
3GPP TSG CT4 Meeting #81
C4-176028
Reno, US; 27th Nov – 1st Dec 2017

Source:
Ericsson
Title:
Pseudo-CR on HTTP Server Push
Spec:
3GPP TS 29.500 – v0.2.0
Agenda item:
6.2.1.3
Document for:
Decision

1. Introduction
<Introduction part (optional)>

2. Reason for Change
In Service Based Architecture (SBA) network, there are procedures requiring transferring multiple resources from one NF to another NF. E.g. Querying a collection of resources (see sub-clause 4.6.1.1.2.2 of TS 29.501 v0.2.0). When the number of resources is large, the solution of transferring these resources is yet to be studied.
The simplest way is to return representation of all resources in the response body. When the number of resources is large, the size of the body may become large or even huge. Using a large/huge response body has drawbacks:
· It is more vulnerable to transport layer problems. When transport layer fails, the whole body needs to be retransmitted.

· Response latency may increase by buffering configuration mismatching among intermediaries.
· HTTP/JSON stacks may hold the response in stack layer until the whole body is received and parsed, before passing to up layer application logic. This cause extra delay of data processing in receiving CN NFs.
· The receiving NF doesn’t know how many resources and which resources will be received before parsing the whole body, if not informed in some other ways.

SBA has already selected HTTP/2 as the protocol and HTTP/2 supports Server-side initiated push (see sub-clause 8.2 of IETF RFC 7540), which allows the server to proactively push responses (along with corresponding "promised" requests) to a client in association with a previous client initiated request. 
HTTP/2 Server Push can be useful to transfer multiple resources between NFs. With HTTP/2 Server Push, the server first sending PUSH PROMISE frames together with the response of the initial client request. Each Push Promise contains the URI of one resources to be pushed as well as the reserved stream ID to be used for transferring the resource. Then server will send each resource in one Push Response via the reserved stream. 

The benefits of using HTTP/2 Server Push are obvious:

· Before receiving of any data representation of the resources, the receiving NF already got the information of the resources to be received from the service operation response, including number of the resources and all URIs of the resources. The NF logic can already reserve physical machine resources (e.g. memory, worker, etc.) for processing the data.
· Data representation of each resource are sent in a single Push Response, HTTP/JSON stack can work more efficiently and pass it to up layer application logic one by one.

· Each resource is sent via separate stream. Single resource transport failure will not impact others. In case of certain resource is not received successfully, receiving NF can issue explicit request for this resource to fetch it, as the URI of this resource is already known.

Considering the drawbacks of using HTTP/2 Server Push, the main concerns is the behavior of intermediaries. As stated in IETF RFC 7540, "An intermediary can receive pushes from the server and choose not to forward them on to the client. In other words, how to make use of the pushed information is up to that intermediary. Equally, the intermediary might choose to make additional pushes to the client, without any action taken by the server." This could be overcome, 3GPP standards could address this problem by putting corresponding requirements on intermediaries in their controlled environment.
Another consideration is the overhead by using HTTP/2 Server Push, as requires the server to generate and send a promised request for every pushes response. This can be handled by server NF logic dynamically. If the data representation of each resource is rather small, smaller than the Push Promise Frames, the server NF can choose not to use Server Push and return the data in the service operation body.
Conclusion: this CR recommend use HTTP/2 Server Push for transfer multiple resources between NFs.
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.500 v0.2.0.
* * * First Change * * * *

5.2
HTTP/2 protocol
This clause will introduce the HTTP protocol selected for SBI.
5.2.1
General
5.2.2
HTTP standard headers
5.2.3
HTTP custom headers
5.2.4
HTTP error handling
5.2.X 
HTTP/2 Server Push

The HTTP/2 Server Push (see subclause 8.2 of IETF RFC 7540 [7]) allows a server to pre-emptively send (or "push") responses (along with corresponding "promised" requests) to a client in association with a previous client-initiated request. This can be useful when the server knows the client will need to have those responses available in order to fully process the response to the original request.
* * * Next Change * * * *

6.7
Security mechanisms
This clause will specify the Security mechanisms.
6.X
Multiple Resources Transfer
Procedures that requires multiple resources to be transferred from the NF Service Producer to the NF Service Consumer shall utilize HTTP/2 Server Push (see subclause 8.2 of IETF RFC 7540 [7]) mechanism when the Server Push feature is deployed in the PLMN.

If deployed, a NF Service Producer receiving a HTTP request to retrieve multiple resources shall send Push Requests in the HTTP response, with each Push Request containing the URI to one resource to be transferred and the reserved stream identifier to be used for transferring of the resource. Then the NF Service Producer shall send Push Responses via corresponding reserved streams, with each Push Response containing the data representation of the associated resource.
If the NF Service Consumer does not successfully receive one of requested resources, it can explicitly send a HTTP request to retrieve this single resource using the URI previously received in the Push Request.

[image: image1.emf]...

1. Get Multiple Resources HTTP Request

4. Get Single Resource HTTP Request

(:path=<resourceUriX>)

Stream: <streamId1>

3.2 Push Response

(body: data representation of <resourceUri2>)

3.1 Push Response 

(body: data representation of <resourceUri1>)

3.n Push Response

(body: data representation of <resourceUriN>)

Stream: <streamId2>

Stream: <streamIdN>

… 

… 

4.a. Get Single Resource HTTP Response

(body: data representation of <resourceUriX>

2. Get Multiple Resources HTTP Response

Push Request

(:path=<resourceUri1>, stream id=<streamId1>)


1. A NF Service Consumer sends a HTTP request to get multiple resources in the NF Service Producer.

2. The NF Service Producer returns multiple Push Requests together with the HTTP response to the NF Service Consumer. Each Push Request contains the URI of one resources to be transferred and the identifier of the reserved stream used for transferring of the resource.

3.1-3.n. The NF Service Producer sends Push Reponses via corresponding reserved streams. Each Push Response contains the data representation of the associated resource.
4. In case the NF Service Consumer does not successfully received a resource in time, it can send HTTP request to explicitly get that resource, using resource URI previously received from the Push Request.
5. The NF Service Producer returns the data of the requested resource in the HTTP response.
NOTE 1: 
All intermediaries in the PLMN can be configured to enable the support for HTTP/2 Server Push feature, i.e. to always forward pushes from server to the client when the feature is deployed.
NOTE 2: 
If the size of data representation of the resources is smaller than Push Requests to be generated, NF Service Producer can chose NOT use server push to avoid overhead.
* * * End of Changes * * * *


NF Service Consumer


NF Service Proceduer

...
1. Get Multiple Resources HTTP Request
4. Get Single Resource HTTP Request
(:path=<resourceUriX>)
Stream: <streamId1>
3.2 Push Response
(body: data representation of <resourceUri2>)
3.1 Push Response  (body: data representation of <resourceUri1>)
3.n Push Response
(body: data representation of <resourceUriN>)
Stream: <streamId2>
Stream: <streamIdN>
…  …
4.a. Get Single Resource HTTP Response
(body: data representation of <resourceUriX>
2. Get Multiple Resources HTTP Response
Push Request
(:path=<resourceUri1>, stream id=<streamId1>)



