This document is released under the terms and conditions set out on the front page.
Parlay API – SDL
Version: draft 0.0.2

3GPP TSG_CN OSA & SPAN3 AdHoc #04
Tdoc OSA-00028

ETSI, Sophia Antipolis
27-28 January, 2000

SDL Expression of the Formal Semantics of the Parlay API

Status
:
Draft

Issue
:
0.0.2

Date
:
17 January 2000

Editor
:
BT

This document and the SDL Specification it describes (the Documents), have been produced by BT. This version is 0.0.2 and further versions may be released in the future. The Documents are released under the following terms and conditions.

BT shall not be liable for any act you may or may not perform as a result of the contents of the Documents.

You may, at your discretion, copy and use the Documents and their contents for your own use.

No other licences are granted or implied by the release of the Documents by BT.

The Documents represent BT's own interpretation of the formal semantics of the Parlay API (Version 1.2). The Documents are draft documents and are not yet approved by Parlay. The interpretation given may therefore differ from the present view of the Parlay Organization.

BT would like to stress that the SDL specification is incomplete and has not been validated; it is presented for use as is.

CONTENTS

3Chapter 1 Introduction

1.1 Purpose
3
1.2 Objectives and Scope
3
1.3 Revision Control
3
1.4 Enquiries To
4
1.5 References
4
Chapter 2 Overview of the SDL Modelling Activity
5
2.1 Benefits of SDL/Tau
5
2.2 Architecture of the Model
5
2.3 Scope of SDL Model
6
Chapter 3 Results
8
3.1 Call Leg State
8
3.2 RouteCallToOrigination_Req()
8
3.3 Auto-deassign
9
3.4 Event Reporting
9
3.5 Call Ended
10
3.6 Attach Leg
11
3.7 UI Call Session
11
Chapter 4 Conclusions
12
Chapter 5 Appendix
13
5.1 Overview
13
5.2 Purpose
14
5.3 Naming Schemes
15
5.4 Gates, Signal Routes & Channels
15
5.5 Packages
16
5.6 Modelling Techniques for Inheritance
16
5.6.1
Inheritance of Signal Lists
16
5.6.2
Inheritance and Gates
16
5.6.3
Specialisation of Services
17
5.7 Instantiation
18
5.8 Data Structures
18
5.8.1
Strings
18
5.8.2
Unions
18
5.9 Procedures
19
5.9.1
FPARS
19
5.9.2
PUBLIC PROCEDURES
19
5.10 Signals
19
5.11 Service Factories
19
5.12 Client Applications
19
Chapter 1
 Introduction

1.1 Purpose

This document describes the results of the work that has been undertaken by BT to provide an SDL reference model of the Parlay API [1]. The document accompanies the SDL specification that has been made available under the terms and conditions set out on the front page.

1.2 Objectives and Scope

The work was undertaken following concerns from members of the Parlay working group, as well as a number of external companies, that the dynamic behaviour of the Parlay API needed to be defined more rigorously. While state diagrams in the Unified Modelling Language (UML)[2] are provided as part of the Parlay Core Specification, they were not considered detailed enough to remove the scope for interpretation.

The use of ITU’s Specification and Description Language (SDL) [3] is intended to provide a reference model that removes ambiguity from the intended behaviour, whilst leaving design and implementation decisions open to the individual developer.

The construction of this reference model was supported by teams within BT, who have produced prototype Parlay gateways in both CORBA and DCOM, and implemented them on top of IN, H323 and Service Node platforms. BT has attempted to produce a reference model that is both language and technology independent.

The adoption of a reference model will aid the implementation of Parlay and will eventually support the portability of applications across domains i.e. there will be a greater degree of standardisation between the implementations of the API of different network providers.

The specification source code is presented as SDL/SDT files and in Adobe Acrobat Portable Document Format (*.pdf). There are also five executable files (*_smd.sct) for those who wish to simulate the SDL system using the five sample services: simple number translation (SNT), wake-up call, rerouting on busy, ring-back. and user-guided routing (UGR). Command line files (*.com) and message sequence charts (in *.pdf and *.msc formats) are also included.

The SDL specification is based upon version 1.2 of the Parlay core specification.

1.3 Revision Control
Revisions of this document will be controlled using a numeric system where the first digit represents major revisions (changes resulting from formal steering committee review) and the second set of two digits represents minor revisions (any other changes).

Number
Date
Editor
Reason for Change

0.0.1
27 July 1999
Richard Kett

Michael Walkden

Gary Bruce
Initial draft based on version 1.1 of the core specification.

0.0.2
XX Jan 2000
Richard Kett

Michael Walkden
Second draft on completion of the work based upon version 1.2 of the core specification.

1.4 Enquiries To

Richard Kett
Michael Walkden
GaryBruce

B68 Rm 2

BT Advanced Communications

Technology Centre

Adastral Park,

Martlesham Heath

Ipswich, Suffolk

IP5 3RE
MLB 5 Rm 51

BT Advanced Communications Technology Centre

Adastral Park, Martlesham Heath

Ipswich, Suffolk

IP5 3RE
B68 Rm 3

BT Advanced Communications Technology Centre

Adastral Park, Martlesham Heath

Ipswich, Suffolk

IP5 3RE

Tel: 01473 644949
Tel: 01473 649447
Tel: 01473 642272

Fax: 01473 645831
Fax: 01473 647095
Fax: 01473 645831

E-mail : richard.kett@bt.com
E-mail: michael.walkden@bt.com
E-mail: gary.l.bruce@bt.com

1.5 References

The following is a list of documents and communications that were used in the preparation of this document

[1]
The Parlay API Specifications, Issue:1.2 http://www.parlay.org
[2] Unified Modelling language (UML) http://www.platinum.com/corp/uml/uml.htm
[3]
SDL – “System Engineering Using SDL-92”, A. Olsen et al., North-Holland, 1996.

[4]
'Proposed changes to Parlay 1.2' - Issues collated by BT's Parlay Focus Group and edited by Nick Edwards - draft C, 14/1/2000 (file name 'accparlay_1-2_issues_drft_c.doc').

Chapter 2 Overview of the SDL Modelling Activity

2.1 Benefits of SDL/Tau

SDL is a specification language with a graphical notation, which is based on asynchronous message passing between processes (extended finite state machines). Each process has a single FIFO queue for incoming signals. The language also supports synchronous communication using remote procedure calls (RPCs). The version of SDL used (SDL ’96) is an Object Orientated Language that supports inheritance through the use of process types. SDL is supported by a number of toolkits, most notably the Tau software development suite from Telelogic. The toolkit provides an SDL editor, an SDL analyser and an SDL to C code generator. The compiled C executable can be run in a simulator and the simulation trace recorded on a Message Sequence Chart (MSC). The ability to execute the specification from automatically generated code allows the dynamic behaviour of the Parlay API to be rigorously checked.

2.2 Architecture of the Model

This section gives a very high level description of the architecture of the model (full details are provided in the Appendix). The SDL System incorporates a number of packages, each of which contains the specification of an individual Parlay Service e.g. Generic Call Control Service (GCCS), Call User Interaction Service (CUIS). The Parlay Framework is also included in a package of its own. The use of packages provided the modularity that enabled the members of the SDL team to work on the development of the specification concurrently.

There are some additional packages that contain the following:

· the Parlay data-types which have been converted into SDL sorts

· the public definitions of remote procedures that are called between processes enclosed by blocks specified within different packages

· a service package containing a single process type from which all service process types inherit

· an application package containing a single process type from which all client application process types inherit.

· a client framework package which handles authentication on behalf of the application

· a client application package, which provides support for creating applications i.e. it provides a set of intermediate classes with useful default behaviour and flexibility points that can be specialised to produce finalised application logic. It is not mandatory to make use of the client application package in order to write an SDL application.

· a number of packages that exhibit finalised application behaviour e.g. SNT. These applications were written by sub-classing the intermediate process types in the client application package.

· a network resource package that provides environment processes representing actual calls in the network.

· an intelligent peripheral package that provides a resource for playing announcements and collecting digits from the end user.

Each Parlay service interface is supported by a single process type, which sends and receives signals to the application via a service block type gate. The signal lists that are supported by each block type gate are named after the name of the Parlay interfaces e.g. IparlayCall.

Asynchronous API calls (those with “in” parameters only) are handled as SDL signals, which allows the explicit or implicit consumption of a signal to be determined by the state of the receiving process.

Synchronous API calls (those with “in/out” parameters) are handled as RPCs (these are in fact a pair of signals with an implicit blocking state in the client).

The inclusion of TparlayResult on every method call was not deemed appropriate for the SDL specification. The main reasons for this decision are that:

· a true specification of behaviour should assume that all resources are infinite

· signals are always delivered providing the receiving process exists

· messages sent to stale object references (called output errors in SDL) cannot be “caught” and acted upon in the specification

The SDL model has been designed to support the inheritance of Parlay interfaces. Some tests were conducted early on to validate the inheritance model defining an SDL skeleton in an INAP-1 Call package (this is not included in the current SDL specification).

To identify all signals and procedures specified in the Parlay API from those that are internal to our model, the latter have been clearly labelled INTERNAL_<MESSAGE_NAME>.

Signals and procedures that are sent/ called between the Parlay service components and the underlying network are labelled INTERNAL_nw<MESSAGE_NAME>.

At present the SDL specification for call control contains no timers. The IP Package contains two timers, one to represent the duration of announcements, the other to represent the timeout value for collecting a response. These are currently set to arbitrary values.

2.3 Scope of SDL Model

The current system conforms to version 1.2 of the core Parlay Specification. It currently supports the following parts of the Parlay API:

· Framework

· Authentication

· Discovery

Integrity Management and OA&M are not supported.

· Generic Call Control Service (GCCS)

· Call Manager

· Call

· Call Leg

The SDL specification defines behaviour for nearly all GCCS interface methods. The setCallLoadControl() in the call manager is out of the scope of the specification and so the callOverloadEncountered and callOverloadCeased messages are not supported. Also the conditions that cause a callAborted() message to be sent by the call manager have not been defined.

· Call User Interaction Service (CUIS)

The SDL specification defines behaviour for all interface methods.

· Client Framework

· App_Authentication

· App_Discovery (included within an “SDL Service” as one of two threads of the App_Authentication process type)

· Client Application

The SDL specification will support the following kinds of client application scenarios:

· Simple Number Translation (SNT)

· Call Re-routing on Busy/ No Answer

· Wake-up Call (a preset alarm call with no user interaction)

· Ring-Back (a preset ring-back call that can complete to a destination address)

· User-Guided Routing (UGR)

A Generic Messaging Service (GMS) package has been constructed as an SDL skeleton but contains no behaviour at present. It is available for completion.

Chapter 3 Results

The specification of the Parlay API in SDL raised many issues, which were recorded and submitted to the Parlay Working Group (at the Dallas meeting at the end of 1999). Some important examples are described below along with descriptions of how we in BT proposed to resolve them. A full list of proposed changes is available in an accompanying document [4].

3.1 Call Leg State

The core specification does not define whether the object behind the call leg interface is supposed to:

1. always keep an accurate track of the true state of the call,

2. only track changes when driven by the event report requests made by the client application,

3. keep track of certain state changes regardless of whether the necessary events were requested by the client application.

If implemented, the first option would generate a lot of unnecessary network traffic. In order to maintain the true state of the call, each call leg would need to place event report requests on events that may not be pertinent to the execution of the client application.

For the second option to be implemented an allowable transition must be added to the call leg state diagram from CALL_PROCEEDING to FAILED [No Answer]
If the third option were implemented then the call leg would have to request notification on PARLAY_CALL_LEG_ROUTING_SUCCESS but not pass this information on to the client application. If the transition to ALERTING is not made by the call leg then the transition from CALL_PROCEEDING to FAILED [No Answer] cannot be executed and the result would be deadlock.

Option 2, was agreed to be the most sensible proposal and the addition of a new transition was adopted in the SDL specification. This proposal will need to be reviewed by the Parlay organisation. The implication for client application writer is that the Parlay API method getCallLegState() can not be guaranteed to return the true state of the call unless the appropriate event report requests (ERRs) have been set in the call leg. However, if the ERRs have been set then the client application will know the state of the call. In short, the API method is redundant.

3.2 RouteCallToOrigination_Req()

The core specification enables the establishment of a controlling leg to be requested through the routeCallToOrigination_Req() method. Currently the establishment of a passive leg may be requested through the routeCallToDestination_Req() before the originating leg is answered and has become connected, in which case a passive leg could be answered before the controlling leg. In the SDL reference model we have prevented this behaviour by the use of a synchronous method INTERNAL_routeOrigCallLeg(), which blocks invocations on the call interface until a response is received from the controlling leg.

Note that if the call legs are created using the createCallLeg() method and routed independently through the routeCallLegToAddress() method, then a request for the above behaviour by an application cannot be prevented.

3.3 Auto-deassign

The API does not define the behaviour of the API when the client application receives the last event report (Parlay Call Monitor Mode Notify only) that was requested (except end call). There are two choices to consider:

1. The responsibility to deassign the call will always rest with the client application, although this may lead to memory leaks within a real gateway.

2. The call will automatically deassign itself after the last event report (Parlay Call Monitor Mode Notify only) has been sent to the client application. This means that the client application must set an event report for the end of the call, in order to maintain control of the call. Alternatively the client application may be able to use getCallInfo_Req() to prevent the call being deassigned but this behaviour has not been specified as yet.

The second option is currently being tested within the SDL specification but the matter is still open to debate.

Following the delivery of an event report request of type Parlay Call Monitor Mode Interrupt, a timer may be required to implement the maximum time allowable for the application to respond. On expiry of the timer the call will be deassigned.

3.4 Event Reporting

Event reports may be requested by an application in one of two ways:

1. By setting values of the responseRequested parameter in the routeCallToOrigination_Req() and routeCallToDestination_Req() methods.

2. By requesting event reports directly through the callLegEventReport_Req() method.

The second way enables a wider set of events to be requested than the first, which is more limited. The possibility of requesting event reports via both ways is not ruled out by the core specification. This is problematic for the call leg, which must return events according to the way in which they were requested i.e.

1. Through the IparlayAppCall using the routeCallToOrigination_Res() and routeCallToDestination_Res() methods, or

2. Through the IparlayAppCallLeg interface using callLegEventReport_Res() method.

The SDL reference model simplifies the API call leg behaviour by imposing a restriction that all event reports must be requested before a call leg is routed. Since a call leg can only be routed once, this means that event reports can only be requested through one of the two ways described above.

Note that, as a consequence of the above restriction, an application is not able to request event notification of the end call event from an incoming controlling leg. However, if the call is abandoned prior to connection, the event should be reported through the callAborted() message from the call manager to the application logic. The conditions that cause this message to be sent by the call manager are not currently defined in the SDL specification.

Note that the SDL specification also restricts the successful invocation of the callLegInfo_Req() method to the IDLE state in the call leg. This is to ensure that the request is made before the call leg is routed. In consequence the callLegInfo_Res() message must be sent automatically i.e. without receiving callLegInfo_Req(), to the corresponding application interface or not at all.

3.5 Call Ended

When both routeCallToOrigination_Req() and routeCallToDestination_Req() messages are sent , the responseRequested parameter can be set in order for the client application to receive certain basic call events. These are listed in the table 1 below.

Value of responseRequested Parameter

Event
1
2
3
4
5
6
7

Call refused busy (I)

Call no answer (I)

Call answer (N)
Yes
No
Yes
No
Yes
No
Yes

Addressed party requests call release (I)
No
Yes
Yes
No
No
Yes
Yes

Call ended (N)
No
No
No
Yes
Yes
Yes
Yes

Table 1. The values of the responseRequested parameter and the events which are sent to the application as a result.

Key

I
Parlay Call Monitor Mode Interrupt – the application can take control of the call.

N
Parlay Call Monitor Mode Notify – the application cannot take control of the call.

The call should return the event information to the client application using the asynchronous messages routeCallToOrigination_Res() and routeCallToDestination_Res() respectively. For values 5,6 and 7 this message will be sent two or three times.

An issue arises when routeCallToOrigination_Req() sets its responseRequested to report the call ended event and then routeCallToDestination_Req() sets its responseRequested to report the answer event (or no events at all). There are two interpretations of the desired behaviour:

1. The routeCallToOrigination_Res() is expected to report the call ended event only for the duration before the call is answered (or simply routed to the destination address) i.e. the event report requests set on the terminating leg cancel the event report request set on the originating leg. Once the call has been answered (or simply routed to the destination address) it is correct for the call to auto-deassign before the call has ended.

2. The request for notification of call ended set by the the routeCallToOrigination_Req() is expected to cover the entire lifetime of the call (as the name suggests!).
While it is simpler to implement the first option, the second option may appear to be more intuitive to developers using the Parlay call interface.
3.6 Attach Leg

There was some confusion over the semantics of the API method attachLeg() i.e. what it means for a call leg to be attached to a call. The confusion arises from the related term “call leg association”. In phase 1 of Parlay a call leg created by its parent call is “associated” with that call for the remainder of its lifetime. During that period the call leg may be attached to, or detached from that call but is always associated with it. When attached to the call, a connection is established between the call leg and all other attached call legs. These connections are broken when the call leg is detached. In Parlay Phase 2, the call will have the ability to disassociate itself from a call leg and to “pass it over” to another call, which then holds the association. The call will only be able to do this if the call leg is first detached from the call.

We identified some further discrepancies in the Core Specification Call State Diagram (in UML), relating to the notion of attachment. We added transitions from IDLE to INACTIVE and delayed the transition of the call to ACTIVE until the first leg is actually attached (either internally or at the request of the application logic). By this mechanism we ensure that the following property is always maintained:

A call which has created a controlling leg, but which has no legs currently attached, cannot be in the ACTIVE state until a leg is attached.

3.7 UI Call Session

The SDL reference model currently limits the use of the UI Call functionality to a call leg rather than a call i.e. the UI call session is treated as a delegate to the call leg that it serves. Some of the methods on the UI Call interface were found to be missing a parameter that is required to pass in an interface reference to the master call leg. The parameter has been added where required.

The Core Specification does not state the intended lifetime of a UI Call Session, but we believe that it should be limited to at most the lifetime of the call leg that it serves. The lifetime may also be shortened at the request of the application logic e.g. by specifying that the UI Call is to issue a final announcement.

Chapter 4 Conclusions

The use of SDL to provide formal semantics to the Parlay API has proved that the behaviour of the API is open to interpretation in a number of areas. We have identified a number of issues and suggested potential resolutions. However, the SDL specification is far from complete and has not been validated. We suggest that with the use of the Tau Toolkit, further model checking/ validation is performed to tighten the specification still further. We believe the ability of SDL to express complex behaviour in a graphical notation will provide a valuable addition to the Parlay Core Specification. The existence of a reference model will assist developers in implementing Parlay more quickly and in producing more robust code. In the longer term it will aid the portability of applications across domains, which will benefit service providers and network operators alike.

.

Chapter 5 Appendix

5.1 Overview

The SDL System incorporates a number of packages, each of which contains the specification of an individual Parlay Service e.g. Generic Call Control Service (GCCS), Call User Interaction Service (CUIS). The Parlay Framework is also included in a package of its own. The use of packages provided the modularity that enabled the members of the SDL team to work on the development of the specification concurrently.

There are some additional packages that contain the following:

· the Parlay data-types which have been converted into SDL sorts

· the public definitions of remote procedures that are called between processes enclosed by blocks specified within different packages

· a service package containing a single process type from which all service process types inherit

· an application package containing a single process type from which all application process types inherit. An application interface is not part of the Parlay Core Specification. However the application process type has proved useful since can be used to ensure that setCallBack() is called on the corresponding service interface.

· a client framework package which handles authentication on behalf of the application

· a client application package, which provides support for creating applications i.e. it provides a set of intermediate classes with useful default behaviour and flexibility points that can be specialized to produce finalised application logic. It is not mandatory to make use of the client application package in order to write an SDL application.

· a number of packages that exhibit finalised application behaviour e.g. SNT. These applications were written by sub-classing the intermediate process types in the client application package.

· a network resource package that provides environment processes representing actual calls in the network.

· an intelligent peripheral package that provides a resource for playing announcements and collecting digits from the end user.

Each Parlay service interface is supported by a single process type, which sends and receives signals to the application via a service block type gate. The signal lists that are supported by each block type gate are named after the name of the Parlay interfaces e.g. IparlayCall.

Asynchronous API calls (those with “in” parameters only) are handled as SDL signals, which allows the explicit or implicit consumption of a signal to be determined by the state of the receiving process.

Synchronous API calls (those with “in/out” parameters) are handled as RPCs (these are in fact a pair of signals with an implicit blocking state in the client).

The inclusion of TparlayResult on every method call was not deemed appropriate for the SDL specification. The main reasons for this decision are that:

· a true specification of behaviour should assume that all resources are infinite

· signals are always delivered providing the receiving process exists

· messages sent to stale object references (called output errors in SDL) cannot be “caught” and acted upon in the specification

The SDL model has been designed to support the inheritance of Parlay interfaces. Some tests were conducted early on to validate the inheritance model defining an SDL skeleton in an INAP-1 Call Control package.

To identify all signals and procedures specified in the Parlay API from those that are internal to our model, the latter have been clearly labelled INTERNAL_<MESSAGE_NAME>.

Signals and procedures that are sent/ called between the Parlay service components and the underlying network are labelled INTERNAL_nw<MESSAGE_NAME>.

At present the SDL specification for call control contains no timers. The IP Package contains two timers, one to represent the duration of announcements, the other to represent the timeout value for collecting a response. These are currently set to arbitrary values.

5.2 Purpose

The purpose of the SDL model is to provide semantics to the Parlay API and hence to assist others in reaching a common understanding of the API. The SDL team has further helped in this respect by adopting a consistent approach to the following:

1. Naming schemes (signal lists, variables, process types etc.).

2. Gates, Signal routes & channels

3. The use of packages

4. Modelling inheritance

5. Instantiation

6. Data structures

7. Procedures

8. Signals

9. Service factories

10. Applications

By following these common practices it also enabled the SDL team to access, read, understand and integrate each other’s code.

5.3 Naming Schemes

1. Each signal list is named by the name given in the API documentation e.g. the methods in the IparlayCall interface are defined in a signal list called IparlayCall.

2. Block process type names are written in capitals and end in <NAME>__TYPE.

3. Gates are named in capitals and end in <NAME>__GATE.
4. Packages are named <NAME>_PACKAGE
5. Signal routes are named R1, R2 etc. – the order is arbitrary.

6. Channels are named C1, C2 etc. – the order is arbitrary.

7. All RPCs that are internal to a service block to be named INTERNAL_<PROCEDURENAME> e.g. INTERNAL_createOrigCallLeg including local procedures (even though these are not exported). It is the same for internal signals too (which can be called as input signals to affect a state transition) e.g. INTERNAL_createOrigCallLeg. Note that these signals cannot be defined in the block type and are defined in the service package because of the scope of the process types (see section on packages).

8. Variable names follow the usual conventions - start lower case, new word upper case, avoid using _ if possible e.g. newCallLeg, lastDialledNumber.
9. Variable types (syntypes) follow the usual convention – start upper case, new word upper case but also append the word Type e.g. CallLegType. This is already adopted in the data definitions in many cases. However, beware, to pass process ids over the API TIparlayInterface is used which is a syntype of PId. As yet there is no structure of syntypes derived from PId that mirrors the inheritance structure. This would allow a reference to a CallLegType for example to be widened to a TIparlayInterface.

10. The parameter names used are derived from those in the specification.

11. Variables declared to pass and receive parameter values from a signal or procedure call are preppended with an ‘s’. Variables defined as formal parameters of a procedure call are preppended with a ‘p’. Persistent process attributes typically preppended with ‘my’ e.g. myCallLegs.

12. The procedure and file are named identically i.e. <filename>.spd e.g. setCallBack is stored in a file called setcallback.spd. This allows Tau to automatically connect to the correct procedure when the process type is connected in the organizer.

5.4 Gates, Signal Routes & Channels

1. There is one block type gate per API interface, which is bi-directional. Signal routes between the block type gate and the process type gate are bi-directional by default. The signal route that carries (IparlayService) to the APP_GATE_SERVICE in the SERVICE_TYPE is an exception to this rule.

5.5 Packages

Each service (and the framework) is defined in a separate package with the signals and signal lists at their beginning. The block type and the process types within each package are scoped at the same level to enable inheritance of process types in one service package by process types defined in another.

5.6 Modelling Techniques for Inheritance

5.6.1 Inheritance of Signal Lists

1. A signal list is defined for each and every interface. If the interface is empty a placeholder is specified so that the specification is easier to update if a signal(s) is added later.

2. Where an interface is inherited the inherited signal list is included to form a wider signal list.

/* Service */

SIGNALLIST

IparlayService=

setCallBack;

/* Generic Call */

SIGNALLIST

IparlayCallManager=

(IparlayService),

setCallLoadControl,

createCall,

…

;
/* etc. */
5.6.2 Inheritance and Gates

Inheritance of an interface is modelled as a widening of the signals and signal routes between the block gate and an additional gate on the process type “inside”.

At the process type level the amendments required are:

· the addition of a gate and which is appended with the process type name (or some derivative) to the basic gate name i.e. <GATE_NAME>_<TYPE_NAME>. For example

APP_GATE_SERVICE

APP_GATE_CALL

APP_GATE_INAP_1_CALL
· the gate signal list is updated to support the widened lists. E.g. change

[(IparlayCall)]
to

[IparlayCallINAP1)]
For the block type

· the gate signal list is updated to support the widened lists. E.g. change

[(IparlayCall)]
to

[IparlayCallINAP1)]
A new signal route is connected between the block gate (representing the widened interface) and the additional gate on the process sub-type

· The widened list is used for this new signal route. This results in some redundancy but does not cause an error or even a warning. Note that each process only has a single FIFO queue.

· The type used in the process definition must be updated. E.g. change

CALL_SESSION(0,10): CALL_TYPE
to

CALL_SESSION(0,10): INAP1_CALL_TYPE
5.6.3 Specialisation of Services

An example of a specialisation is the INAP-1 Call Control Service, which is a specialisation of the Generic Call Control Service. In the SDL specification block types represent services however, block types do not inherit to achieve the specialisation,. Instead the inheritance is a feature of the individual interfaces and is achieved by the corresponding process types. To specialise a service

1. a new package is created and the package of the parent service is used (use <NAME>_PACKAGE;).

2. the inherited signal lists are defined. For non-inherited signal lists the definitions must be remade explicitly. E.g.

SIGNALLIST

IparlayCall=

(IparlayCall);
3. a copy of the block type of the parent service is added to the package and renamed accordingly.

4. new process types are created, which inherit from existing process types as required e.g. inherit INAP_1_CALL_TYPE from CALL_TYPE.
5. an additional gate is added to carry the additional signals that are sent/received by the process sub-type. This gate is named according to the convention described above.

6. process definitions are updated as described above

7. signal lists are updated as appropriate.

8. use the most specialized service package in your system to test the new service.

See GCCS and INAP_1_CCS example in the sdl directory.

5.7 Instantiation

Service factory processes are used to create all other processes. This allows the process types to be defined outside the block type and enables the inheritance described above. Note that the create<service>Mgr signal has to be explicitly redefined in an inherited package.

5.8 Data Structures

5.8.1 Strings

SDL ’92 Strings are used for variable length data structures, which is more flexible than defining fixed length arrays. E.g.

NEWTYPE CallLegList

String(CallLegType, no_legs)

ENDNEWTYPE CallLegList;

5.8.2 Unions

SDL choice is used for union structures. Choice is based on the corresponding ASN.1 data type, however according to Tau documentation, choice in SDL can be seen as a C union with an implicit tag field.
Example

 newtype C1 choice

 a Integer;

 b Charstring;

 c Boolean;

 endnewtype;

 dcl var C1;

 task var!b := 'hello'; /* Assign component b */

 decision var!Present: /* Check which component in use */

 (a): 'task handling a type values, ie Integer';

 (b): 'task handling b type values, ie Charstring';

 (c): 'task handling c type values, ie Boolean';

 enddecision;
5.9 Procedures

Procedures are used for messages carrying in/out parameters. If the invocation of the procedure needs to be limited to a particular state then the SDL Save construct is employed using the procedure name.

5.9.1 FPARS

Since SDL does not support out only there are two possibilities:

1. Treat out parameters as returns (this option was rejected because some procedures have two outs)

2. Treat out parameters as in/out (accepted)

5.9.2 PUBLIC PROCEDURES

Remote procedures that are called from outside a service block type e.g. by the Framework on the GCCS should be declared public within the PUBLIC_PACKAGE.

5.10 Signals

Use signals for all messages that carry in parameters only, unless used (as a pair) to limit the invocation of a procedure.

5.11 Service Factories

Service factories are used to create all processes within a service. This is necessary since process types have to be scoped outside the service block type in order to enable inheritance.

5.12 Client Applications

Client Applications can be written in 3 ways in SDL

1. from scratch

2. by copying the skeleton and adding behaviour

3. by inheriting from an application and then specialising the code.

Currently option 3 is adopted as the preferred method. The application skeleton actually contains some default behaviour e.g. in the application process type to invoke the setCallBack . The skeleton represents the beginnings of an application framework, which will have both default behaviour and flexibility points for specialising behaviour.

End of Document

� EMBED PowerPoint.Slide.8 ���

page
Editor: BT
Date: 17 January 2000
Page: 1 of 20

This document is released under the terms and conditions set out on the front page.

[image: image1.wmf]‘end party’

client

application

‘party agent’

 client

application

call control service

NETWORK

call control service API

implicit control of

bearer connections

bearer connections

_964346368.ppt

‘end party’

client

application

‘party agent’

 client

application

call control service

NETWORK

call control service API

implicit control of

bearer connections

bearer connections

