Page 1

3GPP TSG CT WG4 Meeting #87
C4-188102
West Palm Beach, US, 26-30 November 2018
was C4-187561

was C4-187141
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	29.573
	CR
	0003
	rev
	2
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	N32-f Error Reporting

	
	

	Source to WG:
	Huawei

	Source to TSG:
	CT4

	
	

	Work item code:
	5GS_Ph1-CT
	
	Date:
	2018-09-24

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	SA3 has specified that when a SEPP detects an error while processing an N32-f message, which could either be a request or a response, the details of the error are reported to the peer SEPP via N32-c.
Corresponding stage 3 procedure, HTTP methods and data structures for N32-f error reporting via N32-c needs to be specified.

	
	

	Summary of change:
	1. Specify the N32-f error reporting procedure on N32-c
2. Specify the corresponding HTTP methods and data structures

Changes in Rev2:
1. Table numbers referred in 6.1.4.x.1 are corrected.

	
	

	Consequences if not approved:
	N32-f error reporting procedure is unspecified and not aligned with SA3.

	
	

	Clauses affected:
	5.2.1, 5.2.2, 5.2.3.3, 5.2.4, 5.2.x (new), 6.1.4.1, 6.1.4.x (new), 6.1.4.x.1 (new), 6.1.4.x.2 (new), 6.1.5.1, 6.1.5.2.x1 (new), 6.1.5.2.x2 (new), 6.1.5.2.x3 (new), 6.1.5.2.x4 (new), 6.1.5.2.x5 (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

* * * First Change * * * *

5.2.1
General

The initial handshake procedure is used between the SEPP on the NF service consumer side (c-SEPP) and the SEPP on the NF service producer side (p-SEPP) to mutually authenticate each other and negotiate the security mechanism to use over N32-f along with associated security configuration parameters.

A HTTP/2 connection shall be established between the c-SEPP and the p-SEPP end to end over TLS. The following N32 handshake procedures are specified in the subclauses below.

-
Security Capability Negotiation Procedure
-
Parameter Exchange Procedure
-
N32-f Context Termination Procedure
-
N32-f Error Reporting Procedure
* * * Next Change * * * *
5.2.2
Security Capability Negotiation Procedure
The initiating SEPP shall initiate a Security Capability Negotiation procedure towards the responding SEPP to agree on a security mechanism to use for protecting NF service related signalling over N32-f. An end to end TLS connection shall be setup between the SEPPs before the initiation of this procedure. The procedure is described in Figure 5.2.2-1 below.

[image: image1.emf]Initiating SEPP

Responding SEPP

1. POST ../exchange-capability (SecNegotiateReqData)

2a. 200 OK (SecNegotiateRspData)

2b. 4xx/5xx (ProblemDetails)

Figure 5.2.2-1: Security Capability Negotiation Procedure

1.
The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the "SecurityNegotiateReqData" IE carrying the following information

-
Supported security capabilities (i.e ALS and/or TLS)

2a.
On successful processing of the request, the responding SEPP shall respond to the initiating SEPP with a "200 OK" status code and a POST response body that contains the following information

-
Selected security capability (i.e ALS or TLS)

The responding SEPP compares the initiating SEPP's supported security capabilities to its own supported security capabilities and selects, based on its local policy, a security mechanism, which is supported by both the SEPPs. If the selected security capability indicates any other capability other than ALS, then the HTTP/2 connection initiated between the two SEPPs for the initial handshake procedures shall be terminated. The negotiated security capability shall be applicable on both the directions. If the selected security capability is ALS, then the two SEPPs may decide to create (if not available) / maintain HTTP/2 connection(s) where each SEPP acts as a client towards the other (which acts as a server). This may be used for later signalling of N32-f error reporting procedure (see subclause 5.2.x) and N32-f context termination procedure (see subclause 5.2.4).
2b.
On failure, the responding SEPP shall respond to the initiating SEPP with an appropriate 4xx/5xx status code as specified in clause 6.1.4.2.
* * * Next Change * * * *

5.2.3.3
Parameter Exchange Procedure for Protection Policy Exchange

The parameter exchange procedure for protection policy exchange may be performed after the Parameter Exchange Procedure for Cipher Suite Negotiation (see subclause 5.2.3.2). If a HTTP/2 connection does not exist towards the peer SEPP at the time of initiating this procedure, the HTTP/2 connection shall be established. If the parameter exchange procedure for the protection policy exchange is not performed then the protection policies between the SEPP shall be exchanged out of bands.
The procedure is described in Figure 5.2.3.3-1 below.

[image: image2.emf]Initiating SEPP

Responding SEPP

1. POST ../exchange-params (SecParamExchReqData)

2a. 200 OK (SecParamExchRspData)

2b. 4xx/5xx (ProblemDetails)

Figure 5.2.3.3-1: Parameter Exchange Procedure for Protection Policy Negotiation

1.
The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the "SecParamExchReqData" IE carrying the following information
-
Protection policy information
The protection policy information contains:

-
API to IE mapping containing the mapping information of list of leaf IEs for each service operation API URI and method.

-
List of IE types that are to be protected across N32-f (i.e the protection policy); and

-
Against each leaf IE in the API to IE mapping information, a boolean flag indicating whether that IE is allowed to be modified by an IPX on the side of the SEPP sending the protection policy information.

Editor's Note: Its is FFS how to exchange the protection policy including the IEs allowed to be modified by IPX for notifications.
2a.
On successful processing of the request, the responding SEPP shall respond to the initiating SEPP with a "200 OK" status code and a POST response body that contains the following information

-
Selected protection policy information

The SEPPs shall store the selected protection policy information and shall apply this policy for subsequent message transfers over N32-f. The selected protection policy is applicable for both the directions of communication between the SEPPs.
The HTTP/2 connection used for the N32 handshake procedures may be terminated after the completion of this procedure.
2b.
On failure, the responding SEPP shall respond to the initiating SEPP with an appropriate 4xx/5xx status code as specified in clause 6.1.4.3.

An illustration of how the protection policy is stored and looked up in the SEPP is provided below

[image: image3.emf]HTTP Method

IeInfo

HTTP Method

IeInfo

HTTP Method

IeInfo

HTTP Method

IeInfo

Protection Policy =

IeTypeList

Modification Policy

= IeTypeList

Protection Policy =

IeTypeList

Modification Policy

= IeTypeList

Incoming HTTP

Request

2. If no entry found then how to identify if the

API invoked is a notification is FFS

API URI1

API URI2

API URI3

API URI4

1. Search for an API URI matching the :path

in incoming HTTP request/response to the

SEPP

??

Figure 5.2.3.3-2: Protection Policy Storage and Lookup in SEPP

During the N32-f message forwarding, the SEPP looks at a HTTP request or response it receives from an NF service consumer or NF service producer and then uses the above tables to decide which IEs and headers in the message it shall cipher and integrity protect and which IEs it shall allow the IPXes to modify.

* * * Next Change * * * *

5.2.4
N32-f Context Termination Procedure
After the completion of the security capability negotiation procedure and/or the parameter exchange procedures, an N32-f context is established between the two SEPPs. The "n32fContextId" of each SEPP is provided to the other SEPP. This context identifier shall be stored in each SEPP until the context is explicitly terminated by the N32-f context termination procedure. The SEPP that is initiating the N32-f context termination procedure shall use the HTTP method POST on the URI: {apiRoot}/n32c-handshake/v1/n32f-terminate. If a HTTP/2 connection does not exist towards the receiving SEPP, a HTTP/2 connection shall be created before initiating this procedure. The procedure is shown below in Figure 5.2.4-1.

[image: image4.emf]Initiating SEPP

Responding SEPP

1. POST ../n32f-terminate (N32fContextInfo)

2a. 200 OK (N32fContextInfo)

2b. 4xx/5xx (ProblemDetails)

Figure 5.2.4-1: N32f Context Termination Procedure

1.
The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the N32-f context id information that is to be terminated.

2a.
On success, the responding SEPP, shall:

-
stop sending any further messages over the N32-f towards the initiating SEPP;

-
once all the ongoing N32-f message exchanges with the initiating SEPP are completed or timed out, delete the N32-f context identified by the "n32fContextId" provided in the request.

The N32-f HTTP/2 connections from the responding SEPP shall not be deleted if they terminate at an IPX, since that HTTP/2 connection may carry traffic towards other PLMN SEPPs as well. The responding SEPP shall return the status code "200 OK" together with an N32ContextInfo payload body that carries the "n32fContextId" of the initiating SEPP, that the responding SEPP has store.

The initiating SEPP shall:

-
stop sending any further messages over the N32-f towards the responding SEPP;

-
once all the ongoing N32-f message exchanges with the responding SEPP are completed or timed out, delete the local N32-f context identified by this "n32fContextId".

2b.
On failure, the responding SEPP shall return an appropriate 4xx/5xx status code together with the "ProblemDetails" JSON body.
* * * Next Change * * * *

5.2.x
N32-f Error Reporting Procedure

When a SEPP is not able to process a message it received over the N32-f interface due to errors, the error information is conveyed to the sending SEPP by using the N32-f error reporting procedure over the N32-c interface. The SEPP that is initiating the N32-f error reporting procedure shall use the HTTP method POST on the URI: {apiRoot}/n32c-handshake/v1/n32f-error. If a HTTP/2 connection does not exist towards the receiving SEPP, a HTTP/2 connection shall be created before initiating this procedure. The procedure is shown below in Figure 5.2.x-1.

[image: image5.emf]Initiating SEPP

Responding SEPP

1. POST ../n32f-error (N32fErrorInfo)

2a. 204 No Content

2b. 4xx/5xx (ProblemDetails)

Figure 5.2.x-1: N32f Error Reporting Procedure
1.
The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the N32-f error information that is to be reported.

2a.
On success, the responding SEPP, shall:

-
log that the N32-f request / response message identified by the "messageId" is not processed by the receiving SEPP;
The responding SEPP shall return the status code "204 No Content".

2b.
On failure, the responding SEPP shall return an appropriate 4xx/5xx status code together with the "ProblemDetails" JSON body.
* * * Next Change * * * *

6.1.4.1
Overview

Table 6.1.4.1-1: Custom operations without associated resources

	Custom operation URI
	Mapped HTTP method
	Description

	{apiRoot}/n32c-handshake/v1/exchange-capability
	POST
	This is the N32 capability exchange API used to negotiate the security capabilities between SEPPs.

	{apiRoot}/n32c-handshake/v1/exchange-params
	POST
	This is the N32 parameter exchange API used to exchange the cipher suites and protection policies.

	{apiRoot}/n32c-handshake/v1/n32f-terminate
	POST
	This is the N32-f context termination procedure API.

	{apiRoot}/n32c-handshake/v1/n32f-error
	POST
	This is the N32-f error reporting procedure API.

* * * Next Change * * * *

6.1.4.x
Operation: N32-f Error Reporting

6.1.4.x.1
Description

This custom operation is used between the SEPPs to report errors identified while processing the messages received on N32-f. The HTTP method POST shall be used on the following URI:

URI: {apiRoot}/n32c-handshake/v1/n32f-error
This operation shall support the resource URI variables defined in table 6.1.4.x.1-1.

Table 6.1.4.x.1-1: URI variables for this Operation
	Name
	Definition

	apiRoot
	See subclause 6.1.1.

6.1.4.x.2
Operation Definition

This operation shall support the request data structures and response codes specified in tables 6.1.4.x.2-1 and 6.1.4.x.2-2.

Table 6.1.4.x.2-1: Data structures supported by the POST Request Body

	Data type
	P
	Cardinality
	Description

	N32fErrorInfo
	M
	1
	The IE shall contain the information about the N32-f message that failed to process at the SEPP initiating the N32-f errror reporting procedure, together with information related to the nature of the error.

Table 6.1.4.x.2-2: Data structures supported by the POST Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	
	
	
	204 No Content
	This represents the successful processing of the N32-f error report at the receiving SEPP.

	ProblemDetails
	M
	1
	4xx / 5xx
	All the mandatory to support 4xx and 5xx status codes as specified in subclause 5.2.7.1 and their corresponding application errors specified in subclause 5.2.7.2 of 3GPP TS 29.500 [4] shall be supported.

* * * Next Change * * * *

6.1.5.1
General

This subclause specifies the application data model supported by the API.

Table 6.1.5.1-1 specifies the data types defined for the N32 interface.

Table 6.1.5.1-1: N32 specific Data Types

	Data type
	Section defined
	Description

	SecNegotiateReqData
	6.1.5.2.2
	Defines the security capabilities of a SEPP sent to a receiving SEPP.

	SecNegotiateRspData
	6.1.5.2.3
	Defines the selected security capabilities by a SEPP.

	SecurityCapability
	6.1.5.3.3
	Enumeration of security capabilities.

	SecParamExchReqData
	6.1.5.2.4
	Request data structure for parameter exchange

	SecParamExchRspData
	6.1.5.2.5
	Response data structure for parameter exchange

	ProtectionPolicy
	6.1.5.2.6
	The protection policy to be negotiated between the SEPPs.

	ApiIeMapping
	6.1.5.2.7
	API URI to IE mapping on which the protection policy needs to be applied.

	IeInfo
	6.1.5.2.8
	

	ApiSignature
	6.1.5.2.9
	

	N32fContextInfo
	6.1.5.2.10
	N32-f context information.

	N32fErrorInfo
	6.1.5.2.x1
	N32-f error information.

	FailedModificationInfo
	6.1.5.2.x2
	Information on N32-f modifications block that failed to process.

	N32fErrorDetail
	6.1.5.2.x3
	Details about the N32f error.

	HttpMethod
	6.1.5.3.4
	Enumeration of HTTP methods.

	IeType
	6.1.5.3.5
	Enumeration of types of IEs (i.e kind of IE) to specify the protection policy.

	IeLocation
	6.1.5.3.6
	Location of the IE in a HTTP message.

	N32fErrorType
	6.1.5.3.x4
	Type of error while processing N32-f message.

	FailureReason
	6.1.5.3.x5
	Reason for failure to reconstruct a HTTP/2 message from N32-f message.

Table 6.1.5.1-2 specifies data types re-used by the N32 interface protocol from other specifications, including a reference to their respective specifications and when needed, a short description of their use within the Namf service based interface.

Table 6.1.5.1-2: N32 re-used Data Types

	Data type
	Reference
	Comments

	Fqdn
	3GPP TS 29.571 [12]
	

* * * Next Change * * * *

6.1.5.2.x1
Type: N32fErrorInfo

Table 6.1.5.2.x1-1: Definition of type N32fErrorInfo
	Attribute name
	Data type
	P
	Cardinality
	Description

	n32fMessageId
	string
	M
	1
	This IE shall contain the N32-f message identifier received over N32-f (see subclause 6.2.5.2.9).

	n32fErrorType
	N32fErrorType
	M
	1
	This IE shall contain the type of processing error encountered by the SEPP initiating the N32-f error reporting procedure.

	failedModificationList
	array(FailedModificationInfo)
	C
	1..N
	This IE shall be present if the n32ErrorType is "INTEGRITY_CHECK_ON_MODIFICATIONS_FAILED" or "MODIFICATIONS_INSTRUCTIONS_FAILED". When present this IE shall contain a list of FQDNs of the IPX-es whose inserted modifications failed to process at the SEPP initiating the N32-f error reporting procedure, together with the reason for the failure to process.

	errorDetailsList
	array(N32fErrorDetail)
	O
	1..N
	This IE may be included when the n32ErrorType IE indicates "MESSAGE_RECONSTRUCTION_FAILED ". When present, this IE shall contain a list of JSON pointers to the IEs that failed to process together with the reason for the failure to process that IE.

* * * Next Change * * * *

6.1.5.2.x2
Type: FailedModificationInfo
Table 6.1.5.2.x2-1: Definition of type FailedModificationInfo
	Attribute name
	Data type
	P
	Cardinality
	Description

	ipxId
	Fqdn
	M
	1
	This IE shall identify the IPX.

	n32fErrorType
	N32fErrorType
	M
	1
	This IE shall contain the type of processing error on the modifications block, encountered by the SEPP initiating the N32-f error reporting procedure. The value shall be one of the following:

· INTEGRITY_CHECK_ON_MODIFICATIONS_FAILED;
· MODIFICATIONS_INSTRUCTIONS_FAILED

* * * Next Change * * * *

6.1.5.2.x3
Type: N32fErrorDetail
Table 6.1.5.2.x3-1: Definition of type N32fErrorDetail
	Attribute name
	Data type
	P
	Cardinality
	Description

	attribute
	string
	M
	1
	Contains either a HTTP header name or the JSON pointer of an attribute within the N32-f message that failed to reconstruct. The value shall be one of the values of the iePath attribtue (see subclause 6.2.5.2.8) in the received N32-f message.

	msgReconstructFailReason
	FailureReason
	M
	1
	Indicates the reason for the failure to reconstruct the attribute.

* * * Next Change * * * *

6.1.5.3.x4
Enumeration: N32fErrorType
Table 6.1.5.3.x4-1: Enumeration N32fErrorType
	Enumeration value
	Description

	"INTEGRITY_CHECK_FAILED"
	The integrity check verification on the received N32-f message failed.

	"INTEGRITY_CHECK_ON_MODIFICATIONS_FAILED"
	The integrity check verification on the modifications block of the received N32-f message failed.

	"MODIFICATIONS_INSTRUCTIONS_FAILED"
	Failed to apply the JSON patch instructions in the modifications block of the received N32-f message.

	"DECIPHERING_FAILED"
	The deciphering of the encrypted block of the received N32-f message failed.

	"MESSAGE_RECONSTRUCTION_FAILED"
	The reconstruction of the original HTTP/2 message from the received N32-f message failed.

* * * Next Change * * * *

6.1.5.3.x5
Enumeration: FailureReason
Table 6.1.5.3.x5-1: Enumeration FailureReason
	Enumeration value
	Description

	"INVALID_JSON_POINTER"
	The JSON pointer value in iePath attribute (see subclause 6.2.5.2.8) is invalid.

	"INVALID_INDEX_TO_ENCRYPTED_BLOCK"
	The value part of the HttpPayload attribute (see subclause 6.2.5.2.8) or HttpHeader attribute (see subclause 6.2.5.2.7) is pointing to an invalid index to the encrypted block.

	"INVALID_HTTP_HEADER"
	The name of the header in the received HttpHeader attribute is invalid.

* * * End of Changes * * * *

Initiating SEPP
Responding SEPP

1. POST ../exchange-params (SecParamExchReqData)
2a. 200 OK (SecParamExchRspData)
2b. 4xx/5xx (ProblemDetails)

HTTP Method
IeInfo
HTTP Method
IeInfo
HTTP Method
IeInfo
HTTP Method
IeInfo
Protection Policy = IeTypeList
Modification Policy = IeTypeList
Protection Policy = IeTypeList
Modification Policy = IeTypeList
Incoming HTTP Request

2. If no entry found then how to identify if the API invoked is a notification is FFS
API URI1
API URI2
API URI3
API URI4

1. Search for an API URI matching the :path in incoming HTTP request/response to the SEPP
??

Initiating SEPP
Responding SEPP

1. POST ../n32f-terminate (N32fContextInfo)
2a. 200 OK (N32fContextInfo)
2b. 4xx/5xx (ProblemDetails)

Initiating SEPP
Responding SEPP

1. POST ../exchange-capability (SecNegotiateReqData)
2a. 200 OK (SecNegotiateRspData)
2b. 4xx/5xx (ProblemDetails)

Initiating SEPP
Responding SEPP

1. POST ../n32f-error (N32fErrorInfo)
2a. 204 No Content
2b. 4xx/5xx (ProblemDetails)

