Page 1



3GPP TSG-CT WG3 Meeting #99
C3-187709
West Palm Beach, U.S.A., 26 - 30 November 2018





(Revision of C3-187594)
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	29.122
	CR
	0112
	rev
	2
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at 
http://www.3gpp.org/Change-Requests.

	


	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X


	

	Title:

	Status code support for NIDD API

	
	

	Source to WG:
	Huawei, Ericsson

	Source to TSG:
	C3

	
	

	Work item code:
	NAPS-CT
	
	Date:
	2018-11-19

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F  (correction)
A  (mirror corresponding to a change in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
     Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	For MT NIDD for a single UE procedure in subclause 4.4.5.3.1, it states:

Upon receipt of a HTTP POST request from the SCS/AS for a downlink data delivery for a single UE, the SCEF shall verify the NIDD configuration resource already exists based on the URI passed, the SCEF shall also check whether the SCS/AS is authorised to send NIDD requests and whether the non-IP packet size is larger than the Maximum Packet Size that was provided to the SCS/AS during NIDD Configuration. If any of those checks fails, the SCEF shall respond a 403 Forbidden response with a cause value indicating the reason for the failure condition.
However, the SCEF shall send different error codes in the response for different rejection cases, i.e. if the NIDD configuration resource does not exist, the SCEF shall send 404 Not Found; if the SCS/AS is not authorized to send NIDD requests, the SCEF shall send 401 Unauthorized; if the received nin-IP packet is oversized, the SCEF shall send 403 Forbidden response with a cause value "DATA TOO_LARGE" in the "cause" attribute of the "ProblemDetails" structure, wherein, the application error "DATA TOO_LARGE" is defined in TS 29.122 CR #0067.
Proposal 1: Correct the errors suitable used in the HTTP response when the SCEF rejects the DL data delivery due to different above reasons.
If the SCEF EPS bearer context is found in the SCEF but the SCEF checks that the SCS/AS has exceeded the quota or rate of data limit. The SCEF shall send 403 Forbidden response with the cause value "QUOTA_EXCEEDED" if the quota limit is reached and 429 Too Many Request if rate limit is reached, wherein, the application error "QUOTA_EXCEEDED" is defined in TS 29.122 CR #0067.
Proposal 2: Use 403 Forbidden as the error response when the SCEF rejects the data delivery since the SCS/AS has exceeded the quota of data limit and use 429 Too Many Requests when when the SCEF rejects the data delivery since the SCS/AS has exceeded the rate of data limit.
Since the SCS/AS may modify or cancel pending downlink data delivery in the SCEF if the MT_NIDD_modification_cancellation feature is supported, if the SCEF can’t replace the buffered data due to data already delivered or data delivery ongoing, 404 Not Found (i.e. data already delivered) or 409 Conflict (i.e. data delivery ongoing) for PUT method or 500 Internal Server Error (i.e. data delivery ongoing) for DELETE shall be responded to the SCS/AS. However, the error code and the corresponding application error used for the above cases are not defined clearly yet.

Proposal 3: Define that if the SCEF can’t replace/delete the buffered data due to data already delivered, the SCEF shall respond 404 Not Found with a new cause value "ALREADY_DELIVERED" application error; and if the replacement/deletion is failed due to ongoing data delivery, the SCEF shall respond 409 Conflict with a cause value "SENDING" application error (already defined in TS 29.122 CR #0067).
If the SCS/AS sends PUT/DELETE for resource Individual NIDD downlink data delivery for Grouping UEs, since the MT_NIDD_modification_cancellation feature is not supported for the group message delivery via NIDD, the SCEF shall send 403 Forbidden and a new cause value "OPERATION_PROHIBITED".
Proposal 4: Define a new cause value "OPERATION_PROHIBITED" application error together with 403 when SCS/AS sends PUT/DELETE for resource Individual NIDD downlink data delivery for Grouping UEs.

TS 29.122 CR#0076 proposes to update some status codes for T8 APIs.
Proposal 5: Add mandatory error status codes for the applicable method, remove the error status codes which has no specifc use case
Proposal 6: In each supported method response table, describes that the mandatory status codes listed in table 5.2.6-1 also apply.

	
	

	Summary of change:
	· Correct the error codes to be suitable used in the HTTP response when the SCEF rejects the DL data delivery due to different above reasons;
· Use 403 Forbidden as the error response when the SCEF rejects the data delivery since the SCS/AS has exceeded the quota of data limit and 429 Too Many Requests if rate limit is reached;
· Define that if the SCEF can’t replace/cancel the buffered data due to data already delivered, the SCEF shall respond 404 Not Found with a new cause value "ALREADY_DELIVERED" application error; and if the replacement/deletion is failed due to ongoing data delivery, the SCEF shall respond 409 Conflict with a cause value "SENDING" application error;
· Define a new cause value "OPERATION_PROHIBITED" application error together with 403 when SCS/AS sends PUT/DELETE for resource Individual NIDD downlink data delivery for Grouping UEs.
· add mandatory error status codes for the applicable method, remove the error status codes which has no specifc use case

· In each supported method response table, describes that the mandatory status codes listed in table 5.2.6-1 also apply.

	
	

	Consequences if not approved:
	Misoperation for implementation.

	
	

	Clauses affected:
	4.4.5.3.1; 4.4.5.3.2; 5.6.3.2.3.1; 5.6.3.2.3.4; 5.6.3.3.3.1; 5.6.3.3.3.3; 5.6.3.3.3.5; 5.6.3.4.3.1; 5.6.3.4.3.4; 5.6.3.5.3.1; 5.6.3.5.3.2; 5.6.3.5.3.5; 5.6.3.6.3.1; 5.6.3.7.3.1; 5.6.3.8.3.1; 5.6.x.3 (new); A.6

	
	

	
	Y
	N
	
	

	Other specs
	X
	
	 Other core specifications

	TS/TR 29.122 CR #0067, CR#0076

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ... 

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ... 

	
	

	Other comments:
	· The subclause 5.6.x.3 defining the application errors is defined in TS 29.122 CR #0067. 

· And the following application errors shall be defined in TS 29.122 CR#0067:
Application Error

HTTP status code

Description

OPERATION_PROHIBITED

403 Forbidden
Indicates that the resource is not allowed to be handled since the received HTTP method is not supported.

ALREADY_DELIVERED
404 Not Found
The SCEF has already delivered the buffered data.



*** 1st Change ***

4.4.5.3.1
Mobile Terminated NIDD for a single UE
If the SCS/AS needs to perform a downlink non-IP data delivery for a single UE, the SCS/AS shall send an HTTP POST message to the SCEF identifying an existing NIDD configuration resource. The body of the HTTP POST message shall include External Identifier or MSISDN and non-IP data and may include PDN Connection Establishment Option, Reliable Data Service Configuration, Maximum Latency and Priority. The Reliable Data Service Configuration includes port numbers on UE and SCEF that are used to identify a specific application for data transfer between UE and SCS/AS and an indication if reliable data service acknowledgement is enabled or not.
Upon receipt of a HTTP POST request from the SCS/AS for a downlink data delivery for a single UE, the SCEF shall:

-
verify the NIDD configuration resource already exists based on the URI passed, if the configuration resource does not exist, the SCEF shall respond a 404 Not Found response to reject the downlink data delivery, and 
-
check whether the SCS/AS is authorised to send NIDD requests, if not authorized, the SCEF shall respond a 401 Unauthorized response to reject the downlink data delivery, and
-
check whether the non-IP packet size is larger than the Maximum Packet Size that was provided to the SCS/AS during NIDD Configuration. If the packet is oversized, the SCEF shall respond a 403 Forbidden response with a cause value "DATA TOO_LARGE" in the "cause" attribute of the "ProblemDetails" structure indicating received non-IP packet size is larger than "maximumPacketSize" of the NIDD configuration. 
If all above checks are successful, the SCEF shall determine the EPS Bearer Context based on the APN associated with the NIDD configuration and the User Identity. If the SCEF EPS bearer context is not found in the SCEF, depending on PDN Connection Establishment Option received in the POST request or from NIDD configuration, the SCEF may: 
-
reject the request with an error message to the SCS/AS;
-
send a Device Trigger to the UE as described in subclause 4.4.6 without buffering the non-IP data and respond the SCS/AS with a 200 OK response; or  
-
buffer the non-IP data and create the "Individual NIDD downlink data delivery" sub-resource, then send a 201 Created response to the SCS/AS. The response message also includes an indication of whether the Device Trigger procedure (as described in subclause 4.4.6) was performed by the SCEF and Requested Re-Transmission time to indicate the SCS/AS when the UE is expected to be reachable. A Location header shall be included in the response message that provides the URI of the resource identifying this individual downlink data delivery. The SCS/AS shall use the URI received in the Location header in subsequent requests to the SCEF to refer to this individual downlink data delivery for possible replacement or cancellation. The non-IP data shall be delivered when the non-IP PDN connection is established.
If the SCEF EPS bearer context is found in the SCEF, the SCEF shall check if the SCS/AS has exceeded the quota or rate of data submission considering the number of existing buffered non-IP data and restriction in APN and serving PLMN rate control. If quota is reached, the SCEF shall respond the SCS/AS with a 403 Forbidden response and a cause value "QUOTA_EXCEEDED" in the "cause" attribute of the "ProblemDetails" structure indicating the reason for the failure condition. If rate limit is reached, the SCEF shall respond the SCS/AS with 429 Too Many Requests.
If the check is passed, the SCEF shall continue the downlink non-IP data delivery procedure as the defined 3GPP TS 29.128 [12].

Based on the delivery result from the MME/SGSN, the SCEF may:

-
send a 200 OK response to the HTTP POST request indicating the downlink non-IP data delivery is successful along with the acknowledge information; 
-
send a 500 Internal Server Error and a cause value indicating the reason for the delivery failure; or

-
buffer the non-IP data and and create the "Individual NIDD downlink data delivery" sub-resource, then send a 201 Created response to the SCS/AS if the MME/SGSN indicates UE is temporary not reachable.
If the MT_NIDD_modification_cancellation feature is supported and the SCS/AS decides to replace the pending downlink data delivery in the SCEF, the SCS/AS shall send an HTTP PUT message to the SCEF, using the URI received in the response to the request that has created the individual downlink data delivery resource. The External Identifier or MSISDN shall remain unchanged from previous values. Upon receipt of the HTTP PUT request from the SCS/AS, the SCEF shall check whether a pending non-IP data exists with the same URI (i.e. resource exists). If it is found, the SCEF shall perform the downlink data delivery with the new non-IP data and continue the same procedure as described for the POST request; otherwise the SCEF shall respond 409 Conflict with a cause value "SENDING" in the "cause" attribute of the "ProblemDetails" structure indicating replacement failure. If the buffered data is already delivered, the SCEF shall respond with 404 Not Found and include a cause value "ALREADY_DELIVERED" in the "cause" attribute of the "ProblemDetails" structure indicating replacement failure.
If the MT_NIDD_modification_cancellation feature is supported and the SCS/AS decides to cancel the pending downlink data delivery in the SCEF, the SCS/AS shall send an HTTP DELETE message to the SCEF, using the URI received in the response to the request that has created the individual downlink data delivery resource. Upon receipt of the HTTP DELETE request from the SCS/AS, the SCEF shall check whether a pending request exists with the same URI. If such non-IP data has not been delivered, the SCEF shall remove the individual downlink data delivery resource and respond with an HTTP 204 No Content response; otherwise the SCEF shall respond with 404 Not Found (i.e. data already delivered) with a cause value "ALREADY_DELIVERED" in the "cause" attribute of the "ProblemDetails" structure or 409 Conflict (i.e. data delivery ongoing) response with a cause value "SENDING" in the "cause" attribute of the "ProblemDetails" structure, and include a cause value indicating cancellation failure.
If a pending non-IP data is delivered by the SCEF (e.g. due to non-IP PDN connection establishment), and the SCEF gets the delivery result from the MME/SGSN, the SCEF shall send an HTTP POST message to notify the delivery result for the pending non-IP data. Upon receipt of the request, the SCS/AS shall acknowledge the notification with an HTTP 200 OK or 204 No Content response.
*** Next Change ***

4.4.5.3.2
Mobile Terminated NIDD for a group of UEs
If the SCS/AS needs to perform a downlink non-IP data delivery to a group of Ues and if both the SCS/AS and the SCEF support GroupMesageDelivery feature as defined in sublcause 5.6.4, the SCS/AS shall send an HTTP POST request message to the SCEF for the "NIDD downlink data deliveries" resource, identifying an existing NIDD configuration resource as parent resource. The body of the HTTP POST request message shall include the External Group Identifier and the non-IP data, and may include Reliable Data Service Configuration, PDN Connection Establishment Option and Maximum Latency.
Upon receipt of such an HTTP POST request from the SCS/AS requesting the group message delivery, the SCEF checks whether the SCS/AS is authorised to send NIDD requests and whether the non-IP packet size is larger than the Maximum Packet Size that was provided to the SCS/AS during NIDD Configuration. If any of those checks fails, the SCEF shall respond a HTTP response with a cause value indicating the reason for the failure condition. If all checks are successful, the SCEF shall create an "Individual NIDD downlink data delivery" resource and sends a 201 Created response to the SCS/AS to acknowledge acceptance of the HTTP POST request.
Then for each authorized External Identifier associated to the External Group Identifier which is retrieved from the HSS during preceding NIDD configuration procedure (as specified in subclause 4.4.5.2.2), the SCEF shall determine the EPS Bearer Context based on the APN associated with the NIDD configuration and the User Identity and continue the procedure as described for MT NIDD for a single UE in subclause 4.4.5.3.1 without sending downlink data delivery status notification for any individual UE to the SCS/AS.
At the end of buffering (duration determined by the Maximum Latency or local policy) or after processing data delivery for all Ues in the group, the SCEF shall send an HTTP POST message to SCS/AS to indicate the aggregated result of data delivery of each UE. The body of the HTTP POST request message shall include MSISDN or External Identifier, Retransmission Time (optional) and delivery result for each UE. Upon receipt of the request, the SCS/AS shall acknowledge the request with an HTTP 200 OK or 204 No Content response.
The MT_NIDD_modification_cancellation feature is not supported for the group message delivery via NIDD. If a PUT or DELETE request is received for the "Individual NIDD downlink data delivery" resource which was created for a group of Ues, the SCEF shall reject the message with 403 Forbidden response with a cause value "OPERATION_PROHIBITED" in the "cause" attribute of the "ProblemDetails" structure.

*** Next Change ***

5.6.3.2.3.1
GET

The GET method allows to read all active NIDD configurations for a given SCS/AS. The SCS/AS shall initiate the HTTP GET request message and the SCEF shall respond to the message. 

This method shall support the URI query parameters, request and response data structures, and response codes, as specified in the table 5.6.3.2.3.1-1 and table 5.6.3.2.3.1-2.

Table 5.6.3.2.3.1-1: URI query parameters supported by the GET method on this resource 
	Name
	Data type
	Cardinality
	Remarks

	none specified
	
	
	


Table 5.6.3.2.3.1-2: Data structures supported by the GET request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	none
	
	

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	array(NiddConfiguration)
	0..N
	200 OK
	The configuration information for the SCS/AS in the request URI are returned.

	NOTE:
The mandatory HTTP error status codes for the GET method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.2.3.4
POST
To create a NIDD configuration, the SCS/AS shall use the HTTP POST method on the "configurations" collection resource as follows:

-
the body of the message is encoded in JSON format with the data structure defined in table 5.6.2.1.2-1.

The possible response messages from the SCEF, depending on whether the POST request is successful or unsuccessful, are shown in Table 5.6.3.2.3.4-1.

Table 5.6.3.2.3.4-1: Data structures supported by the POST request/response by the resource
	Request body
	Data type
	Cardinality
	Remarks

	
	NiddConfiguration
	1
	Parameters to create and authorize a NIDD configuration with the SCEF.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	NiddConfiguration
	1
	201 Created
	The NIDD configuration was created successfully. 

The SCEF shall return a data structure of type "NiddConfiguration" in the response payload body.

The URI of the created resource shall be returned in the "Location" HTTP header.

	NOTE:
The mandatory HTTP error status codes for the POST method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.3.3.1
GET

The GET method allows to read a NIDD configuration resource to obtain details of an active configuration. The SCS/AS shall initiate the HTTP GET request message and the SCEF shall respond to the message. 

This method shall support the URI query parameters, request and response data structures, and response codes, as specified in the table 5.6.3.3.3.1-1 and table 5.6.3.3.3.1-2.

Table 5.6.3.3.3.1-1: URI query parameters supported by the GET method on this resource 
	Name
	Data type
	Cardinality
	Remarks

	none specified
	
	
	


Table 5.6.3.3.3.1-2: Data structures supported by the GET request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	None
	
	

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	NiddConfiguration
	1
	200 OK
	The configuration information related to the request URI is returned.

	NOTE:
The mandatory HTTP error status codes for the GET method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.3.3.3
PATCH
Assuming that a NIDD configuration has been created using the HTTP POST method described in subclause 5.6.3.2.3.4, partial updating of its properties can be performed by the SCS/AS by using the HTTP PATCH method on the "configuration" instance resource as follows:

-
the body of the message is encoded in JSON format with the data structure defined in table 5.6.2.1.2-1

The possible response messages from the SCEF, depending on whether the PATCH request is successful or unsuccessful, are shown in Table 5.6.3.3.3.3-1.
Table 5.6.3.3.3.3-1: Data structures supported by the PATCH request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	NiddConfigurationPatch
	1
	Parameters to update a NIDD configuration with the SCEF.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	NiddConfiguration
	1
	200 OK
	The NIDD configuration was modified successfully. 

The SCEF shall return an updated data structure of type "NiddConfiguration" in the response payload body.

	NOTE: 
The mandatory HTTP error status codes for the PATCH method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.3.3.5
DELETE
To cancel a NIDD configuration, the SCS/AS shall use the HTTP DELETE method on the individual "NIDD configuration" resource which is indicated by the URI in the Location header of the HTTP POST response:

The possible response messages from the SCEF, depending on whether the DELETE request is successful or unsuccessful, are shown in Table 5.6.3.3.3.5-1.

Table 5.6.3.3.3.5-1.: Data structures supported by the DELETE request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	none
	
	.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	NiddConfiguration 
	1
	200 OK
	The NIDD configuration was cancelled successfully.

The SCEF shall return a full representation of the deleted resource including a data structure of type "NiddConfiguration" with a "TERMINATE" status in the response body.

	
	None
	
	204 No Content
	The NIDD configuration was cancelled successfully.

The response body shall be empty. 

	NOTE:
The mandatory HTTP error status codes for the DELETE method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.4.3.1
GET

The GET method allows to read all pending NIDD downlink data deliveries for a given SCS/AS and NIDD configuration. The SCS/AS shall initiate the HTTP GET request message and the SCEF shall respond to the message. 

This method shall support the URI query parameters, request and response data structures, and response codes, as specified in the table 5.6.3.4.3.1-1 and table 5.6.3.4.3.1-2.

Table 5.6.3.4.3.1-1: URI query parameters supported by the GET method on this resource 
	Name
	Data type
	Cardinality
	Remarks

	none specified
	
	
	


Table 5.6.3.4.3.1-2: Data structures supported by the GET request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	None
	
	

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	array(NiddDownlinkDataTransfer)
	0..N
	200 OK
	All pending NIDD downlink data deliveries for the SCS/AS and NIDD configuration in the request URI are returned.

	NOTE:
The mandatory HTTP error status codes for the GET method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.4.3.4
POST
To deliver the downlink non-IP data, the SCS/AS shall use the HTTP POST method on the "NIDD downlink data deliveries" resource with the body of the message is encoded in JSON format with the data structure defined in table 5.6.2.1.3-1.

The possible response messages from the SCEF, depending on whether the POST request is successful or unsuccessful, are shown in Table 5.6.3.4.3.4-1.

Table 5.6.3.4.3.4-1: Data structures supported by the POST request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	NiddDownlinkDataTransfer
	1
	The parameters and non-IP data for the MT delivery.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	NiddDownlinkDataTransfer
	1
	200 OK
	The NIDD downlink data delivery was successful. 

The SCEF shall return a data structure of type "NiddDownlinkDataTransfer" in the response payload body.

	
	NiddDownlinkDataTransfer
	1
	201 Created
	The NIDD downlink data delivery request was accepted by the SCEF, the NIDD will be performed later.

The SCEF shall return a data structure of type "NiddDownlinkDataTransfer" in the response payload body, and shall return the URI of the resource representing the downlink data transfer in the "Location" header.

	NOTE:
The mandatory HTTP error status codes for the POST method listed in table 5.2.6-1 also apply.When applicable, the "cause" attribute in "ProblemDetails" data type (as defined in subclause 5.2.1.2.12) includes value defined for "DeliveryStatus" data type in subclause 5.6.2.3.4.


*** Next Change ***

5.6.3.5.3.1
GET

The GET method allows to read a NIDD downlink data delivery resource to obtain details. The SCS/AS shall initiate the HTTP GET request message and the SCEF shall respond to the message. 

This method shall support the URI query parameters, request and response data structures, and response codes, as specified in the table 5.6.3.5.3.1-1 and table 5.6.3.5.3.1-2.

Table 5.6.3.5.3.1-1: URI query parameters supported by the GET method on this resource 
	Name
	Data type
	Cardinality
	Remarks

	none specified
	
	
	


Table 5.6.3.5.3.1-2: Data structures supported by the GET request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	none
	
	

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	NiddDownlinkDataTransfer
	1
	200 OK
	Individual NIDD downlink data delivery resource is returned.

	NOTE:
The mandatory HTTP error status codes for the GET method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.5.3.2
PUT
To replace the buffered downlink non-IP data, the SCS/AS shall use the HTTP PUT method on the"Individual NIDD downlink data delivery" resource with the body of the message is encoded in JSON format with the data structure defined in table 5.6.2.1.3-1.

The possible response messages from the SCEF, depending on whether the PUT request is successful or unsuccessful, are shown in Table 5.6.3.5.3.2-1.

Table 5.6.3.5.3.2-1: Data structures supported by the PUT request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	NiddDownlinkDataTransfer
	1
	The parameters and non-IP data for the MT delivery.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	NiddDownlinkDataTransfer
	1
	200 OK
	The NIDD downlink data delivery was accepted by the SCEF, the NIDD will be performed later.

The SCEF shall return a data structure of type "NiddDownlinkDataTransfer" in the response payload body.

	
	ProblemDetails
	1
	403 Forbidden
	The resource is not allowed to be updated since the HTTP PUT method is not supported..

(NOTE 2)

	
	ProblemDetails
	1
	404 Not Found
	The buffered data is not allowed to be replaced since data delivery has already been delivered.

(NOTE 3)

	
	ProblemDetails
	1
	409 Conflict
	The buffered data is not allowed to be replaced since data delivery is ongoing sent.

(NOTE 4)

	NOTE 1:
The mandatory HTTP error status codes for the PUT method listed in table 5.2.6-1 also apply.When applicable, the "cause" attribute in "ProblemDetails" data type (as defined in subclause 5.2.1.2.12) includes value defined for "DeliveryStatus" data type in subclause 5.6.2.3.4.
NOTE 2:
The "cause" attribute within the "ProblemDetails" data structure may be set to "OPERATION_PROHIBITED" as defined in subclause 5.6.x.3.
NOTE 3:
The "cause" attribute within the "ProblemDetails" data structure may be set to "ALREADY_DELIVERED" as defined in subclause 5.6.x.3.
NOTE 4:
The "cause" attribute within the "ProblemDetails" data structure may be set to "SENDING" as defined in subclause 5.6.x.3.


*** Next Change ***

5.6.3.5.3.5
DELETE

To cancel a NIDD downlink data delivery, the SCS/AS shall use the HTTP DELETE method on the "Individual NIDD downlink data delivery" resource which is indicated by the URI in the Location header of the HTTP POST response:

The possible response messages from the SCEF, depending on whether the DELETE request is successful or unsuccessful, are shown in table 5.6.3.3.3.5-1.

Table 5.6.3.3.3.5-1.: Data structures supported by the DELETE request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	none
	
	.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	none
	
	204 No Content
	The NIDD downlink data delivery was cancelled successfully.

The response body shall be empty. 

	
	ProblemDetails
	1
	403 Forbidden
	The resource is not allowed to be deleted since the HTTP DELETE method is not supported..

(NOTE 2)

	
	ProblemDetails
	1
	404 Not Found
	The buffered data is not allowed to be deleted since data delivery has already been delivered.

(NOTE 3)

	
	ProblemDetails
	1
	409 Conflict
	The buffered data is not allowed to be deleted since data delivery is ongoing sent.

(NOTE 4)

	NOTE 1:
The mandatory HTTP error status codes for the DELETE method listed in table 5.2.6-1 also apply.When applicable, the "cause" attribute in "ProblemDetails" data type (as defined in subclause 5.2.1.2.12) includes value defined for "DeliveryStatus" data type in subclause 5.6.2.3.4.
NOTE 2:
The "cause" attribute within the "ProblemDetails" data structure may be set to "OPERATION_PROHIBITED" as defined in subclause 5.6.x.3.
NOTE 3:
The "cause" attribute within the "ProblemDetails" data structure may be set to "ALREADY_DELIVERED" as defined in subclause 5.6.x.3.
NOTE 4:
The "cause" attribute within the "ProblemDetails" data structure may be set to "SENDING" as defined in subclause 5.6.x.3.


*** Next Change ***

5.6.3.6.3.1
Notification via HTTP POST

To report the status of the NIDD configuration to the SCS/AS, the SCEF shall use the HTTP POST method on the notification point as follows:

-
the body of the message is encoded in JSON format with the data structure defined in table 5.6.2.1.6-1.

The possible response messages from the SCS/AS, depending on whether the POST request is successful or unsuccessful, are shown in Table 5.6.3.6.3.1-1.

Table 5.6.3.6.3.1-1: Data structures supported by the POST request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	NiddConfigurationStatusNotification
	1
	The NIDD configuration status notification.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	Acknowledgement
	1
	200 OK
	The successful acknowledgement of the notification with a body.

	
	(None)
	
	204 No Content
	The successful acknowledgement of the notification without a body.

	NOTE:
The mandatory HTTP error status codes for the POST method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.7.3.1
Notification via HTTP POST

To report the delivery status of the downlink non-IP data delivery, the SCEF shall use the HTTP POST method on the notification endpoint 

with the body of the message encoded in JSON format with the data structure defined in table 5.6.2.1.5-1 for a single UE or table 5.6.2.1.5-2 for a group of Ues.

The possible response messages from the SCS/AS, depending on whether the POST request is successful or unsuccessful, are shown in Table 5.6.3.7.3.1-1.

Table 5.6.3.7.3.1-1: Data structures supported by the POST request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	NiddDownlinkDataDeliveryStatusNotification
	1
	The Down link data delivery status notification for a single UE.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	Acknowledgement
	1
	200 OK
	The successful acknowledgement of the notification.

	
	(None)
	
	204 No Content
	The successful acknowledgement of the notification without a body.

	NOTE: 
The mandatory HTTP error status codes for the POST method listed in table 5.2.6-1 also apply.


Table 5.6.3.7.3.1-2: Data structures supported by the POST request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	GmdNiddDownlinkDataDeliveryStatusNotification
	1
	The Down link data delivery status notification for a group of Ues.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	Acknowledgement
	1
	200 OK
	The successful acknowledgement of the notification.

	
	(None)
	
	204 No Content
	The successful acknowledgement of the notification without a body.

	NOTE:
The mandatory HTTP error status codes for the GET method listed in table 5.2.6-1 also apply.


*** Next Change ***

5.6.3.8.3.1
Notification via HTTP POST

To send the uplink non-IP data to the SCS/AS, the SCEF shall use the HTTP POST method on the notification endpoint in SCS/AS as follows:

-
the body of the message is encoded in JSON format with the data structure defined in table 5.6.2.1.4-1.

The possible response messages from the SCS/AS, depending on whether the POST request is successful or unsuccessful, are shown in Table 5.6.3.8.3.1-1.

Table 5.6.3.8.3.1-1: Data structures supported by the POST request/response by the resource

	Request body
	Data type
	Cardinality
	Remarks

	
	NiddUplinkDataNotification
	1
	The parameters and non-IP data for the NIDD uplink non-IP data notification.

	Response body
	Data type
	Cardinality
	Response

codes
	Remarks

	
	Acknowledgement
	1
	200 OK
	The successful acknowledgement of the uplink data notification

	
	(None)
	
	204 No Content
	The successful acknowledgement of the notification without a body.

	NOTE:
The mandatory HTTP error status codes for the POST method listed in table 5.2.6-1 also apply.


*** Next Change ***

A.6
NIDD API

openapi: 3.0.0

info:

  title: 3gpp-nidd

  version: "1.PreR15.1.0"

servers:

  - url: '{apiRoot}/3gpp-nidd/v1'
    variables:

      apiRoot:

        default: https://demohost.com
        description: apiRoot as defined in subclause 5.2.4 of 3GPP TS 29.122.

paths:

  /{scsAsId}/configurations:
    parameters:

      - name: scsAsId

        description: String identifying the SCS/AS.

        in: path

        required: true

        schema:

          type: string
    get:

      responses:

        '200':

          description: all NIDD configurations.

          content:

            application/json:

              schema:

                type: array

                items:

                  $ref: '#/components/schemas/NiddConfiguration'

                minItems: 0

                description: individual NIDD configuration.

        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'
        '406':

          $ref: 'TS29122_CommonData.yaml#/components/responses/406'


        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'

        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
    post:

      requestBody:

        description: Contains the data to create a NIDD configuration.

        required: true

        content:

          application/json:

            schema:

              $ref: '#/components/schemas/NiddConfiguration'

      responses:

        '201':

          description: NIDD configuration is successfully created.

          content:

            application/json:

              schema:

                $ref: '#/components/schemas/NiddConfiguration'

        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'



        '411':

          $ref: 'TS29122_CommonData.yaml#/components/responses/411'



        '413':

          $ref: 'TS29122_CommonData.yaml#/components/responses/413'
        '415':

          $ref: 'TS29122_CommonData.yaml#/components/responses/415'
        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
      callbacks:

        niddNotifications:

          '{$request.body#/notificationDestination}':

            post:

              requestBody:

                description: Notification for NIDD configuration status, MO NIDD, MT NIDD delivery report.

                content:

                  application/json:

                    schema:

                      oneOf:

                      - $ref: '#/components/schemas/NiddConfigurationStatusNotification'

                      - $ref: '#/components/schemas/NiddUplinkDataNotification'

                      - $ref: '#/components/schemas/NiddDownlinkDataDeliveryStatusNotification'
                      - $ref: '#/components/schemas/GmdNiddDownlinkDataDeliveryNotification'

              responses:

                '204':

                  description: Expected response to a successful callback processing without a body

                '200':

                  description: Expected response to a successful callback processing with a body

                  content:

                    application/json:

                      schema:

                        $ref: 'TS29122_CommonData.yaml#/components/schemas/Acknowledgement'
                '400':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/400'

                '401':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/401'

                '403':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/403'

                '404':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/404'



                '411':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/411'



                '413':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/413'
                '415':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/415'
                '429':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/429'
                '500':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/500'

                '503':

                  $ref: 'TS29122_CommonData.yaml#/components/responses/503'

                default:

                  $ref: 'TS29122_CommonData.yaml#/components/responses/default'
  /{scsAsId}/configurations/{configurationId}:
    parameters:

      - name: scsAsId

        description: String identifying the SCS/AS.

        in: path

        required: true

        schema:

          type: string

      - name: configurationId

        description: String identifying the individual NIDD configuration resource in the SCEF.

        in: path

        required: true

        schema:

          type: string
    get:

      responses:

        '200':

          description: The individual NIDD configuration is successfully retrieved.

          content:

            application/json:

              schema:

                $ref: '#/components/schemas/NiddConfiguration'

        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'

        '406':

          $ref: 'TS29122_CommonData.yaml#/components/responses/406'



        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
    patch:

      requestBody:

        description: Contains information to be applied to the individual NIDD configuration.

        required: true

        content:

          application/merge-patch+json:

            schema:

              $ref: '#/components/schemas/NiddConfigurationPatch'

      responses:

        '200':

          description: The Individual NIDD configuration is modified successfully and a representation of that resource is returned.

          content:

            application/json:

              schema:

                $ref: '#/components/schemas/NiddConfiguration'

        '204':

          description: The Individual NIDD configuration is modified successfully.

        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'



        '411':

          $ref: 'TS29122_CommonData.yaml#/components/responses/411'



        '413':

          $ref: 'TS29122_CommonData.yaml#/components/responses/413'
        '415':

          $ref: 'TS29122_CommonData.yaml#/components/responses/415'
        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
    delete:

      responses:

        '204':

          description: The Individual NIDD configuration is deleted.

        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'



        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
  /{scsAsId}/configurations/{configurationId}/downlink-data-deliveries:
    parameters:

      - name: scsAsId

        description: String identifying the SCS/AS.

        in: path

        required: true

        schema:

          type: string

      - name: configurationId

        description: String identifying the individual NIDD configuration resource in the SCEF.

        in: path

        required: true

        schema:

          type: string
    get:

      responses:

        '200':

          description: all NIDD downlink data deliveries.

          content:

            application/json:

              schema:

                type: array

                items:

                  $ref: '#/components/schemas/NiddDownlinkDataTransfer'

                minItems: 0

                description: individual NIDD downlink data delivery.
        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'
        '406':

          $ref: 'TS29122_CommonData.yaml#/components/responses/406'


        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
    post:

      requestBody:

        description: Contains the data to create a NIDD downlink data delivery.

        required: true

        content:

          application/json:

            schema:

              $ref: '#/components/schemas/NiddDownlinkDataTransfer'
      responses:

        '200':

          description: NIDD downlink data delivery is successful.

          content:

            application/json:

              schema:

                $ref: '#/components/schemas/NiddDownlinkDataTransfer'

        '201':

          description: NIDD downlink data delivery is pending.

          content:

            application/json:

              schema:

                $ref: '#/components/schemas/NiddDownlinkDataTransfer'
        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'
        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'


        '411':

          $ref: 'TS29122_CommonData.yaml#/components/responses/411'


        '413':

          $ref: 'TS29122_CommonData.yaml#/components/responses/413'
        '415':

          $ref: 'TS29122_CommonData.yaml#/components/responses/415'
        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
  /{scsAsId}/configurations/{configurationId}/downlink-data-deliveries/{downlinkDataDeliveryId}:
    parameters:

      - name: scsAsId

        description: String identifying the SCS/AS.

        in: path

        required: true

        schema:

          type: string

      - name: configurationId

        description: String identifying the individual NIDD configuration resource in the SCEF.

        in: path

        required: true

        schema:

          type: string

      - name: downlinkDataDeliveryId

        description: String identifying the individual NIDD downlink data delivery in the SCEF.

        in: path

        required: true

        schema:

          type: string
    get:

      responses:

        '200':

          description: The individual NIDD downlink data delivery is successfully retrieved.

          content:

            application/json:

              schema:

                $ref: '#/components/schemas/NiddDownlinkDataTransfer'
        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'
        '406':

          $ref: 'TS29122_CommonData.yaml#/components/responses/406'


        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
    put:

      requestBody:

        description: Contains information to be applied to the individual NIDD downlink data delivery.

        required: true

        content:

          application/json:

            schema:

              $ref: '#/components/schemas/NiddDownlinkDataTransfer'
      responses:

        '200':

          description: The pending NIDD downlink data is replaced sucessfully but delivery is pending.

          content:

            application/json:

              schema:

                $ref: '#/components/schemas/NiddDownlinkDataTransfer'
        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'

        '409':

          $ref: 'TS29122_CommonData.yaml#/components/responses/409'
        '411':

          $ref: 'TS29122_CommonData.yaml#/components/responses/411'


        '413':

          $ref: 'TS29122_CommonData.yaml#/components/responses/413'
        '415':

          $ref: 'TS29122_CommonData.yaml#/components/responses/415'
        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'
        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
    delete:

      responses:

        '204':

          description: The pending NIDD downlink data is deleted.

        '400':

          $ref: 'TS29122_CommonData.yaml#/components/responses/400'

        '401':

          $ref: 'TS29122_CommonData.yaml#/components/responses/401'

        '403':

          $ref: 'TS29122_CommonData.yaml#/components/responses/403'

        '404':

          $ref: 'TS29122_CommonData.yaml#/components/responses/404'
        '409':

          $ref: 'TS29122_CommonData.yaml#/components/responses/409'



        '429':

          $ref: 'TS29122_CommonData.yaml#/components/responses/429'

        '500':

          $ref: 'TS29122_CommonData.yaml#/components/responses/500'

        '503':

          $ref: 'TS29122_CommonData.yaml#/components/responses/503'

        default:

          $ref: 'TS29122_CommonData.yaml#/components/responses/default'
components:

  schemas: 
    NiddConfiguration:

      type: object

      properties:

        self:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Link'

        supportedFeatures:

          $ref: 'TS29571_CommonData.yaml#/components/schemas/SupportedFeatures'

        externalId:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/ExternalId'

        msisdn:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Msisdn'
        externalGroupId:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/ExternalGroupId'

        duration:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/DateTime'

        reliableDataService:

          type: boolean

          description: The reliable data service (as defined in subclause 4.5.15.3 of 3GPP TS 23.682 [2]) to indicate if a reliable data service acknowledgment is enabled or not.

        rdsPorts:

          type: array

          items:

            $ref: '#/components/schemas/RdsPort'

          minItems: 0

          description: Indicates the port configuration that is used for reliable data transfer between specific applications using RDS (as defined in subclause 5.2.4 and 5.2.5 of 3GPP TS 24.250 [31]).

        pdnEstablishmentOption:

          $ref: '#/components/schemas/PdnEstablishmentOptions'

        notificationDestination:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Link'

        requestTestNotification:

          type: boolean

          description: Set to true by the SCS/AS to request the SCEF to send a test notification as defined in subclause 5.2.5.3. Set to false or omitted otherwise.

        websockNotifConfig:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/WebsockNotifConfig'

        maximumPacketSize:

          type: integer

          description: The Maximum Packet Size is the maximum NIDD packet size that was transferred to the UE by the SCEF in the PCO, see subclause 4.5.14.1 of 3GPP TS 23.682 [2]. If no maximum packet size was provided to the UE by the SCEF, the SCEF sends a default configured max packet size to SCS/AS. Unit  bit.
          readOnly: true
        niddDownlinkDataTransfers:

          type: array

          items:

            $ref: '#/components/schemas/NiddDownlinkDataTransfer'

          minItems: 0

          description: The downlink data deliveries that needed to be executed by the SCEF. The cardinality of the property shall be 0..1 in the request and 0..N in the response (i.e. response may contain multiple buffered MT NIDD).

        status:

          $ref: '#/components/schemas/NiddStatus'

      required:

        - notificationDestination

    NiddDownlinkDataTransfer:

      type: object

      properties:

        externalId:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/ExternalId'

        externalGroupId:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/ExternalGroupId'

        msisdn:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Msisdn'

        self:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Link'

        data:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Binary'

        reliableDataService:

          type: boolean

          description: The reliable data service (as defined in subclause 4.5.15.3 of 3GPP TS 23.682 [2]) to indicate if a reliable data service acknowledgment is enabled or not.

        rdsPort:

          $ref: '#/components/schemas/RdsPort'

        maximumLatency:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/DurationSec'

        priority:

          type: integer

          description: It is used to indicate the priority of the non-IP data packet relative to other non-IP data packets.

        pdnEstablishmentOption:

          $ref: '#/components/schemas/PdnEstablishmentOptions'

        deliveryStatus:

          $ref: '#/components/schemas/DeliveryStatus'

        requestedRetransmissionTime:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/DateTime'

      required:

        - data

    NiddUplinkDataNotification:

      type: object

      properties:

        niddConfiguration:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Link'

        externalId:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/ExternalId'

        msisdn:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Msisdn'

        data:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Binary'

        reliableDataService:

          type: boolean

          description: Indicates whether the reliable data service is enabled.

        rdsPort:

          $ref: '#/components/schemas/RdsPort'

      required:

        - niddConfiguration

        - data

    NiddDownlinkDataDeliveryStatusNotification:

      type: object

      properties:

        niddDownlinkDataTransfer:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Link'

        deliveryStatus:

          $ref: '#/components/schemas/DeliveryStatus'

        requestedRetransmissionTime:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/DateTime'

      required:

        - niddDownlinkDataTransfer

        - deliveryStatus

    NiddConfigurationStatusNotification:

      type: object

      properties:

        niddConfiguration:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Link'

        externalId:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/ExternalId'

        msisdn:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Msisdn'

        status:

          $ref: '#/components/schemas/NiddStatus'

      required:

        - niddConfiguration

        - status
    GmdNiddDownlinkDataDeliveryNotification:

      type: object

      properties:

        niddDownlinkDataTransfer:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Link'

        gmdResults:

          type: array

          items:

            $ref: '#/components/schemas/GmdResult'

          minItems: 1
          description: Indicates the group message delivery result.

      required:

        - niddDownlinkDataTransfer

        - gmdResults
    RdsPort:

      type: object

      properties:

        portUE:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Port'

        portSCEF:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/Port'

      required:

        - portUE

        - portSCEF
    GmdResult:

      type: object

      properties:

        deliveryStatus:

          $ref: '#/components/schemas/DeliveryStatus'

        requestedRetransmissionTime:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/DateTime'

      required:

        - deliveryStatus
    PdnEstablishmentOptions:

      anyOf:

      - type: string

        enum:

          - WAIT_FOR_UE

          - INDICATE_ERROR

          - SEND_TRIGGER

      - type: string

        description: >

          This string provides forward-compatibility with future

          extensions to the enumeration but is not used to encode

          content defined in the present version of this API.

      description: >

        Possible values are

        - WAIT_FOR_UE: wait for the UE to establish the PDN connection 

        - INDICATE_ERROR: respond with an error cause

        - SEND_TRIGGER: send a device trigger
    PdnEstablishmentOptionsRm:

      anyOf:

      - type: string

        enum:

          - WAIT_FOR_UE

          - INDICATE_ERROR

          - SEND_TRIGGER

      - type: string

        description: >

          This string provides forward-compatibility with future

          extensions to the enumeration but is not used to encode

          content defined in the present version of this API.

      description: >

        Possible values are

        - WAIT_FOR_UE: wait for the UE to establish the PDN connection 

        - INDICATE_ERROR: respond with an error cause

        - SEND_TRIGGER: send a device trigger
      nullable: true
    DeliveryStatus:

      anyOf:

      - type: string

        enum:

          - SUCCESS

          - SUCCESS_NEXT_HOP_ACKNOWLEDGED

          - SUCCESS_NEXT_HOP_UNACKNOWLEDGED

          - SUCCESS_ACKNOWLEDGED

          - SUCCESS_UNACKNOWLEDGED

          - TRIGGERING

          - BUFFERING

          - BUFFERING_TEMPORARILY_NOT_REACHABLE

          - SENDING

          - STOPPED_BUT_TRIGGERING

          - FAILURE

          - FAILURE_QUOTA_EXCEEDED

          - FAILURE_RATE_EXCEEDED

          - FAILURE_DATA_TOO_LARGE

          - FAILURE_TEMORARILY_NOT_REACHABLE

          - FAILURE_NEXT_HOP

          - FAILURE_TIMEOUT

      - type: string

        description: >

          This string provides forward-compatibility with future

          extensions to the enumeration but is not used to encode

          content defined in the present version of this API.

      description: >

        Possible values are

        - SUCCESS: Success but details not provided

        - SUCCESS_NEXT_HOP_ACKNOWLEDGED: Successful delivery to the next hop with acknowledgment.

        - SUCCESS_NEXT_HOP_UNACKNOWLEDGED: Successful delivery to the next hop without acknowledgment

        - SUCCESS_ACKNOWLEDGED: Reliable delivery was acknowledged by the UE

        - SUCCESS_UNACKNOWLEDGED: Reliable delivery was not acknowledged by the UE

        - TRIGGERING: The SCEF is triggering the device and buffering the data.

        - BUFFERING: The SCEF is buffering the data due to no PDN connection established.

        - BUFFERING_TEMPORARILY_NOT_REACHABLE: The SCEF has been informed that the UE is temporarily not reachable but is buffering the data

        - SENDING: The SCEF has forwarded the data, but they may be stored elsewhere

        - STOPPED_BUT_TRIGGERING: The SCEF is triggering the device but did not buffer the data. The SCS AS may resubmit the data

        - FAILURE: Delivery failure but details not provided

        - FAILURE_QUOTA_EXCEEDED: Not enough quota for the MT NIDD

        - FAILURE_RATE_EXCEEDED: MT NIDD sending rate is exceeded.

        - FAILURE_DATA_TOO_LARGE: The non-IP data size is larger than "maximumPacketSize" of the NIDD configuration.

        - FAILURE_TEMORARILY_NOT_REACHABLE: The SCEF has aborted the delivery because the UE is temporarily not reachable. The SCEF may in addition indicate a requested re-submission time for the data.

        - FAILURE_NEXT_HOP: Unsuccessful delivery to the next hop.

        - FAILURE_TIMEOUT: Unsuccessful delivery due to timeout.

      readOnly: true

    NiddStatus:

      anyOf:

      - type: string

        enum:

          - ACTIVE

          - TERMINATED_UE_NOT_AUTHORIZED

          - TERMINATED

      - type: string

        description: >

          This string provides forward-compatibility with future

          extensions to the enumeration but is not used to encode

          content defined in the present version of this API.

      description: >

        Possible values are

        - ACTIVE: The NIDD configuration is active.

        - TERMINATED_UE_NOT_AUTHORIZED: The NIDD configuration was terminated because the UE´s authorisation was revoked.

        - TERMINATED: The NIDD configuration was terminated.

      readOnly: true

    NiddConfigurationPatch:

      type: object

      properties:

        duration:

          $ref: 'TS29122_CommonData.yaml#/components/schemas/DateTimeRm'

        reliableDataService:

          type: boolean

          description: The reliable data service (as defined in subclause 4.5.15.3 of 3GPP TS 23.682 [2]) to indicate if a reliable data service acknowledgment is enabled or not.
          nullable: true

        rdsPorts:

          type: array

          items:

            $ref: '#/components/schemas/RdsPort'

          minItems: 0

          description: Indicates the port configuration that is used for reliable data transfer between specific applications using RDS (as defined in subclause 5.2.4 and 5.2.5 of 3GPP TS 24.250 [31]).

        pdnEstablishmentOption:

          $ref: '#/components/schemas/PdnEstablishmentOptionsRm'

*** End of Changes ***

