Page 1

Joint-Working-Group (Parlay, ETSI TISPAN Project OSA, 3GPP CT5)

C5-060361
Meeting #37, Sophia Antipolis, FRANCE, 23 - 26 Oct 2006
	CR-Form-v9.1

	CHANGE REQUEST

	

	(

	29.198-15
	CR
	0007
	(

rev
	-
	(

Current version:
	6.3.1
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Remove unnecessary need to maintain state information for delivery of status reports to the application

	
	

	Source to WG:
(

	Cingular, AePONA, France Telecom, Lucent

	Source to TSG:
(

	CT5

	
	

	Work item code:
(

	OSA3
	
	Date: (

	24/10/2006

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	Remove unnecessary need to maintain state information for delivery of status reports to the application

	
	

	Summary of change:
(

	The current Multimedia Messaging SCF specifies the IpAppMultiMediaMessaging::messageStatusReport() method to report the delivery status of a previously sent message. The MM SCS has to maintain state information (assignmentID, sessionID, destinationAddress) for each message sent to a given destination. The application maintains the same information, in order to be able to correlate the received delivery status report to the original sent message.

Maintaining this information introduces an unnecessary burden on the SCS. This burden can be relieved if the unique identifier for the message (say the messageID) is reported to the application as part of the sendMessageRes, indicating successful invocation of the message sending request. When the SCS then receives a delivery notification for a given messageID, all it needs to do is pass it on to the application. No state information is required for this.
This CR proposes to make use of the existing notification concept of the manager interface used for MO messages. The client application will invoke the IpMultiMediaMessagingManager::createNotification() method to inform the MM SCS for which source addresses the delivery status needs to be reported. The MM SCS will report the actual unique message identifier (messageID) to the client application using the new IpAppMultiMediaMessaging::sendMessageWithNotifyRes() method. A new method is introduced, rather than modifying the existing sendMessageRes, since the latter would mean a non-backwards compatible change. When a delivery status report is received by the MM SCS, it will invoke the IpAppMultiMediaMessagingManager::reportNotification() to report the delivery status report. The client application can use the messageID from the sendMessageWithNotifyRes() and the reportNotification() methods to correlate the delivery status report with the actual message.

	
	

	Consequences if
(

not approved:
	Inefficient means for the SCS to provide delivery status reports.

	
	

	Clauses affected:
(

	5.6, 6, 8.1.3, 8.5, 8.5.6, 8.6, 8.6.9, 8.6.10, 11.2.1, 11.2.2, 11.2.6, 11.2.15

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

	1st Modified Section

 5.6
Setting notification of received messages

This sequence diagram shows how the application can request delivery status reports by subscribing to notifications.

 SHAPE * MERGEFORMAT

3:
The application requests the opening of a MultiMedia Messaging object.

4:
The application requests to be notified of any delivery status reports received for a particular message, using the P_EVENT_MSG_STATUS_REPORT_ARRIVED criteria. The application may request that a MultiMedia Messaging session is created upon receipt of a message.
5:
The application sends a message.

6:
This method indicates successful processing of the sendMessageWithNotifyReq by the SCF, and that the message has been sent. The MessageID, which uniquely identifies the message, is returned. It does not indicate a delivery status.

7:
A delivery status report received for the message identified by the Message ID returned by sendMessageWithNotifyRes().The delivery status report is delivered in the reportNotification() method.

	Next Modified Section

6
Class Diagrams

[image: image2]

Figure: Messaging Interfaces Overview
	Next Modified Section

8.1.3
Method createNotification()

This method enables the application to indicate that it wishes to receive notifications of messaging related events (e.g. receipt of an incoming message).

If the same application invokes this method multiple times with exactly the same criteria but with different callback references, then these shall be treated as additional callback references. Each such notification request shall share the same assignmentID. The gateway shall use the most recent callback interface provided by the application using this method. Therefore in the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback().

Returns: assignmentID.

Specifies the ID assigned by the multimedia messaging manager interface for this newly-enabled event notification.

Parameters

appMultiMediaMessagingManager : in IpAppMultiMediaMessagingManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method. P_INVALID_INTERFACE_TYPE is thrown if the reference is not an IpAppMultiMediaMessagingManager.
eventCriteria : in TpMessagingEventCriteriaSet

Specifies the event specific criteria used by the application to define the event required. This parameter can be used to request the notification of the delivery status reports when used with sendMessageWithNotifyReq(). In this case, the list of destination addresses must not contain duplicate addresses.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE
	Next Modified Section

8.5
Interface Class IpMultiMediaMessaging

Inherits from: IpService.
This interface supports methods that enable messages to be sent or received when the mailbox paradigm is not in use. Mechanisms such as SMS, MMS, GSM USSD, etc., could be used in this context for either single-shot (page mode), or session mode messaging (e.g. instant-messaging). Default source and destination addresses can be provided by the application when an instance of IpMultiMediaMessaging is created. These addresses are overridden by including source or destination addresses in the sendMessageReq() method. If no default source or destination address is provided when an instance of IpMultiMediaMessaging is created, then the instance can be reused for multiple invocations of sendMessageReq() to different targets or from different sources, with the addresses specified each time in the sendMessageReq() method.

	<<Interface>>

IpMultiMediaMessaging

	

	sendMessageReq (sessionID : in TpSessionID, sourceAddress : in TpAddress, destinationAddressList : in TpTerminatingAddressList, deliveryType : in TpMessageDeliveryType, messageTreatment : in TpMessageTreatmentSet, message : in TpOctetSet, additionalHeaders : in TpMessageHeaderFieldSet) : TpAssignmentID

cancelMessageReq (sessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

queryStatusReq (sessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

close (sessionID : in TpSessionID) : void
sendMessageWithNotifyReq (sessionID : in TpSessionID, sourceAddress : in TpAddress, destinationAddressList : in TpTerminatingAddressList, deliveryType : in TpMessageDeliveryType, messageTreatment : in TpMessageTreatmentSet, message : in TpOctetSet, additionalHeaders : in TpMessageHeaderFieldSet) : TpAssignmentID

	Next Modified Section

8.5.6 Method sendMessageWithNotifyReq()

This method requests the underlying network infrastructure to send the message being passed in through the message parameter as one of the data elements, to the set of identified targets specified using the supported addressing schemes from the specification.

As a response to this method invocation, the SCF will respond with either an sendMessageWithNotifyRes(), or an sendMessageWithNotifyErr(), indicating that the SCF has or has not succeeded to send the message.

The messageTreatment parameter can be used to indicate delivery time or validity time for the message, or to provide a billing identifier to indicate how the costs for this transaction shall be charged. Delivery notifications however are requested using the notification functionality on the manager interface, i.e. the treatment for P_MMM_TREATMENT_REPORT_REQUESTED is not used.
The SCF will not maintain any state for a message, i.e. contrary to the use of sendMessageReq the SCF will not store the triplet (applicationID, sessionID, destinationAddress). As a consequence, the cancelMessageReq and queryStatusReq methods are not applicable.
Returns: assignmentID.

A reference to the request for later use by the application.

Parameters

sessionID : in TpSessionID

This is the session ID of the open multimedia messaging session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.

sourceAddress : in TpAddress

The address that is used to represent the sender of the message. For alphanumeric SMS addresses the address plan P_ADDRESS_PLAN_UNDEFINED shall be used.

The address provided here overrides the default address provided in the openMultiMediaMessaging() method, if one was provided then. If this parameter is empty, then the default address is used.

destinationAddressList : in TpTerminatingAddressList

A list of addresses of users to whom the message will be sent. A terminatingAddressList contains a TO, CC and BCC address list. When the underlying network technology can not distinguish these all addresses can be concatenated.

The address list provided here overrides the default address list provided in the openMultiMediaMessaging() method, if one was provided then. If this parameter is empty, then the default address is used.

deliveryType : in TpMessageDeliveryType

Specifies what delivery method shall be used to deliver the message to the user. If an unsupported delivery type is specified, the exception P_MMM_INVALID_DELIVERY_TYPE is returned.

messageTreatment : in TpMessageTreatmentSet

This parameter contains instructions to the messaging system about how to process and send the message. These instructions can include a request message expiry or billing identifier of the message.

message : in TpOctetSet

The actual message that needs to be sent.

additionalHeaders : in TpMessageHeaderFieldSet

This parameter contains additional header information which is intended to be sent as part of the message. This information could have been provided in the raw message, if correctly formulated. Information contained in the additional headers may duplicate information provided in the sourceAddress and destinationAddressList parameters of the sendMessageWithNotifyReq(). In case of conflict, the SCF will take as priority the information provided in the sourceAddress and the destinationAddressList parameters.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS, P_MMM_INVALID_DELIVERY_TYPE, P_MMM_MAX_MESSAGE_SIZE_EXCEEDED, P_MMM_DELIVERY_TYPE_ADDRESS_TYPE_MISMATCH, P_MMM_DELIVERY_TYPE_MESSAGE_TYPE_MISMATCH, P_MMM_INVALID_DELIVERY_TIME, P_MMM_INVALID_VALIDITY_TIME, P_MMM_MAX_SUBJECT_SIZE_EXCEEDED, P_MMM_INVALID_HEADER
	Next Modified Section

8.6
Interface Class IpAppMultiMediaMessaging

Inherits from: IpInterface.
This interface provides methods that may be invoked by the SCS on the client application as callbacks to asynchronously inform it of the status of pending requests, etc., for requests issued within the context of non-mailbox messaging systems employed for either single-shot or session-based messaging.

	<<Interface>>

IpAppMultiMediaMessaging

	

	sendMessageRes (sessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

sendMessageErr (sessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessagingError, errorDetails : in TpString) : void

cancelMessageRes (sessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

cancelMessageErr (sessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessagingError, errorDetails : in TpString) : void

queryStatusRes (sessionID : in TpSessionID, assignmentID : in TpAssignmentID, result : in TpQueryStatusReportSet) : void

queryStatusErr (sessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessagingError, errorDetails : in TpString) : void

messageStatusReport (sessionID : in TpSessionID, assignmentID : in TpAssignmentID, destinationAddress : in TpAddress, deliveryReportType : in TpMessageDeliveryReportType, deliveryReportInfo : in TpString) : void

messageReceived (sessionID : in TpSessionID, message : in TpOctetSet, headers : in TpMessageHeaderFieldSet) : void

sendMessageWithNotifyRes (sessionID : in TpSessionID, assignmentID : in TpAssignmentID, messageID : in TpString) : void

sendMessageWithNotifyErr (sessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessagingError, errorDetails : in TpString, messageID : in TpString) : void

	Next Modified Section

8.6.9 Method sendMessageWithNotifyRes()

This asynchronous method informs the application about the completion of a sendMessageWithNotifyReq(). Receipt of this method indicates that the SCF has successfully processed the sendMessageWithNotifyReq() method and successfully sent the message. It does not indicate that the message was delivered or read.

Parameters

sessionID : in TpSessionID

This is the session ID of the multimedia messaging session.

assignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageWithNotifyReq that was previously invoked by the client application on the SCS.
messageID : in TpString

This parameter uniquely identifies the message associated with the sendMessageWithNotifyReq that was previously invoked by the client application on the SCS. This ID can be used by the application to correlate between the sendMessageWithNotifyRes and a delivery report received via reportNotification() method on IpAppMultiMediaMessagingManager.
8.6.10 Method sendMessageWithNotifyErr()

This asynchronous method indicates that the request to send a message was unsuccessful. The SCF was unable to process the sendMessageWithNotifyReq() or was unable to send the message. Further details are provided in the error parameter.

Parameters

sessionID : in TpSessionID

This is the session ID of the multimedia messaging session.

assignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageWithNotifyReq that was previously invoked by the client application on the SCS.

error : in TpMessagingError

Indicates the error that occurred.

errorDetails : in TpString

Provides additional information which may help to locate the source of the error. There is no specified format for this information.
messageID : in TpString

This parameter uniquely identifies the message associated with the sendMessageWithNotifyReq that was previously invoked by the client application on the SCS. This field may not be supplied, for instance in case of a error in the network.
	Next Modified Section

11.2
Event Notification data definitions

11.2.1
TpMessagingEventName

Defines the names of the messaging events which can be notified.

	Name
	Value
	Description

	P_EVENT_MSG_NAME_UNDEFINED
	0
	Undefined.

	P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED
	1
	New message arrived in the mailbox. The message contents are not requested/delivered - the message can be retrieved from the mailbox.

	P_EVENT_MSG_NEW_MESSAGE_ARRIVED
	2
	New message arrived. The Message contents are requested/delivered with this event.

	P_EVENT_MSG_STATUS_REPORT_ARRIVED
	3
	New message status report arrived as a result of using the sending with notification functionality. The status contents are requested/delivered with this event.

	Next Modified Section

11.2.2
TpMessagingEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

	
	Tag Element Type
	

	
	TpMessagingEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_MSG_NAME_UNDEFINED
	NULL
	Undefined

	P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED
	TpNewMailboxMessageArrivedCriteria
	EventNewMailboxMessageArrived

	P_EVENT_MSG_NEW_MESSAGE_ARRIVED
	TpNewMessageArrivedCriteria
	EventNewMessageArrived

	P_EVENT_MSG_STATUS_REPORT_ARRIVED
	TpAddressRange
	EventNewMessageStatusReportArrived

	Next Modified Section

11.2.6
TpMessagingEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.

	
	Tag Element Type
	

	
	TpMessagingEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_MSG_NAME_UNDEFINED
	TpString
	EventNameUndefined

	P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED
	TpNewMailboxMessageArrivedInfo
	EventNewMailboxMessageArrived

	P_EVENT_MSG_NEW_MESSAGE_ARRIVED
	TpNewMessageArrivedInfo
	EventNewMessageArrived

	P_EVENT_MSG_STATUS_REPORT_ARRIVED
	TpNewMessageStatusReportArrivedInfo
	EventNewMessageStatusReportArrived

	Next Modified Section

11.2.15 TpNewMessageStatusReportArrivedInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Message Status Report Arrived event.
	Sequence Element Name
	Sequence Element Type
	Description

	MessageID
	TpString
	The message ID uniquely identifying the message.

	DestinationAddress
	TpAddress
	Indicates the destination address of the original MM message sent using sendMessageWithNotifyReq()

	DeliveryReportType
	TpMessageDeliveryReportType
	Defines the type of message delivery report

	DeliveryReportInfo
	TpString
	Additional information

	End of modifications

Annex D (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Sep 2004
	CN_25
	NP-040359
	--
	--
	Draft v100 submitted to TSG CN#25 for Approval.
	1.0.0
	6.0.0

	Dec 2004
	CN_26
	NP-040485
	0001
	--
	Removal of OSA API SCFs description in W3C WSDL
	6.0.0
	6.1.0

	Dec 2004
	--
	--
	--
	--
	Added missing code attachments
	6.1.0
	6.1.1

	Jun 2005
	CT_28
	CP-050220
	0002
	1
	Clarification of Multi Media Messaging using Sequence Diagrams
	6.1.1
	6.2.0

	Jun 2005
	CT_28
	CP-050220
	0003
	--
	Correction to TpMessageTreatment in IDL
	6.1.1
	6.2.0

	Jun 2005
	--
	--
	--
	--
	Java code attachments not available at TS delivery deadline
	6.1.1
	6.2.0

	Jul 2002
	--
	--
	--
	--
	Added the missing Java code attachments
	6.2.0
	6.2.1

	Jun 2006
	CT_32
	CP-060194
	0004
	--
	Resubmission of OSA API SCFs description in W3C WSDL
	6.2.1
	6.3.0

	Jun 2006
	CT_32
	CP-060197
	0005
	--
	Correct J2SE values of TpMessageHeaderFieldType
	6.2.1
	6.3.0

	Jul 2006
	--
	--
	--
	--
	Added missing code attachments
	6.3.0
	6.3.1

AppLogic

 : IpAppMultiMediaMessagingManager

 : IpAppMultiMediaMessaging

 : IpMultiMediaMessagingManager

 : IpMultiMediaMessaging

1: new ()

2: new ()

3: openMultiMediaMessaging()

5: sendMessageWithNotifyReq()

6: sendMessageWithNotifyRes()

7: reportNotification()

8: 'forward event'

4: createNotification()

IpInterface

(from csapi)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

(from csapi)

<<Interface>>

IpAppMultiMediaMessagingManager

mailboxTerminated()

reportNotification()

notificationsInterrupted()

notificationsResumed()

multiMediaMessagingTerminated()

terminateMultipleMailboxes()

terminateMultipleMultiMediaMessagingSessions()

(from mmm)

<<Interface>>

IpMultiMediaMessagingManager

openMailbox()

openMultiMediaMessaging()

createNotification()

destroyNotification()

changeNotification()

getNextNotification()

enableNotifications()

disableNotifications()

(from mmm)

<<Interface>>

IpMultiMediaMessaging

sendMessageReq()

cancelMessageReq()

queryStatusReq()

sendMessageWithNotifyReq()

close()

(from mmm)

<<Interface>>

IpAppMultiMediaMessaging

sendMessageRes()

sendMessageErr()

cancelMessageRes()

cancelMessageErr()

queryStatusRes()

queryStatusErr()

messageStatusReport()

messageReceived()

sendMessageWithNotifyRes()

sendMessageWithNotifyErr()

(from mmm)

<<Interface>>

IpAppMailbox

createFolderRes()

createFolderErr()

getFoldersRes()

getFoldersErr()

deleteFolderRes()

deleteFolderErr()

copyFolderRes()

copyFolderErr()

moveFolderRes()

moveFolderErr()

putMessageRes()

putMessageErr()

copyMessageRes()

copyMessageErr()

moveMessageRes()

moveMessageErr()

deleteMessageRes()

deleteMessageErr()

listMessagesRes()

listMessagesErr()

listMessageBodyPartsRes()

listMessageBodyPartsErr()

getMessageBodyPartsRes()

getMessageBodyPartsErr()

getMessageHeadersRes()

getMessageHeadersErr()

getMessageContentRes()

getMessageContentErr()

getFullMessageRes()

getFullMessageErr()

getMailboxInfoPropertiesRes()

getFolderInfoPropertiesRes()

getMessageInfoPropertiesRes()

setMessageInfoPropertiesRes()

setMessageInfoPropertiesErr()

getMailboxInfoPropertiesErr()

getFolderInfoPropertiesErr()

getMessageInfoPropertiesErr()

(from mmm)

<<Interface>>

IpMailbox

close()

createFolderReq()

getFoldersReq()

deleteFolderReq()

copyFolderReq()

moveFolderReq()

putMessageReq()

copyMessageReq()

moveMessageReq()

deleteMessageReq()

listMessagesReq()

listMessageBodyPartsReq()

getMessageBodyPartsReq()

getMessageHeadersReq()

getMessageContentReq()

getFullMessageReq()

getMailboxInfoPropertiesReq()

getFolderInfoPropertiesReq()

getMessageInfoPropertiesReq()

setMessageInfoPropertiesReq()

(from mmm)

<<Interface>>

<<uses>>

<<uses>>

<<uses>>

�PAGE \# "'Page: '#'�'" �� Document number

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "x WGn" where �	x = "CT" for TSG CT, "RAN" for TSG RAN, "SA" for TSG SA, "GERAN" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "TSG x". �Examples: "CT WG4", "RAN WG5", "GERAN WG3", "TSG SA".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory necessary to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

[image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf][image: image10.emf]