
3GPP TSG CT WG4 Meeting #85bis
C4-185230
Sophia Antipolis, France, 9th – 13th July 2018

Source:
Ericsson
Title:
Pseudo-CR on QUIC General Features
Spec:
3GPP TR 29.893 v0.1.0
Agenda item:
6.1.3
Document for:
Decision

1. Introduction
-
2. Reason for Change
Introduce general features of the QUIC protocol.
3. Conclusions

-
4. Proposal

It is proposed to agree the following changes to 3GPP TR 29.893 v0.1.0.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
IETF Draft, draft-ietf-quic-transport-12: "QUIC: A UDP-Based Multiplexed and Secure Transport".

[3]
IETF Draft, draft-ietf-quic-recovery-12: "QUIC Loss Detection and Congestion Control".

[4]
IETF Draft, draft-ietf-quic-http-12: "Hypertext Transfer Protocol (HTTP) over QUIC".

[5]
IETF Draft, draft-ietf-quic-qpack-00: "QPACK: Header Compression for HTTP over QUIC.

[6]
IETF Draft, draft-ietf-quic-tls-12: "Using Transport Layer Security (TLS) to Secure QUIC".

[7]
IETF Draft, draft-ietf-quic-invariants-01: "Version-Independent Properties of QUIC".

[8]
IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".
[9]
IETF Draft, draft-ietf-tls-tls13-28: "The Transport Layer Security (TLS) Protocol Version 1.3".

[10]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".

[11]
IETF RFC 7541: "HPACK: Header Compression for HTTP/2".

[12]
IETF Draft, draft-ietf-quic-spin-exp-00: "The QUIC Latency Spin Bit".

[13]
IETF RFC 5682: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP".

[14]
IETF Draft, draft-dukkipati-tcpm-tcp-loss-probe-01: "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses".

[15]
IETF RFC 6582: "The NewReno Modification to TCP's Fast Recovery Algorithm".
* * * Next Change * * * *
5.3
Features of QUIC
5.3.1
General

QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose secure transport for multiple applications. The main parts of QUIC are defined in a set of documents [2], [3], [6], [7]. The highly integrated HTTP/2 over QUIC specification [4] and HTTP header compression [5] are developed in parallel with the core protocol. The protocol is developed by the Internet Engineering Task Force (IETF).
5.3.2
Framing and Multiplexing

QUIC has a data frame definition that supports multiple parallel data streams multiplexed on a single QUIC connection. For each stream QUIC now only supports reliable and in-order delivery. However, the QUIC layer is capable of delivering to the higher layer each stream independently, thus it avoids blocking the delivery of any of the other streams when a packet loss contains only part of a stream. Note that to achieve this efficiency the implementation needs to pay attention to pack payload from one stream into a single QUIC packet.

The HTTP/2 mapping for QUIC [4] utilizes this stream concept when realizing the different HTTP/2 [8] streams. HTTP/2 over QUIC also had to improve the HTTP header compression scheme HPACK [11] into QPACK [5]. With these changes HTTP/2 can deliver independent requests and responses in the order they are successfully delivered to endpoints, without head of line blocking between HTTP/2 streams which would be the case for HTTP/2 over TCP.

5.3.3
Improved Recovery and Acknowledgement

The QUIC definition of its packet format and acknowledgement frame results in several improvements over TCP. The packet number is transmission-time ordered and strictly increasing. QUIC never retransmits a particular packet, only the lost data frames that needs to be retransmitted. QUIC facilitates better way to calculate RTT by encoding the delay between packet reception and transmission of the acknowledgement. The QUIC acknowledgment also supports a very larger number of received and gap ranges.

Compared to TCP, QUIC will not be limited to a three blocks of selective acknowledgement (SACK) when using the timestamp option. The strict packet numbers and explicit acknowledgement removes ambiguity between which packet is lost and which is acknowledged. Avoiding any unnecessary retransmissions of data that has reached the receiver. QUIC also avoids the retransmission uncertainty if the received packet was a delayed or retransmitted. QUIC’s RTT samples are more accurate than what TCP can provide due to no ambiguity about which packets are used in measurement as well as the receiver side delay can be taken into account.

The current QUIC version defines a baseline congestion controller based on NewReno [15], however it uses the more accurate reporting. QUIC also uses some additional modern loss recovery mechanisms by default, such as F-RTO [13], and Tail Loss Probing [14]. These improvements give QUIC a better recovery mechanism.

5.3.4
Encrypted and Integrity Protected Transport details

QUIC uses TLS 1.3 [6], [9], for key establishment, while QUIC has its own encryption and integrity layer that protects the QUIC packets. Each QUIC packet has a packet header, using a short or a long format with a small number of fields that are unencrypted, but integrity protected. It is primarily the connection ID that is unencrypted and three reserved bits for experimentation in the short header. Even the packet number is encrypted using an independent mechanism from the payload.

The encryption and integrity help provide confidentiality, privacy and source authenticity for the user of QUIC. However, the protection is also intended to prevent any middlebox in the network from interfering with the protocol, nor make assumptions about what the possible values any specific bit in the UDP payload can take. Ossification of the network has prevented a lot of improvements from being applied to TCP as middleboxes would either block or remove such changes.

Compared to TCP this level of encryption does make certain type of network performance monitoring using middlebox basically impossible. Due to this, there are ongoing discussion of intentional monitoring support bits, like the latency spin bit [12], intended to enable middlebox to measure round-trip time between the middlebox and either endpoint.

5.3.5
Connection Setup Improvements

QUIC is capable of completing establishment of a connection between a client and a server in one and half RTT. The protocol combines TLS [9] handshake with transport protocol level mechanisms to achieve this. A client’s request to a server can be included after one RTT and be sent combined with the last step of the crypto handshake from the client to the server.

Holding state in the server for the initial connection establishment packets prior to having verified the client's return path can expose the server to a denial of service risk. Servers that like to mitigate that risk can use the Retry packet to verify the path and not hold any state for the first round-trip.
How big improvement this is depends on what one compares against. As 3GPP TS 33.310 makes support for TLS 1.3 [9] mandated from Rel-15 it is reasonable to compare with both TLS 1.2 [8] and TLS 1.3. TLS 1.2 session resumption requires that the client has talked to the server recently enough, so it still has session state stored. The below table indicates number of RTTs until the first HTTP request can be sent by the client.
Table 5.3.5-1: Number of RTTs until first HTTP request
	Protocol
	New Connection
	Connection State Exists

	TCP/TLS 1.2
	3
	2

	TCP/TLS 1.3
	2
	2

	QUIC
	1
	1

QUIC can achieve faster connection establishment times until an HTTP request has been sent than existing TLS and TCP combinations. This improvement is significant when establishing a new connection, but not when clients has a long lived one to the server.

5.3.6
0-RTT Data

TLS 1.3 [9] includes support for early data or 0-RTT data, as it is also called. This is potentially usable by both HTTP/2 over TLS1.3/TCP as well as QUIC. This functionality can only be used when client and server share a Pre-Shared Key (PSK), which can be arranged out of band or exist from an earlier connection. 0-RTT data has other security properties than for data sent after the handshake completes. Data sent as 0-RTT data will be possible to replay by an attacker that has seen the client to server exchange. Therefore, the use of 0-RTT data requires that the data is safe to replay. When using HTTP requests as 0-RTT data, the request performed must be one that is idempotent. Server may refuse to accept 0-RTT data for this reason.

5.3.7
Connection ID

QUIC uses two connection IDs, one for the server and one for the client to identify a particular connection for an endpoint. This solution makes the connection not hard bound to a particular 5-tuple (Source and Destination IP, protocol, and source and destination port), instead the connection can be moved between different network interfaces on both client and server side. The protocol has a feature for migrating connections from using one 5-tuple to another, see section 5.3.8.

The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC.

5.3.8
Connection Migration

QUIC allows connection migration to be happened while the session progresses. This means for a client with multiple network interfaces an ongoing QUIC session can be moved to newly validated path via a newly discovered network interface – for example – in the case of a data session handover from wifi to a 3GPP radio access technology. This is possible as QUIC sessions are identified by connection ID hence a particular QUIC session is not tightly coupled with a specific client IP address and port number. Hence, if a network interface appears with new IP addresses or an existing one disappears but the client has alternative network interfaces, the QUIC session does not need to be established again. The QUIC session can continue on a new interface with a new connection ID.

It is possible that the server also has multiple IP addresses and have some preferences on which interface it would like to serve a particular client for load balancing or other management. Currently, QUIC does not support change of server IP address in the middle of an ongoing session however, the server preferred address can be conveyed to the client during the TLS handshake as "preferred_address" transport parameter. If the new path to the preferred server address is valid then client sends all the future packets to the new server address. Here the client also uses a new connection ID for the new connection to the server’s preferred address.

5.3.9
Stream Prioritization

Being a multiplexed transport protocol QUIC support stream prioritization for boosting the application performance. However, QUIC itself neither provides mechanism to negotiate prioritization information nor implements any strict prioritization scheme. It relies on the application to provide priority information that QUIC will follow when it comes to packet transmission or retransmission.
5.3.10
Flow Control
Flow control is a mechanism to set boundaries to the senders to avoid overwhelming receiver with data that the receiver cannot process. Like TCP, QUIC deploys connection level flow control, moreover, it applies a secondary stream level flow control to prevent a particular stream from consuming the receiver buffer for a connection.

5.3.11
Protocol Versioning

QUIC has a 32-bit version field. It can be expected that QUIC will eventually exists in a number of proprietary and standardized versions. IETF is currently working on defining version 0x00000001. There exists a mechanism for the client to ask the server to enumerate all versions it support. The client when requesting to create a connection it will indicate the version desired to use. If supported then that is what will be used, otherwise it triggers the version negotiation. Some of the non-encrypted fields are defined as not being changeable independent of version as defined by the document for invariants [7].

The QUIC versioning enables a very large degree of flexibility for future changes of QUIC. All aspects except for the invariants can be changed. This enables the tuning of QUIC to a specific use case or implementation of future improvements in transport protocol technology. This flexibility also indicates the need to be explicit about which QUIC version(s) that are to be supported by a specific SBI. Any analysis of benefits and downsides of QUIC must be explicit about which version is discussed.

5.3.12
Customizable Frame Types

QUIC payloads are consists of one or more frames. Each frame starts with frame types followed by type specific flags. All the streams with data is carried over the STREAM frame type. QUIC’s current specification defines a number of essential frame types. However, new frame types can be created and can be even application specific. This gives QUIC an unique way of to be extensible and customizable.
5.3.13
Connection Configuration

QUIC allows a connection to be configured in a particular way with a set of transport parameter and frames. For example - the PADDING frame allow to vary the packet size, MAX_STREAM_ID frame indicates the maximum bidirectional or unidirectional stream ID permitted to open for the connection. Moreover, new transport parameters and frames can be added to extend the configuration.
5.3.14
User-Land Implementations

User-land implementations of QUIC does not require elevated permissions. This allows application to include an QUIC implementation without any operating system changes. This simplifies deployment of QUIC, where only the application intending to use QUIC needs to be updated. This flexibility can also be used to fine tune the protocol behaviour to a particular application. However, there exists some risks with this, as even if an implementation is following the requirement of a certain QUIC version, the choices to optimize the implementation may result in poorer performance between two differently optimized implementations.

The implementation in userland also results in certain challenges that can affect performance. Efficiency of the API towards the UDP receive and send function is one alternative. Other complications can be access to high performance timers and operating scheduling granularity.

5.3.15
Pluggable Sender Side Congestion Control

As QUIC implementation can reside in an application it allows more experiment with congestion control algorithms. Now depending on the operational environment, network and service requirement very specific congestion control algorithm can be deployed in the sender as long as the information in the acknowledgement from receiver is sufficient.

* * * End of Changes * * * *

