CT WG3 Temporary Document

Page 1

3GPP TSG-CT WG4 Meeting #116
C4-232332
Bratislava, Slovakia, 22nd May 2023 – 26th May 2023

Source:
Nokia, Nokia Shanghai Bell
Title:
Discussion on handling of misalignment between main body and the OpenAPI
Document for:
Discussion
Agenda Item:
6.1.1
Work Item / Release:
Rel-18
Abstract of the contribution:

This paper discusses the handling of misalignment between main body and the OpenAPI
Introduction
As per TS 29.501,
clause 5.3.14:

-
JSON object defining attributes "a" and "b", of type integer, where at least one of them shall be present, but not both:

components:
 schemas:
 ExampleType3:
 type: object
 oneOf:
 - required: [a]
 - required: [b]
 properties:
 a:
 type: integer
 b:
 type: integer
-
JSON object defining attributes "a" and "b", of type integer, where attribute "a" shall always be present:

components:
 schemas:
 ExampleType1:
 type: object
 required: [a]
 properties:
 a:
 type: integer
 b:
 type: integer
Annex B:
This Annex provides information about the changes in the API that are considered as backwards compatible and those that are considered as backwards incompatible. This list is to be considered informative and it may be expanded in future releases, when necessary.
Backward compatible changes are additions or changes in the API that do not break the existing Service Consumer behaviour. Examples of backward compatible changes include:

-
Adding a new, optional child resource/URI;
-
Supporting a new HTTP method;
-
Adding new elements to a resource representation;

-
Changing the order of fields in a resource representation;

-
Addition of a new status code:

NOTE 1:
When a NF / NF Service receives a HTTP status code that it cannot recognize it will treat it as the corresponding x00 status code as specified in clause 5.2.7.3 of 3GPP TS 29.500 [2].
-
Corrections of obvious errors in an OpenAPI file required to enable a correct parsing of the file such as misspelled references;

-
Corrections that only relate to smaller and optional parts of the functionality (e.g. a supported feature, see 3GPP TS 29.500 [2] clause 6.6.2), even if the changes are backward incompatible with respect to that part of the functionality; and

NOTE 2:
It is recommended to only apply corrections which are also backward compatible with respect to such smaller and optional parts of the functionality. If this is not possible a new supported feature can be introduced to enable a negotiation of the support of the correction, and the old corresponding supported feature can be marked as "withdrawn" in the table defining the supported features of an API.
-
Backward-compatible changes related to the semantics (i.e. functional behaviour) specified for an API.

Changes in the API that do not result in any loss of existing functionality (i.e. functionality that works fine if both consumer and provider do not support the change) if only consumer or only provider implements the change can be considered as backwards compatible corrections or additions.
Backward incompatible changes are additions or changes in the API that break the existing Service Consumer behaviour. Here is a list of backward incompatible changes that shall require incrementing the 1st field (MAJOR) of the API version number unless they only relate to smaller and optional parts of the functionality (see above):

-
Removing a resource/URI:
-
Removing support for an HTTP method;

-
Renaming a field in a resource representation;
-
Adding mandatory parameters to a resource URI or resource representation;

-
Attribute data type changes;

-
Cardinality changes (NOTE 3); and

NOTE 3:
Whether attribute cardinality changes are backward compatible depend on the type of change. Examples of non-backward compatibility changes include decreasing the upper bound of a cardinality range for attributes sent by the NF service consumer, changing the meaning of the default behavior associated to the absence of an attribute of cardinality 0..N, etc.
-
Backward incompatible changes related to the semantics (i.e. functional behaviour) specified for an API.

Changes in the API that result in loss of existing functionality (i.e. functionality that works fine if both consumer and provider do not support the change) if only consumer or only provider implements the change can be considered as backwards incompatible modifications.
When a change although being categorised as backwards compatible correction or addition results in interoperability issues, it is expected that the issue will be resolved by implementing the change at both consumer and provider.
Discussion
The two scenarios to consider for this discussion paper are:

Scenario#1: There is a misalignment between the main body (description/data model table) and the OpenAPI, where in the data type table, a presence condition is indicated in the form of Table NOTE, that implies either one of the attribute shall be present, but not both. But the same presence condition (as specified in TS 29.501, cl 5.3.14, shown above) is not included in the OpenAPI.
Scenario#2: There is a misalignment between the main body (description/data model table) and the OpenAPI, where in the data type table, the attributes are indicated as "Mandatory". But the presence condition (using "required:", as specified in TS 29.501, cl 5.3.14, shown above) is not included in the OpenAPI.

	NFc(old) \NFp(old)
	Compliant with Main body
	Non-Compliant with Main body

	
	
	
	

	Compliant with Main body
	Scenario#1
	No issues. (since NFc compliant with main body will include the attributes as per condition and NFp accepts).
	No issues. (since NFc compliant with main body will include the attributes as per condition and NFp compliant with only OpenAPI does not have any restriction to reject the request and hence it accepts).
	

	
	Scenario#2
	
	
	

	Non-Compliant with Main body
	Scenario#1
	When both the attributes are included by NFc in the request, NFp rejects/sends error. (NFc – non-3GPP compliant which is identified by the error response.)
	Non-3GPP compliant behavior. If NFc includes/excludes the attributes in the request, NFp does not reject since no presence condition defined in the NFp openAPI. So no error to detect non-compliance to 3GPP, since both NFc and NFp are non-compliant to 3GPP.
	

	
	Scenario#2
	 The attribute (indicated as mandatory in main body) is not included by NFc in the request, NFp rejects/sends error. (NFc – non-3GPP compliant which is identified with the error response.)
	
	

Observation 1: When both NFc and NFp are non-compliant with main body, then it leads to Non-compliance to 3GPP standards and the errors are not detected with existing error handling mechanism.
Now, let us analyse the Backward compatability:

Case 1: If only the NFc which is non-compliant with main body is upgraded to align the Main body and OpenAPI of the specification, while the NFp remains with older version.

	NFc (new) \NFp (old)
	Compliant with Main body
	Non-Compliant with Main body

	
	
	
	

	Compliant with Main body
	Scenario#1
	No issues. (since NFc compliant with main body will include the attributes as per condition and NFp accepts).
	No issues. (since NFc compliant with main body will include the attributes as per condition and NFp compliant with only OpenAPI does not have any restriction to reject the request and hence it accepts).
	

	
	Scenario#2
	
	
	

	Non-Compliant with Main body (new: Upgraded to new version to align OpenAPI with main body)
	Scenario#1
	No issues. (since NFc compliant with main body with the upgrade, will include the attributes as per condition and NFp accepts).
	No issues. (since NFc compliant with main body with the upgrade, will include the attributes as per condition and NFp compliant with only OpenAPI (old version) does not have any restriction to reject the request and hence it accepts).
	

	
	Scenario#2
	
	
	

Observation 2: When only the NFc which was earlier non-compliant with main body is updated to be compliant with main body, it does not lead to any backward incompatible scenarios.
Case 2: If only the NFp which is non-compliant with main body is upgraded to align the Main body and OpenAPI of the specification, while the NFc remains with older version.

	NFc (old) \NFp (new)
	Compliant with Main body
	Non-Compliant with Main body (new: Upgraded to new version to align OpenAPI with main body)

	
	
	
	

	Compliant with Main body
	Scenario#1
	No issues. (since NFc compliant with main body will include the attributes as per condition and NFp accepts).
	No issues. (since NFc compliant with main body will include the attributes as per condition and NFp now compliant with main body accepts).
	

	
	Scenario#2
	
	
	

	NonCompliant with Main body
	Scenario#1
	When both the attributes are included by NFc in the request, NFp rejects/sends error. (NFc – non-3GPP compliant which is identified by the error response.)
	When both the attributes are included by NFc in the request, NFp rejects/sends error. (NFc – non-3GPP compliant which is identified by the error response.)
	

	
	Scenario#2
	 The attribute (indicated as mandatory in main body) is not included by NFc in the request, NFp rejects/sends error. (NFc – non-3GPP compliant which is identified with the error response.)
	 The attribute (indicated as mandatory in main body) is not included by NFc in the request, NFp rejects/sends error. (NFc – non-3GPP compliant which is identified with the error response.)
	

Observation 3: When only the NFp which was earlier non-compliant with main body is updated to be compliant with main body, any error due to non-3GPP compliance of NFc is detected based on existing error handling mechanisms thus prompting the operator of NFc to upgrade to 3GPP compliance.
Proposal

To avoid the error conditions and detect non-compliance of 3GPP standards as indicated above, propose to align OpenAPI with Main body of the specification for the presence conditions scenarios.
3GPP

CT WG3 TD

