

Spatial Channel Modeling in 3GPP2 TSG-C

Spatial Channel Modeling

- WG5 Spatial Channel Model Ad-Hoc created to:
 - Define spatial channel characteristics and simulation methodology
 - Establish the framework under which to evaluate multi-antenna component technologies in 1x-EVDV
- Contributions to the Ad-Hoc focus on definitions that accommodate a broad range of antenna technologies:
 - Multiple Input Multiple Output (MIMO)
 - Multiple Input Single Output (MISO)
 - Single Input Multiple Output (SIMO)
 - Diversity and Beamforming based techniques
- Ad-Hoc's activities are currently in progress.

Spatial Channel Model Ad-Hoc Activities

Link Level Specifications

Channel Model	Multi-path Model	# of Fingers	Speed (kmph)	Fading	BS Angle Spread (deg)	Power Azimuth Spectrum(PAS)	Mean Angle of Arrival (deg)
Model A	Pedestrian A	1	3	Jakes	5	Laplacian	20
							50
Model B	Pedestrian B	3	10	Jakes	5	Laplacian	20
							50
Model C	Vehicular A	2	30	Jakes	5	Laplacian	20
							50
Model D	Pedestrian A	1	120	Jakes	5	Laplacian	20
							50
Model E	Single path	1	$0, f_D=1.5$	Rician Factor	5	Laplacian &	20
			Hz	K = 10 dB		Rician	50
Model F	Single path	1	3	Rayleigh iid	N.A.	N.A.	N.A.

Model	Finger1 (dB)	Delay	Finger2 (dB)	Delay (Tc)	Finger3 (dB)	Delay (Tc)	*FURP (dB)
Ped-A	-0.06	0.0					-18.8606
Ped-B	-1.64	0.0	-7.8	1.23	-11.7	2.83	-10.9151
Veh-A	-0.9	0.0	-10.3	1.23			-10.2759

Link Level Specifications (cont.)

Channel	Terminal		
Parameters			
Model	T1	T2	
Angle Spread, rms in degrees (AS)	90	50	
Mean Angle of Arrival, degrees (AOA)	22.5	67.5	

- Per path delay spatial parameters are identical (not finalized)
- Polarization modeling currently under study
- Resulting Models are defined with antenna spacings as free variables
- Channel Realizations can be conducted with Correlation Matrix or Ray-Tracing methods. Techniques defined but not single methodology adopted yet.
- Simulation calibration procedures not defined yet

^{*} FURP: Fractional Unrecovered Power

SIG SENERATION PARTNERSHIP PROJECT 2

System Level Spatial Channel Modeling

- Objective: Define Methodology for System Wide performance evaluation of multi-antenna schemes.
- System-Specific Spatial Parameters defined:
 - Incorporate all scalar channel assumptions and channel model mixture from Evaluation Methodology Assumptions (WG5)
 - Mobile Base Station positions
 - Angle of Arrivals at BS, MS relative to broadside
 - Random MS orientation
 - Per path delay spatial parameters as defined in link level assumptions
 - Explicit modeling of Forward Link interference (in terms of AS, AOA)
 - Determination of Forward Vector/Matrix Channel Quality using appropriate metric (currently open issue).
 - » Metric Specific to MIMO/MISO/SIMO technique used at the terminal
 - » Metric accounts for in-cell and out-of-cell interference
 - » Each multi-antenna component proposal must be accompanied by its system metric definitions
 - » Proposals must include metric to FER mappings for system level performance evaluation

2RD BENERATION PARTNERSHIP PROJECT 2

System Level Spatial Channel Modeling (cont.)

- Correlation Matrix or Ray-Tracing method for system level analysis have been defined. No single method adopted yet.
- Spatial Interference Characteristics have been shown to be non-uniform, requiring explicit interference modeling.

Goals

- Define spatial channel models for link & system level analysis that are:
 - Representative of realistic environments
 - Easily repeatable, and computationally mild

Possible 3GPP-3GPP2 Commonality

- Would it make sense to have a common 3GPP2-3GPP channel model?
- A common 3GPP2 3GPP channel model would:
 - Enable cross-verification of proposed technologies
 - Make performance results directly comparable
 - Broaden the acceptance of antenna technologies through the use of common simulation framework
 - Accelerate the standardization of proposed schemes