned Network Interface

Inherits from the base interface.

The enterprise operator can create a new virtual provisioned pipe (VPrP) in an existing virtual private network (VPN) with this VPN interface. Such a pipe is extended between specific SAPs/sites. Each such pipe is associated with QoS parameters identified by a specific DiffServ Codepoint. A packet that arrives at the SAP/site with a specific Codepoint, is “directed” to the virtual provisioned pipe that supports the QoS parameters provisioned for this pipe. The collection of all the virtual provisioned pipes (VPrPs), provisioned within the enterprise VPN, constitute the virtual provisioned network (VPrN). Enterprise operator can create new VPrPs and delete existing VPrP using this interface. This interface provides also methods to get the list of already provisioned VPrPs, and a handle to a specific VPrP interface that holds information for this VPrP.

Interface Class

<<Interface>>

IVPrN

getVPrPList (vPrPList : out TStringList) : TResult

getVPrP (vPrPID : in TString, vPrPRef : out TInterfaceRef) : TResult

createVPrP(templateRef : in TInterfaceRef, vPrPRef : out TInterfaceRef) : TResult

deleteVPrP(vPrPID : in TString) : TResult

Method

getVPrPList()

This method is used to get the list of VPrP IDs for the already established virtual provisioned pipes for the enterprise network. Each pipe is assigned an ID at the provisioning of the pipe.

Parameters

vPrPList : out TStringList

This parameter lists the IDs of all the virtual provisioned pipes established in the virtual provisioned network.

· If no VPrP is found, then the P_Unknown_VPrP exception is raised.

Method

getVPrP()

This method is used to get a handle to the virtual provisioned pipe.

Parameters

vPrPID : in TString

This parameter is virtual provisioned pipe ID, a unique ID across all VPrNs (of different enterprises) in the provider network. This ID is assigned by the provider when a new VPrP is created by the create method of this interface.

· If the string representation of the vPrPID does not obey the rules for site identification, then a P_Illegal_VPRPID exception is raised.

· If the VPrP ID representation is legal but there is no VPrP with this ID, then the P_Unknown_VPrP exception is raised.

· Note that as soon a request to create a new VPrP (see IVPrN interface) is submitted by the enterprise client, a new VPrP interface should be created by the provider. However, the provider might be in a situation where the evaluation of the request for a new VPrP has not been completed yet. In such a case, until the provider makes a decision, the status of the new VPrP should be set to Pending. The P_Unknown_VPrP_Id exception should not be raised in this case.

vPrPRefRef : out TInterfaceRef

This parameter is the reference to a provision virtual provisioned pipe interface.

Method

createVPrP()

This method is used to create a new virtual provisioned pipe, which includes the pipe QoS information, the provisioned QoS information, the SLA ID, and the selected pairs of SAP/Sites. The method returns a reference to the new virtual provisioned pipe interface that is added to an existing VPrN. This VPrP needs to be accessed in order to find the status of the request to create a new VPrP. The status can have one of the following values: pending, active, or Disallowed. The enterprise operator should delete disallowed VPrPs. The provider may remove VPrPs with a disallowed status, if it stays in this status for some pre-agreed length of time.

Parameters

templateRefRef : in TInterfaceRef

This parameter is a reference to the template interface that holds all the requested QoS parameters for a new VPrP. The requested QoS parameter values, stored in the template interface, are used by the provider to provision a new VPrP for the enterprise network.

· If the reference representation of the templateRefRef does not obey the rules for reference values, then a P_Illegal_Ref_Value exception is raised.

· If the reference representation is legal but there is no interface with this reference, then P_Unknown_Interface exception is raised.

· If the one of the parameter values requested in the template is not consistent with default values set by the provider or the advice given in one of its description parameters, this is considered to be an inconsistent VPrP. The provider can deny a request for an inconsistent VPrP. The reason of the denial would be specified in the denial reason parameter for that VPrP. Since it is not required that the provider renders a decision in real time, no exception parameter is defined for this createVPrP method for requesting an inconsistent VPrP.

vPrPRefRef : out TInterfaceRef

This parameter is the handle to the new VPrP interface created as a response to the createVPrP method. The new VPrP interface may not include yet the decision of the provider to the request to create a new VPrP. However, if the request is granted, the status flag of the VPrP is set to active. If the request is denied, the status flag is set to disallowed. The status of the new VPrP is held in the status parameter of the VPrP, which should be Pending if the processing of the request has not been completed by the provider.

Method

deleteVPrP()

This method is used to delete a virtual provisioned pipe. A VPrP may have one of the following status values: Active, Pending, Disallowed. The reasons for deleting a VPrP may vary. Here are some examples. If a VPrP is active, the delete method is used when the VPrP is not needed anymore. If the VPrP is pending approval, one can still delete the VPrP. If the VPrP is disallowed, the VPrP should be deleted, as it does not serve any useful purpose anymore.

Parameters

vPrPID : in TString

This parameter specifies the ID of the VPrP to be deleted.

· If the VPrP can’t be deleted, then P_CANT_DELETE_VPRP exception is raised.

· If the VPrP ID is not found, then P_UNKNOWN_VPRP_ID exception is reaise.

28.5 Connectivity Management: Virtual Provisioned Pipe Interface

Inherits from the base interface.

The virtual provisioned pipe interface provides information on a VPrP whose status can be in one of the following states:

· Active: a previously established VPrP, which indicates that a previous request to create the VPrP was granted by the provider. Packet that belong to this VPrP and meet the validity time requirements, are admitted to the enterprise VPrN

· Pending: a request to create a new VPrP is still pending response from the provider, indicating that the provider is still processing the request to create a new VPrP. Packet that belong to this VPrP are not admitted to the enterprise VPrN

· Disallowed: a request to create a new VPrP was denied. A description parameter may include the reason for the denial. This is an disallowed VPrP and packet that belong to this VPrP are not admitted to the enterprise VPrN.

A VPrP is composed of the following elements, each of which provides the following Provisioned QoS measures:

Element type
Element
QoS measure

Endpoint
A SAP or a site
Pipe QoS information based on VPrP endpoints: load parameters, policing action. Applied to traffic entering the enterprise VPrN.

Packet header marking
TOS bits marked with DS Codepoint.
Provisioned QoS information. One of the QoS levels established by the provider in its backbone network to be applied to the packets carrying this marking.

Time Validity
A time requirement that is applied to an active VPrP.
Packets are admitted to the VPrN only if meet as well validity time requirements.

Interface Class

<<Interface>>

IVPrP

getVPrPID (vPrPID : out TString) : TResult

getSlaID (slaID : out TString) : TResult

getStatus (Status : out TString) : TResult

getProvisionedQoSInfo (provisionedQoSInfo : out TProvisionedQoSInfo) : TResult

getValidityInfo (validityInfo : out TValidityInfo) : TResult

getPipeQoSInfo (pipeQoSInfo : out TPipeQoSInfo) : TResult

getDsCodepoint (dsCodepoint : TSting) : TResult

Method

getVPrPID()

This method is used to get the ID of the virtual provisioned pipe.

Parameters

vPrPID : out TString

This parameter is the ID of the virtual provisioned pipe.

· If no VPrP ID is found, then P_UNKNOWN_VPRP_ID exception is raised.

Method

getSlaID()

This method is used to get the ID of the service level agreement (SLA) if such was associated with the virtual provisioned pipe at the provisioning of the VPrP.

Parameters

slaID : out TString

This parameter is the identifier for the service level description.

· If no SLA ID is found, then P_UNKNOWN_SLA_ID exception is raised.

· Note: SLA ID is optional. If no SLA ID was entered when this VPrP was created, this exception will be raised.

Method

getStatus()

This method is used to get the status of the virtual provisioned pipe. It can be used to convey, for example, the status of an outstanding previously submitted provisioning request (which the provider could not verify in real time).

Parameters

status : out Enum(Active, pending, Disallowed)

This parameter is used to convey status of the virtual provisioned pipe. The semantics of each of these states is specified above.

· If status information is not found, Then P_UNKNOWN_STATUS exception is raised.

Method

getProvisionedQoSInfo()

This method is used to get the provisioned QoS information set for this virtual provisioned pipe. This method is the same method with the same parameters as in the QoS Template interface. The only difference is that the tag value is meaningless here. The values for an Active VPrP are the values provisioned in the provider network, and the values for a Pending VPrP are the requested values.

Parameters

provisionedQoSInfo : out TProvisionedQoSInfo

This parameter consists of delay, loss, jitter, and exceed load action parameters.

· If no QoS information is found, then P_UNKNOWN_QOS_INFO exception is raised.

Data Types

Pertinent data types are specified in the QoS Template interface. However, the tag value (provider specified, operator specified, or unspecified) is used only with the template interface, and is meaningless for VPrP interface. Delay, Loss, and Jitter priority are used to specify the priority of this VPrP relative to other VPrPs, instead of specifying explicit values for these parameters.

Method

getValidityIfno()

This method is used to get the time period for which the VPrP is valid. For the VPrP to be included in the VPrN, the VPrP has to be in active status and valid.

Parameters

validityInfo : out TValidityInfo

This parameter defines the time periods for which this VPrP is valid. The valid periods are evaluated by applying a logical AND operation of all the components of this parameter, without regard who specified the valid time (i.e., specified by operator, or provider). If the ValidSpecified Boolean parameter is set to False, the information in the other components of this parameter should be ignored, and the VPrP is always valid.

· If no validity information is found for this VPrP, then P_UNKNOWN_VALIDITY_INFO exception is raised. Note that if the validity information is found and validitySpecified is FALSE this exception is not raised.

Data Types

TValidityInfo

This data type is specified in the QoS Template.

Method

getPipeQoSInfo()

This method is used to get and set the pipe QoS information for this VPrP. For an Active VPrP the values of these parameter are provisioned in the provider network. For a Pending VPrP, the values are the requested values. The tag value is meaningless for this interface.

Parameters

pipeQoSInfo : out TPipeQoSInfo

This parameter consists of load parameters, direction of the traffic, and the endpoints (SAP or site) of the virtual provisioned pipe. This data type are defined in the QoS Template.

· If no pipe QoS information is found, then P_UNKNOWN_PIPEQOSINFO exception is raised.

Method

getDsCodepoint()

This method is used to get the DiffServ Codepoint of the virtual provisioned pipe.

Parameters

dsCodepoint: out TDsCodepoint

This parameter holds the DS Codepoint for the VPrP. It has two parameters: match and mask to enable the provider to locate the bit string in any location in the 6-bit long field. The actual Codepoint is a result of an AND operation bit by bit of the two parameters.

· If no DS Codepoint is found, then P_UNKNOWN_DSCODEPOINT exception is raised.

Data Types

TDsCodepoint

Sequence Element Name
Sequence Element Type
Documentation

match
TString
Marking significant bits. 6-bit long. Valid characters are 0 and 1

mask
TString
Identifies significant part (1s) of for marking Codepoint. 6-bit long. Valid characters are 0 and 1.

28.6 Connectivity Management: Quality of Service Menu Interface

Inherits from the base interface.

This interface holds the QoS menu offered by the provider. Each QoS service offered (e.g., Gold, Silver) is specified in a separate template. The template specifies the parameters and their default values from which the operator may choose to create a VPrP. When the operator asks for a specific template from the list of templates (getTemplate method), a temporary template interface is created. This temporary template interface holds all the parameters (e.g., all the Gold parameters) and their default values offered by the provider for this template.

Interface Class

<<Interface>>

IQoSMenu

getTemplateList (templateList : out TStringList) : TResult

getTemplate (templateType : in TString, templateRef : out TInterfaceRef) : TResult

Method

getTemplateList ()

This method is used to get a list of templates, each of which specifies a QoS service, such as Gold or Silver.

Parameters

templateList : out TStringList

This parameter contains a list of QoS service templates IDs.

· If no templates are found, then a P_Unknown_TEMPLATES exception is raised.

Method

getTemplate()

This method is used to get an interface reference to a specific template. The provider creates a temporary copy of the original template that contains all the QoS parameters for this template (e.g., Gold).

Parameters

templateType : in TString

This parameter contains template type.

templateRefRef : out TInterfaceRef

This parameter contains a reference to the template interface. Note that if the reference to this temporary template is lost, there is no way to recall it. To create a new temporary template this method has to be applied again, however, any values that were set in the old temporary template are lost.

28.7 Connectivity Management: Provisioned Quality of Service Template Interface

Inherits from the base interface.

This interface provides access to a specific QoS template, such as Gold, offered by the provider. This interface provides get methods to discover the QoS service details, and set methods to set the requested values for a new VPrP. The template specifies the QoS parameters and their default values. Each service template parameter is tagged by the service provider to indicate one of the following:

· Provider specified: the value can’t be modified for this template.

· Enterprise operator specified: operator may change the default value set by the provider. The default value can be blank to indicate that there is no default value for this parameter, and the user can change it according to advice typically given by the description parameters.

· Unspecified: the parameter is not used for this template, and the Enterprise operator can’t change it.

For example, maximum delay for a Gold template may be provider specified, while maximum bandwidth may be Enterprise operator specified, meaning that its values can be changed by the setProvisionedQoSInfo, or by setPipeQoSInfo methods. Guidance how to change the default values may be provided by the template description parameter.

The tag of a parameter can’t be changed by any set method of this interface, i.e., if a parameter is tagged unspecified, or provider specified, Enterprise operator can’t override the value of this tag to say operator specified.

This template is a temporary interface created as a copy of the original template that stores all the template parameters. The temporary interface is created with the getTemplate method of IQoSMenu interface. The values passed to this template interface by the set methods replace (if permitted by the tags) the default values stored in this template interface, i.e., a get following a set method to this template interface will fetch the new values set by the Enterprise operator. Once a new VPrP is created by the create method in IVPrN, the temporary interface might not be accessible anymore.

Interface Class

<<Interface>>

IQoSTemplate

getTemplateType (templateType : out TString) : TResult

getDescription (description : in TString) : TResult

getProvisionedQoSInfo (provisionedQoSInfo : out TProvisionedQoSInfo) : TResult

setProvisionedQoSInfo (provisionedQoSInfo : in TProvisionedQoSInfo) : TResult

getDsCodepoint (dsCodepoint : TSting) : TResult

setSlaID (slaID : in TString) : TResult

getPipeQoSInfo (pipeQoSInfo : out TPipeQoSinfo) : TResult

setPipeQoSInfo (pipeQoSInfo : in TPipeQoSInfo) : TResult

getValidityInfo (validityInfo : out TValidityInfo) : TResult

setValidityInfo (validityInfo : in TValidityInfo) : TResult

Method

getTemplateType()

This method is used to get the template type, e.g., Gold.

Parameters

templateType : out TString

This parameter contains the template type.

· If template type is not found, then P_UNKNOWN_TEMPLATE_TYPE exception is raised.

Method

getDescription()

This method is used to get a description of the QoS service stored in this template interface. connectivity manager APIs support default values set by the provider for each QoS parameter, i.e., a template (e.g., Gold template) may have a set of default values (e.g., a default value for minimum delay, a default value for maximum delay, etc.). If the network service provider allows (using the tags described above) the enterprise operator to change a specific default value, the provider can use this description to advise the user the conditions under which they can be changed, and the alternate values that can be used. The description can be shown to the Enterprise operator by rendering this description to the CM GUI.

Parameters

description : in TString

This parameter contains a description of the service for this template and may also be used to convey any advice to the user such as what values can be selected instead of default values.

· If the description is not found, then P_UNKNOWN_DESCRIPTION exception is raised. Note that if the description is found, but it contains no description, this should not raise the exception.

Method

getProvisionedQoSInfo()

This method is used to get the default values associated with this template (e.g., delay default value, loss default value).

Parameters

provisionedQoSInfo : out TProvisionedQoSInfo

This parameter consists of delay, loss, jitter, and exceed load action parameters.

· If no QoS information is found, then P_UNKNOWN_QOS_INFO exception is raised.

Data Types

TProvisionedQoSInfo

Sequence Element Name
Sequence Element Type
Documentation

delayDescriptor
TDelayDescriptor
Delay parameters

lossDescriptor
TLossDescriptor
Loss parameters

jitterDescriptor
TJitterDescriptor
Jitter parameters

excessLoadAction
TNameDescrpTagEnum
Excess action parameters

description
TNameDescrpTagString
Operator can add text using the Set method, if tag is Operator Specified

TDelayDescriptor

Sequence Element Name
Sequence Element Type
Documentation

meanDelay
TNameDescrpTagInt
in milliseconds

measurementPeriod
TNameDescrpTagInt
in milliseconds

maxDelay
TNameDescrpTagInt
in milliseconds

minDelay
TNameDescrpTagInt
in milliseconds

delayPriority
TNameDescrpTagInt
higher value indicates higher priority

description
TNameDescrpTagString
Operator can add text using the Set method, if tag is Operator Specified

The TDelayDescriptor lists the delay default values, i.e., default values for mean delay, maximum delay, minimum delay, and delay priority. A provides may choose to tag any number of delay parameters as provider specified, Enterprise operator specified, or unspecified. For example, a Gold template may have a default value just for the mean delay, leaving the other parameters either unspecified, or some set to enterprise operator specified.

TLossDescriptor

Sequence Element Name
Sequence Element Type
Documentation

meanLoss
TNameDescrpTagInt
per this many packets, one packet is lost

measurementPeriod
TNameDescrpTagInt
in milliseconds

maxLoss
TNameDescrpTagInt
per this many packets, one packet is lost

minLoss
TNameDescrpTagInt
per this many packets, one packet is lost

lossPriority
TNameDescrpTagInt
higher value indicates higher priority

description
TNameDescrpTagString
Operator can add text using the Set method, if tag is Operator Specified

The TLossDescriptorList lists the packet loss default values, i.e., mean loss, maximum loss, minimum loss, and loss priority. A provides may choose to tag any number of loss parameters as provider specified, Enterprise operator specified, or unspecified. For example, a Gold template may have a default value just for the mean loss only, leaving the other parameters either unspecified, or some be Enterprise operator specified.

TJitterDescriptor

Sequence Element Name
Sequence Element Type
Documentation

meanJitter
TNameDescrpTagInt
in milliseconds

measurementPeriod
TNameDescrpTagInt
in milliseconds

maxJitter
TNameDescrpTagSInt
in milliseconds

minJitter
TNameDescrpTagInt
in milliseconds

jitterPriority
TNameDescrpTagInt
higher value indicates higher priority

description
TNameDescrpTagString
Operator can add text using the Set method, if tag is Operator Specified

The lists the jitter default, delay values measured between packets, i.e., mean jitter, maximum jitter, minimum jitter, and jitter priority. A provides may choose to tag any number of jitter parameters as provider specified, Enterprise operator specified, or unspecified. For example, a Gold template may have a default value just for the mean jitter only, leaving the other parameters either unspecified, or some be Enterprise operator specified.

TNameDescrpTagInt

Sequence Element Name
Sequence Element Type
Documentation

name
TString
Name set by provider

description
TString
Description set by provider

tag
TEnum(OperatorSpecified, ProviderSpecified, Unspecified)
Tag set by provider. Can’t be overwritten by operator.

value
TInteger32
Can be set by operator or provider, depending on the tag value.

TNameDescrpTagString

Sequence Element Name
Sequence Element Type
Documentation

name
TString
Name set by provider

description
TString
Description set by provider

tag
TEnum(OperatorSpecified, ProviderSpecified, Unspecified)
Tag set by provider. Can’t be overwritten by operator.

value
TString
Can be set by operator or provider, depending on the tag value.

TNameDescrpTagEnum

Sequence Element Name
Sequence Element Type
Documentation

name
TString
Name set by provider

description
TString
Description set by provider

tag
TEnum(OperatorSpecified, ProviderSpecified, Unspecified)
Tag set by provider. Can’t be overwritten by operator.

value
TEnum(drop, transmit, reshape, remark)
Can be set by operator or provider, depending on the tag value.

This parameter specifies the policing treatment for traffic that exceeds the load parameters set for the virtual provisioned pipe. This policing function can take the following actions when the provider network detects that the traffic trying to enter the VPrP exceeds the load parameters specified in the pipe QoS loads parameters:

· Drop:
drop packets (i.e., don’t ever transmit them) that exceed the load traffic parameters that were set for the VPrP

· Transmit:
transmit packets even though transmitting them will create a load in excess of the load traffic parameters that were set for the VPrP

· Reshape:
reshape the entering traffic by trying to keep the packet (and not drop them yet) waiting for the entering traffic load to come down below the load conditions set for the VPrP, and if it does, transmit the packets then.

· Remark
remark the packet for a lower QoS service, then transmit them (i.e., transfer the packet through some other less demanding VPrP). This may result in increased packet loss (i.e., the excess packets may have now higher probability of being dropped before reaching their SAP or Site destination), or increased packet delay and / or packet jitter.
Method

setProvisionedQoSInfo()

The Enterprise operator uses this method to set the requested values for the QoS parameters. The values passed by this method replace the default values in the temporary template interface. Tag values associated with each parameter can be set only by the provider and can't be changed by the operator. If tag values are included in this method, they should be ignored. Only those parameters that are tagged with the value operator specified can be modified using this method. With this method, the name and description parameters are ignored.

Parameters

provisionedQoSInfo : in TProvisionedQoSInfo

This parameter consists of delay, loss, jitter, and exceed load action parameters.

· If a parameter from the delayParameters, lossParameters, jitterParameters, or excessLoadAction is tagged in the template with the values provider specified, or unspecified, then the P_Illegal_Tag exception is raised.

· If a value requested for a specific parameter by this method is not consistent with the advice given by the provider for choosing parameter values, the P_Illegal_Value is raised. This is an optional exception that would be applied if the provider can verify consistency on the fly. Otherwise, the new VPrP request will be denied by setting its status flag to disallowed.
· If a combination of requested parameters or parameter values is illegal, then P_Illegal_Combination is raised. An example of a illegal combination is maximum delay parameter and delay priority, as only one of the two can be used.

Method

getDsCodepoint()

This method is used to get the DiffServ Codepoint of QoS service offered by the template.

Parameters

dsCodepoint: out TDsCodepoint

This parameter holds the DS Codepoint for the VPrP. It has two parameters: match and mask to enable the provider to locate the bit string in any location in the 6-bit long field. The actual Codpoint is a result of an AND operation bit by bit of the two parameters.

· If no DS Codepoint is found, then P_UNKNOWN_DSCODEPOINT exception is raised.

Method

setSlaID()

This method is used to store a standing service level agreement (SLA) identifier associated it with a specific VPrP. SLA ID is optional and is not required to be part of every VPrP. Each time this method is performed, the new value replaces the old value in the template.

Parameters

slaID : in TString

This parameter contains the SLA ID.

· If the string representation of the SLA ID does not obey the rules for SLA identification, then a P_Illegal_SLA_ID exception is raised.

Method

getPipeQoSInfo()

This method is used to get pipe QoS information consisting of load parameters, direction of the traffic, and the endpoint (SAP or site) of a virtual provisioned pipe offered by this template.

Parameters

pipeQoSInfo : out TPipeQoSInfo

This parameter includes the pipe QoS default parameters for this template. The endpoints are not specified in the get pipe QoS method. The directionality and load parameters are tagged, and can be set by the provider or left for the operator to be set.

· If no pipe QoS information is found, then P_UNKNOWN_PIPEQOSINFO exception is raised.

Data Types

TPipeQoSInfo

Sequence Element Name
Sequence Element Type
Documentation

directionality
TNameDescrpTagDir
Specifies whether traffic is uni- or bi-directional.

serviceOrigin
TEndpoint

serviceDestination
TEndpoint

forwardLoad
TLoadDescriptor
Traffic flowing from service origin to service destination.

reverseLoad
TLoadDescriptor
Traffic flowing from service destination to service source.

description
TNameDescrpTagString

TNameDescrpTagDir

Sequence Element Name
Sequence Element Type
Documentation

name
TString
Name set by provider

destription
TString
Description set by provider

tag
TEnum(OperatorSpecfied,

ProviderSpecified, Unspecified)
Tag set by provider. Can’t be overwritten by operator.

Value
TEnum(undirectional,bidirectional)
Can be set by operator or provider, depending on the tag value.

TEndpoint

Sequence Element Name
Sequence Element Type
Documentation

type
TEnum(site, SAP)

ID
TString
End point name

TLoadDescriptor

Sequence Element Name
Sequence Element Type
Documentation

meanBandwidth
TNameDescrpTagInt
Bytes per second

measurmentInterval
TNameDescrpTagInt
milliseconds

maxBandwidth
TNameDescrpTagInt
Bytes per second

minBandwidth
TNameDescrpTagInt
Bytes per second

bandwidthShare
TNameDescrpTagInt
1/100 of percentage, e.g., 500 is 0.5%

bandwidthWeight
TNameDescrpTagInt

burstSize
TNameDescrpTagInt
Bytes

description
TNameDescrpTagString

setPipeQoSInfo()

This method is used to request pipe QoS parameters consisting of load parameters, direction of the traffic, and the endpoint (SAP or site) of the virtual provisioned pipe, as selected by the operator from the set of values offered by the provider. To modify any default value, the tag has to be set to OperatorSpecified. The parameters name, description, and tag are ignored with this method.

Parameters

pipeQoSInfo : in TPipeQoSInfo

This parameter includes the virtual provisioned pipe information regarding the flow direction, the load on the endpoint of the pipe, and the load on the endpoints.

· If a parameter is tagged with providerSpecified, or unspecified, then the P_Illegal_Tag exception is raised.

· If a value requested for a specific parameter by this method is not consistent with the advice given by the provider for choosing parameter values, the P_Illegal_Value is raised. This is an optional exception that would be applied if the provider can verify consistency on the fly. Otherwise, the new VPrP request will be denied by setting its status flag to disallowed.
· If a combination of requested parameters is illegal, then P_Illegal_Combination is raised

Method

getValidityInfo()

The operator uses this method to get the default time period set by the provider for the template. Applying a logical AND operation of all the components of this parameter evaluates the valid period(s). If the ValidSpecified Boolean parameter is set to False, the provider provided no default validity information. .

Parameters

validityInfo : out TValidityInfo

This parameter provides the default validity information.

· If no validity information is found for this template, then P_UNKNOWN_VALIDITY_INFO exception is raised. Note that if the validity information is found and validitySPecified, is FALSE this exception is not raised.

Data Types

TValidityInfo

Sequence Element Name
Sequence Element Type
Documentation

validFrom
TNameDescrpTagDateTime
valid start time

validPeriod
TNameDescrpTagTimePeriod
valid Duration

validDailyFrom
TNameDescrpTagTimeDaily
daily start time

validDailyPeriod
TNameDescrpTagTimePeriod
Daily Duration

dayOfWeek
TNameDescrpTagDayOfWeek
days of the week

month
TNameDescrpTagMonth
month in a year

description
TNameDescrpTagString

validitySPecified
TBoolean

TNameDescrpTagDateTime

Sequence Element Name
Sequence Element Type
Documentation

name
TString
Name set by provider

description
TString
Description set by provider

tag
TEnum(OperatorSpecified, ProviderSpecified, Unspecified)
Tag set by provider. Can’t be overwritten by operator.

value
TDateAndTime
Can be set by operator or provider, depending on the tag value.

TNameDescrpTagTimePeriod

Sequence Element Name
Sequence Element Type
Documentation

duration
TInteger32
in Seconds

TNameDescrpTagTimeDaily

Sequence Element Name
Sequence Element Type
Documentation

name
TString
Name set by provider

description
TString
Description set by provider

tag
TEnum(OperatorSpecified, ProviderSpecified, Unspecified)
Tag set by provider. Can’t be overwritten by operator.

value
TString with the following format HH:MM. HH two digit hour, and MM two digit minutes.

TNameDescrpTagDayOfWeek

Sequence Element Name
Sequence Element Type
Documentation

name
TString

description
TString

tag
TEnum(OperatorSpecified, ProviderSpecified, Unspecified)

value
Sequence(

mon
: TBoolean,

tue
: TBoolean,

wed
: TBoolean,

thur
: TBoolean,

fri
: TBoolean,

sat
: TBoolean,

sun
: TBoolean)

TNameDescrpTagDayMonth

Sequence Element Name
Sequence Element Type
Documentation

name
TString

description
TString

tag
TEnum(OperatorSpecified, ProviderSpecified, Unspecified)

value
Sequence(

jan
: TBoolean,

feb
: TBoolean,

mar
: TBoolean,

apr
: TBoolean,

may
: TBoolean,

jun
: TBoolean

jul
: TBoolean,

aug
: TBoolean,

sep
: TBoolean,

oct
: TBoolean,

nov
: TBoolean,

dec
: TBoolean)

Method

setValidityInfo()

The operator uses this method to set the required time period for a new VPrP. The requested time and the default time set by the provider are all AND together to evaluate the final valid time for this VPrP. Note that only those components that are tagged as operator specified can be set by the operator.

Parameters

validityInfo : in TValidityInfo

This parameter provides the requested validity information for a new VPrP.

· If a parameter is tagged with providerSpecified, or unspecified, then the P_Illegal_Tag exception is raised.

· If a value requested for a specific parameter by this method is not consistent with the advice given by the provider for choosing parameter values, the P_Illegal_Value is raised. This is an optional exception that would be applied if the provider can verify consistency on the fly. Otherwise, the new VPrP request will be denied by setting its status flag to disallowed.
· If a combination of requested parameters is illegal, then P_Illegal_Combination is raised

29. State Transition diagrams applicable to 3GPP OSA

The following STDs are taken from the 3GPP OSA documentation. These STDs were defined particularly for the mobile VHE environment, however their applicability to this specification should be considred by implementors.

29.1 Call control Manager

[image: image8.wmf]Active

exit/ release Call objects

"new"

IAccess.terminateServiceAgreement

enableCallNotification

disableCallNotification

Creation of

CallControlManager

by Service Factory

Notification terminated

entry/ ^AppCallControlManager.callNotificationTerminated

"faults detected"

IAccess.terminateServiceAgreement

"faults dissappeared"

enableCallNotification

disableCallNotification

Active state

In this state is a relation between the Application and the Generic Call Control Service Capability has been established. It allows the application to request triggers / events for incoming calls.

Notification terminated state

When the Call Control manager is in the Notification terminated state, some kind of network or gateway error prevents any triggers / events be forwarded to the application.

29.2 Call

[image: image9.wmf]Releasing

exit/ ^getCallInfoRes

ALL

STATES

Network Deassigned

ALL STATES except

Releasing

Active

Outgoing

Setup

Incoming

[final report is sent to application]

[final report is sent to application]

ICallControlManager.callEventNotify

getCallInfoReq

disconnect from called party ^routeCallToDestinationRes,

getCallInfoRes(intermediate report)

routeCallToDestinationReq

answer from called party

^routeCallToDestinationRes

deassignCall

timeout ^callFaultDetected

setChargePlan

superviseCallReq

Only send event

when requested

by Application.

deassignCall

release

disconnect from calling party

This means that

application has no more

outstanding requests for

events.

Incoming state

When the Call is in the incoming state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeCallToDestination(). Furthermore the Application can request for certain events by calling getCallInfoReq(). It is also allowed to request supervision of the call by calling superviseCallReq().

Outgoing Setup state.

When the Application has requested a connection to be established between the calling party and the called party and there is not yet any response from the called party side, the Call object is in state Outgoing Setup. In case the call could not be established, the Call object will go to state Incoming and the Application is allowed to setup a new call.

Active state

A connection between two parties has been established.

Releasing state

In this state the Application has requested the gateway to release the call. The gateway will keep the object until requested events are send to the application.

Network deassigned state

A transition to this state is made, when the application has received all requested events and no more outstanding events are present. In this state the Application is only allowed to de-assign the call.

29.3 UIManager

[image: image10.wmf]Active

exit/ release UI objects

"new"

IAccess.terminateServiceAgreement

createUI

createUICall

enableUINotification

disableUINotification

Creation of UIManager

by Service Factory

Active state

In this state is a relation between the Application and the User Interaction Service Capability has been established. It allows the application to request triggers / events for incoming calls.

29.4 UI

[image: image11.wmf]Active

sendInfoReq

sendInfoAndCollectReq

release

IUIManager.CreateUI

Active state

In this state the UI object is available for requesting messages to be send to the network.

29.5 UICall

[image: image12.wmf]Active

Release

Pending

Network Deassigned

Already requested

announcements will

continue.

Report error on all

requested UI for which a

result is expected.

Abort all ongoing UI

IUIManager:createUICall

sendInfoReq

sendInfoAndCollectReq

abortActionReq

'announcement end' ^sendInfoRes

'user input received' ^sendInfoAndCollectRes

'user input received'[not

last report]

^sendInfoAndCollectRes

'announcement end'[not last report] ^sendInfoRes

sendInfoReq[final request]

'final report'

'user input received'[last report]

^sendInfoAndCollectRes

'announcement end'[last report] ^sendInfoRes

release

ICall.deassign

ICall.release

^sendInfoAndCollectErr or

sendInfoErr

release

ICall.deassign

This means that

application has no

more outstanding

requests on

events.

Active state

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from the end-user.

Release pending state

A transition to this state is made when the Application has indicated that after a certain announcement no further announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object is destructed.

Network Deassigned state

A transition to this state is made, when the application has received all requested events and no more outstanding events are present. In this state the Application is only allowed to de-assign the UICall object. In case the related Call object is deassigned by the Application, the UICall object is also destruced when in this state.

29.6 User Location

[image: image13.wmf]Active

exit/ release UL objects

"

new"

terminateServiceAgreement

locationReportReq

extendedLocationReportReq

periodicLocationReportingStartReq

periodicLocationReportingStop

triggeredLocationReportingStartReq

triggeredLocationReportingStop

Creation of User Location

by Service Factory

29.7 User Location Camel

[image: image14.wmf]Active

exit/ release

ULC objects

"

new"

terminateServiceAgreement

locationReportReq

periodicLocationReportingStartReq

periodicLocationReportingStop

triggeredLocationReportingStartReq

triggeredLocationReportingStop

Creation of User Location

Camel by Service Factory

29.8 User Location Emergency

[image: image15.wmf]Active

exit/ release

ULE objects

"

new"

terminateServiceAgreement

emergencyLocationReportReq

subscribeEmergencyLocationReports

unSubscribeEmergencyLocationReports

Creation of User Location

Emergency by Service

Factory

29.9 User Status

[image: image16.wmf]Active

exit/ release US objects

"

new"

terminateServiceAgreement

statusReportReq

triggeredStatusReportingStartReq

triggeredStatusReportingStop

Creation of User Status by

Service Factory

� See definition of ‘LCS Client Type’ in GSM 09.02.

� See definition of ‘LCS Client Type’ in GSM 09.02.

� See definition of ‘LCS Client Type’ in GSM 09.02.

� See definition of ‘LCS Client Type’ in GSM 09.02.

� See definition of ‘LCSClientType’ in GSM 09.02.

� See definition of ‘LCSClientType’ in GSM 09.02.

PAGE
8

_1007982465.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of Parlay Phase 2

Telecom Network

Not in scope of Parlay Phase 2

2

6

Client

Application

Not in

 scope

of Parlay

Phase 2

_1010383246.doc

Active

exit/ release ULC objects

"new"

terminateServiceAgreement

locationReportReq

periodicLocationReportingStartReq

periodicLocationReportingStop

triggeredLocationReportingStartReq

triggeredLocationReportingStop

Creation of User Location Camel by Service Factory

_1010383627.doc

Active

exit/ release ULE objects

"new"

terminateServiceAgreement

emergencyLocationReportReq

subscribeEmergencyLocationReports

unSubscribeEmergencyLocationReports

Creation of User Location Emergency by Service Factory

_1010383256.doc

Active

exit/ release US objects

"new"

terminateServiceAgreement

statusReportReq

triggeredStatusReportingStartReq

triggeredStatusReportingStop

Creation of User Status by Service Factory

_1010382044.doc

Active

exit/ release UL objects

"new"

terminateServiceAgreement

locationReportReq

extendedLocationReportReq

periodicLocationReportingStartReq

periodicLocationReportingStop

triggeredLocationReportingStartReq

triggeredLocationReportingStop

Creation of User Location by Service Factory

_1006924015.ppt

SCF

SA-GF

Distributed

Service Logic

IF8

IF9

Figure 1

