3GPP TSG-CT WG4 Meeting #41
C3-060395
Dalian, China, 28th August - 1st September 2006.

Source:
Huawei

Title:
Expanding UDP multiplex header with UDP source port

Agenda item:
11.11
Document for:
Discussion and Approval

Introduction
In TR29.814 v0.1.0 the UDP multiplex header is composed of T, MUXID and LI fields for RTP header compression.
Figure 1illustrates the solution.
[image: image1.emf]MUX ID LI

15 bits 8 bits

T

1 bit

MUX ID LI

15 bits 8 bits

T

1 bit

Figure 1 Multiplex header in RTP header compression

Figure 2 illustrates the multiplexing procedure.
[image: image2.emf]MUX (3) UDP (8) IP (20 / 40 bytes)

RTP (12)

Common header

NbUP frame (9…) MUX (3)

RTP (12)

NbUP frame (9…)

1. MUX packet 2. MUX packet

UDP dest.

Port: 2002

NbUP frame (9…) UDP (8) IP (20 / 40 bytes) RTP (12)

NbUP frame (9…) UDP (8) IP (20 / 40 bytes) RTP (12)

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

max 256 bytes

MUX (3) UDP (8) IP (20 / 40 bytes)

RTP (12)

Common header

NbUP frame (9…) MUX (3)

RTP (12)

NbUP frame (9…)

1. MUX packet 2. MUX packet

UDP dest.

Port: 2002

NbUP frame (9…) UDP (8) IP (20 / 40 bytes) RTP (12)

NbUP frame (9…) UDP (8) IP (20 / 40 bytes) RTP (12)

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

UDP dest.

Port: xxxx

UDP dest.

Port: yyyy

max 256 bytes

 Figure 2:
Example of multiplexed packet with two RTP frames
But there are still some problems which need to be resolved.
Problems of the current solution

As seen in figure 2, the source port information has disappeared in the multiplexed packet.

The source port information was not transferred. This is based on the assumption that the relationship of the sender and the receiver is 1:1. Most RTP sessions in Nb-interface are consistent with this assumption. But in some scenarios, maybe more than one termination will send packets to the destination termination. This is possible with the new RTPXtalk package also known as H.248.43.
Figure 3 illustrates the RTPXtalk package, there are two terminations sending packets to termination 3, but only the packets from termination4 are wanted.

[image: image3.emf]termination3

10.110.100.100/5000

hanging

termination

10.110.200.200/6000

termination4

10.110.200.200/5000

 Figure 3 A termination hanging
H.248.43 gives some solutions to resolve this problem, such as H.248.36 for “Hanging Termination Detection”, Minimum Idle Time (Waiting Period), Resource Management Policy and Source Filtering.

Hanging Termination detection can kill the hanging termination finally, but it may take a long time not immediately. In the hanging termination existence period, it may keep sending packets and RTPXtalk still will happen.

[image: image4.emf]termination3

10.110.100.100/5000

termination2

10.110.200.200/6000

termination4

10.110.200.200/5000

termination1

10.110.100.100/5000

termination2

10.110.200.200/6000

Figure 4 Fast reuse of a termination

Figure 4 shows the RTPXtalk caused by fast reusing termination. In figure 4 termination1 is reused as termination3, and it will receive the data from termianation2 which still exists. Minimum Idle Time (Waiting Period) can avoid the RTPXtalk caused by too fast reuse of RTP termination.
If termination1 is not be reused as termination3 immediately, termination2 will be deleted soon enough, so the RTPXtalk will not occur. But this can not resolve the problem caused by hanging termination. As figure 3 illustrate, there is a hanging termination, it keep the connection to the termination3, if termination3 is reused to connect with termination4, RTPXtalk will occur.

If both hanging termination detection and Minimum Idle Time are used in the network and the hanging termination detection timer is shorter than the Minimum Idle Timer, the RTPXtalk will be avoided. But this depends on all the MGW in the network supporting both functions and with similar timer length. This can be difficult to achieve.
Source Port Filtering can resolve these problems. In figure 3 and figure 4, termination3 only want to receive the data from termination4. Using Source Port Filtering, no matter if termination2 or other hanging termination is sending data to termination3, it will be discarded.
This solution is simple and independent of configuration of other equipments in the network. So Source Port Filtering is a good method to avoid RTPXTalk.
 SHAPE * MERGEFORMAT

Figure 5 new multiplex header with source port

In the multiplexing scenario we need to take into account multiple source possibilities as for example the RTPXtalk. If we ignore the source port in the multiplexed packages, then at the termination end the receiver will assume that the information coming in reality from multiple senders is coming from the same source port, so it cannot differentiate the multiple senders and the RTPXtalk cannot be avoided.

Based on the analysis above, we propose to add a new field (source port) SP to the multiplex header. With the source port information, avoiding these problems is practical. Figure 5 shows the new multiplex header with the source port field.

Conclusion
It is proposed to add source port field to the multiplex header. The new multiplex header formats is illustrated in Figure 5.

It is proposed to add following text in the new TR.

5
Transport Format

5.1
Proposed Format(s)
5.1.1
UDP Port Multiplex Header
This is a new multiplexing method designed for CS traffic transported over IP in a 3GPP UMTS network over Nb-interface between MGWs or over Iu-interface between an RNC and MGW. The method introduces a multiplexing header, which identifies every multiplexed packet. The traffic is assumed to be real-time and the DiffServ class is then the same for all packets.
Multiplexing can be performed for all packets heading to the same IP address and this particular method can be used for all UDP traffic as long as they share the same DiffServ class. The multiplexing is intended to be used only with RTP packets.

RTCP is transported normally by IP/UDP packets.
The UDP port alone is not enough since it does not indicate where the next multiplexed packet starts (AMR or PCM may be used with different lengths). A length indicator (LI) field is thus included in the multiplexing header. And a source port (SP) field is used to identify the multiplexed packet’s source. The proposed multiplexing header is illustrated in Figure 1

[image: image6]
Figure 1:
Multiplexing header
The multiplexing header includes

Mux ID, 16 bits. For identification of different connections. Value is the same as the UDP destination port of a non-multiplexed packet.
Source port (SP), 16bits. It is for identification of connections’ source. Value is the same as the UDP source port of a non-multiplexed packet.
Length Indicator (LI), 8 bits. Gives the length of the multiplexed RTP packet in bytes (header + payload). Maximum length is 256 bytes (requires padding if last byte is not full). E.g. the payload of AMR 12.2 is only 31 bytes but for future use 8-bit LI may be useful (combined payload of four 5 ms PCM samples resulting in 160 bytes has been proposed). LI gives the information where the next multiplexed packet starts.

The multiplexing can be performed either with common IP/UDP/RTP or IP/UDP header. For voice traffic in a 3GPP network the RTP information is essential and it is thus suggested that entire RTP frames are multiplexed and they together share a common IP/UDP header in Nb- and Iu-interfaces (Figure2. If the packets shared a common IP/UDP/RTP header the bandwidth savings would naturally be greater and it could be used in some special cases where individual RTP information is not needed.
The multiplexing method does not limit the number of packets being multiplexed and it is thus the data link layer protocol that defines the maximum frame size. E.g. an IP datagram has a maximum length of 65535 bytes and Ethernet 1518 bytes. In order to avoid additional delay in the network the packets should not be delayed more than 1-2ms, which also effectively limits the number of multiplexed packets and makes the multiplexing-jitter low. The time frame should still be enough to gather several packets.

[image: image8]
Figure 2:
Example of multiplexed packet with two RTP frames
5.1.2
RTP Header Reduction

Editors Note: It is FFS if the solution can be applicable to interfaces with RTP framing only, where the complete RTP information may be required. For example, the RTP payload type may change during a call due to DTMF. The solution for changing payload types is FFS but one possibility is a reserved UDP Port for this type of traffic.
To achieve even better bandwidth savings the RTP header can be compressed. This is possible since RTP header includes many static fields that remain unchanged during an RTP session. Compression shall be an optional feature that must be negotiated between nodes. A connection that has negotiated to use RTP header compression sends all packets into the UDP port 2004, which is used in the same way as port 2002 in normal multiplexing. The multiplexing header for these packets is illustrated in Figure 3
In compression there is always an initialization phase first where the full header is transferred to receiver and the type field makes it possible to send also non-compressed packets (also sent to the port 2004). The full header is stored and it is used in decompression. After initialization only compressed headers are sent unless information changes in the fields that are not sent within compressed header.

[image: image10]
Figure 3:
Multiplexing header in RTP header compression
The multiplexing header includes:
Type field (T), 1 bit. The field has two possible states, 0 for indicating full packet and 1 for indicating compressed packet.

MUX ID, 15 bits. For identification of different connections. Value is the same as the UDP destination port of a non-multiplexed packet divided by two (only even numbered ports are used for RTP sessions).
Source port (SP), 16bits. It is for identification of connections’ source. Value is the same as the UDP source port of a non-multiplexed packet.
Length Indicator (LI), 8 bits. Gives the length of the multiplexed RTP packet in bytes (header + payload).
Annex A Proposed Enhancements that are FFS

Disadvantages of current solution

1. The Length Indicator(LI) in multiplexing header is too short, it only have 8 bits, in 3GPP CS it has not any problem but if it need to used at other net, it may be too short.

2. UP header also can be compressed, but it is not mentioned in current solutions. Link layer has done CRC check, so it needn’t CRC check in UP header.

	

	

	
	
	
	
	
	
	
	
	

	
	
	

	
	
	

	
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	

	
	
	
	
	
	
	
	
	

	
	
	

	
	
	

	
	
	
	

	
	
	

	
	
	

	
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

1bit 15bits 16bits 8bits

T MUX ID SP LI

 MUX ID SP LI

 16bits 16bits 8bits

UDP dest port yyyy source port zzzz

UDP dest port xxxx source port tttt

UDP dest port xxxx source port tttt

UDP dest port yyyy source port zzzz

max 256 bytes

RTP (12)

IP (20 / 40 bytes)

UDP (8)

)

…

NbUP frame (9

RTP (12)

IP (20 / 40 bytes)

UDP (8)

)

…

NbUP frame (9

Port: 2002

UDP dest.

2. MUX packet

1. MUX packet

)

…

NbUP frame (9

RTP (12)

)

…

NbUP frame (9

Common header

RTP (12)

IP (20 / 40 bytes)

UDP (8)

MUX (5

max 256 bytes

RTP (12)

IP (20 / 40 bytes)

UDP (8)

)

…

NbUP frame (9

RTP (12)

IP (20 / 40 bytes)

UDP (8)

)

…

NbUP frame (9

Port: 2002

UDP dest.

2. MUX packet

1. MUX packet

)

…

NbUP frame (9

RTP (12)

MUX (5)

)

…

NbUP frame (9

Common header

RTP (12)

IP (20 / 40 bytes)

UDP (8)

MUX ()

1bit 15bits 16bits 8bits

T MUX ID SP LI

_1206966540.vsd

_1216715625.vsd
termination3

10.110.100.100/5000

termination2

10.110.200.200/6000

termination4

10.110.200.200/5000

termination1

10.110.100.100/5000

termination2

10.110.200.200/6000

_1206966772.vsd

_1206966461.vsd

