
3GPP TSG CT4 Meeting #81
C4-176040
Reno, US; 27th Nov – 1st Dec 2017

Source:
Nokia, Nokia Shanghai Bell
Title:
Pseudo-CR on Content-type of multipart message
Spec:
3GPP TR 29.891 v1.1.0
Agenda item:
6.2.1.1
Document for:
Decision

1. Reason for Change
It has been agreed to support multipart messages over 5GC SBIs that require to transport large opaque binary payloads. However, it has not yet been concluded which content-type to use in the multipart messages.
Given the conclusion agreed at the last CT4 meeting to cross reference the binary body part from the JSON body part, it is proposed to use the multipart/related content-type.
2. Proposal

It is proposed to agree the following changes to 3GPP TR 29.891 v1.1.0.
* * * First Change * * * *

6.2.2.5.4
Solution 4 – Multiple payload formats including binary formats
6.2.2.5.4.1
Description
6.2.2.5.4.1.1
General
Many application layer protocols can carry multiple data sets of same or different format in the body of a single message. This capability is called multipart and messages that carry multiple data sets are called multipart messages. Multipart is frequently applied to HTTP, e.g. to transfer a binary encoded picture together with its text-encoded metadata. As such, many tools are available for service development and service specification of multipart applications. The OpenAPI IDL supports multipart from version 3.0 and the corresponding parsers are updated accordingly.

Multipart HTTP messages are identified by a multipart Content-Type field, which indicates that the message body contains multiple body parts. Each body part is preceded by an encapsulation boundary. The last body part is followed by a closing boundary. Each body part consists of a header area, a blank line, and a body area. A body part is structured very much like a "regular" body preceded by the content-header fields.

According to IETF RFC 2045 [69] and IETF RFC 2387 [71], HTTP messages with multiple independent body parts should use the content-type "multipart/mixed", and HTTP messages with multiple inter-related body parts should use the content-type "multipart/related". The Content-types multipart/mixed and multipart/related allow to include, in one multipart HTTP message, multiple content types, each with its own serialization format. The different content parts can be distinguished and identified by different content-types. If several body parts host payloads of the same type, a HTTP Content-ID header can be added to the body for differentiation. In this way, payloads in one body part can include references to related payloads in other body parts.
According to IETF RFC 2387 [71], the first body part the application processes when receiving a multipart/related message is called "root" object (or "root" body part). The default root is the first body within the multpart/related message. A multipart/related message shall include a "type" parameter specifying the media type of the root body part, and may include a "Start" parameter indicating the root body part (e.g. when this is not the first body part in the message) and a "Start-Info" parameter pointing to another body part in the message.
Figure 6.2.2.5.4.1.1-1 shows an example HTTP message with 3 body parts. Body part 1 contains the JSON payload associated with resource/4711. Body part 2 contains a N1_SM_Container, which is binary formatted and contains a content-ID header such that it can be referenced by the JSON payload in body part 1. Body part 3 contains a N2_SM_Container which is binary formatted and identified by the vendor specific application sub-type "vnd.3GPP.N2-SM".

[image: image1.emf]Body Part 3

vendor specificcontent-type

"vnd." definedby3GPP

Body Part 1

"Multipart" indicatespresenceofmultiple bodyparts

"Boundary" parameterdefineshowbodypartsare delineated

Body Part 2

Optional, world-unique Content-ID

allowsreferencesto thisbodypart

from otherbodyparts(see bodypart1)

PUT http://5GC/serviceA/resource/4711

Host: NF1.telco.com

MIME-Version: 1.0

Content-type: Multipart/mixed;

Boundary = !!///!!

Content-length(total length of body): 924

--!!///!!

Content-type: application/json

{… "container": {"type": "N1_SM", "id": "0001@telco.com"}, …}

--!!///!!

Content-type: application/octet-stream

Content-ID: 0001@telco.com

Content-Transfer-Encoding: binary(no transcoding, sequence of octets)

Content-Description: This body parts holds a N1 SM Container

…

--!!///!!

Content-type: application/vnd.3GPP.N2-SM

Content-Transfer-Encoding: binary(no transcoding, sequence of octets)

…

--!!///!!--

Figure 6.2.2.5.4.1.1-1: Multipart HTTP message which 3 body parts

* * * Next Change * * * *

6.2.2.5.4.2.2
Use of HTTP multipart messages over 5GC SBIs
The support of multipart messages and binary body parts would be beneficial for large opaque binary payloads such as those listed in subclause 6.2.2.5.4.2.1 which, with a single JSON content-type approach, would require encoding and decoding at both ends of the SBI. For example, in the case of json, binary objects would typically get Base64 formatted, resulting in processing overhead at both ends of the SBI and in an increase of 1/3 of the size of the encoded payload.
NOTE 1:
The use of multipart messages primarily aims at avoiding the processing overhead of encoding and decoding the binary payload into Base64 encoded string at both sides of the 5GC SBI. The size of the message is less a concern for core network internal interfaces. Note that for small payloads (e.g. < 75 octets), the extra size of a Base64 encoded string would still be lower than the extra size of the additional headers of a multipart message (e.g. assuming 100 octets of additional headers).

This also fits well the 5GS system architecture, for SBIs such as N11, where the SMF produces services for the AMF but also terminates the NAS and NGAP protocols with the UE and 5G-AN respectively, which require different processing of payloads. Multipart message allows to separate and make visible this functionally already at HTTP protocol level.

The use of 3GPP vendor specific content subtypes enables to fully describe the nature of opaque payloads.

It is concluded to support multipart messages to transmit large parts of opaque binary data along with JSON using:

-
a multipart/related media type;

-
3gpp vendor specific content subtype; and
-
cross-referencing from the json payload using the Content-ID field.
The binary payloads allowed to use binary body parts in multipart messages will be determined during the stage 3 normative work.

Binary payloads shall be permitted in HTTP requests and responses where a payload body is allowed (i.e. in HTTP POST, PUT and PATCH requests and responses, HTTP GET and DELETE responses, but not in HTTP GET and DELETE requests nor in HEAD requests and responses).

NOTE 2:
For PATCH requests, IETF RFC 5789 [78] does not specify any restriction on where a patch document can be placed. Placing it in a single body or a body part is therefore assumed to be permitted.
NOTE 3:
Semantics for RESTful API prescribe that for some HTTP request methods (e.g. GET), the body has no semantic meaning. For example, the response to a GET request should only depend on the Request-URI. If now the inclusion of a binary payload in a HTTP request triggers a special response, such as the inclusion of a binary payload in the HTTP response, this would constitute a violation of the RESTful API style. Specifically, multipart HTTP would violate RESTful API semantics, if one or more payloads (e.g. to N1 and N2 SM containers) were included in HTTP requests GET, DELETE and HEAD.
NOTE 4:
The content-type multipart/related is retained for the multipart message since the binary body part and the JSON body part are related to each other (with the cross-referencing using the Content-ID field). The root object of the multipart message is the json body part as this is the first part the receiving application needs to process. The JSON body part will always be inserted as the first body part of the message. The "Start" and "Start-Info" parameters do not need to be used.
6.2.2.5.5
Conclusion

It is recommended to use JSON as serialization data format for the specification of 3GPP 5GC in Rel-15. It is also concluded to support multipart messages, as specified in subclause 6.2.2.5.4, to transmit large parts of opaque binary data along with JSON.

Nonetheless, it is recommended to continue with internal 3GPP research efforts to evaluate the potential performance gain to be expected realistically from other encoding alternatives, for the specific payload types typically used in the 5GC interfaces.

The usage of CBOR (or other binary, more performant alternative) can be re-evaluated for subsequent 3GPP releases, once more detailed benchmark figures are available first-hand from the 3GPP community, and the tools availability is more stable.

It is expected that replacing JSON with a more efficient CBOR alternative can be achieved without impacting the application logic; content types for JSON and CBOR can be indicated by using the respective Media Types (application/json, application/cbor, etc..) allowing client and server to agree (via content negotiation and HTTP "Accept" headers) on the supported serialization format. However, it should be noted that this task would require substantial standardization effort.
* * * Next Change * * * *

11.3.1.2
Protocol solution for Service Based Interfaces

Based on the protocol solutions and evaluations described in subclause 6.2, HTTP is preferred for the following reasons:

-
allows to design the 5G Service Based Architecture using cloud-native and Web technologies:

-
HTTP based APIs are cloud-friendly, easy to deploy and open;

-
largest user community for Web services. Rich landscape of frameworks, tools and software.

-
HTTP is native to service based architecture;

-
use of HTTP is future proof as it is used in large non-telecom ecosystem;

-
eases and speeds deployment and continuous integration/delivery of new or upgraded network functions and services;

-
eases use of operator owned application functions and interworking with third parties' applications:

-
largest user community for Web services;

-
already supported by some operator owned application functions (e.g. MEC);

-
HTTP REST APIs are supported on northbound NEF interfaces.

It is concluded to standardize the following protocol solution for the Service Based Interfaces under CT4 responsibility identified in Table 11.3.1.1-1:

-
protocol: HTTP/2 (see IETF RFC 7540 [15] and IETF RFC 7541 [37]), as specified in subclause 6.2.2.2;

-
transport: TCP (see IETF RFC 793 [13]);

-
serialization protocol: JSON (see IETF RFC 7159 [16]);

-
support binary body part and multipart messages (with the multipart/related content-type), as specified in subclause 6.2.2.5.4, to transmit large parts of opaque binary data along with JSON;

-
API design style: apply a RESTful framework for the protocol design whenever possible and use custom methods otherwise, as specified in subclause 6.2.2.4;

-
support of notification with two HTTP client-server pairs, as specified in subclause 6.2.2.2;

-
Interface Definition Language: OpenAPI Specification, version 3.0.0 [49]; each interface will be specified by textual and/or tabular format description in the main body of the Technical Specification and by an OpenAPI specification file in a normative annex, as specified in subclause 6.2.2.7;

-
support of HTTP Heartbeat to check the aliveness of a service in a peer NF based on exchange of HTTP PUT or POST request/response, using a solution similar to the solution 3 specified in subclause 6.2.2.2.1.10. The 5GC APIs which may require support of this mechanism will be determined during the stage 3 normative work per API.

HTTP/2 over QUIC/UDP (see IETF draft-ietf-quic-transport [18]), and other binary encoding alternatives such as CBOR, are regarded as potential evolutions in a later release for enhanced performances and may be subject to further studies and contributions following the normal 3GPP working procedures.

* * * End of Changes * * * *

_1568548017.ppt
R 18
G 65
B 145

R 0
G 201
B 255

R 104
G 113
B 122

R 216
G 217
B 218

R 168
G 187
B 192

Core and background colors:

Body Part 3

vendor specific content-type

 "vnd." defined by 3GPP

Body Part 1

"Multipart" indicates presence of multiple body parts

"Boundary" parameter defines how body parts are delineated

Body Part 2

Optional, world-unique Content-ID

allows references to this body part

from other body parts (see body part 1)

PUT http://5GC/serviceA/resource/4711

Host: NF1.telco.com

MIME-Version: 1.0

Content-type: Multipart/mixed;

 Boundary = !!///!!

Content-length(total length of body): 924

--!!///!!

Content-type: application/json

{… "container": {"type": "N1_SM", "id": "0001@telco.com"}, …}

--!!///!!

Content-type: application/octet-stream

Content-ID: 0001@telco.com

Content-Transfer-Encoding: binary(no transcoding, sequence of octets)

Content-Description: This body parts holds a N1 SM Container

…

--!!///!!

Content-type: application/vnd.3GPP.N2-SM

Content-Transfer-Encoding: binary(no transcoding, sequence of octets)

…

--!!///!!--

The recommended action for an implementation that receives an "application/octet-stream" entity is to simply offer to put the data in a file or to use it as input to a user-specified process (with any Content-Transfer-Encoding undone).

NS

UNKNOWN-0.unknown

