
3GPP TSG CT4 Meeting #83
C4-182018
Montreal, CANADA; 26th Feb – 02nd Mar 2018

Source:
ORANGE
Title:
Introducing HAL media in TS 23.501
Spec:
3GPP TS 29.501 v0.4.0
Agenda item:
6.2.1.4
Document for:
Agreement
3GPP TSG CT4 Meeting #95
C3-181022
Montreal, CANADA; 26th Feb – 02nd Mar 2018

Source:
ORANGE
Title:
Introducing HAL media in TS 23.501
Spec:
3GPP TS 29.501 v0.4.0
Agenda item:
15.2
Document for:
Approval
Work Item / Release:
5GS_Ph1-CT / Rel-15
1. Introduction
CT4 working group has decided to allow hypermedia as an option for some APIs but the hypermedia format has not yet been selected.

The API exposed by the AUSF will use hypermedia in R.15.
2. Reason for Change
It is needed to agree on a hypermedia format to progress on the TS 23.501 HATEOAS section and on the design of the AUSF API.
3. Conclusions

A discussion paper (C4-182017) was submitted to CT4#84. Various hypermedias were presented. Their respective hypermedia qualities were presented and compared. Other criteria were used for comparison. Eventually HAL media was proposed for R.15.
4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.501v0.4.0.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[3]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".

[4]
OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.

[5]
3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".

[6]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[7]
IETF RFC 7396: "JSON Merge Patch".
[8]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

[9]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".
[10]
IETF RFC 5789: "PATCH Method for HTTP".
[11]
IETF RFC 8288: "Web Linking".
[12]
IANA: "HTTP Status Code Registry at IANA", http://www.iana.org/assignments/http-status-codes.
[13]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[14]
Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.
[15]
Erik Wilde, Cesare Pautasso, REST: From Research to Practice, Springer.
[X]
draft-kelly-json-hal-08: "JSON Hypertext Application Language".
[Y]
W3C: "CURIE Syntax 1.0 - A syntax for expressing Compact URIs", http://www.w3.org/TR/2010/NOTE-curie-20101216/
* * * Next Change * * * *

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

5GC
5G Core Network
CURIE
Compact URI

HAL
Hypertext Application Language
HATEOAS
Hypermedia as the Engine of Application State
SBI
Service Based Interface
* * * Next Change * * * *

4.7
HATEOAS

4.7.1
General

As defined in [14], HATEOAS stands for Hypermedia As The Engine Of Application State. It means that the hypermedia models application state transitions and describe application protocols. 
As defined in [15] chapter 3 RESTful Domain Application Protocols, an application is a software implementation defined to achieve a particular goal. It consists of a set of constrained interactions between NF Service Consumer and Producer performed at run-time that are guided by an application specific set of rules. The application transits across some intermediate states until the application’s goal is achieved. The application has then reached its final state.

An application state is a snapshot of an application instance.

On each interaction, the NF Service Consumer and Producer exchange representations of resource state. According to [14], "REST concentrates all of the control state into the representations received in response to interactions." and "The model application is therefore an engine that moves from one state to the next by examining and choosing from among the alternative state transitions in the current set of representations." After each interaction the NF Service Consumer is then presented with control state options to interact with additional resources. These control states are in the form of hypermedia markups embedded in the returned resource representation. The application state changes when an NF Service Consumer examines and chooses which control to operate and subsequently interacts with the resources identified in the selected control state.

HATEOAS support is optional. If HATEOAS is supported, the procedure in the present subclause 4.7 shall apply.

4.7.4
Hypermedia format

Hypertext Application Language [X] (HAL) is the hypermedia format supported by 3GPP APIs.
HAL specifies the following optional hypermedia objects (see 3GPP TS 29.571 [5] for the complete list of objects and object members):
· "_links": contains links to other resources and expresses valid state transitions.
· "_embedded": contains embedded resources.
A server shall construct a HAL document by taking a 3GPP defined JSON object and then adding a "_links" and/or an "_embedded" object.
The "_link" member names are link relation types (as defined by IETF RFC 8288 [11]) and values are either a "link" object or an array of "link" objects. A "link" object can have 8 members. The member which name is "href" contains the URI of the linked resource and is the only mandatory one.
The "_embedded" member names are link relation types (as defined by IETF RFC 8288 [11]) and values are values are either a resource object or an array of resource objects. If multiple resources are embedded and have the same relation type with the returned resource then values is an array of resource objects.
A server shall set the Content-Type HTTP header to "application/hal+json" when returning an HTTP payload with a HAL document.
A client supporting HATEOAS shall advertise it by adding an "Accept" HTTP header with "application/hal+json".
4.7.2
Advertising legitimate application state transitions


When a NF Service Producer responds to a NF Service Consumer and there is one or more application state transition possible, the NF Service Producer shall advertise them by adding a "_links" property in the returned resource representation. For each relation type, a member shall be added to the "_links" object which name is equal to the relation type. If there is only one state transition for a given relation type then the value of the member is a "link" object otherwise it is an array of "link" objects.
A NF Service Producer shall include a link into the returned resource representation with a registered relation type "self" when it is expected further actions upon it (for instance reading it again or replacing the resource state).
NOTE 1:
For a hypermedia application, a returned representation without any link denotes for the client the end of the interaction with the server. 3GPP APIs does not fulfil this rule.
NOTE 2:
HAL hypermedia doesn't support non idempotent state transitions.



4.7.3
Inferring link relation semantic

When a NF Service Consumer receives a response with linked resources then it shall infer the link relation semantic from the relation type. It shall not infer it from the linked resource URI format.
In HAL hypermedia, relation types are the name of "_links" object members.





4.7.5
Common Relation Types
4.7.5.1
Introduction

This subclause contains the list of relation types supported in 3GPP Service Based Interface APIs.

As defined in IETF RFC 8288 [11] clause 2.1, a link relation type identifies the semantics of a link. It describes how resources are related to each other. It may also be used to indicate that the target resource of a link has particular attributes, or exhibits particular behaviours. Relation types shall not be confused with media types. It does not identify the format of the representation that results when the link is dereferenced.

There are two kinds of relation types:

-
Registered relation types;

-
Extension relation types.

Registered relation types are identified by a token (for instance "self") and can be reused by other applications such as 3GPP SBI APIs. They are registered by IANA. Registered relation types shall be preferred against extension relation types when expressing the link relation between two resources.

If there is a need to define a relation type that does not correspond to a registered one but it is not wanted to register it then an extension relation type shall be used instead.

4.7.5.2
Registered relation types

The "Link Relations" registry is located at: https://www.iana.org/assignments/link-relations.
This subclause specifies the list of registered relation types supported by all hypermedia enabled 3GPP APIs.

Table 4.7.5.2-1: supported registered relation types
	Relation name

	self

	alternate

	edit

	first

	item

	last

	next

	search



4.7.5.3
Extension relation types

When no registered relation exists to express the relation between two resources, an extension relation type as defined in IETF RFC 8288 [11] can be used instead.
In HAL, extension relation types should be URIs that provide relevant documentation when dereferenced in a web browser, in the form of an HTML page, about the meaning and/or behaviour of the target Resource.
The CURIE syntax [Y] can be used for brevity for these URIs. CURIEs are established within a HAL document by adding a set of "Link" objects as values of a member which name is "curies".

4.7.5
Embedding resources
When a server returns links to other resources in a resource representation, they are meant to be dereferenced later on by the client. To avoid the need for the client to request these linked resources, a server should embed the representation of linked resources in the requested resource representation by adding an "_embedded" object. The "_embedded" member name shall be one of the "_links" members.
Clients automated for this purpose should read from an embedded resource in preference to traversing a link when an "_embedded" object is present in the returned representation.

Editor's Note:

As server PUSH can be used also to avoid the need for the client to request linked resources, it is FFS whether embedding resources is redundant.
* * * End of Changes * * * *

