
3GPP TSG CT WG4 Meeting #61
C4-130776
Chengdu, The People's Republic of China; 20th – 24th May 2013
Source:
Orange
Title:
Pseudo-CR on Details on disconnection with "BUSY" cause
Spec:
3GPP TR 29.809 v0.2.0
Agenda item:
6.5
Document for:
Decision

1. Introduction
The peer disconnection with an explicit disconnection cause set to "BUSY" is the other mechanism defined in the the base Diameter protocol for indicating that a node is overloaded
2. Reason for Change
When merging two different P-CRs at the C4#60 ad-hoc meeting in San Diego, tye description of the use of the DPR with "BUSY" cause was left out. It is proposed to document its use in the TR for information.
A short introduction text is also proposed for the section 5.2.1.
3. Proposal

It is proposed to agree the following changes to 3GPP TR 29.809 v0.2.0.
* * * First Change * * * *

5.2
Diameter Overload

5.2.1
Introduction

The following subclauses provide an overview of the overload situation in Diameter and describe the mechanisms described in IETF RFC 6733 [2] to discover that a Diameter node is overloaded.
* * * Next Change * * * *

5.2.3
Limitations of Existing Mechanisms in Diameter

The base Diameter protocol (IETF RFC 6733 [2]) provides two native mechanisms to explicitly indicate that a server is overloaded.

The first mechanism is to use of the Protocol Error "DIAMETER_TOO_BUSY" in the answer related to the request. This error is used by the Diameter node to indicate a specific server being requested might be busy and unable to provide the requested service. When receiving such an error code, the downstream Diameter node should attempt to send the message to an alternate peer, if available. Shedding of messages or redirection of messages if there are other servers available to take over the load may be implemented in the downstream Diameter node in this case. However, the Protocol Error "DIAMETER_TOO_BUSY does not provide detailed information of the severity of the overload state of the server. Furthermore, it can be imagined that in the case the server is already overloaded, it has to respond to each request with this error code, which may make things even worse.

The base Diameter protocol (IETF RFC 6733 [2]) enables also an overloaded server to inform a peer of its lack of internal resources for normal request processing by sending a request for transport layer disconnection (Disconnect-Peer-Request) with the disconnect cause set to "BUSY". This mechanism is only meaningful when client and server have a direct transport connection. If an agent is on the path between the client and the server, only this agent will receive the disconnection request the cause "BUSY". There is no way to propagate this information to the client that has initiated the request: the client behind the agent will only receive the Protocol Error "DIAMETER_UNABLE_TO_DELIVER" (see below). Moreover, the Diameter node receiving this disconnection reason is not expected to attempt reconnection "unless it has a valid reason to do so (e.g., message to be forwarded)", as stated in the base Diameter protocol (IETF RFC 6733 [2]), which provide very few guidance on when to reopen the connection after an overload situation. It seems to be assumed that the overloaded node should be able to reopen the connection after the end of the overload situation whereas Diameter servers in operational networks are usually configured as connection request responder-only, leading to a deadlock situation.

When a Diameter agent (Relay or Proxy) is on the path between the client and the server, the diameter client may receive from the agent the Protocol Error "DIAMETER_UNABLE_TO_DELIVER" as answer to the pending request if the server has terminated the connection with the agent due an overloaded state or if the server does not even respond because the additional requests are dropped . Besides the case the host is overloaded and cannot respond the request, which may fall into this error scope, this Protocol Error cause may be received by the client for other error cases (e.g. failure of the transport connection, no entry in the peer table of the Diameter agent), and there is no way for the Diameter client to clearly determine an overload situation using only Protocol Error "DIAMETER_UNABLE_TO_DELIVER".
As an alternative mechanism, a Diameter node might assume that a peer is overloaded when no responses to requests are received from the peer while the transport connection works well. However, this mechanism is neither reliable nor accurate and it may take long time for the downstream Diameter node to realize overload might happen at the server.

Besides the limitation indicated above for each, a common limitation with all the existing mechanisms is that the downstream Diameter node can only react after overload happens, i.e. after overload is detected. A mechanism for overload protection is worth investigated.

As a conclusion, the base Diameter protocol (IETF RFC 6733 [2]) provides very limited mechanisms to detect and overcome overload situations. These mechanisms are based on specific error handling or transport connection management at the server side. The default behaviour of the client relies only on the availability of alternate peers to offload the requests when the primary server is offloaded. However, these mechanisms are too loosely standardized to predict a generic behaviour of all the Diameter nodes present in the same network in case of overload. For a more sophisticated overload control mechanism, the specification effort is required at the application level. This effort could further detail the use of existing mechanisms for a given Diameter application, by clarifying the expected behaviour of clients and servers in case of overload. Moreover, being at the application level would allow defining new mechanisms to enhance the existing Diameter overload control mechanism.

* * * End of Changes * * * *

