Page 1

3GPP TSG CT WG4 Meeting #87
C4-188094
West Palm Beach, US, 26-30 November 2018
was C4-187565

was C4-187144
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	29.573
	CR
	0006
	rev
	2
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	General Cleanup

	
	

	Source to WG:
	Huawei

	Source to TSG:
	CT4

	
	

	Work item code:
	5GS_Ph1-CT
	
	Date:
	2018-09-24

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Guideline text in various clauses need to be removed. Introduction clause is not required. Abbreviations, Definitions need to be completed.

	
	

	Summary of change:
	1. Remove guideline text wherever present
2. Remove Introduction clause

3. Complete Abbreviations and Definitions section

4. Remove the symbols clause

5. Remove the terms c-SEPP and p-SEPP and use initiating and responding SEPP everywhere.

6. Editorial corrections related to table headers, cardinality and URI names, removal of additional white spaces.

7. Change the term N32 Initial Handshake API to N32 Handshake API. These set of API are now used post initial exchange as well - for e.g N32-f termination and N32-f error reporting. Hence the word "initial" is misleading.

Changes in Rev2:
1. Wrong baseline was used earlier. This is corrected now. Introduction is not there in the baseline spec. Abbreviation is 3.2 in baseline.

2. Typo corrected - Initiatlization to Initialization in 6.2.5.2.11

3. Corrected array cardinality in 6.2.5.2.2

	
	

	Consequences if not approved:
	Incomplete specification

	
	

	Clauses affected:
	2, 3, 3.1, 3.2, 5.2, 5.2.1, 5.2.2, 5.2.3.2, 5.2.4, 5.3.2.1, 6.1, 6.1.1, 6.1.2.1, 6.1.2.3.1, 6.1.3.1, 6.1.5.1, 6.1.5.2.1, 6.1.5.4, 6.2.5.2.1, 6.2.5.3, 6.2.5.3.3, 6.2.5.3.4, 6.1.4.4.2, 6.2.5.2.11, 6.2.5.2.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[5]
3GPP TS 29.501: "5G System; Principles and Guidelines for Services Definition; Stage 3".

[6]
3GPP TS 33.501: "Security architecture and procedures for 5G system".

[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
[9]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[10]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[11]
IETF RFC 793: "Transmission Control Protocol".

[12]
3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".
[13]
IETF RFC 7518: "JSON Web Algorithms (JWA)".
[14]
IETF RFC 7516: "JSON Web Encryption (JWE)".

[15]
IETF RFC 4648: "The Base16, Base32, and Base64 Data Encodings".

[16]
IETF RFC 7515: "JSON Web Signature (JWS)".

 [17]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".
[x]
3GPP TS 29.510: "Network Function Repository Services; Stage 3".
* * * Next Change * * * *

3
Definitions, symbols and abbreviations

* * * Next Change * * * *

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
c-SEPP: The SEPP that is present on the NF service consumer side is called the c-SEPP.

p-SEPP: The SEPP that is present on the NF service producer side is called the p-SEPP.
NOTE:
For the purpose of N32-c procedures, the two interacting SEPPs are called "initiating" SEPP and "responding" SEPP. The c-SEPP and p-SEPP terminology is not used in this specification though it is used in 3GPP TS 33.501 [6].
c-IPX: The IPX on the NF service consumer side.
p-IPX: The IPX of the NF service producer side.
* * * Next Change * * * *

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ALS
Application Layer Security
IPX
IP Exchange Service
JOSE
Javascript Object Signing and Encryption
JWE
JSON Web Encryption

JWS
JSON Web Signature
SEPP
Security and Edge Protection Proxy
TLS
Transport Layer Security
* * * Next Change * * * *

5.2
N32 Handshake Procedures (N32-c)
* * * Next Change * * * *

5.2.1
General

The N32 handshake procedure is used between the SEPPs in two PLMNs to mutually authenticate each other and negotiate the security mechanism to use over N32-f along with associated security configuration parameters.

A HTTP/2 connection shall be established between the initiating SEPP and the responding SEPP end to end over TLS. The HTTP/2 connection shall be torn down after the completion of the initial handshake procedure. The following initial handshake procedures are specified in the subclauses below.

-
Security Capability Negotiation Procedure
-
Parameter Exchange Procedure
* * * Next Change * * * *

5.2.2
Security Capability Negotiation Procedure
The initiating SEPP shall initiate a Security Capability Negotiation procedure towards the responding SEPP to agree on a security mechanism to use for protecting NF service related signalling over N32-f. An end to end TLS connection shall be setup between the SEPPs before the initiation of this procedure. The procedure is described in Figure 5.2.2-1 below.

[image: image1.emf]Initiating SEPP

Responding SEPP

1. POST ../exchange-capability (SecNegotiateReqData)

2a. 200 OK (SecNegotiateRspData)

2b. 4xx/5xx (ProblemDetails)

Figure 5.2.2-1: Security Capability Negotiation Procedure
1.
The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the "SecurityNegotiateReqData" IE carrying the following information
-
Supported security capabilities (i.e ALS and/or TLS)

2a.
On successful processing of the request, the responding SEPP shall respond to the initiating SEPP with a "200 OK" status code and a POST response body that contains the following information

-
Selected security capability (i.e ALS or TLS)

The responding SEPP compares the initiating SEPP's supported security capabilities to its own supported security capabilities and selects, based on its local policy, a security mechanism, which is supported by both the SEPPs. If the selected security capability indicates any other capability other than ALS, then the HTTP/2 connection initiated between the two SEPPs for the N32 handshake procedures shall be terminated. The negotiated security capability shall be applicable on both the directions.

2b.
On failure, the responding SEPP shall respond to the initiating SEPP with an appropriate 4xx/5xx status code as specified in clause 6.1.4.2.
* * * Next Change * * * *

5.2.3.2
Parameter Exchange Procedure for Cipher Suite Negotiation
The parameter exchange procedure for cipher suite negotiation shall be performed after the security capability negotiation procedure if the selected security policy is ALS.
The procedure is described in Figure 5.2.3.2-1 below.

[image: image2.emf]Initiating SEPP

Responding SEPP

1. POST ../exchange-params

(SecParamExchReqData)

2a. 200 OK (SecParamExchRspData)

2b. 4xx/5xx (ProblemDetails)

Figure 5.2.3.2-1: Parameter Exchange Procedure for Cipher Suite Negotiation

1.
The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the "SecParamExchReqData" IE carrying the following information
-
Supported cipher suites;

The supported cipher suites shall be an ordered list with the cipher suites mandated by 3GPP TS 33.501 [6] appearing at the top of the list.

The initiating SEPP also provides a N32-f context identifier for the responding SEPP to use towards the initiating SEPP for subsequent JOSE Protected Message Forwarding procedures over N32-f (see subclause 5.3.3) when the responding SEPP acts as the forwarding SEPP.

2a.
On successful processing of the request, the responding SEPP shall respond to the initiating SEPP with a "200 OK" status code and a POST response body that contains the following information

-
Selected cipher suite

The responding SEPP compares the initiating SEPP's supported cipher suites to its own supported cipher suites and selects, based on its local policy, a cipher suite, which is supported by both the SEPPs. The responding SEPP's supported cipher suites shall be an ordered list with the cipher suites mandated by 3GPP TS 33.501 [6] appearing at the top of the list. The selected cipher suite is applicable for both the directions of communication between the SEPPs.

The responding SEPP also provides a N32-f context identifier for the initiating SEPP to use towards the responding SEPP for subsequent JOSE Protected Message Forwarding procedures over N32-f (see subclause 5.3.3) when the initiating SEPP acts as the forwarding SEPP.

2b.
On failure, the responding SEPP shall respond to the initiating SEPP with an appropriate 4xx/5xx status code as specified in clause 6.1.4.3.

* * * Next Change * * * *

5.2.4
N32-f Context Termination Procedure

After the completion of the security capability negotiation procedure and/or the parameter exchange procedures, an N32-f context is established between the two SEPPs. The "n32fContextId" of each SEPP is provided to the other SEPP. This context identifier shall be stored in each SEPP until the context is explicitly terminated by the N32-f context termination procedure. The SEPP that is initiating the N32-f context termination procedure shall use the HTTP method POST on the URI: {apiRoot}/n32c-handshake/v1/n32f-terminate. The procedure is shown below in Figure 5.2.4-1.

[image: image3.emf]Initiating SEPP

Responding SEPP

1. POST ../n32f-terminate (N32fContextInfo)

2a. 200 OK (N32fContextInfo)

2b. 4xx/5xx (ProblemDetails)

Figure 5.2.4-1: N32f Context Termination Procedure
1.
The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the N32-f context id information that is to be terminated.

2a.
On success, the responding SEPP, shall:

-
stop sending any further messages over the N32-f towards the initiating SEPP;

-
once all the ongoing N32-f message exchanges with the initiating SEPP are completed or timed out, delete the N32-f context identified by the "n32fContextId" provided in the request.

The N32-f HTTP/2 connections from the responding SEPP shall not be deleted if they terminate at an IPX, since that HTTP/2 connection may carry traffic towards other PLMN SEPPs as well. The responding SEPP shall return the status code "200 OK" together with an N32ContextInfo payload body that carries the "n32fContextId" of the initiating SEPP that the responding SEPP has stored.

The initiating SEPP shall:

-
stop sending any further messages over the N32-f towards the responding SEPP;

-
once all the ongoing N32-f message exchanges with the responding SEPP are completed or timed out, delete the local N32-f context identified by this "n32fContextId".

2b.
On failure, the responding SEPP shall return an appropriate 4xx/5xx status code together with the "ProblemDetails" JSON body.

* * * Next Change * * * *

5.3.2.1
General

If the negotiated security capability between the two SEPPs is ALS, one or more HTTP/2 connections between the two SEPPs for the forwarding of JOSE protected message shall be established, which may involve IPX providers on path. The forwarding of messages over the N32-f interface involves the following steps at the sending SEPP:
1.
Identification of the protection policy applicable for the API being invoked (i.e either a request/response NF service API or a subscribe/unsubscribe service API or a notification API).

2.
Message reformatting as per the identified protection policy.

3.
Forwarding of the reformatted message over the N32 interface.

The process of a message received over the N32-f interface at the receiving SEPP involves the following steps.

1.
Identify the N32-f context using the N32-f context Id received in the message.

2.
Verify the integrity protection of the message using the keying material obtained from the TLS layer during the parameter exchange procedure for that N32-f context (see 3GPP TS 33.501 [6]). The TLS connection from which the keying material is obtained is the N32-c TLS connection used for the parameter exchange procedure.3.
Decrypt the ciphertext part of the received JWE message. Decode the "aad" part of the JWE message using BASE64URL decoding.

4.
Form the original JSON request / response body from the decrypted ciphertext and the decoded integrity verified "aad" block.

5.
For each entry in the "modificationsBlock" of the received message:

-
First verify the integity protection of that entry using the keying material applicable for the IPX that inserted that block (using the "identity" IE in the "modificationsBlock");

-
Identify the modifications policy exchanged during the parameter exchange procedure with the sending SEPP if the IPX that inserted the modificationsBlock is from the sending SEPP side; else identify the modifications policy applicable for the IPX based on local configuration;

-
Check if the inserted modifications are as per the identified modifications policy;

-
Apply the modifications as a JSON patch over the formed original JSON request / response body from step 4.
* * * Next Change * * * *

6.1
N32 Handshake API
* * * Next Change * * * *

6.1.1
API URI
URIs of this API shall have the following root:

{apiRoot}/{apiName}/{apiVersion}/

where "apiRoot" is defined in subclause 4.4.1 of 3GPP TS 29.501 [5], the "apiName" shall be set to "n32c-handshake" and the "apiVersion" shall be set to "v1" for the current version of this specification.
* * * Next Change * * * *

6.1.2.1
General

HTTP/2, as defined in IETF RFC 7540 [7], shall be used as specified in subclause 4.3.2.1.

HTTP/2 shall be transported as specified in subclause 4.3.3.

HTTP messages and bodies for the N32 handshake API shall comply with the OpenAPI [15] specification contained in Annex A.
* * * Next Change * * * *

6.1.2.3.1
General

In this release of the specification, no specific custom headers are defined for the N32 handshake API.

For 3GPP specific HTTP custom headers used across all service based interfaces, see subclause 4.3.2.3.
* * * Next Change * * * *

6.1.3.1
Overview

There are no resources in this version of the N32 handshake API. All the operations are realized as custom operations without resources.

* * * Next Change * * * *

6.1.5.1
General

This subclause specifies the application data model supported by the API.

Table 6.1.5.1-1 specifies the data types defined for the N32 interface.

Table 6.1.5.1-1: N32 specific Data Types

	Data type
	Section defined
	Description

	SecNegotiateReqData
	6.1.5.2.2
	Defines the security capabilities of a SEPP sent to a receiving SEPP.

	SecNegotiateRspData
	6.1.5.2.3
	Defines the selected security capabilities by a SEPP.

	SecurityCapability
	6.1.5.3.3
	Enumeration of security capabilities.

	SecParamExchReqData
	6.1.5.2.4
	Request data structure for parameter exchange

	SecParamExchRspData
	6.1.5.2.5
	Response data structure for parameter exchange

	ProtectionPolicy
	6.1.5.2.6
	The protection policy to be negotiated between the SEPPs.

	ApiIeMapping
	6.1.5.2.7
	API URI to IE mapping on which the protection policy needs to be applied.

	IeInfo
	6.1.5.2.8
	

	ApiSignature
	6.1.5.2.9
	

	N32fContextInfo
	6.1.5.2.10
	N32-f context information

	HttpMethod
	6.1.5.3.4
	Enumeration of HTTP methods.

	IeType
	6.1.5.3.5
	Enumeration of types of IEs (i.e kind of IE) to specify the protection policy.

	IeLocation
	6.1.5.3.6
	Location of the IE in a HTTP message.

Table 6.1.5.1-2 specifies data types re-used by the N32 interface protocol from other specifications, including a reference to their respective specifications and when needed, a short description of their use within the Namf service based interface.

Table 6.1.5.1-2: N32 re-used Data Types

	Data type
	Reference
	Comments

	Fqdn
	3GPP TS 29.510 [x]
	

* * * Next Change * * * *

6.1.5.2.1
Introduction

This subclause defines the structures to be used in the N32 Handshake API.

* * * Next Change * * * *

6.1.5.4
Binary data

There are no multipart/binary part used on the N32-c API(s) in this release of this specification.
* * * Next Change * * * *

6.2.5.2.1
Introduction

This subclause defines the structures to be used in the JOSE Protected Message Forwarding API on N32.
* * * Next Change * * * *

6.2.5.3
Simple data types and enumerations

* * * Next Change * * * *

6.2.5.3.3
Void

	
	

	
	

* * * Next Change * * * *

6.2.5.3.4
Void

* * * Next Change * * * *

6.1.4.4.2
Operation Definition

This operation shall support the request data structures and response codes specified in tables 6.2.4.4.2-1 and 6.2.4.4.2-2.

Table 6.1.4.4.2-1: Data structures supported by the POST Request Body

	Data type
	P
	Cardinality
	Description

	N32fContextInfo
	M
	1
	The IE shall contain the information about the N32-f context requested to be terminated by the requesting SEPP.

Table 6.1.4.3.2-2: Data structures supported by the POST Response Body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	N32fContextInfo
	M
	1
	200 OK
	This represents the successful deletion of the request N32-f context. The responding SEPP shall return the "n32fContextId" it had towards the initiating SEPP, in this IE.

	ProblemDetails
	M
	1
	4xx / 5xx
	All the mandatory to support 4xx and 5xx status codes as specified in subclause 5.2.7.1 and their corresponding application errors specified in subclause 5.2.7.2 of 3GPP TS 29.500 [4] shall be supported.

* * * Next Change * * * *

6.2.5.2.11
Type: FlatJweJson

Table 6.2.5.2.11-1: Definition of type FlatJweJson

	Attribute name
	Data type
	P
	Cardinality
	Description

	protected
	string
	C
	0..1
	This IE shall be present if there is a JWE Protected Header part of the JOSE header to encode as specified in IETF RFC 7516 [14]. When present, this IE shall contain the BASE64URL(UTF8(JWE Protected Header)) encoding of the JWE protected header.

	unprotected
	object
	C
	0..1
	This IE shall be present if there is a JWE unprotected header part of the JOSE header that is shared across recipients, to encode as specified in IETF RFC 7515 [16]. This value is represented as

an unencoded free form JSON object, rather than as a string. These Header Parameter values are not integrity protected.

	header
	object
	C
	0..1
	This IE shall be present if there is a JWE unprotected header part of the JOSE header that is specific for the recipient, to encode as specified in IETF RFC 7515 [16]. This value is represented as

an unencoded free form JSON object, rather than as a string. These Header Parameter values are not integrity protected.

	encrypted_key
	string
	C
	0..1
	This IE shall be present when the JWE Encrypted Key for the recipient is non empty. When present this IE shall contain BASE64URL(JWE Encrypted Key).

	aad
	string
	C
	0..1
	This IE shall be present when the JWE AAD value is non-empty as specified in IETF RFC 7515 [16]. When present, this IE shall contain BASE64URL encoding of the DataToIntegrityProtectBlock JSON object (see subclause 6.2.5.2.5).

	iv
	string
	C
	0..1
	This IE shall be present when the JWE Initialization Vector is non-empty as specified in IETF RFC 7515 [16]. When present, this IE shall contain the BASE64URL(JWE Initialization Vector).

	ciphertext
	string
	M
	1
	This IE shall contain BASE64URL(JWE Ciphertext). The input for JWE ciphering is the DataToIntegrityProtecAndCiphertBlock (see subclause 6.2.5.2.5).

	tag
	string
	C
	0..1
	This IE shall be present when the JWE Authentication Tag value is non-empty as specified in IETF RFC 7515 [16]. When present, this IE shall contain the BASE64URL(JWE Authentication Tag).

* * * Next Change * * * *

6.2.5.2.2
Type: N32fReformattedReqMsg

Table 6.2.5.2.2-1: Definition of type N32fReformattedReqMsg

	Attribute name
	Data type
	P
	Cardinality
	Description

	reformattedData
	FlatJweJson
	M
	1
	This IE shall contain the integrity protected reformatted block as well as the ciphered part of the reformatted block of the HTTP/2 request message sent between NF service producer and consumer.

The SEPP shall reformat the HTTP/2 request message as:

- The part of original HTTP/2 request message headers and the payload that needs to be only integrity protected is first reformatted into "DataToIntegrityProtectBlock" and then fed as input for the "aad" parameter of the FlatJweJson after subjecting to BASE64URL encoding.

The part of the original HTTP/2 request message headers and payload that require integrity protection and ciphering is first reformatted into "DataToIntegrityProtectAndCipherBlock" and then fed as input for JWE ciphering and the JWE ciphered block is then BASE64URL encoded and set into the "ciphertext" parameter of the FlatJweJson.

	modificationsBlock
	array(FlatJwsJson)
	C
	1..N
	This IE shall be included if the IPXes on path are allowed to apply modification policies and if they have any specific modification to be applied on the message contained in the authenticatedBlock.

* * * End of Changes * * * *

Initiating SEPP
Responding SEPP

1. POST ../exchange-capability (SecNegotiateReqData)
2a. 200 OK (SecNegotiateRspData)
2b. 4xx/5xx (ProblemDetails)

Initiating SEPP
Responding SEPP

1. POST ../exchange-params (SecParamExchReqData)
2a. 200 OK (SecParamExchRspData)
2b. 4xx/5xx (ProblemDetails)

Initiating SEPP
Responding SEPP

1. POST ../n32f-terminate (N32fContextInfo)
2a. 200 OK (N32fContextInfo)
2b. 4xx/5xx (ProblemDetails)

