Page 1

Joint-Working-Group (Parlay, ETSI Project OSA, 3GPP CT5)
C5-050493

Meeting #32, London, UK, 30 Aug - 1 Sep 2005

	CR-Form-v7.1

	CHANGE REQUEST

	

	(

	29.198-05
	CR
	0067
	(

rev
	-
	(

Current version:
	6.4.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Support confirmed response to reportEventNotification

	
	

	Source:
(

	CT5 Stephen Moffitt - Aepona

	
	

	Work item code:
(

	OSA7
	
	Date: (

	08/09/2005

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

 Rel-7
(Release 7)

	Reason for change:
(

	There is no facility provided for an application to generate a response to reportEventNotification to indicate success or failure or to provide informational data in the response. A failure can only be generated from middleware by throwing an exception. Such indication provides no visibility of application or end user confirmation to accept the message. This restricts the capability of an application as there is no way to indicate to a user that the event message has been processed successfully.

This is to fully support the Rel-7 requirement for subscriber related events where a message is sent or received.

	
	

	Summary of change:
(

	The change proposes to add the following methods:

· reportEventReq

· reportEventRes

· reportEventErr

	
	

	Consequences if
(

not approved:
	Confirmed message content delivery from the network to application domain cannot be supported.

	
	

	Clauses affected:
(

	4.1, 6.1, 8.1.2, 8.1.3, 9.1.2

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

Change in Clause 4.1
4.1
Generic and Call User Interaction SCF

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of three interfaces:

1)
User Interaction Manager, containing management functions for User Interaction related issues.

2)
Generic User Interaction, containing methods to interact with an end-user.

3)
Call User Interaction, containing methods to interact with an end-user engaged in a call.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods belong.

Table 1: Overview of Generic User Interaction interfaces and their methods

	User Interaction Manager
	Generic User Interaction

	createUI
	sendInfoReq

	createUICall
	sendInfoRes

	createNotification
	sendInfoErr

	destroyUINotification
	sendInfoAndCollectReq

	reportEventNotification
	sendInfoAndCollectRes

	userInteractionAborted
	sendInfoAndCollectErr

	userInteractionNotificationInterrupted
	release

	userInteractionNotificationContinued
	userInteractionFaultDetected

	changeNotification
	reportEventRes

	getNotification
	reportEventErr

	enableNotifications
	

	disableNotifications
	

	abortMultipleUserInteractions
	

	reportEventReq
	

The following table gives an overview of the Call User Interaction methods and to which interfaces these methods belong.

Table 2: Overview of Call User Interaction interfaces and their methods

	User Interaction Manager
	Call User Interaction

	As defined for the Generic User Interaction SCF
	Inherits from Generic User Interaction and adds:

	
	recordMessageReq

	
	recordMessageRes

	
	recordMessageErr

	
	deleteMessageReq

	
	deleteMessageRes

	
	deleteMessageErr

	
	abortActionReq

	
	abortActionRes

	
	abortActionErr

	
	getMessageReq

	
	getMessageRes

	
	getMessageErr

The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.

End of change in Clause 4.1
Change in Clause 6.1
6.1 Generic and Call User Interaction Class Diagrams

The application generic user interaction service package consists of one IpAppUIManager interface, zero or more IpAppUI interfaces and zero or more IpAppUICall interfaces.
The generic user interaction service package consists of one IpUIManager interface, zero or more IpUI interfaces and zero or more IpUICall interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user interaction service package and the generic user interaction service package. Communication between these packages is done via the <<uses>> relationships.
The IpUICall implements call related user interaction and it inherits from the non call related IpUI interface. The same holds for the corresponding application interfaces.

[image: image1.wmf]

IpInterface

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteract

ionNotificationInterrupted()

userInteractionNotificationContinued()

reportEventNotification()

<<new>> abortMultipleUserInteractions()

<<Interface>>

IpUIManager

createUI()

createUICall()

createNotification()

destroyNotification()

changeNotificatio

n()

getNotification()

enableNotifications()

disableNotifications()

<<Interface>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCo

llectReq()

release()

<<new>> setOriginatingAddress()

<<new>> getOriginatingAddress()

<<Interface>>

IpAppUICall

recordMessageRes()

recordMessageErr()

deleteMessageRes()

deleteMessageErr()

abortActionRes()

abortActionErr()

<<new>> getMessageRes()

<<new>> getMessageErr()

<<Interface>>

IpUICall

recordMessageReq()

deleteMessageReq()

abortActionReq()

<<new>> getMessageReq()

<<Interface>>

<<uses>>

<<uses>>

<<uses>>

<<new>> reportEventReq()

<<new>> reportEventRes()

<<new>> reportEventErr()

Figure: Generic User Interaction Package Overview
End of change in Clause 6.1
Change in Clause 8.1.2
8.1.2 Interface Class IpAppUIManager

Inherits from: IpInterface.
The Generic User Interaction Service manager application interface provides the application callback functions to the Generic User Interaction Service.

	<<Interface>>

IpAppUIManager

	

	userInteractionAborted (userInteraction : in TpUIIdentifier) : void

userInteractionNotificationInterrupted () : void

userInteractionNotificationContinued () : void

reportEventNotification (userInteraction : in TpUIIdentifier, eventNotificationInfo : in TpUIEventNotificationInfo, assignmentID : in TpAssignmentID) : IpAppUIRef

<<new>> abortMultipleUserInteractions (userInteractionSet : in TpUIIdentifierSet) : void
<<new>> reportEventReq (userInteraction : in TpUIIdentifier, eventNotificationInfo : in TpUIEventNotificationInfo, assignmentID : in TpAssignmentID) : IpAppUIRef

8.1.2.1 Method userInteractionAborted()

This method indicates to the application that the User Interaction service instance has terminated or closed abnormally. No further communication will be possible between the User Interaction service instance and application.

Parameters

userInteraction : in TpUIIdentifier

Specifies the interface and sessionID of the user interaction service that has terminated.
8.1.2.2 Method userInteractionNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due to faults detected). Note that more permanent failures are reported via the Framework (integrity management).

Parameters

No Parameters were identified for this method.

8.1.2.3 Method userInteractionNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters

No Parameters were identified for this method.

8.1.2.4 Method reportEventNotification()

This method notifies the application of an occurred network event which matches the criteria installed by the createNotification method.

Returns: appUI.

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

If the application has previously explicitly passed a reference to the IpAppUI interface using a setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided during the setCallbackWithSessionID().

Parameters

userInteraction : in TpUIIdentifier

Specifies the reference to the interface and the sessionID to which the notification relates.
eventNotificationInfo : in TpUIEventNotificationInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Returns

IpAppUIRef

8.1.2.5 Method <<new>> abortMultipleUserInteractions()

The service may invoke this method on the IpAppUIManager interface to indicate that a number of ongoing user interaction sessions have aborted or terminated abnormally. No further communication will be possible between the application and the user interaction sessions. This may be used for example in the event of service failure and recovery in order to instruct the application that a number of sessions have failed. The service shall provide a set of TpUIIdentifiers, indicating to the application the interface references and sessionsIDs of the user interaction sessions that have aborted. In the case that the service invokes this method and provides an empty set of TpUIIdentifiers, this shall be used to indicate that all user interaction sessions previously active on the IpUIManager interface have been aborted.

Parameters

userInteractionSet : in TpUIIdentifierSet

Specifies the set of interfaces and sessionIDs of the user interaction sessions that have aborted or terminated abnormally. The empty set shall be used to indicate that all user interactions have aborted.
8.1.3.6 Method <<new>> reportEventReq()

This asynchronous method sends information to the application from a network event which matches the criteria created by the createNotification method. It is used when the service requires a response from the application to indicate that the information has been received and processed successfully or not.

Returns: appUI:

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

Parameters

userInteraction : in TpUIIdentifier
Specifies the reference to the interface and the sessionID to which the notification relates.
eventNotificationInfo : in TpUIEventNotificationInfo
Specifies data associated with this event.
assignmentID : in TpAssignmentID
Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Returns

IpAppUIRef

End of change in Clause 8.1.2
Change in Clause 8.1.3
8.1.3 Interface Class IpUI

Inherits from: IpService.
The User Interaction Service Interface provides functions to send information to, or gather information from the user. An application can use the User Interaction Service Interface independently of other services.

This interface, or the IpUICall interface, shall be implemented by a Generic User Interaction SCF as a minimum requirement. The release() method, and at least one of the sendInfoReq() or the sendInfoAndCollectReq() methods shall be implemented as a minimum requirement.

	<<Interface>>

IpUI

	

	sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in TpUIResponseRequest) : TpAssignmentID

sendInfoAndCollectReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in TpUIVariableInfoSet, criteria : in TpUICollectCriteria, responseRequested : in TpUIResponseRequest) : TpAssignmentID

release (userInteractionSessionID : in TpSessionID) : void

<<new>> setOriginatingAddress (userInteractionSessionID : in TpSessionID, origin : in TpString) : void

<<new>> getOriginatingAddress (userInteractionSessionID : in TpSessionID) : TpString
<<new>> reportEventRes (userInteractionSessionID : in TpSessionID, responseInfo : in TpUIInfo) : void

<<new>> reportEventErr (userInteractionSessionID : in TpSessionID, responseInfo : in TpUIInfo, error : in TpUIError) : void

8.1.3.1 Method sendInfoReq()

This asynchronous method plays an announcement or sends other information to the user.

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the information to send to the user. This information can be:
- an infoID, identifying pre-defined information to be sent (announcement and/or text);
- a string, defining the text to be sent;
- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal. A URL enables the application to utilize dynamic multi-media content by reference;
- Binary Data, identifying pre-defined information or data to be sent to or downloaded into the terminal. Binary data enables the application to utilize dynamic multi-media content directly;
- a VXML string defines the Voice XML page to execute on the server and interact with the end-user. The VXML page execution continues until an <exit/> tag is encountered, which results in a sendInfoRes() callback;
- a SynthesisInfo structure defines the text to synthesize and how the synthesis should be done.
language : in TpLanguage

Specifies the Language of the information to be sent to the user.
variableInfo : in TpUIVariableInfoSet

 Defines the variable part of the information to send to the user.
repeatIndicator : in TpInt32

Defines how many times the information shall be sent to the end-user. A value of zero (0) indicates that the announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.
responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_ILLEGAL_ID, P_ID_NOT_FOUND
8.1.3.2 Method sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and collects some information from the user. The announcement usually prompts for a number of characters (for example, these are digits or text strings such as "YES" if the user's terminal device is a phone).

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the ID of the information to send to the user. This information can be:
- an infoID, identifying pre-defined information to be sent (announcement and/or text);
- a string, defining the text to be sent;
- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal. A URL enables the application to utilize dynamic multi-media content by reference;
- Binary Data, identifying pre-defined information or data to be sent to or downloaded into the terminal. Binary data enables the application to utilize dynamic multi-media content directly;
- a VXML string defines the Voice XML page to execute on the server and interact with the end-user. The VXML page execution continues until an <exit/> tag is encountered, which results in a sendInfoAndCollectRes() callback with the value of the expr= attribute;
- a SynthesisInfo structure defines the text to synthesize and how the synthesis should be done.
language : in TpLanguage

Specifies the Language of the information to be sent to the user.
variableInfo : in TpUIVariableInfoSet

Defines the variable part of the information to send to the user.
criteria : in TpUICollectCriteria

Specifies additional properties for the collection of information, such as the maximum and minimum number of characters, end character, first character timeout and inter-character timeout. This parameter also specifies whether voice recognition would be used.
responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take. For this case it can especially be used to indicate e.g. the final request. If P_UI_RESPONSE_REQUIRED is not enabled by the application request, the user interaction shall nevertheless return either a sendInfoAndCollectRes or sendInfoAndCollectErr method to the application in response to this method invocation.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_ILLEGAL_ID, P_ID_NOT_FOUND, P_ILLEGAL_RANGE, P_INVALID_COLLECTION_CRITERIA
8.1.3.3 Method release()

This method requests that the relationship between the application and the user interaction object be released. It causes the release of the used user interaction resources and interrupts any ongoing user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction created.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
8.1.3.4 Method <<new>> setOriginatingAddress()

This method sets the originating address property on the user interaction session to be used when sending information to the user.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
origin : in TpString

Specifies the originating address. The originating address description is sent as a TpString. However this field may contain E.164 addresses that the receiving terminal can use to reply to the message. The coding of such an E.164 address can either be local numbers or international numbers, according to the standard E.164. Examples for a local number is "0702106181" and for an international number "+46702106181".
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_INVALID_ADDRESS
8.1.3.5 Method <<new>> getOriginatingAddress()

This method gets the originating address property on the user interaction session to be used when sending information to the user. If not set with setOriginatingAddress(), the getOriginatingAddress() returns the description that would be displayed on the terminal device as the originating address when a message is sent with sendInfoReq() or sendInfoAndCollectReq().

Returns: TpString.

The address that will be used for a sendInfoReq() or sendInfoAndCollectReq() for the originating address.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
Returns

TpString

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
8.1.3.7 Method <<new>> reportEventRes()

This asynchronous method indicates the successful completion of a reportEventReq().

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
responseInfo : in TpUIInfo
Specifies the information to be returned to the user.

8.1.3.8 Method <<new>> reportEventErr()

This asynchronous method indicates the unsuccessful completion of a reportEventReq().

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.

responseInfo : in TpUIInfo
Specifies the information to be returned to the user.

error : in TpUIError
Specifies the error which led to the original request failing.
End of change in Clause 8.1.3
Change in Clause 9.1.2
9.1.2 State Transition Diagrams for IpUI

The state transition diagram shows the application view on the User Interaction object.

[image: image3.wmf]

Active

IpUIManager.createUI

IpAppUIManager.reportNotification

s

endInfoReq

sendInfoAndCollectReq

Release

Pending

Finished

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected

 should

be reported to the application.

release

timeout ^userInteractionFaultDetected

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

"request to send message unsuccessful" ^sendInfoErr

"request to send i

nfo and collect a response

unsuccessful" ^sendInfoAndCollectErr

sendInfoReq[final request and response(s) outstanding]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

sendInfoReq[final request and no responses outstanding]

"requested message has been sent"[not final result] ^sendInfoRes

"user input received"[not final result] ^sendInfoAndCollectRes

"request to send messa

ge unsuccessful"[not final result] ^sendInfoErr

"request to send info and collect a response

unsuccessful"[not final result] ^sendInfoAndCollectErr

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInt

eractionFaultDetected

release

"request to send message unsuccessful"[final

request] ^sendInfoErr

"request to send info and collect response unsuccessful"[

final request] ^sendInfoAndCollectErr

"user input received"[final result] ^sendInfoAndCo

llectRes

"requested message has been sent"[final result] ^sendInfoRes

IpAppUIManager.reportEventReq

reportEventRes

reportEventErr

Figure : Application view on the UI object

9.1.2.1 Active State

In this state the UI object is available for requesting messages to be sent to the network.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.1.2.2 Release Pending State

A transition to this state is made when the Application has indicated that after a certain message no further messages need to be sent to the end-user. There are, however, still a number of messages that are not yet completed. When the last message is sent or when the last user interaction has been obtained, the UI object is destroyed.
In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.1.2.3 Finished State

In this state the user interaction has ended. The application can only release the UI object. Note that the application has to release the object itself as good Object Oriented practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
End of change in Clause 9.1.2
Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Jun 2004
	CN_24
	NP-040273
	050
	--
	Remove the <> stereotype from methods which are no longer new
	6.0.1
	6.1.0

	Sep 2004
	CN_25
	NP-040355
	052
	--
	Correct J2EE source
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040356
	053
	--
	Remove unused Deprecated items
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040357
	054
	--
	Add getMessageListReq() within the IpUIAdminManager interface
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040357
	055
	--
	Change description of InfoAddress within TpUIInfo
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040357
	056
	--
	Changes to the TpUIRecognitionGrammer parameter
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040358
	057
	--
	Additional GUI Feature to support HA
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040358
	058
	--
	Support High Availability at API Level
	6.1.0
	6.2.0

	Dec 2004
	CN_26
	NP-040485
	063
	--
	Removal of OSA API SCFs description in W3C WSDL
	6.2.0
	6.3.0

	Dec 2004
	--
	--
	--
	--
	Added missing code attachments
	6.3.0
	6.3.1

	Jun 2005
	CT_28
	CP-050155
	0065
	--
	Support for Emergency Telecommunications Service
	6.3.1
	6.4.0

	Jun 2005
	CT_28
	CP-050157
	0066
	--
	Correct UIAdmin interface for sessionID problem
	6.3.1
	6.4.0

	Jun 2005
	--
	--
	--
	--
	Java code attachments not available at TS delivery deadline
	6.3.1
	6.4.0

	Jul 2005
	--
	--
	--
	--
	Added the missing Java code attachments
	6.4.0
	6.4.1

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

_1186082305.doc

IpInterface

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

reportEventNotification()

<<new>> abortMultipleUserInteractions()

<<Interface>>

IpUIManager

createUI()

createUICall()

createNotification()

destroyNotification()

changeNotification()

getNotification()

enableNotifications()

disableNotifications()

<<Interface>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<new>> setOriginatingAddress()

<<new>> getOriginatingAddress()

<<Interface>>

IpAppUICall

recordMessageRes()

recordMessageErr()

deleteMessageRes()

deleteMessageErr()

abortActionRes()

abortActionErr()

<<new>> getMessageRes()

<<new>> getMessageErr()

<<Interface>>

IpUICall

recordMessageReq()

deleteMessageReq()

abortActionReq()

<<new>> getMessageReq()

<<Interface>>

<<uses>>

<<uses>>

<<uses>>

<<new>> reportEventReq()

<<new>> reportEventRes()

<<new>> reportEventErr()

_1186083286.doc

Active

IpUIManager.createUI

IpAppUIManager.reportNotification

sendInfoReq

sendInfoAndCollectReq

Release

Pending

Finished

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

release

timeout ^userInteractionFaultDetected

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

"request to send message unsuccessful" ^sendInfoErr

"request to send info and collect a response

unsuccessful" ^sendInfoAndCollectErr

sendInfoReq[final request and response(s) outstanding]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

sendInfoReq[final request and no responses outstanding]

"requested message has been sent"[not final result] ^sendInfoRes

"user input received"[not final result] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final result] ^sendInfoErr

"request to send info and collect a response

unsuccessful"[not final result] ^sendInfoAndCollectErr

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

"request to send message unsuccessful"[final

request] ^sendInfoErr

"request to send info and collect response unsuccessful"[

final request] ^sendInfoAndCollectErr

"user input received"[final result] ^sendInfoAndCollectRes

"requested message has been sent"[final result] ^sendInfoRes

IpAppUIManager.reportEventReq

reportEventRes

reportEventErr

