

	
[bookmark: _GoBack]3GPP TSG-CT WG4 Meeting #101e	C4-205690
E-Meeting, 03rd – 13th November 2020												 Revision of C4-205533
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	29.573
	CR
	0050
	rev
	2
	Current version:
	16.4.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	N32-f payload compression

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	CT4

	
	

	Work item code:
	SBIProtoc16
	
	Date:
	2020-10-01

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Clause 6.9.2 of TS 29.500 specifies how to discover the Content-encodings supported in HTTP requests and responses, e.g. to determine whether payload compression (e.g. gzip) can be used to optimally reduce the payload size in requests and responses:

Certain service operations may result in large HTTP request payloads, e.g. to register NF profiles in the NRF (see 3GPP TS 29.510 [8]) or to update the NSSF with the available S-NSSAIs supported by Tracking Areas (see 3GPP TS 29.531 [32]). Gzip coding (see IETF RFC 1952 [34]) may be supported to optimally reduce the payload size of HTTP requests in this case.

When using PRINS over N32-f, HTTP requests and responses exchanged between NFs are reformatted in an N32-f payload between SEPPs. This results in larger payloads than the original request and response payloads. Additionally, the sending SEPP needs first to decompress the payload received from the sending NF (if payload compression is used between NFc and NFp), before reformating it according to the N32-f payload structure, which results in even larger payloads.

Therefore when using PRINS, a sending SEPP should be able to compress the N32-f payload sent towards the receiving SEPP, if both SEPPs and IPX in the path support gzip compression.

There are two possible approaches for how a SEPP can determine whether payload compression is supported over N32-f:

a) By discovering the Content-encodings supported in HTTP requests and responses as specified in TS 29.500. In this case, support of payload compression can be determined and applied hop by hop over N32f, e.g. between the sending SEPP and its local IPX, between IPXs, between the remote IPX and remote SEPP. An HTTP Options request may be sent to check first whether the next hop (IPX or SEPP) supports gzip compression; or

b) By negotiating the use of end-to-end payload compression during the N32-c handshake. In this case, payload compression cannot be applied to any N32-f hop if any IPX or SEPP on the path does not support gzip compression. SEPPs would need to be configured with whether their local IPX supports gzip compression and indicate support of gzip compression during the N32-c handshake only if both the SEPP and its local IPX support this capability.

It is proposed to use the first approach, to follow a solution that is similar to what is supported on 5GC SBIs and enable support of payload compression hop by hop.

Additionally, it is not defined how the receiving SEPP determines whether it should compress the reconstructed HTTP payload when forwarding it to the receiving NF. The receiving SEPP can determine so by checking the Content-Encoding header of the original HTTP payload; if this indicates gzip compression, the receiving SEPP compresses the payload before sending it to the receiving NF.

	
	

	Summary of change:
	SEPPs complying with this version of the specification should support gzip compression of N32-f payloads when supporting PRINS.

SEPPs and IPXs may discover the support of N32-f payload compression (gzip) hop by hop, using the Accept-Encoding header and the HTTP OPTIONS request message.

The receiving SEPP should compress the reconstructed HTTP payload when forwarding it to the receiving SEPP, if the original HTTP payload contains a Content-Encoding header indicating gzip compression.

	
	

	Consequences if not approved:
	Very large HTTP payloads over N32-f, much larger than HTTP payloads exchanged between NF and SEPP.

	
	

	Clauses affected:
	2, 3.2, 5.3.2.1, 5.3.2.4, 5.3.x (new), 6.2.2.2.x (new), 6.2.4.1, 6.2.4.x (new), A.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	This CR introduces backward compatible corrections to the OpenAPI specification file of the JOSE Protected Message Forwarding API.

	
	

	This CR's revision history:
	Rev. 1: Header of Table 6.2.4.x.2.1-4 and OpenAPI corrected with 204 instead of 200.
Rev. 2: 200 OK replaced by 204 No Content in Figure 5.3.x-1.

Page 1

[bookmark: _Toc20129598][bookmark: _Toc27584225]* * * First Change * * * *
[bookmark: _Toc24986283][bookmark: _Toc34205711][bookmark: _Toc39061895][bookmark: _Toc43277137][bookmark: _Toc49847467][bookmark: _Toc51873487][bookmark: _Toc24986316][bookmark: _Toc34205744][bookmark: _Toc39061928][bookmark: _Toc43277170][bookmark: _Toc49847500][bookmark: _Toc51873520][bookmark: _Toc24986319][bookmark: _Toc34205747][bookmark: _Toc39061931][bookmark: _Toc43277173][bookmark: _Toc49847503][bookmark: _Toc51873523][bookmark: _Toc24986320][bookmark: _Toc34205748][bookmark: _Toc39061932][bookmark: _Toc43277174][bookmark: _Toc49847504][bookmark: _Toc51873524]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
[bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK4]-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".
[3]	3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
[4]	3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[5]	3GPP TS 29.501: "5G System; Principles and Guidelines for Services Definition; Stage 3".
[6]	3GPP TS 33.501: "Security architecture and procedures for 5G system".
[7]	IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]	IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
[9]	IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[10]	IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[11]	IETF RFC 793: "Transmission Control Protocol".
[12]	3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".
[13]	IETF RFC 7518: "JSON Web Algorithms (JWA)".
[14]	IETF RFC 7516: "JSON Web Encryption (JWE)".
[15]	IETF RFC 4648: "The Base16, Base32, and Base64 Data Encodings".
[16]	IETF RFC 7515: "JSON Web Signature (JWS)".
[17]	IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".
[18]	3GPP TS 29.510: "Network Function Repository Services; Stage 3".
[19]	3GPP TS 23.003: "Numbering, addressing and identification".
[20]	3GPP TR 21.900: "Technical Specification Group working methods".
[21]	IETF RFC 7468: "Textual Encodings of PKIX, PKCS, and CMS Structures".
[22]	IETF RFC 7807: "Problem Details for HTTP APIs".
[x]	IETF RFC 1952: "GZIP file format specification version 4.3".
[y]	IETF RFC 7694: "Hypertext Transfer Protocol (HTTP) Client-Initiated Content-Encoding".

* * * Next Change * * * *
[bookmark: _Toc24986286][bookmark: _Toc34205714][bookmark: _Toc39061898][bookmark: _Toc43277140][bookmark: _Toc49847470][bookmark: _Toc51873490]3.2	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
GZIP	GNU ZIP
IPX	IP Exchange Service
JOSE	Javascript Object Signing and Encryption
JWE	JSON Web Encryption
JWS	JSON Web Signature
PRINS	PRotocol for N32 INterconnect Security
SEPP	Security and Edge Protection Proxy
TLS	Transport Layer Security

* * * Next Change * * * *
5.3.2	Use of Application Layer Security
[bookmark: _Toc24986317][bookmark: _Toc34205745][bookmark: _Toc39061929][bookmark: _Toc43277171][bookmark: _Toc49847501][bookmark: _Toc51873521]5.3.2.1	General
If the negotiated security capability between the two SEPPs is PRINS, one or more HTTP/2 connections between the two SEPPs for the forwarding of JOSE protected message shall be established, which may involve IPX providers on path. The forwarding of messages over the N32-f interface involves the following steps at the sending SEPP:
1.	Identification of the protection policy applicable for the API being invoked (i.e either a request/response NF service API or a subscribe/unsubscribe service API or a notification API).
2.	Message reformatting as per the identified protection policy.
3.	Forwarding of the reformatted message over the N32 interface.
The processing of a message received over the N32-f interface at the receiving SEPP involves the following steps.
1.	Identify the N32-f context using the N32-f context Id received in the message.
2.	Verify the integrity protection of the message using the keying material obtained from the TLS layer during the parameter exchange procedure for that N32-f context (see 3GPP TS 33.501 [6]). The TLS connection from which the keying material is obtained is the N32-c TLS connection used for the parameter exchange procedure.3.	Decrypt the ciphertext part of the received JWE message. Decode the "aad" part of the JWE message using BASE64URL decoding.
4.	Form the original JSON request / response body from the decrypted ciphertext and the decoded integrity verified "aad" block.
5.	For each entry in the "modificationsBlock" of the received message:
-	First verify the integity protection of that entry using the keying material applicable for the IPX that inserted that block (using the "identity" IE in the "modificationsBlock");
-	Identify the modifications policy exchanged during the parameter exchange procedure with the sending SEPP if the IPX that inserted the modificationsBlock is from the sending SEPP side; else identify the modifications policy applicable for the IPX based on local configuration;
-	Check if the inserted modifications are as per the identified modifications policy;
-	Apply the modifications as a JSON patch over the formed original JSON request / response body from step 4.
6.	If the reconstructed HTTP message has a "Authorization" header, then the SEPP shall check whether the service consumer's PLMN ID is present in the Bearer token contained in the Authorization header (see 3GPP TS 29.510 [18], clause 6.3.5.2.4) and if it matches with the "Remote PLMN ID" of the N32-f context. If they do not match, the SEPP shall respond to the sending SEPP with "403 Forbidden" status code with the application specific cause set as "PLMNID_MISMATCH".
NOTE:	In this case, the N32-f Error Reporting procedure specified in clause 5.2.5 is not used since the processing of the complete N32-f message fails at the receiving SEPP.
SEPPs and IPX should support gzip coding (see IETF RFC 1952 [x]) in HTTP requests and responses and indicate so in the Accept-Encoding header, as described in clause 6.9 of 3GPP TS 29.500 [4] and clause 6.2.2.2.x.

* * * Next Change * * * *
5.3.2.4	Message Forwarding to Peer SEPP
Once a SEPP reformats the HTTP/2 message into the "N32ReformattedReqMsg"/"N32ReformattedRspMsg" JSON object as specified in clause 5.3.2, the SEPP forwards the message to the receiving SEPP by invoking a HTTP POST method as shown in figure 5.3.2.4-1 below.

Figure 5.3.2.4-1 Message Forwarding between SEPP on N32-f
1.	The initiating SEPP issues a HTTP POST request towards the responding SEPP with the request body containing the "N32ReformattedReqMsg" IE carrying the reformatted HTTP/2 message. The request message shall contain the "n32fContextId" information provided by the responding SEPP to the initiating SEPP earlier during the parameter exchange procedure (see clause 5.2.3). The responding SEPP shall use the "n32fContextId" information to:
-	Locate the agreed cipher suite and protection policy;
-	Locate the n32ContextId to be used in the response.
The HTTP request payload may be compressed hop by hop over N32-f, if the initiating SEPP or IPX and its next hop (IPX or SEPP) support gzip coding (see IETF RFC 1952 [x]).
2a.	On successful processing of the request, the responding SEPP shall:
-	decompress the N32-f HTTP request payload, if it is compressed;
-	reconstruct the HTTP/2 message towards the NF service producer;
-	compress the reconstructed HTTP request if the reconstructed HTTP payload contains a Content-Encoding header indicating gzip compression;
-	forward the reconstructed HTTP/2 message to the NF service producer;
-	wait for the response from the NF service producer; and then
-	once the response from the NF service producer is received, respond to the initiating SEPP with a "200 OK" status code and a POST response body that contains the "N32ReformattedRspMsg". The "N32ReformattedRspMsg" shall contain the reformatted HTTP response message from the responding PLMN. The response message shall contain the "n32fContextId" information provided by the initiating SEPP to the responding SEPP earlier during the parameter exchange procedure (see clause 5.2.3).
The responding SEPP shall be able to map the response received from the NF service producer to the HTTP/2 stream ID for the corresponding response it needs to generate towards the initiating SEPP. The HTTP/2 stream ID and the HTTP/2 connection information on either side shall be used to derive this mapping.
The HTTP response payload may be compressed hop by hop over N32-f, if the responding SEPP or IPX and its next hop (IPX or SEPP) support gzip coding (see IETF RFC 1952 [x]).
2b.	On failure, the responding SEPP shall respond to the initiating SEPP with an appropriate 4xx/5xx status code as specified in clause 6.2.4.2.

* * * Next Change * * * *
[bookmark: _Toc24986321][bookmark: _Toc34205749][bookmark: _Toc39061933][bookmark: _Toc43277175][bookmark: _Toc49847505][bookmark: _Toc51873525]5.3.x	JOSE Protected Forwarding Options
The JOSE Protected Forwarding Options is used by the sending SEPP or IPX to discover the communication options supported by its next hop (IPX or SEPP) for N32-f message processing.

Figure 5.3.x-1: Procedure for the discovery of communication options supported by the next hop
1.	The sending SEPP or IPX shall send an OPTIONS request to discover the communication options supported by its next hop (IPX or SEPP) for N32-f message processing.
2.	If the request is accepted, the next hop (IPX or SEPP) shall respond with the status code 204 No Content and include an Accept-Encoding header (as described in IETF RFC 7694 [y]).
On failure, the next hop shall return one of the HTTP status code listed in Table 6.2.4.x.2.1-3.

* * * Next Change * * * *
[bookmark: _Toc51871857][bookmark: _Toc49853289][bookmark: _Toc43210383][bookmark: _Toc39051811][bookmark: _Toc34217448][bookmark: _Toc34217296][bookmark: _Toc20142350]6.2.2.2.x	Accept-Encoding
SEPPs and IPX should support gzip coding (see IETF RFC 1952 [x]) in HTTP requests and responses and indicate so in the Accept-Encoding header, as described in clause 5.3.2.1.

* * * Next Change * * * *
[bookmark: _Toc24986395][bookmark: _Toc34205823][bookmark: _Toc39062007][bookmark: _Toc43277249][bookmark: _Toc49847579][bookmark: _Toc51873599]6.2.4	Custom Operations without associated resources
[bookmark: _Toc24986396][bookmark: _Toc34205824][bookmark: _Toc39062008][bookmark: _Toc43277250][bookmark: _Toc49847580][bookmark: _Toc51873600]6.2.4.1	Overview
Table 6.2.4.1-1: Custom operations without associated resources
	Operation Name
	Custom operation URI
	Mapped HTTP method
	Description

	JOSE Protected Forwarding
	/n32f-process
	POST
	This is the N32f forwarding API used to forward a reformatted and JOSE protected message to a receiving SEPP.

	JOSE Protected Forwarding Options
	/n32f-process
	OPTIONS
	Discover the communication options supported by the next hop (IPX or SEPP) for N32-f message processing.

* * * Next Change * * * *
[bookmark: _Toc24986397][bookmark: _Toc34205825][bookmark: _Toc39062009][bookmark: _Toc43277251][bookmark: _Toc49847581][bookmark: _Toc51873601]6.2.4.x	Operation: JOSE Protected Forwarding Options
[bookmark: _Toc24986398][bookmark: _Toc34205826][bookmark: _Toc39062010][bookmark: _Toc43277252][bookmark: _Toc49847582][bookmark: _Toc51873602]6.2.4.x.1	Description
This service operation queries the communication options supported by the next hop (IPX or SEPP) for N32-f message processing (see clauses 5.3.2.4 and 5.3.x).
The HTTP method OPTIONS shall be used on the following URI:
URI: {apiRoot}/n32f-forward/v1/n32f-process
This operation shall support the resource URI variables defined in table 6.1.4.2.1-1.
Table 6.2.4.x.1-1: Resource URI variables for this Operation
	Name
	Data type
	Definition

	apiRoot
	string
	See clause 6.1.1.

[bookmark: _Toc24986399][bookmark: _Toc34205827][bookmark: _Toc39062011][bookmark: _Toc43277253][bookmark: _Toc49847583][bookmark: _Toc51873603]6.2.4.x.2	Operation Definition
[bookmark: _Toc51871531][bookmark: _Toc49733067][bookmark: _Toc42883199][bookmark: _Toc33962437][bookmark: _Toc24937622]6.2.4.x.2.1	OPTIONS
This method shall support the URI query parameters specified in table 6.2.4.x.2.1-1.
Table 6.2.4.x.2.1-1: URI query parameters supported by the OPTIONS method
	Name
	Data type
	P
	Cardinality
	Description

	n/a
	
	
	
	

This method shall support the request data structures specified in table 6.2.4.x.2.1-2 and the response data structures and response codes specified in table 6.2.4.x.2.1-3.
Table 6.2.4.x.2.1-2: Data structures supported by the OPTIONS Request Body on this resource
	Data type
	P
	Cardinality
	Description

	n/a
	
	
	

Table 6.2.4.x.2.1-3: Data structures supported by the OPTIONS Response Body on this resource
	Data type
	P
	Cardinality
	Response
codes
	Description

	n/a
	
	
	204 No Content
	

	ProblemDetails
	O
	0..1
	405 Method Not Allowed
	

	ProblemDetails
	O
	0..1
	501 Not Implemented
	

	NOTE:	The mandatory HTTP error status codes for the OPTIONS method listed in Table 5.2.7.1-1 of 3GPP TS 29.500 [4] other than those specified in the table above also apply, with a ProblemDetails data type (see clause 5.2.7 of 3GPP TS 29.500 [4]).

Table 6.2.4.x.2.1-4: Headers supported by the 204 Response Code on this resource
	Name
	Data type
	P
	Cardinality
	Description

	Accept-Encoding
	string
	O
	0..1
	Accept-Encoding, described in IETF RFC 7694 [x]

* * * Next Change * * * *
[bookmark: _Toc24986460][bookmark: _Toc34205888][bookmark: _Toc39062072][bookmark: _Toc43277314][bookmark: _Toc49847644][bookmark: _Toc51873664]A.3	JOSE Protected Message Forwarding API on N32-f
openapi: 3.0.0

info:
 version: '1.1.0'
 title: 'JOSE Protected Message Forwarding API'
 description: |
 N32-f Message Forwarding Service.
 © 2020, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
 All rights reserved.

[…]

paths:
 /n32f-process:
 post:
 summary: N32-f Message Forwarding
 tags:
 - N32-f Forward
 operationId: PostN32fProcess
 parameters:
 - name: Content-Encoding
 in: header
 description: Content-Encoding, described in IETF RFC 7231
 schema:
 type: string
 - name: Accept-Encoding
 in: header
 description: Accept-Encoding, described in IETF RFC 7231
 schema:
 type: string
 requestBody:
 description: Custom operation N32-f Message Forwarding
 required: true
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/N32fReformattedReqMsg'
 responses:
 '200':
 description: OK (Successful forwarding of reformatted message over N32-f)
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/N32fReformattedRspMsg'
 headers:
 Accept-Encoding:
 description: Accept-Encoding, described in IETF RFC 7694
 schema:
 type: string
 Content-Encoding:
 description: Content-Encoding, described in IETF RFC 7231
 schema:
 type: string
 '400':
 $ref: 'TS29571_CommonData.yaml#/components/responses/400'
 '403':
 $ref: 'TS29571_CommonData.yaml#/components/responses/403'
 '411':
 $ref: 'TS29571_CommonData.yaml#/components/responses/411'
 '413':
 $ref: 'TS29571_CommonData.yaml#/components/responses/413'
 '415':
 $ref: 'TS29571_CommonData.yaml#/components/responses/415'
 '429':
 $ref: 'TS29571_CommonData.yaml#/components/responses/429'
 '500':
 $ref: 'TS29571_CommonData.yaml#/components/responses/500'
 '503':
 $ref: 'TS29571_CommonData.yaml#/components/responses/503'
 default:
 description: Unexpected error

 options:
 summary: Discover communication options supported by next hop (IPX or SEPP)
 operationId: N32fProcessOptions
 tags:
 - N32-f Forward
 responses:
 '204':
 description: No Content
 headers:
 Accept-Encoding:
 description: Accept-Encoding, described in IETF RFC 7694
 schema:
 type: string
 '400':
 $ref: 'TS29571_CommonData.yaml#/components/responses/400'
 '401':
 $ref: 'TS29571_CommonData.yaml#/components/responses/401'
 '403':
 $ref: 'TS29571_CommonData.yaml#/components/responses/403'
 '404':
 $ref: 'TS29571_CommonData.yaml#/components/responses/404'
 '405':
 $ref: 'TS29571_CommonData.yaml#/components/responses/405'
 '429':
 $ref: 'TS29571_CommonData.yaml#/components/responses/429'
 '500':
 $ref: 'TS29571_CommonData.yaml#/components/responses/500'
 '501':
 $ref: 'TS29571_CommonData.yaml#/components/responses/501'
 '503':
 $ref: 'TS29571_CommonData.yaml#/components/responses/503'
 default:
 $ref: 'TS29571_CommonData.yaml#/components/responses/default'

components:
 schemas:

[…]

* * * End of Changes * * * *

image1.emf
SEPP

(PLMN A)

SEPP

(PLMN B)

1. POST .../n32f-process (N32fReformattedReqMsg)

2a. 200 OK (N32fReformattedRspMsg)

2b. 4xx/5xx (ProblemDetails)

Microsoft_Visio_Drawing.vsdx
SEPP
(PLMN A)
SEPP
(PLMN B)

1. POST .../n32f-process (N32fReformattedReqMsg)
2a. 200 OK (N32fReformattedRspMsg)
2b. 4xx/5xx (ProblemDetails)

image2.emf
SEPP or IPX IPX or SEPP

2. 204 No Content

Or 4xx/5xx (ProblemDetails)

1. OPTIONS ../n32f-process

Microsoft_Visio_2003-2010_Drawing.vsd
SEPP or IPX

IPX or SEPP

2. 204 No Content
Or 4xx/5xx (ProblemDetails)

1. OPTIONS ../n32f-process

