

	
[bookmark: _GoBack]3GPP TSG CT4 Meeting #81	C4-176414
Reno, USA; 27th November to 1st December 2017	was C4-176253 was C4-176132

Source:	Orange, Nokia, Ericsson
Title:	Introducing resource archetypes in TS 29.501
Spec:	3GPP TR 29.501 v0.2.0
Agenda item:	6.2.1.4
Document for:	Approval

1. Introduction
Resource archetypes help API designers to structure the resources. It also provides meaningful information to API consumers.
This pCR defines resource archetypes in an Annex that can be reused by API designer.
The clause 4.4 is also modified to keep only information consistent with its title: URI structure. Custom operation as well as document, collection and store descriptions are provided in an informative annex.
Finally it is proposed to remove the “rpc” string from the custom operation URI template as it does not provide any logical advantage; it isn’t needed for parsing or for providing the semantic of the operation. On the other hand it may give the wrong message that 3GPP CT3 and CT4 WG design remote procedure call instead of REST APIs.
To one archetype corresponds one URI template.
2. Proposal
It is proposed to agree the following changes to 3GPP TR 29.501 v0.2.0

* * * First Change * * * *
[bookmark: _Toc497474639][bookmark: _Toc497489769]4	Design Principles for 5GC SBI APIs
[bookmark: _Toc497474640]4.1	General Principles
Each 5GC SBI API specification should include the following information for each specified service:
-	Purpose of the API;
-	URIs of resources;
-	Supported HTTP methods for a given resource;
-	Supported representations (e.g. JSON, see IETF RFC 7159 [3]);
-	Request body schema(s) (where applicable);
-	Response body schema(s) (where applicable);
-	Supported response status codes;
-	A reference in the resource description subclause to one of the archetypes defined in Annex X if the resource design matches one of them.
For each specified service a subclause to a normative Annex should be provided containing the OpenAPI definitions according to OpenAPI Specification [4] for the service. The specifications should state that content of this normative annex takes precedence when being discrepant to other parts of the specification.
The TS Skeleton Template as provided in Annex A should be used as a starting point when drafting 5GC SBI API specifications.
Common procedures, HTTP extensions and error handling applicable to several 5GC SBI API specifications should be defined in 3GPP TS 29.500 [2] and should be referenced from individual 5GC SBI API specifications. 
Common data types applicable to several 5GC SBI API specifications should be defined in 3GPP TS 29.tbd [5] and should be referenced from individual 5GC SBI API specifications. 
Editor's Note:	Whether or not a given data type is or should be common is ffs.
* * * Next Change * * * *
4.4	URI Structure
4.4.1	Resources URI structure
Resources represent objects that are modified by standard HTTP operations using the CRUD paradigm, and that can have additional custom operations attached (see clause 4.4.2). Resources are either individual resources, or collection structured resources that can contain child resources of the same type. It is recommended to design each resource following one of the archetypes provided in the Annex X.
NOTE: 	Even though a collection resources typically contain child resources, it is allowed that a particular collection resource does not contain any child resource at a particular point in time ("empty collection").
Every resource is uniquely identified by a URIA URI uniquely identifies a resource. In the 5GC SBI APIs the resource URI structure shall be specified as follows:
{apiRoot}/{apiName}/{apiVersion}/{apiSpecificResourceUriPart}
"apiRoot" is a concatenation of the following parts:
-	scheme ("http://" or "https://" 
Editor's note: The choice of scheme depends on SA3 requirements. 
-	authority (host and optional port) as defined in IETF RFC 3986 [9]
-	an optional deployment-specific string that starts with a "/" character.
Editor's Note:	The use of an optional deployment-specific string is ffs.
"apiName" defines the name of the API. 
"apiVersion" represents the version of the API. See also subclause 4.3.
[bookmark: _Hlk494295053]While "apiRoot", "apiName" and "apiVersion" together define the base URI of the API, each "apiSpecificResourceUriPart" defines a resource URI of the API relative to the base URI.
With every HTTP method, exactly one resource URI is passed in the request to address a resource.
[bookmark: _Toc497474645]4.4.2	Custom operations URI structure
The custom operation definition is in Annex X.
In addition to the standard operations, a resource can have further custom operations which are represented by specific URIs. The URI that represents of a custom operation which is associated with a resource shall have the following structure:
{apiRoot}/{apiName}/{apiVersion}/{apiSpecificResourceUriPart}/rpc/{custOpName}
The URI that representsof a custom operation which is not associated with a resource shall have the following structure:
{apiRoot}/{apiName}/{apiVersion}/rpc/{custOpName}
In the above URI structures, "apiRoot", "apiName", "apiVersion" and "apiSpecificResourceUriPart" are as defined in clause 4.4.1 and "custOpName" represents the name of the custom operation as defined in clause 5.1.3.2.

* * * Next Change * * * *
[bookmark: _Toc497474643]Annex X (Informative):
Resource modelling
When designing an API, one shall first think of defining the set of resources consumed. Resources represent objects that are modified by standard HTTP methods and that can be modelled with one of 5 archetypes detailed below. Resource archetypes help API designers to structure the resources. In this process the designer should refer to the appropriate archetype when the resource definition perfectly matches the archetype one. Referring to an archetype immediately defines what operations and HTTP methods are supported by the resource.
The archetypes provided hereafter don’t preclude the existence of resources of different types.
X.1	Document
The document archetype is the conceptual base archetype of the other ones. Any resource that is not identified with one of the other resource archetypes is a document.
A document may have child resources that represent its specific subordinate concepts.
The archetype does not place any restriction on HTTP methods when acting on a document.
Only CRUD operations are performed directly on a document resource, i.e. by sending an HTTP request to the URI of that resource. Custom methods are not performed directly on the resource, but by sending an HTTP request to a URI that is associated by a convention (see clause X.4) with the URI of the resource.

Editor’s note:	The exact operations, methods and definition of the document archetype are FFS.
X.2	Collection
The collection archetype can be used to model a resource that serves as a directory of resources. A collection is NF Service Provider-managed so the NF Service Provider decides the URIs of each resource that is created in the collection.
NOTE: 	Even though a collection resource typically contains child resources, it is allowed that a particular collection resource does not contain any child resource at a particular point in time ("empty collection").
The Create and Read operations are performed on a collection directly. 
More specifically:
· A collection child resource is created by sending a POST with the collection URI if accepted by the collection;
· A collection is read by sending a GET with the collection URI;
· The PUT and PATCH methods with the collection URI are not allowed;
· The DELETE method with the collection URI is only allowed if the collection resource has been created dynamically based on a request from the NF Service Consumer.
-	The authorized operations on a collection child resource depend on that resource’s archetype.
Editor’s note:	The exact operations, methods and definition of the collection archetype are FFS.

X.3	Store
The store archetype can also be used to model a resource that serves as a directory of resources but a store is NF Service Consumer-managed. The NF Service Consumer solely decides what resource shall be added to / deleted from a store. The NF Service Consumer decides what the URI of the added resource is.
NOTE: 	Even though a store resource typically contains child resources, it is allowed that a particular store resource does not contain any child resource at a particular point in time ("empty store").
The Read operation is performed on a store directly, and the Create operation is performed on store child resources.
More specifically:
-	A store child resource is created by sending a PUT with the URI of the child resource to be created.
-	A store is read by sending a GET with the store URI;
-	The POST, PUT and PATCH methods with the store URI are not allowed;
-	The DELETE method with the store URI is only allowed if the store resource has been created dynamically based on a request from the NF Service Consumer.
-	Apart from Create (PUT), the authorized operations on a store child resource depend on that resource’s archetype. 
Editor’s note:	The exact operations, methods and definition of the store archetype are FFS.

[bookmark: _Toc497474644]X.4	Custom operation
The custom operation archetype can be used to model an unsafe and non-idempotent operation that is not a Create on a collection.
A custom operation does not operate directly on the resource that would be identified by the custom operation URI. Instead, when the custom operation is associated with a resource, the operation is performed on this associated resource. For instance, a custom operation may modify the associated resource in a special way. This associated resource is identified by stripping the suffix string "/{custOpName}" from the custom operation URI template in clause 4.4.2.
When the custom operation is not associated with any resource but with the service, it acts as an executable function with input parameters and returns the result of the executed function in the response body, not modifying any resource.
POST is the only method allowed with a custom operation URI.
The semantic of the custom operation is encoded in the last segment of the URI template in chapter 4.4.2: /{custOpName}.
* * * End of Changes * * * *

