

1xEV-DV Forward Link Overview

Key Aspects of Current 1xEV-DV Forward Link Design

- Fully maintains existing cdma2000 channels and signaling structure
- Set of fixed packet sizes (384, 768, 1536, 2304, 3072, and 3840 bits)
- Variable packet durations (1.25, 2.5, 5, and 10 ms)
- Channel sensitive scheduling
- C/I feedback rate of 800 Hz
- Scheduling time granularity of 1.25 ms
- Asynchronous retransmissions
- Adaptive modulation and coding with higher-level modulation schemes (QPSK, 8-PSK, and 16QAM)
 - Modulation can be changed for retransmission (asynchronous adaptive incremental redundancy—AAIR)
- Variable duration code-division multiplexed common control channels (1.25, 2.5, and 5 ms)
- Synchronous acknowledgements
- Using existing cdma2000 turbo codes, Quasi-Complementary Turbo Code (QCTC) interleaving
- TDM/CDM capability included, exact details under study

Forward Link Channel Structure

- Current 1xEV-DV design maintains backward compatibility with previous cdma2000 and IS-95 releases, i.e. existing channels are supported in 1xEV-DV
- Thus, a base station supporting an 1xEV-DV forward link can also support mobile stations conforming to
 - TIA/EIA/IS-95-A
 - TIA/EIA/IS-95-B
 - cdma2000 Revision 0
 - cdma2000 Revision A
 - cdma2000 Revision B

New Forward Link Channels

- Forward Packet Data Channel (F-PDCH)
 - Shared by packet data users
 - Consist of a number of code-division-multiplexed quadrature Walsh subchannels, each spread by 32-ary Walsh function
- Forward Primary Packet Data Control Channel (F-PPDCCH)
 - Used to indicate the Sub-packet Length (duration) of F-PDCH (and of F-SPDCCH implicitly)
 - Optional (when blind decoding on F-SPDCCH)
- Forward Secondary Packet Data Control Channel (F-SPDCCH)
 - Used to send the scheduled user's MAC ID, ARQ Channel ID, Encoder Packet Size, and Sub-packet ID for most of the time
 - Used to broadcast available Walsh space information when needed

View of cdma2000 FL Channels

FL Channels Used in DV Data-Only Mode

Reverse Link Channels that Support Forward Link Packet Data Operation

- Reverse ACK Channel (R-ACKCH)
 - ACK Channel to indicate to the base station whether a sub-packet transmitted on the F-PDCH was received successfully or not
- Reverse Channel Quality Indicator Channel (R-CQICH)
 - Used by the mobile station to indicate to the base station the channel quality measurements of the best serving sector

Basic Operation

(1) 1X-EV-DV common carrier BS

Forward Link Operation Overview (1)

- The BS transmit power and code space is dynamically shared between the rate controlled packet data users and power controlled circuit switched voice/data users
- The Forward Link for the power controlled circuit switched voice/data is identical to cdma2000 1X
- The rate controlled packet data users share a common channel with dynamically changing code space and power
- Each 1xEV-DV mobile continually measures the C/I from all active BS's using the continuous F-PICH. The mobile selects the best serving cell based on the measured C/I
- The mobile transmits the C/I based on the serving sector pilot every 1.25 ms (cdma2000 power control group) back to the base station on the R-CQICH

- The BS, determines the highest priority user(s)
- The BS collects the C/I feedback from all active users on the R-CQICH and schedules the transmission of the user control information and data to the users in a time-multiplexed/code multiplexed (primarily time-multiplexed) fashion
- The exact rate of the Forward Link transmission depends on the operation of the asynchronous and adaptive incremental redundancy operation
- The transmission rate is explicitly indicated to the mobile via the F-SPDCCH
- If the MS receives a transmission on the F-SPDCCH, the MS decodes the corresponding data packet on the F-PDCH
- If the mobile decodes the data packet on the F-FPDCH correctly, it sends an ACK (positive acknowledgement) to the BS. Otherwise, it sends a NACK (negative acknowledgement) to the BS
- The power control bits for the mobile's reverse link operation are signaled via the IS-2000 F-CPCCH common power control channel

Example of AAIR Operation

- No synchronized timing relationship for retransmission
- Amount of redundancy can be varied in response to channel conditions
- Allows a flexible multiplexing of transmissions of different lengths

Forward Packet Data Channel

Cover N

Scrambler

Forward Packet Data Channel (cont'd)

F-PDCH Channel Interleaving (QCTC)

- Interleaves sub-blocks
 - Maintians systematic bits in first group
 - Maximum number of systematic bits are transmitted in first subpacket

Forward Primary Packet Data Control Channel (optional)

F-PDCH Sub-packet Length (Number of 1.25-ms Slots)	Coded Symbols	
1	'000'	
2	'101'	
4	'110'	
8	'011'	

Forward Secondary Packet Data Control Channel

per N Slots (38.4 ksps)

- Three F-SPDCCH transmission durations (1.25, 2.5, and 5 ms)
- Indicate frame lengths of 1.25, 2.5, 5, and 10 ms
 - 5 and 10 ms frame lengths distinguished by different initializations of the CRC
- Code rates and repetition:

- 1.25 ms: Rate ½

- 2.5 ms: Rate 1/4

- 5 ms: Rate ¼ with repetition before interleaving

- If F-PPDCCH is not present, do blind rate determination
- Fields in message
 - 2-bit ARQ Channel identity permits 4 parallel channels per mobile station
 - 2-bit sub-packet identity permits 4 groupings of encoded symbols to be transmitted
 - 3-bit encoder packet size (384, 768, 1536, 2304, 3072, and 3840 bits)

Forward Packet Data and Control Channel Operation

Transmission of Walsh Information

- Send on F-BCCH
 - Indicator to use default Walsh space, or
 - Actual ordering of Walsh functions to be used
- Use all zero MAC ID on F-SPDCCH to indicate special control information
 - One special control information is the WALSH_SPACE

Default Walsh Space

32-ary Walsh Codes	(continued)
31	30
15	14
23	22
7	6
27	26
11	10
19	18
3	2
29	28
13	12
21	20
5	4
25	24
9	8

- Channels are code multiplexed with existing cdma2000 reverse link channels
- Reverse ACK Channel (R-ACKCH)
 - ACK/NAK Channel to indicate to the base station whether a sub-packet and F-SPDCCH was received successfully or not
 - Transmitted off unless F-SPDCCH indicates that last subpacket was directed to the mobile station
 - ACK indicates that the packet sent on the F-PDCH was correctly decoded
 - NAK indicates that the F-SPDCCH was correctly received, but that the packet sent on the F-PDCH was not correctly decoded
- Reverse Channel Quality Indicator Channel (R-CQICH)
 - Used by the mobile station to indicate to the base station the channel quality (C/I) measurements of the best serving sector
 - C/I quantized to a 5-bit value, referenced to Pilot Channel (${
 m E_{pilot}/N_t}$)
 - An 8-ary Walsh function (best sector indicator) corresponding to the best serving sector is used to cover the R-CQICH transmission
 - Further spread by 16-ary Walsh code

Reverse Link Channels that Support Forward Link Packet Data Operation (cont'd)

 W_{16}^{64}

Fixed Packet Size with Variable Packet Duration – Data Only (1)

Statistics on Slot Length (Payload Size)

	384	768	1536	2304	3072	3840
■ 1-slot	0.852	0.653	0.366	0.221	0.147	0.048
■2-slot	0.119	0.217	0.345	0.405	0.400	0.299
□4-slot	0.009	0.051	0.166	0.247	0.276	0.384
■8-slot	0.020	0.079	0.123	0.127	0.177	0.269

Fixed Packet Size with Variable Packet Duration – Data Only (2)

Statistics on Slot Length (Traffic)

	1-slot	2- slot	4-slot	8- slot
■ WAP	0.291	0.300	0.202	0.207
■ HTTP	0.175	0.362	0.267	0.196
□FTP	0.163	0.368	0.273	0.196
□NRV	0.613	0.231	0.098	0.058

Fixed Packet Size with Variable Packet Duration – Data and 50% Voice (1)

Statistics on Slot Length (Payload Size)

	384	768	1536	2304	3072	3840
■ 1-slot	0.691	0.429	0.168	0.178	0.063	0.000
■ 2-slot	0.186	0.266	0.319	0.359	0.292	0.200
□ 4- slot	0.029	0.101	0.242	0.275	0.348	0.395
□8-slot	0.095	0.203	0.272	0.187	0.298	0.405

Fixed Packet Size with Variable Packet Duration – Data and 50% Voice (2)

Statistics on Slot Length (Traffic)

	1-slot	2-slot	4- slot	8- slot
■ WAP	0.179	0.268	0.233	0.321
■HTTP	0.101	0.270	0.290	0.340
□FTP	0.132	0.313	0.291	0.264
□NRV	0.427	0.259	0.158	0.156

- Estimation of traffic to pilot ratio for F-PDCH and rate at which F-PDCH power can be varied (closed)
- Modulation schemes for retransmission
- Enhancements to IR
- Number of MAC ID
- Efficient C/I feedback (differential feedback)
- 64QAM
- Performance enhancements for small packets
- Fast Cell Selection
- 1.25 ms slot size
- Number of ARQ channels and possible relaxing of timing requirements
- Generating CRC with MAC ID

Component Proposals

- Antenna concepts
 - Adaptive antennas
 - 4-way transmit diversity
 - Selection Transmit Diversity (STD)
 - Multiple Input Multiple Output (MIMO)
 - Differential Measurement Metric (DMM)
- Cell Selection Soft Handoff
- LA and LS spreading codes
- Maintenance Channel
- Multiple Quality Control (MQC)