
3GPP TSG CT4 Meeting #81
C4-176422
Reno, US; 27th Nov – 1st Dec 2017 
was C4-176404
Source:
Ericsson, Orange
Title:
Pseudo-CR on HTTP Server Push
Spec:
3GPP TS 29.501 – v0.2.0
Agenda item:
6.2.1.4
Document for:
Decision

1. Introduction
<Introduction part (optional)>

2. Reason for Change
In Service Based Architecture (SBA) network, there are procedures requiring transferring multiple resources from one NF to another NF. E.g. Querying a collection of resources (see sub-clause 4.6.1.1.2.2 of TS 29.501 v0.2.0). When the number of resources is large, the solution of transferring these resources is yet to be studied.
The simplest way is to return representation of all resources in the response body. When the number of resources is large, the size of the response body may become large or even huge. Using a large/huge response body has drawbacks:
· It is more vulnerable to transport layer problems. When transport layer fails, the whole body needs to be retransmitted.

· Response latency may increase by buffering configuration mismatching among intermediaries.
· HTTP/JSON stacks may hold the response in stack layer until the whole body is received and parsed, before passing to up layer application logic. This cause extra delay of data processing in receiving CN NFs.
· The receiving NF doesn’t know how many resources and which resources will be received before parsing the whole body, if not informed in some other ways.

Alternatively, instead of returning resources directly in response body, the server can only return the URIs of the resources in the response body. After receiving the response and extracting the URIs from the response body, the client can explicitly sent GET requests to retrieve the resource one by one. With this solution, the benefits are obvious:

· Before receiving of any representation of the resources, the receiving NF already got the information of the resources to be received from the service operation response, including number of the resources and all URIs of the resources. The NF logic can already reserve physical machine resources (e.g. memory, worker, etc.) for processing the data.

· Representation of only one resource is transferred per response body, thus can keep the response body at a reasonable size.

· Each resource is sent via separate stream. Single resource transport failure will not impact others. In case of certain resource is not received successfully, receiving NF can issue explicit request for this resource to fetch it, as the URI of this resource is already known.

Compare to the above solution, this solution has drawbacks. Firstly, it increases network traffic due to the extra GET requests issued by the client for each resource. This can be judged the server. If the representation of each resource is rather small, the server can choose to return the data in the service operation response body, so as to avoid the overhead. More seriously, this introduce extra rounds of HTTP transactions and introduce the waiting time on server for client get request to deliver the resource. This increases the overall latency of the service operation.

To improve the efficiency of resource transferring, HTTP/2 Server Push feature could be used.

With HTTP/2 Server Push, the server first sending PUSH_PROMISE frames together with the response of the initial client request. Each PUSH_PROMISE contains the URI of one resource to be pushed as well as the reserved stream ID to be used for transferring the resource. Then server will send each resource in one Push Response via the reserved stream. 

The drawback of using HTTP/2 Server Push is the behavior of intermediaries. As stated in IETF RFC 7540, "An intermediary can receive pushes from the server and choose not to forward them on to the client. In other words, how to make use of the pushed information is up to that intermediary. Equally, the intermediary might choose to make additional pushes to the client, without any action taken by the server." This could be overcome, 3GPP standards could address this problem by putting corresponding requirements on intermediaries in their controlled environment. Such a requirement can be “an intermediary must relay to the server the SETTINGS_ENABLE_PUSH received from the client”.
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.500 v0.2.0.
* * * First Change * * * *

References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

[3]
IETF RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".

[4]
OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.

[5]
3GPP TS 29.tbd: "TBD".

[6]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content"
[7]
IETF RFC 7396: "JSON Merge Patch".
[8]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

[9]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax"
[10]
IETF RFC 5789: "PATCH Method for HTTP"
[11]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)"
* * * Next Change * * * *

4.6.1.1.2.2
Querying a Collection of Resources

Procedures that allow a service consumer NF (client) to querying a collection for resources from the server shall be specified to use the query parameters within HTTP GET method to obtain the certain resources. The syntax of the query part is specified by IETF RFC 3986 [9].

The query component contains non-hierarchical data that, along with data in the path component, to filter the resources identified within the scope of the URI's scheme to a subset of the resources matching the query parameters. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI. 

When a server receives a request with query component, it may parse the query string in order to identify filters. The first question mark is used to be a separator and is not part of the query string. And query string is composed of a series of "key=value" pairs. 

The exact structure of the query string is not standardised.
Editor's note: Whether need and how to define complex syntax rules like operation priority and so on is FFS.

[image: image3.emf]1. Ask for resources (HTTP GET /resource_path?queryParameteres)

5. Get Single Resource Request

(:path=<resourceUriX>)

Stream: <streamId1>

4.2 Push Response

(body: data representation of <resourceUri2>)

4.1 Push Response 

(body: data representation of <resourceUri1>)

4.n Push Response

(body: data representation of <resourceUriN>)

Stream: <streamId2>

Stream: <streamIdN>

… 

… 

5.a. Get Single Resource Response

(body: data representation of <resourceUriX>

3. HTTP 200 OK

PUSH_PROMISE frame 1

(:path=<resourceUri1>, stream id=<streamId1>)

PUSH_PROMISE frame 2

(:path=<resourceUri2>, stream id=<streamId2>)

… 

…

PUSH_PROMISE frame N

(:path=<resourceUriN>, stream id=<streamIdN>)

Response HEADERS frame & DATA frames

(List of URIs of the resources)


Figure 4.6.1.1.2.2-1 illustrates querying a collection of resources by using query parameters.
Step1. Client sends get request with query parameters to server.

Step2. On success, server would return a collection of resources that includes only those entries filtered by the query_parameters.
Subclause 4.x specifies some possible options for an NF Service Producer to return the representations of multiple resources to a NF Service Consumer. 

* * * Next Change * * * *

4.X
Transferring multiple resources to a NF Service Consumer 
4.X.1
General
This subclause describes some possible options that an API may implement when a NF Service Producer needs to return the representations of multiple resources to a NF Service Consumer, e.g. during the query of a large collection of resources (see sub-clause 4.6.1.1.2.2).
Which options an API may support is defined in the respective stage 3 specification of the API.  
4.X.2
Direct Delivery
A NF Service Producer may return the representations of the resources directly in the response body, i.e. the response body contains an array of the resource representations.
4.X.3
Direct Delivery with Iterations 
If large number of resource representations need to be returned, the NF Service Producer may insert representations of a part of the resources in the response body, with link(s) contains URI(s) allowing the client to retrieve the remaining part(s) of the resources.
A NF Service Consumer that receives link(s) in the response body may retrieve the remaining part(s) of the resources by sending GET requests towards the URI(s) contained in the link(s).
Editor's Note: It is FFS on how the link contains the URI to the next part of resources is defined in message body.

Editor's Note:
It is FFS on which format is used in message body, to convey both resource representation and the link(s) contains the URI(s) to next part of resources.

4.X.4
Indirect Delivery

A NF Service Producer may insert the links with URIs of the resources directly in response body. For each link, the NF Service Producer may further include certain identifying attributes (e.g. name, identifier) to support selection of the links to follow by the NF Service Consumer.
A NF Service Consumer that receives such a response may then send a GET request per resource URI to retrieve the resources from the NF Service Producer.
4.X.5
Indirect Delivery with HTTP/2 Server Push
A NF Service Producer may use HTTP/2 Server Push, if HTTP/2 Server Push is supported in the PLMN.
To use HTTP/2 Server Push, the NF Service Producer shall send PUSH_PROMISE frames in the HTTP response, with each PUSH_PROMISE frame containing a GET request targeting the URI of one resource to be transferred and the reserved stream identifier to be used for transferring the resource. Then the NF Service Producer shall send Push Responses via the corresponding reserved streams, with each Push Response containing the representation of the associated resource. The NF Service Producer shall also send links with the URIs of the resources in DATA frame(s) of the response message.
A NF Service Consumer may disable HTTP/2 Server Push by sending SETTINGS_ENABLE_PUSH parameter with value "0" on HTTP level, as specified in IETF RFC 7540 [11].
[image: image1.emf]client server

1. Get .../resource?query_parameters

2. 200 OK (ResourceRepresentation)


Figure 4.x.5-1 Indirect Delivery with HTTP/2 Server Push
1. A NF Service Consumer sends a HTTP request to get resources(s) to the NF Service Producer, e.g. a query of a collection of resources.
2. The NF Service Producer detects that multiple resources are to be returned and choose to indirectly deliver the resources with the Server Push mechanism.
3.
The NF Service Producer returns multiple PUSH_PROMISE Requests before HEADERS frame and DATA frames(s) to the NF Service Consumer. Each PUSH_PROMISE Request contains the URI of one resource to be transferred and the identifier of the reserved stream used for transferring the resource. The NF Service Producer shall also send links with the URIs of the resources in DATA frame(s) of the response message.
4.1-4.n. The NF Service Producer sends Push Reponses via corresponding reserved streams. Each Push Response contains the representation of the associated resource.
5. If the NF Service Consumer does not successfully receive a resource in time, it may send a request to get that resource, using the resource URI previously received from the Push Request.
5.a. The NF Service Producer returns the data of the requested resource in the response.
4.X.6
Criteria for choosing the transfer method
The following considerations may be used to determine which method to use transfer multiple resources to a NF Service Consumer.
If the size of the representation of each resource is small, direct delivery is preferred. If the number of resources to be returned is large, the NF Service Producer may choose iterative delivery.
If the size of the representation of each resource is large, indirect delivery is preferred. If the NF Service Producer supports HTTP/2 Server Push, then:
· when SETTINGS_ENABLE_PUSH parameter with value "1" has been received from the NF Service Consumer, as specified in IETF RFC 7540 [11], it should choose HTTP/2 Server Push to deliver the resource.
· when SETTINGS_ENABLE_PUSH parameter with value "0" has been received from the NF Service Consumer, as specified in IETF RFC 7540 [11], it must not choose HTTP/2 Server Push to deliver the resources.

· when SETTINGS_ENABLE_PUSH parameter has not been received from the NF Service Consumer, as specified in IETF RFC 7540 [11], it may decide whether to use HTTP/2 Server push or not, depending on other factors, e.g. operator policy, whether the client and server pertain to the same PLMN, etc.
Editor's Note: It is FFS on the definition of "small" and "large" of the resource representation size.
Editor's Note: the above considerations are FFS.
Editor's Note: It is FFS whether the NF Service Consumer needs to indicate to the server that server can use server push, to ensure that the server does so only when really required (this is to avoid having the server to "speculate" on what the client may need). The use of the HTTP Server Push may need to be negotiated per API.
* * * End of Changes * * * *

� EMBED Visio.Drawing.15  ���








[image: image2.emf]1. Ask for resources (HTTP GET /resource_path?queryParameteres)

5. Get Single Resource Request

(:path=<resourceUriX>)

Stream: <streamId1>

4.2 Push Response

(body: data representation of <resourceUri2>)

4.1 Push Response 

(body: data representation of <resourceUri1>)

4.n Push Response

(body: data representation of <resourceUriN>)

Stream: <streamId2>

Stream: <streamIdN>

… 

… 

5.a. Get Single Resource Response

(body: data representation of <resourceUriX>

3. HTTP 200 OK

PUSH_PROMISE frame 1

(:path=<resourceUri1>, stream id=<streamId1>)

PUSH_PROMISE frame 2

(:path=<resourceUri2>, stream id=<streamId2>)

… 

…

PUSH_PROMISE frame N

(:path=<resourceUriN>, stream id=<streamIdN>)

Response HEADERS frame & DATA frames

(List of URIs of the resources)

client
server
1. Get .../resource?query_parameters
2. 200 OK (ResourceRepresentation)




NF Service Consumer


NF Service Producer

1. Ask for resources (HTTP GET /resource_path?queryParameteres)
5. Get Single Resource Request
(:path=<resourceUriX>)
Stream: <streamId1>
4.2 Push Response
(body: data representation of <resourceUri2>)
4.1 Push Response  (body: data representation of <resourceUri1>)
4.n Push Response
(body: data representation of <resourceUriN>)
Stream: <streamId2>
Stream: <streamIdN>
…  …
5.a. Get Single Resource Response
(body: data representation of <resourceUriX>
3. HTTP 200 OK

2. Detects of sending multiple resources and choose to use Server Push

PUSH_PROMISE frame 1
(:path=<resourceUri1>, stream id=<streamId1>)
PUSH_PROMISE frame 2
(:path=<resourceUri2>, stream id=<streamId2>)
… 
…
PUSH_PROMISE frame N
(:path=<resourceUriN>, stream id=<streamIdN>)
Response HEADERS frame & DATA frames
(List of URIs of the resources)



