3GPP TS 34.229-3 V7.0.0 (2008-06)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Radio Access Network;

Internet Protocol (IP) multimedia call control protocol

based on Session Initiation Protocol (SIP) and

Session Description Protocol (SDP);

User Equipment (UE) conformance specification;

Part 3: Abstract Test Suite (ATS)

(Release 7)

[image: image1.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

mobile, MS, terminal, testing, UMTS, IMS, IP, SIP, CC
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2008, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

6Foreword

Introduction
6
1
Scope
7
2
References
7
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
9
4
Requirements on the TTCN development
9
5
Test method and test model
9
5.1
Test method
9
5.2
IMS CC test model
9
5.2.1
Ports interfacing to SS
10
5.2.1.1
Data ports
10
5.2.1.2
Security Associations Setup
10
5.2.1.3
Control ports
11
5.2.2
SAD
13
5.2.3
Network interface
13
5.2.4
SigComp and related control port
13
5.2.5
SIP TTCN 3 Codec
13
5.2.6
DHCP and DNS data ports
13
5.3
Upper Tester (UT)
13
5.4
TTCN-3
13
5.5
Extension of the Test Model to support XCAP
14
6
ASP definitions
15
6.1
Control ASP
15
6.1.1
Cell Control
15
6.1.2
IdleUpdated
16
6.1.3
PDPContext
16
6.1.4
IP Configuration
18
6.1.5
SA Database
20
6.1.6
Emergency CS Call
21
6.2
IMS-CC Data ASP definitions
22
6.2.1
ASP_DataRequest
22
6.2.2
ASP_DataResponse
23
6.3
Ut ASP definitions
23
6.4
HTTP Layer ASP definitions
24
7
Codec definition
24
7.1
Introduction
24
7.2
TCI Interface Specification
25
7.2.1
TCI - Required and Provided Interface Methods
25
7.3
Requirements on abstract message syntax
25
7.3.1
Type definition - Syntax / Semantic aspects
25
7.3.2
Deviations of the type definition semantic
25
7.3.3
Additional requirements for codec implementations (SIP/IMS Message
26
7.3.3.1
Differences between BNF - TTCN-3 Type Mapping
26
7.3.4
Additional requirements for codec implementations (Message Body)
29
7.3.5
Additional requirements for codec implementations (SDP Body)
29
7.3.5.1
Differences between BNF - SDP Type Mapping
30
7.3.5.2
Defined attributes
31
7.3.6
Additional requirements for codec implementations (DHCP/DNS)
32
7.3.7
Additional requirements for codec implementations (XML)
32
7.3.7.1
Registration Information
32
7.3.7.2
3GPP IM CN subsystem
33
7.4
Textual Codec Requirements (Details)
34
7.4.1
Encoder
34
7.4.2
Decoder
34
8
Design consideration
35
8.1
Bearer Configurations for IMS Testing
35
8.1.1
Bearer Information for UTRAN
35
8.1.2
Bearer Information for GERAN
35
8.2
Security
35
8.3
Test Suite Operations
36
8.4
AT commands
37
Annex A (normative):
Abstract Test Suites (ATS)
38
A.1
Version of specifications
38
A.2
IMS-CC ATS
38
A.2.3
Optional IP-CAN TTCN 2++ interface
38
Annex B (normative):
Partial IXIT proforma
39
B.0
Introduction
39
B.1
Parameter values
39
B.1.1
SDP parameters for MT call test case
41
B.2
MMI questions
42
Annex C (informative):
Additional information to IXIT
43
C.1
Identification Summary
43
C.2
Abstract Test Suite Summary
43
C.3
Test Laboratory
44
C.3.1
Test Laboratory Identification
44
C.3.2
Accreditation status of the test service
44
C.3.3
Manager of Test Laboratory
44
C.3.4
Contact person of Test Laboratory
44
C.3.5
Means of Testing
45
C.3.6
Instructions for Completion
46
C.4
Client
46
C.4.1
Client Identification
46
C.4.2
Client Test Manager
46
C.4.3
Client Contact person
47
C.4.4
Test Facilities Required
47
C.5
System Under Test
48
C.5.1
SUT Information
48
C.5.2
Limitations of the SUT
48
C.5.3
Environmental Conditions
49
C.6
Ancillary Protocols
49
C.6.1
Ancillary Protocols 1
49
C.6.2
Ancillary Protocols 2
50
Annex D (informative):
PCTR Proforma
51
Annex E (informative):
TTCN3 style guide for 3GPP IMS ATS
52
E.1
General rules for 3GPP ATSs
52
E.2
3GPP IMS ATS implementation guidelines
52
E.2.1
Grouping of similar objects
52
E.2.2
'Visible' test case description
52
E.2.3
Naming conventions
53
Annex F (informative):
 BNF Message Definitions
54
F.1
RFC 3261
54
F.2
RFC 3262
63
F.3
RFC 3265
64
F.4
RFC 3311
66
F.5
RFC 3313
67
F.6
RFC 3323
67
F.7
RFC 3325
67
F.8
RFC 3326
68
F.9
RFC 3327
68
F.10
RFC 3329
69
F.11
RFC 3428
70
F.12
RFC 3455
71
F.13
RFC 3515
72
F.14
RFC 3608
73
F.15
RFC 3840
73
F.16
RFC 3841
74
F.17
RFC 3891
74
F.18
RFC 3892
75
F.19
RFC 3903
75
F.20
RFC 3911
77
F.21
RFC 4028
77
Annex G (informative):
DHCP and DNS Message Definitions
78
G.1
RFC 1035
78
G.2
RFC 1533
86
G.3
RFC 2131
100
G.4
RFC 3315
102
G.5
RFC 3319
114
G.6
RFC 3361
115
Annex H (informative):
Change history
117

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is 3rd part of a multi-part conformance test specification for UE and is valid for 3GPP Release 5 and above. The specification contains a TTCN design frame work and the detailed test specifications in TTCN for the UE conformance at the Gm reference point.

3GPP TS 34.229-1 [5] contains a conformance test description in prose.

3GPP TS 34.229-2 [6] contains a pro-forma for the UE Implementation Conformance Statement (ICS).

3GPP TS 34.229-3 the current document.
1
Scope

The present document specifies the protocol conformance testing in TTCN for the 3GPP User Equipment (UE) at the Gm interface.

The present document is the 3rd part of a multi-part test specification, 3GPP TS 34.229. The following TTCN test specification and design considerations can be found in the present document:

-
the overall test suite structure;

-
the testing architecture;

-
the test methods and PCO definitions;

-
the test configurations;

-
the design principles, assumptions, and used interfaces to the TTCN tester (System Simulator);

-
TTCN styles and conventions;

-
the partial PIXIT proforma;

-
the TTCNfiles for the mentioned protocols tests.

The Abstract Test Suites designed in the document are based on the test cases specified in prose (3GPP TS 34.229‑1 [5]).

The present document is valid for UE implemented according 3GPP Release X, where X is the Release indicated on the spec's front page.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

-
For a Release 5 UE, references to 3GPP documents are to version 5.x.y, when available.

-
For a Release 6 UE, references to 3GPP documents are to version 6.x.y, when available.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 34.123-1: "User Equipment (UE) conformance specification; Part 1: Protocol conformance specification".

[3]
3GPP TS 34.123-2: "User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification".

[4]
3GPP TS 34.123-3: "User Equipment (UE) conformance specification; Part 3: Abstract Test Suites (ATS)".

[5]
3GPP TS 34.229-1: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification ".

[6]
3GPP TS 34.229-2: "Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification".

[7]
3GPP TS 34.108: "Common test environments for User Equipment (UE) conformance testing".

[8]
ISO/IEC 9646-1: "Information technology - Open systems interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[9]
ISO/IEC 9646-7: "Information technology - Open systems interconnection - Conformance testing methodology and framework - Part 7: Implementation Conformance Statements".

[10]
ETSI ETS 300 406 (1995): "Methods for testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

[11]
3GPP TS 24.229: "IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3".

[12]
ETSI ES 201 873: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3".

[13]
IETF RFC 3320: "Signalling Compression (SigComp)".

[14]
IETF RFC 3485: "The Session Initiation Protocol (SIP) and Session Description Protocol (SDP) Static Dictionary for Signalling Compression (SigComp)".

[15]
IETF RFC 3486: "Compressing the Session Initiation Protocol (SIP)".

[16]
IETF RFC 3261: "SIP: Session Initiation Protocol".

[17]
IETF RFC 4566: "SDP: Session Description Protocol".

[18]
IETF RFC 1035: "Domain names - implementation and specification".

[19]
IETF RFC 1533: "DHCP Options and BOOTP Vendor Extensions".

[20]
IETF RFC 2131: "Dynamic Host Configuration Protocol".

[21]
IETF RFC 3315: "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".

[22]
IETF RFC 3319: "Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol (SIP) Servers".

[23]
IETF RFC 3361: "Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session Initiation Protocol (SIP) Servers".

[24]
IETF RFC 3680: "A Session Initiation Protocol (SIP) Event Package for Registrations".
[25]
3GPP TS 24.173: “IMS multimedia telephony communication service and supplementary services; Stage 3”.

[26]
IETF RFC 4825: “The Extensible Markup Language (XML) Configuration Access Protocol (XCAP)”.

[27]
IETF RFC 2616: “ Hypertext Transfer Protocol – HTTP/1.1”.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and 3GPP TS 34.229-1 [5] apply.
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and 3GPP TS 34.229-1 [5] apply.
4
Requirements on the TTCN development

A number of requirements are identified for the development and production of TTCN specification for 3GPP UE at the Gm reference point.

1.
Top-down design, following 3GPP 34.229-1 [5], 3GPP TS 34.123-1 [2], 3GPP TS 34.108 [7].

2.
A unique testing architecture and test method for testing all protocol layers of UE.

3.
Uniform TTCN style and naming conventions.

4.
Improve TTCN readability.

5.
Using TTCN-3 (ES 201 873-1 [12]).
6.
TTCN specification feasible, implementable and compilable.

7.
Test cases shall be designed in a way for easily adaptable, upwards compatible with the evolution of the 3GPP core specifications and the future Releases.

8.
The test declarations, data structures and data values shall be largely reusable.

9.
Modularity and modular working method.

10.
Minimizing the requirements of intelligence on the emulators of the lower testers.

11.
Giving enough design freedom to the test equipment manufacturers.

12.
Maximizing reuse of RFC BNF definitions from the relevant IETF core specifications.

In order to fulfil these requirements and to ensure the investment of the test equipment manufacturers having a stable testing architecture for a relatively long period, a unique testing architecture and test method are applied to the 3GPP UE protocol tests.

5
Test method and test model
5.1
Test method

5.2
IMS CC test model
The test model is shown in figure 2.

5.2.1
Ports interfacing to SS

In TTCN-3, ports are defined in all test components and in the Test System Interface. This is the equivalent of PCOs in TTCN‑2. These ports then have to be mapped, or connected, to the SS at the start of each test.

5.2.1.1
Data ports

IMS_CC ATS in TTCN-3 simulates the SIP behaviour at the P_CSCF side. The scripts of SIP signalling in TTCN-3 communicate with the UE under test through four data ports and the emulations beneath. Each port shall be able to distinguish the use of one of the dual protocol stacks of IPv4 / IPv6.
The type of port (client or server) used to send or received a message will depend on the transport protocol selected for the testing, i.e. UDP or TCP.

· UDP case: The SS will send requests and responses to the UE from its client port. The SS will receive requests and responses from the UE on its server port.

· TCP case: The SS will receive requests from the UE and will send responses to those requests on its server port. The SS will send requests to the UE and will receive responses to those requests on its client port.

For requests originated in the UE, the transport protocol is selected by the UE. This information is extracted in the TTCN-3 and used in subsequent responses sent by the SS.

For requests originating in the SS, the UDP transport protocol is used.

If no security associations have been set up, the unprotected client and server ports will be used. The security ports shall be used by the TTCN-3 authors when a security association has been established.

5.2.1.2
Security Associations Setup

Four unidirectional SAs are established between the UE and the SS:

SA1: port_uc to port_ps
SA2: port_pc to port_us
SA3: port_ps to port_uc
SA4: port_us to port_pc

The first pair (SA1 and SA3) is for bidirectional traffic between port_uc and port_ps. The second pair (SA2 and SA4) is for bidirectional traffic between port_pc and port_us.

While TCP scenario will use all four SAs, in UDP, only two SAs are needed because there is no traffic from port_ps to port_uc nor from port_us to port_pc. Figure 1 shows one example of the use of ports and security association in UDP and TCP.
[image: image2.wmf]Unprotected client port

Unprotected server port

Unprotected

Protected by SA pair 1

Protected by SA pair 2

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_us

port_pc

port_uc

port_ps

SA1

spi_ps

SA2

spi_us

SA2

spi_us

SA1

spi_ps

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_uc

port_ps

port_us

port_pc

SA1

spi_ps

SA3

spi_uc

SA2

spi_us

SA4

spi_pc

UDP case

TCP case

Unprotected client port

Unprotected server port

Unprotected client port

Unprotected client port

Unprotected server port

Unprotected server port

Unprotected client port

Unprotected server port

Unprotected

Protected by SA pair 1

Protected by SA pair 2

Unprotected

Protected by SA pair 1

Protected by SA pair 2

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_us

port_pc

port_uc

port_ps

SA1

spi_ps

SA2

spi_us

SA2

spi_us

SA1

spi_ps

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_uc

port_ps

port_us

port_pc

SA1

spi_ps

SA3

spi_uc

SA2

spi_us

SA4

spi_pc

Register

SS

UE

401

Unauthorised

RAND||AUTN

Register

RES

OK

port_uc

port_us

port_ps

port_pc

Invite

200 OK

180 Ringing

port_uc

port_ps

port_us

port_pc

SA1

spi_ps

SA3

spi_uc

SA2

spi_us

SA4

spi_pc

UDP case

TCP case

Unprotected client port

Unprotected server port

Unprotected client port

Unprotected client port

Unprotected server port

Unprotected server port

Figure 1: Use of port and SA in UDP and TCP
5.2.1.3
Control ports

IMS_CC ATS also controls the SS configuration and passes necessary parameters to the various emulation entities in the SS. This is done by ASPs through an IP-CAN control port, an IP configuration port and a Signalling Compression control port.

From the protocol stack point of view, SIP is an application layer protocol located above transport layer UDP which in turn uses the services provided by the IP/IPsec layer. The IP packages are transmitted via the connected IP-CAN bearer, the UTRAN bearer or the GERAN bearer. The emulations of these protocol layers in the SS shall be compliant with the relevant core specifications (3GPP and IETF).
The IP-CAN bearers are created, configured modified and released though the ASP at the IP-CAN control port. The TTCN-3 codes shall also be able to control the UDP/IP/IPsec configurations and provide necessary parameters through the control ASPs.

[image: image3.wmf]UDP / TCP

IPv4/v6/IPsec

SAD

IF0

IF1

IF2

…

NAS

RRC

PDCP

RLC

RLC

MAC

PHY

GMM

SNDCP

LLC

GRR

RR

L2

RLC/MAC

L1

IP

-

CAN

Control port

IP

Config

port

DNS

server

port

DHCP

server

port

MMI

UE

(SUT)

UTRAN

GERAN

RF cable to UE

SIP

client

port

SIP

server

port

SIP

Secure

client port

SIP

Secure

server port

IMS_CC MTC

(TTCN

-

3 codes)

..

..

..

..

..

..

..

..

..

..

Other IP

-

CAN

SigComp

Control port

..

..

..

..

..

..

..

..

SigComp

SIP/SDP codec

DNS/DHCP codec

DNS

-

Srv

PTC

(TTCN

-

3 codes)

DHCP

-

Srv

PTC

(TTCN

-

3 codes)

MMI

port

UDP / TCP

IPv4/v6/IPsec

SAD

IF0

IF1

IF2

…

NAS

RRC

PDCP

RLC

RLC

MAC

PHY

GMM

SNDCP

LLC

GRR

RR

L2

RLC/MAC

L1

IP

-

CAN

Control port

IP

Config

port

DNS

server

port

DHCP

server

port

MMI

UE

(SUT)

UTRAN

GERAN

RF cable to UE

SIP

client

port

SIP

server

port

SIP

Secure

client port

SIP

Secure

server port

IMS_CC MTC

(TTCN

-

3 codes)

..

..

..

..

..

..

..

..

..

..

..

Other IP

-

CAN

SigComp

Control port

..

..

..

..

..

..

..

..

SigComp

SIP/SDP codec

..

..

..

..

..

..

..

..

SigComp

SIP/SDP codec

DNS/DHCP codec

DNS

-

Srv

PTC

(TTCN

-

3 codes)

DHCP

-

Srv

PTC

(TTCN

-

3 codes)

MMI

port

Figure 2: IMS CC test mode
5.2.2
SAD

Security Association Database (SAD) shall be made accessible by the IPsec entity and contain sets of parameters corresponding to each security association. During registration/authentication, the UE and the SS will negotiate these parameters for setting up a security association. As the negotiation is carried out on SIP level (through SIP message exchanges), the resulting security parameters are obtained and stored in IMS_CC ATS. A number of ASPs are defined to convey these parameters from TTCN-3 codes to SAD. ASPs manipulating the SAD are also defined.

5.2.3
Network interface

Similar to the majority of TCP/IP stack implementations, a network interface (IF0, IF1, IF2, etc.) structure is used to connect the IP-CAN bearer to IP protocol entity. When the ASP for setting up an IP-CAN bearer is called via the IP‑CAN control port, the SS shall connect the established radio access bearer to the relevant IF structure, in order to provide the radio bearer connectivity to the IP/IPsec layer.

5.2.4
SigComp and related control port

SIP Compression is mandatory (clause 8 of 3GPP TS 24.229) and Signalling compression (RFC 3320, RFC 3485, RFC 3486) protocol is used for SIP compression. The SigComp entity in the model is used to carry out the compression/decompression functions. In the receiving direction of the SS, the SigComp entity will detect whether the incoming SIP message is compressed and, if so, decompress it. In the sending direction of the SS, the TTCN controls whether the outgoing SIP message is compressed through the SigComp control port. If while decompressing a message, decompression failure occurs, the message shall be discarded. The SigComp layer in the SS shall automatically find if a secure port or un-secure port is being used for transmission or reception of messages. If an un-secure port is used for transmission, then as per clause 8 of 3GPP TS 24.229, it shall not include state creation instructions. If the state creation command is received in a compressed message on an un-secured port (clause 8 of 3GPP TS 24.229), a decompression failure shall be generated.
5.2.5
SIP TTCN 3 Codec

SIP is a text-based protocol, the messages exchanged between the UE and the SS are character strings. In TTCN-3 ATS the messages are structured to take the advantage of TTCN-3 functionality, and to make the debugging and maintenance of the ATS easier. When the TTCN-3 ATS sends a message to the UE, the SIP TTCN-3 codec converts the structured message to the corresponding character string then transfers it to the UE. When the SS receives a message from the UE, the TTCN-3 codec converts the received character string to the structured message and passes it to the TTCN-3 ATS.
5.2.6
DHCP and DNS data ports

The DHCP port is used for receiving the DHCP requests from the UE under test, and sending corresponding responses to the UE. The DNS port is used for receiving domain name resolution requests from the UE and sending the results back to the UE. The TTCN which implements the required DHCP and DNS server functions (only the functions necessary for testing purposes, not full functionality) will receive and send on these ports.
The DHCP and DNS server functionalities in the default test configuration are implemented as Parallel Test Components (PTCs). For P-CSCF Discovery test cases (3GPP TS 34.229-1, clause 7), the PTCs are disabled and the DHCP and DNS ports are connected to the Main Test Component (MTC) so that the test script running on the MTC has full control of DHCP and DNS signalling.
5.3
Upper Tester (UT)

In order to support test automation and regression testing, an MMI port has been defined through which MMI commands (e.g. “Please initiate a call”) are sent to an external entity. Implementations can customize the external entity according to their needs. This port is enabled by setting PIXIT parameter px_TestAutomation to ‘true’.
5.4
TTCN-3
TTCN is used as specification language. ES 201 873 [12] (TTCN-3) is applied to the notation.
5.5
Extension of the Test Model to support XCAP
Some MTSI supplementary services (TS 24.173) like communication barring (CB) and communication diversion (CDIV) require the XCAP protocol (RFC 4825) for maintaining XML documents in the network. Test cases for these services are specified in TS 34.229-1. In order to support test case development the Test Model in section 5.2 or Figure 2 is extended with a HTTP layer as shown below. Also new ASPs are introduced for configuring the HTTP layer and for transferring data from the TTCN engine to the HTTP layer.

[image: image4.wmf]ipCANctl

ipConf

RTP/UDP/TCP/TLS

IP/

IPsec

(v4,v6)

SAD

NAS

AS

PDCP

SS

TTCN

Engine

MTSI XCAP

server

http

Layer

httpCtl

HttpCtlReq/Cnf

HttpDataReq

HttpDataInd

ipCANctl

ipConf

RTP/UDP/TCP/TLS

IP/

IPsec

(v4,v6)

SAD

NAS

AS

PDCP

SS

TTCN

Engine

MTSI XCAP

server

http

Layer

httpCtl

HttpCtlReq/Cnf

HttpDataReq

HttpDataInd

Figure 3: Extension to the Test Model to support XCAP

6
ASP definitions

6.1
Control ASP

ASPs for configuring/controlling the SS are defined to operate in a pair of ASPs, Req (request) ASP and Cnf (Confirm) ASP of the blocking mode. The TTCN-3 execution after sending a Req ASP shall wait (be blocked) for the Cnf ASP.

Because the IMS Test Suite is radio access technology independent, few parameters are passed from the TTCN-3. Therefore the exact configuration procedures used are determined by the implementation.

The PIXIT px_RANTech (see below) is set by the operator and is passed through the TTCN to the SS. This is defined as an enumerated type and is used to specify which platform the test is to be run on (e.g. GERAN or UTRAN).

6.1.1
Cell Control

	Name
	CreateCellReq

	Port
	IPCANctl

	Comment
	ASP type for creating a cell

	Parameter Name
	Parameter Type
	Comment

	ranTech
	RANTech
	

	Name
	CreateCellCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of CreateCellReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ReleaseCellReq

	Port
	IPCANctl

	Comment
	ASP type for releasing resources allocated to the cell

	Parameter Name
	Parameter Type
	Comment

	Name
	ReleaseCellCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ReleaseCellReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	RANTech

	Type
	enumerated

	Parameters
	GERAN, UTRAN_FDD, UTRAN_TDD, dummy1, dummy2

	Comment
	Indicates the radio access network technology used for transport of SIP signalling messages over the air interface

	Name
	Status

	Type
	enumerated

	Parameters
	success, failure, inconclusive

	Comment
	Indicates the status result of the requesting ASP

6.1.2
IdleUpdated

	Name
	IdleUpdatedReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS to bring the UE into an idle updated state and both GMM and/or MM registered

	Parameter Name
	Parameter Type
	Comment

	Name
	IdleUpdatedCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of IdleUpdatedReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

6.1.3
PDPContext

	Name
	ActivatePDPContextRequest_Req

	Port
	IPCANctl

	Comment
	ASP type which sets up a radio connection and waits for the Activate PDP Context Request and sends the Radio Bearer Setup message (if required). The ProtocolConfigurationOptions IE received in the ActivatePDPContextRequest is sent back in the Cnf.

ActivatePDPContextAccept_Req must be called after this to complete the procedure

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	bearerInfo
	integer
	

	Name
	ActivatePDPContextRequest_Cnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ActivatePDPContextRequest_Req. The contents of the ProtocolConfigurationOptions IE received in the ActivatePDPContextRequest are included here

	Parameter Name
	Parameter Type
	Comment

	configOptList
	ConfigOptList
	

	status
	Status
	

	Name
	ActivatePDPContextAccept_Req

	Port
	IPCANctl

	Comment
	ASP type which sends the Activate PDP Context Accept message with the ProtocolConfigurationOptions IE specified.

ActivatePDPContextRequest_Req and Cnf must be called before this

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	configOptList
	ConfigOptList
	

	Name
	ActivatePDPContextAccept_Cnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ActivatePDPContextAccept_Req.

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ActivateSecondaryPDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which informs the SS to expect the UE to request a secondary PDP context. Includes the bearer info to be configured for this secondary PDP context

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	bearerInfo
	integer
	

	Name
	ActivateSecondaryPDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ActivateSecondaryPDPContextReq, when it is completed

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ModifyPDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which informs the SS to expect the UE to request to modifiy an existing PDP context. Includes the bearer info for this to be modified to

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	bearerInfo
	integer
	

	Name
	ModifyPDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ModifyPDPContextReq, when it is completed

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	DeactivatePDPContextReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS deactivate the indicated PDP context. A value of pdpContextId = 0 indicates that all existing PDP contexts are to be deactivated.

	Parameter Name
	Parameter Type
	Comment

	pdpContextId
	integer
	

	moInititiated
	boolean
	Flag indicating if the PDP context deactivation is initiated by the UE

	Name
	DeactivatePDPContextCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of DeactivatePDPContextReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	BearerInfo

	Type
	integer

	Comment
	References the RAB to be configured. This is RAN independent and can be added to/reduced as required

This is simply a list of RAB identifiers. It is expected, in the future, for these identifiers to equate to specific RAB requirements, for all available radio access technologies See clause 8.1 for more information.
	Name
	ConfigOptList

	Type
	set of ConfigOpt

	Comment
	Used to contain the protocol configuration options IE used in the PDP context messages

	Name
	ConfigOpt

	Type
	octetstring

	Parameter Name
	Parameter Type

	ContainerId
	octetstring [2]

	ContainerLength
	octetstring [1]

	ContainerContents
	octetstring optional

6.1.4
IP Configuration

	Name
	InstallKeyReq

	Port
	IPconf

	Comment
	ASP type which installs the keys into the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	MD5_96Key
	bitstring
	length (128)

	SHA_1_96Key
	bitstring
	length (160)

	DES_EDE3_CBCKey
	bitstring
	length (192)

	AES_CBCKey
	bitstring
	length (128)

	Name
	InstallKeyCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of InstallKeyReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	AssignIPaddrReq

	Port
	IPconf

	Comment
	ASP type which assigns the IP address to the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	p_cscf_Addr
	IPAddr
	

	dhcp_Addr
	IPAddr
	

	dns_Addr
	IPAddr
	

	ue_Addr
	IPAddr
	

	peerUE_Addr
	IPAddr
	

	Name
	AssignIPaddrCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of AssignIPaddrReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	IPAddr

	Type
	charstring

	Comment
	in either colon separated or dotted decimal format

	Name
	ReleaseIPConfigurationReq

	Port
	IPconf

	Comment
	ASP type which releases the IMS IP layer configurations including Security Associations. This ASP is meant to be used when starting a new test case to make sure that the IP layer is in a well defined initial state irrespective of the execution of previous tests.

	Parameter Name
	Parameter Type
	Comment

	-
	-
	No parameters

	Name
	ReleaseIPConfigurationCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of ReleaseIPConfigurationReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	AddPCSCFaddrReq

	Port
	IPconf

	Comment
	ASP type which configures a new address of the P-CSCF component in the IP layer in the SS

	Parameter Name
	Parameter Type
	Comment

	p_cscf_Addr
	IPAddr
	New IP address of P-CSCF component to be simulated

	Name
	AddPCSCFaddrCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of AddPCSCFaddrReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	SignallingCompressionReq

	Port
	SigComp

	Comment
	ASP type which starts/stops signalling compression of messages

	Parameter Name
	Parameter Type
	Comment

	startCompression
	boolean
	

	Name
	SignallingCompressionCnf

	Port
	SigComp

	Comment
	ASP type which returns the result of the execution of SignallingCompressionReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	RcvdCompartmentId

	Port
	SigComp

	Comment
	ASP type which feeds back the Compartment Id back to the Sigcomp layer, extracted from the last received message, used by SigComp layer to store any state appropriately.

	Parameter Name
	Parameter Type
	Comment

	compartmentId
	charstring
	Call-Id of the SIP message will be used as compartment Id

	Name
	GenerateSigCompDecompFailReq

	Port
	SigComp

	Comment
	ASP type which starts/stops inserting instructions resulting in decompression failure in compressed messages.

	Parameter Name
	Parameter Type
	Comment

	startError
	boolean
	TRUE: Start generation of errors.

FALSE: Stop generation of errors.

	mechanism
	DecompFailureType
	Optional: present when startError is TRUE, else absent

	Name
	GenerateSigCompDecompFailCnf

	Port
	SigComp

	Comment
	ASP type which returns the result of the execution of GenerateSigCompDecompFailReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	DecompFailureType

	Type
	enumerated

	Parameters
	stateCreation,dummy1,dumm2,dummy3

	Comment
	Indicates the mechanism through which decompression failure errors shall be inserted during compressing message

stateCreation: This type indicates, decompression failure shall be generated by inserting ‘State Creation’ instructions in DL messages sent on unsecured SS Port (clause 8 of 3GPP TS 24.229)

6.1.5
SA Database

	Name
	SingleAddSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of SingleAddSADReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	DoubleAddSADReq

	Port
	IPconf

	Comment
	ASP type which sets two entries of SAD in the SS

	Parameter Name
	Parameter Type
	Comment

	sa1
	SA
	

	sa2
	SA
	

	Name
	DoubleAddSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of DoubleAddSADReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	DelSADReq

	Port
	IPconf

	Comment
	ASP type which deletes the SAD entries

	Parameter Name
	Parameter Type
	Comment

	spi1
	SPI
	

	spi2
	SPI
	optional

	spi3
	SPI
	optional

	spi4
	SPI
	optional

	spi5
	SPI
	optional

	spi6
	SPI
	optional

	spi7
	SPI
	optional

	spi8
	SPI
	optional

	spi9
	SPI
	optional

	Name
	DelSADCnf

	Port
	IPconf

	Comment
	ASP type which returns the result of the execution of DelSADReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	SA

	Port
	IPconf

	Comment
	ASP type which sets a single entry of parameters for a security association in the SS

	Parameter Name
	Parameter Type

	spi
	SPI

	srcIPaddr
	IPAddr

	desIPaddr
	IPAddr

	srcUDPport
	integer

	desUDPport
	integer

	intAlgo
	IntAlgo

	ciphAlgo
	CiphAlgo

	Name
	IntAlgo

	Type
	enumerated

	Parameters
	hmac_md5_96, hmac_sha_1_96

	Comment
	Integrity algorithms

	Name
	CiphAlgo

	Type
	enumerated

	Parameters
	des_ede3_cbc, aes_cbc, nociph

	Comment
	Ciphering algorithms, "nociph" means no ciphering

	Name
	SPI

	Type
	integer (0..4294967295)

	Comment
	security parameter index for IPsec

6.1.6
Emergency CS Call

	Name
	ExpectEmergencyCSCall

	Port
	IPCANctl

	Comment
	ASP type which informs the SS to expect the UE to request an emergency CS call

	Parameter Name
	Parameter Type
	Comment

	Name
	EmergencyCSCallActive

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ExpectEmergencyCSCall when it is in call active state

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

	Name
	ReleaseCSCallReq

	Port
	IPCANctl

	Comment
	ASP type which requests the SS to release the CS call previously established during ExpectEmergencyCSCall

	Parameter Name
	Parameter Type
	Comment

	Name
	ReleaseCSCallCnf

	Port
	IPCANctl

	Comment
	ASP type which returns the result of the execution of ReleaseCSCallReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	

6.2
IMS-CC Data ASP definitions

6.2.1
ASP_DataRequest

	Name
	ASP_DataRequest

	Port
	DataPort

	Comment
	ASP type for receiving/sending SIP Request Messages

	Parameter Name
	Parameter Type
	Comment

	sigCompInfo
	SigCompInfo
	OPTIONAL. Information for/from SigComp layer. Absence means compression is/shall be not applied in received/send message.

	portInfo
	SSPortInfo
	

	msg
	union {REGISTER_Request,

INVITE_Request,

OPTIONS_Request,

BYE_Request,

CANCEL_Request,

ACK_Request,

PRACK_Request,

NOTIFY_Request,

SUBSCRIBE_Request,

PUBLISH_Request,

UPDATE_Request,

REFER_Request ,

MESSAGE_Request}
	SIP message

6.2.2
ASP_DataResponse

	Name
	ASP_DataResponse

	Port
	DataPort

	Comment
	ASP type for receiving/sending SIP RESPONSE Message

	Parameter Name
	Parameter Type
	Comment

	sigCompInfo
	SigCompInfo
	OPTIONAL. Information for/from SigComp layer. Absence means compression is/shall be not applied in received/send message.

	portInfo
	SSPortInfo
	

	msg
	Response
	SIP RESPONSE message

	Name
	SigCompInfo

	Type
	Union

	Parameter Name
	Parameter Type
	Comment

	compartmentId
	charstring
	Used for Sending messages from TTCN. To be used by SigComp Layer

	isCompressed
	boolean
	Used for received messages. If set, means received message was compressed

	Name
	SSPortInfo

	Type
	record

	Parameter Name
	Parameter Type
	Comment

	ipAddr
	IPAddr
	IP address of simulated network node

	transportProtocol
	TransportProtocol
	

	Name
	TransportProtocol

	Type
	enumerated

	Parameters
	UDP, TCP

6.3
Ut ASP definitions

	Name
	MMIMessage

	Port
	MMIPort

	Comment
	ASP type for sending messages to upper tester

	Parameter Name
	Parameter Type
	Comment

	mmiMessage
	charstring
	Action required by upper tester

6.4 HTTP Layer ASP definitions
	Name
	HttpDataInd

	Port
	HttpServerPort

	Comment
	ASP type for sending a message from the http layer to the TTCN engine. It transports relevant information of a http Request from the UE to the Tester.

	Parameter Name
	Parameter Type
	Comment

	requestLine
	HttpRequestLine
	RFC 2616 clause 5.1

	authorization
	HttpAuthorization
	RFC 2616 clause 14.8 (optional)

	xcapMessage
	XCAPMessage
	MTSI XCAP Message (union of

all types defined in TS 24.173) (Optional)

	Name
	HttpDataReq

	Port
	HttpServerPort

	Comment
	ASP type for sending messages from the TTCN engine to the http layer. It transports information needed by the http layer to generate a http Response to the UE.

	Parameter Name
	Parameter Type
	Comment

	statusLine
	StatusLine
	RFC 2616 clause 6.1

	wwwAuthenticate
	WWWAuthenticate
	RFC 2616 clause 14.47 (optional)

	xcapMessage
	XCAPMessage
	MTSI XCAP Message (union of

all types defined in TS 24.173)

(Optional)

	Name
	HttpCtlReq

	Port
	HttpCtlPort

	Comment
	ASP type to configure the http layer

	Parameter Name
	Parameter Type
	Comment

	serverIPaddr
	IPAddr
	IP address of simulated http server

	useTLS
	boolean
	set if TLS shall be used for the http connection. Else TCP is used.

	Name
	HttpCtlCnf

	Port
	HttpCtlPort

	Comment
	ASP type to confirm HttpCtlReq

	Parameter Name
	Parameter Type
	Comment

	status
	Status
	Result of previous configuration command

7
Codec definition

7.1
Introduction

SIP is a text-based protocol, thus the message exchange between the UE and the SS are pure character strings. In the TTCN-3 ATS the messages are structured and optimized to take the advantage of TTCN-3 functionality, and to make the debugging and maintenance of the ATS easier.
Every time the TTCN-3 ATS sends a message to the UE, the SIP TTCN-3 codec converts (encodes) the structured message given as a template to the corresponding character string before transferred to the UE.

When the SS receives a message from the UE, the TTCN-3 codec converts (decodes) the received character string to the structured message value and passes it to the TTCN-3 ATS.

7.2
TCI Interface Specification

TTCN-3 provides a reference test system implementation architecture in [ETSI ES 201 873-6] which is used here.

7.2.1
TCI - Required and Provided Interface Methods

A codec implementation for this ATS has to adhere to the TCI-CD provided and TCI-CD required interfaces as defined in ES 201 873-6, clause 7.3.2]. Within this context we recommend to use the TCI value interface ES 201 873-6, clause 7.2.2] with its several methods. In addition the codec has to follow the type mappings and instruction as defined in clause 8.3.

7.3
Requirements on abstract message syntax

7.3.1
Type definition - Syntax / Semantic aspects

All given defined BNF grammars (e.g. the ABNF of RFC 3261) are unique. Thus the syntax tree for each syntactically correct message derived with these grammars are unique too and the parts of a message can be uniquely identified (represented) by the terminal phrase belonging to a non terminal symbol and its derivation path in the syntax tree.

The syntax tree of all given messages can be used to uniquely identify and describe the parts of the messages. The leaves are the part of every message and the nodes from the root to the leaves represent the sequence of rules to be applied to derive that part

The IMS/SIP root message type is an ordered structured type, which is represented as a record type in TTCN-3. For each grammar rule of the ABNF a TTCN-3 record type is declared with the specific name of the rule. The following rules are applied to the fields within a record:

-
A non-terminal symbol is declared as a record type for this symbol.
-
The order of the symbols in the rule are represented by an equal order of the fields.
-
Repetitions are declared as 'set of' or 'record of' types.
-
Options are represented as optional record/set fields.
-
Alternatives are declared as union types.
7.3.2
Deviations of the type definition semantic

-
Most of the 'literals' of a message (for example: the string "Via" or "v" in the message header fields) are not represented.
-
The TTCN-3 charstring type is used where we stop structuring even if the ABNF uses structured types. More details found in clause 8.3.3.
-
Wherever possible parts are mapped to their best type representation, e.g. DIGIT based rules are mapped to integer type not to a charstring type.
-
All of the following delimiters (including preceding or following whitespace) defined by the ABNF grammar to separate the parts of a message are not represented (see note).

STAR = SWS "*" SWS ; asterisk

SLASH = SWS "/" SWS ; slash

EQUAL = SWS "=" SWS ; equal

LPAREN = SWS "(" SWS ; left parenthesis

RPAREN = SWS ")" SWS ; right parenthesis

RAQUOT = ">" SWS ; right angle quote

LAQUOT = SWS "<"; left angle quote

COMMA = SWS "," SWS ; comma

SEMI = SWS ";" SWS ; semicolon

COLON = SWS ":" SWS ; colon

LDQUOT = SWS DQUOTE; open double quotation mark

RDQUOT = DQUOTE SWS ; close double quotation mark

HCOLON = *(SP / HTAB) ":" SWS

SP = single space

HTAB = tab

SWS = sep whitespace

NOTE:
If they are present within a pure charstring they will be handled like a normal character and are still included.
-
Messages which are not of interest to the test suite are left undecoded as a charstring and will not be further structured.

7.3.3
Additional requirements for codec implementations (SIP/IMS Message

The SIP/IMS codec is based on a normalized encoding which is always produced by an encoder. Decoder implementations, however, have to handle normalization before, or when constructing the structured message value, e.g. long versus compact form, whitespace compression, delimiter removal, same header grouping, etc. All these aspects will be handled in the next clause.
7.3.3.1
Differences between BNF - TTCN-3 Type Mapping

In normal cases the mapping is straight forward. Below you find the exceptions, including potential examples.

-
The root message type is not a SIP-message but directly a Request or Response type which is represented as a TTCN-3 record. All Method - Message names (INVITE, BYE, ACK etc.) and all message header field names (To, From, CallID, CSeq, Via etc.) are mapped to an enumerated type in TTCN-3 to simplify the extension of new headers. During encoding, the long-form of these message header fields is always used. The respective field in the header type is restricted to values which are allowed.

	BNF rules of RFC
	TTCN-3 Type Mapping

	SIP-message =

Request / Response
	type record REGISTER_Request {…},

type record INVITE_Request {…},

type record PRACK_Request {…},

type record NOTIFY_Request {…},

type record UPDATE_Request {…},

…

type record Response {…}

	Method =

INVITEm

/ ACKm

/ OPTIONSm

/ BYEm

/ CANCELm

/ REGISTERm

/ …
	type enumerated Method { ACK_E, BYE_E, CANCEL_E, INVITE_E, OPTIONS_E, REGISTER_E, …}

-
The structure of the message header fields are mapped to a "set " type in TTCN-3, because the order of these header fields is not mandatory. There is an Unknown Header List given in the type system to decode unknown headers with ID and Value.

	message-header =
(

…

/ Contact

/ Content-Disposition

…

/ Via

/ Warning

/ WWW-Authenticate

/ extension-header) CRLF
	type set MessageHeader {

…

Contact contact optional,

ContentDisposition contentDisposition optional,

…

Via via,

Warning warning optional,

WwwAuthenticate wwwAuthenticate optional,

UndefinedHeader_List undefinedHeader_List optional

}

-
The various parameter lists defined in the BNF are mapped and combined into three different TTCN-3 sets of generic-param types. These types differ only in their name: SemicolonParam_List, AmpersandParam_List, CommaParam_List to distinguish between the relevant separators.

	uri-parameters =

*(";" uri-parameter)
	type set of GenericParam SemicolonParam_List;

	Authentication-Info =
"Authentication-Info" HCOLON ainfo

*(COMMA ainfo)
	type record AuthenticationInfo {

FieldName fieldName(AUTHENTICATION_INFO_E),

CommaParam_List ainfo

}

	ainfo =

nextnonce

/ message-qop

/ response-auth

/ cnonce

/ nonce-count
	type set of GenericParam CommaParam_List;

	Headers =

"?" header *("&" header)
	type set of GenericParam AmpersandParam_List;

-
Any more specific parameter rule (e.g. uri-param, user-param, lr-param , digest-cln, etc.) is simplified to the generic-param rule which will be mapped as a record structure of two charstrings (ID and paramValue). This is equivalent to a token with an optional generic value (token [EQUAL gen-value]).

	digest-cln =

realm

/ domain

/ nonce

/ opaque

/ stale

/ algorithm

/ qop-options

/ auth-param
	type record GenericParam {

charstring id ,

charstring paramValue optional

}

-
In addition to the pure charstring as a base type, the TTCN-3 type system provides base integer types which are unrestricted to the model e.g. the portField, CSeq number, maxForward digit.

	user =

1*(unreserved

/ escaped / user-unreserved

)

telephone-subscriber as defined in RC 2806
	charstring

	password =

*(unreserved

/ escaped

/"&"

/ "="

/ "+"

/ "$"

/ ","

)
	charstring

	Port =

1*DIGIT
	integer

	Status-Code =

Informational

/ Redirection

/ Success

/ Client-Error

/ Server-Error

/ Global-Failure

/ extension-code
	integer

-
Where the same header type can appear multiple times within a message, they will be decoded as a single header field, with multiple list elements. The order of appearance of the headers will be preserved within the header list value.

	Contact =

("Contact" / "m") HCOLON

(STAR / (contact-param

*(COMMA contact-param)

)

)
	type record Contact {

FieldName fieldName(CONTACT_E),

ContactBody contactBody

}

	contact-param =

(name-addr / addr-spec)

*(SEMI contact-params)
	type record ContactAddress {

Addr_Union addressField,

SemicolonParam_List contactParams optional

}

type union ContactBody {

charstring wildcard,

ContactAddress_List contactAddresses

}

Used in

type set of ContactAddress ContactAddress_List;

-
The BNF [clause 7.3.1 Header Field Format RFC 3261] specifies that several WWW or Proxy Authentication/Authorization headers should not be combined into a single header; however they will be decoded into such in the codec. If these need to be sent downlink then a new, 'raw' (pure charstring) message type will be introduced.
	Authorization =

"Authorization" HCOLON credentials
	type record Authorization {

 FieldName fieldName(AUTHORIZATION_E),

 Credentials body

}

	Credentials =

("Digest" LWS digest-response)

/ other-response
	type union Credentials {

CommaParam_List digestResponse,

OtherAuth otherResponse

}

-
The different schemes (sip, sips, tel, fax, absoluteUri) in the SIP URI are all handled via the same type definition to simplify the decoding. This is because there is no difference between the URIs except the scheme.
	Request-URI =

SIP-URI

/ SIPS-URI

/ absoluteURI

with

SIP-URI =

"sip:"

[userinfo]

hostport

uri-parameters

[headers]

and

SIPS-URI =

"sips:"

[userinfo]

hostport

uri-parameters

[headers]

and

absoluteURI =

scheme ":" (hier-part / opaque-part)
	type record SipUrl {

charstring scheme,

UserInfo userInfo optional,

HostPort hostPort,

SemicolonParam_List urlParameters optional,

AmpersandParam_List headers optional

}

-
Universal charstrings should be supported by the codec especially for the Display name in the URI.

-
For downlink messages, if a message body is included, the TTCN will set the len field in the ContentLength header to the value -1. This value will be replaced by the codec with the actual length of the encoded message body (see clause 7.3.4)

7.3.4
Additional requirements for codec implementations (Message Body)

The message body is optional, but if it is included, will be encoded using either SDP or XML (see below).

The message body type consists of an optional charstring, containing the encoded message and a union of the different SDP and XML types.

	type record MessageBody {

charstring encodedMsg optional,

MsgBodyTypes msgBody

}

type union MsgBodyTypes {

 reginfoElement regE,

 IMCN_Subsystem_XMLBody IMCNBody,

 SDP_Message sdpE

}

For uplink messages, if the received message contains a message body, the codec will provide the encoded charstring in encodedMsg and the decoded message in the appropriate choice of MsgBodyType.
For downlink messages, the charstring encodedMsg will always be set to omit. The codec will encode the msgBodyType according to the appropriate type definitions and will then include the length of the encoded message body in the content length header, replacing the value of -1 set in the TTCN.
7.3.5
Additional requirements for codec implementations (SDP Body)

The Session Description Protocol is defined in RFC 4566.

-
The 'type' fields (such as 'v' and 'o' are not represented).

-
For the defined attributes, the att-field is also not represented (e.g. 'curr' is not represented in SDP_attribute_curr).

-
The Messages which are not of interest to a test suite are left undecoded as a charstring and will not be further structured.

7.3.5.1
Differences between BNF - SDP Type Mapping

In normal cases the mapping is straight forward. Below are the exceptions which differ.

-
The numerical fields in the origin-field, the time-field and the timezone field have been defined as charstring because they may not fit into a 32-bit signed integer.

	BNF Rules of RFC 4566
	TTCN 3 Type Mapping

	origin = username

 sess-id

 sess-version

 nettype

 addrtype

 unicast-address
	type record SDP_Origin {

 charstring username,

 charstring session_id,

 charstring session_version,

 charstring net_type,

 charstring addr_type,

 charstring addr

}

	time-fields = start-time

 stop-time

 repeat-fields

 [zone-adjustments]
	type record SDP_time_field {

 charstring start_time,

 charstring stop_time

}

	zone-adjustments = time

 typed-time

	type record SDP_timezone {

 charstring adjustment_time,

 SDP_typed_time offset

}

-
The zone-adjustments field in the time-fields has been included as an additional field in the top-level message definition.

	BNF Rules of RFC 4566
	TTCN 3 Type Mapping

	session-description = proto-version

 origin-field

 session-name-field

 information-field

 uri-field

 email-fields

 phone-fields

 connection-field

 bandwitdh-fields

 time-fields

 key-fields

 attribute-fields

 media-descriptions

	type record SDP_Message {

 integer protocol_version,

 SDP_Origin origin,

 charstring session_name,

 charstring information optional,

 charstring uri optional,

 SDP_email_list emails optional,

 SDP_phone_list phone_numbers optional,

 SDP_connection connection optional,

 SDP_bandwidth_list bandwidth optional,

 SDP_time_list times,

 SDP_timezone_list timezone_adjustments optional,

 SDP_key key optional,

 SDP_attribute_list attributes optional,

 SDP_media_desc_list media_list optional

	time-fields = start-time

 stop-time

 repeat-fields

 [zone-adjustments]
	type record SDP_time {

 SDP_time_field time_field,

 SDP_repeat_list time_repeat optional

}

-
The mappings for the email-address, phone-number and connection-address fields have been simplified.

	BNF Rules of RFC 4566
	TTCN 3 Type Mapping

	email-address = address-and-comment

 / dispname-and-address

 / addrspec

	type record SDP_contact {

 charstring addr_or_phone,

 charstring disp_name optional

}

	phone-number = email-safe

 / email-safe "<" phone ">"

 / phone

	type record SDP_contact {

 charstring addr_or_phone,

 charstring disp_name optional

}

	connection-address = multicast-address

 / unicast-address

	type record SDP_conn_addr {

 charstring addr,

 integer ttl optional,

 integer num_of_addr optional

}

7.3.5.2
Defined attributes

The SDP_attribute type is defined as a union of the following attribute types. There is an unknown attribute given to decode undefined attributes with a name and value.

	SDP Attribute
	TTCN 3 Type Mapping

	cat
	type record SDP_attribute_cat {

 charstring attr_value

}

	charset
	type record SDP_attribute_charset {

 charstring attr_value

}

	conf
	type record SDP_attribute_curr {

 charstring preconditionType,

 charstring statusType,

 charstring direction

}

	curr
	type record SDP_attribute_curr {

 charstring preconditionType,

 charstring statusType,

 charstring direction

}

	des
	type record SDP_attribute_des {

 charstring preconditionType,

 charstring strength,

 charstring statusType,

 charstring direction

}

	fmtp
	type record SDP_attribute_fmtp {

 charstring attr_value

}

	framerate
	type record SDP_attribute_framerate {

 charstring attr_value

}

	inactive
	type record SDP_attribute_inactive {

}

	keywds
	type record SDP_attribute_keywds {

 charstring attr_value

}

	lang
	type record SDP_attribute_lang {

 charstring attr_value

}

	orient
	type record SDP_attribute_orient {

 charstring attr_value

}

	ptime
	type record SDP_attribute_ptime {

 charstring attr_value

}

	quality
	type record SDP_attribute_quality {

 charstring attr_value

}

	recvonly
	type record SDP_attribute_recvonly {

}

	rtcp
	type record SDP_attribute_rtcp {

 charstring attr_value

}

	rtpmap
	type record SDP_attribute_rtpmap {

 charstring attr_value

}

	sdplang
	type record SDP_attribute_sdplang {

 charstring attr_value

}

	sendrecv
	type record SDP_attribute_sendrecv {

}

	sendonly
	type record SDP_attribute_sendonly {

}

	tool
	type record SDP_attribute_tool {

 charstring attr_value

}

	type
	type record SDP_attribute_type {

 charstring attr_value

}

	unknown
	type record SDP_attribute_tool {

 charstring name,

 charstring attr_value optional

}

7.3.6
Additional requirements for codec implementations (DHCP/DNS)
The DHCP/DNS codec shall convert TTCN descriptions into/from octet streams as specified in the RFCs. The TTCN type definitions for DHCP/DNS types follow closely the data formats defined in the corresponding RFCs (RFC 1035, RFC 1533, RFC 2131, RFC 3315, RFC 3319 and RFC 3361).

The only special case to be considered is when a TTCN length field in a DHCP/DNS record is set to 0, in which case the encoder shall compute the proper length value during encoding. This agreement relieves the test case writer of complex length computations which are not relevant to the testcase.

7.3.7
Additional requirements for codec implementations (XML)

7.3.7.1
Registration Information

The used XML schema is taken directly from the RFC 3680.
The header taken from the XML Schema [RFC 3680, section 5.4] has to be generated in the Encoder automatically and will not be checked within the receive statement, thus it must not be decoded. This header is NOT declared in the type system definition in TTCN-3

<?xml version="1.0"?>

 <reginfo xmlns="urn:ietf:params:xml:ns:reginfo"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="0" state="full">

In normal cases the mapping is straight forward. All Sequences are defined as a set or record type. Examples of the Type Mapping are below:
	XML Schema rule of RFC 3680
	TTCN-3 Type Mapping

	<xs:element name="reginfo">

 <xs:complexType>

 <xs:sequence>

 <xs:attribute name="version" type="xs:nonNegativeInteger"

use="required"/>

 <xs:attribute name="state" use="required">

 <xs:simpleType>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
	type set reginfoElement {

reginfoSequence sequence,

nonNegativeInteger version,

reginfoAttribute state,

Namespaces namespaces optional

}

	 <xs:sequence>

 <xs:element ref="tns:registration" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>
	
type record reginfoSequence {

Registrations registration,

Any anyName optional

}

	 <xs:element name="registration">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:contact" minOccurs="0" maxOccurs="unbounded"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="aor" type="xs:anyURI" use="required"/>

 <xs:attribute name="id" type="xs:string" use="required"/>

 <xs:attribute name="state" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="init"/>

 <xs:enumeration value="active"/>

 <xs:enumeration value="terminated"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>
	
type set of registration Registrations;

type set registration {

registrationSequence sequence,

XSDAUX.anyURI aor,

XSDAUX.string id,

registration_stateAttribute state

}

7.3.7.2
3GPP IM CN subsystem

The used XML schema is taken directly from 3GPP TS 24.229-1 [5], clause 7.6.
	XML Schema rule of 3GPP TS 24.229, clause 7.6
	TTCN-3 Type Mapping

	<!ELEMENT ims-3gpp (

 alternative-service?, service-info?)>

<!ATTLIST ims-3gpp version CDATA #REQUIRED>

<!-- service-info element: The transparent data received from HSS for AS -->

<!ELEMENT service-info (#CDATA)>

	
type record IMCN_Subsystem_XMLBody {

AlternativeService alternativeService optional,

charstring serviceInfo optional,

integer version

}

	<!-- alternative-service: alternative-service used in emergency sessions -->

<!ELEMENT alternative-service (

 type, reason)>

<!ELEMENT type (emergency)>

<!ELEMENT reason (#PCDATA)>

	
type record AlternativeService {

charstring typeName ("emergency"),

charstring reason

}

7.4
Textual Codec Requirements (Details)

7.4.1
Encoder

The encoding is straight forward. The TCI Interface method encode(in Value value) which returns the TriMessageType from the provided (TciCDProvided) must be implemented. Selection of the relevant String field name should be used to generate an ASCII Byte Stream which provides the complete message.

Some hints for the implementation:
-
Value interface:
-
The usage of the TCI Value API is recommended here.
-
Whitespace/delimiter handling:
-
Should be included by the Encoder. There is no information given in the type system about whitespaces and delimiter.

-
Long vs. Compact format:
-
Only the long format must be supported for the message header name.
7.4.2
Decoder

For the decoder the TCI Interface method Value decode (in TriMessageType message,
in Type hyp) which returns the message Value must be implemented. Within this operation a parser must be instantiated which constructs the structured message values from the text message.

Some hints for the implementation:
-
Value interface:
-
The usage of the TCI Value API is recommended here.
-
Whitespace/delimiter handling:
-
Should be ignored by the Decoder. Just the values without spaces and delimiters should be handled by the decoder and represented in a template structure afterwards.

-
Different formats:
-
The decoder must be able to handle all header codings, e.g. v, VIA, via, vIa, etc.
-
The long and the short format must be supported for the message header name.
-
Error handling:
-
All errors should be logged in addition to the TTCN-3 logging. If the message is not decodable it should return NULL, as specified in the TCI standard.

8
Design consideration

8.1
Bearer Configurations for IMS Testing
8.1.1
Bearer Information for UTRAN

	BearerInfo
	RANTech = UTRAN_FDD
	Description

	1
	34.108, clause 6.10.2.4.1.56
	To be used for IMS Signalling only

	2
	34.108, clause 6.10.2.4.6.6
	Not supported in Rel-5

	3
	34.108, clause 6.10.2.4.6.7
	Not supported in Rel-5

	4
	25.993, clause 7.1.122
	Only supported in Rel-5

	5
	25.993, clause 7.1.124
	Not supported in Rel-5

8.1.2
Bearer Information for GERAN

No specific bearer information has yet been defined. The QoS to be used is therefore dependant on the media applications supported by the UE.

8.2
Security

TBD.

8.3
Test Suite Operations
Table 1: TSO definitions
	TSO Name
	Description

	o_Bitstring2Base64
	Type of the result: charstring

Parameters:
bitstring p_Bitstring

Description

Returns the Base 64 encoded value of p_Bitstring

	o_GetItemFromCommaList
	Type of the result: charstring
Parameters:

charstring p_CommaList,

integer p_ItemIndex,

integer p_NumberOfItems

Description

To get item number p_ItemIndex from a list of items separated by commas. The returned item must not have any white spaces at the beginning

Used with PIXIT for MT call test case

	o_IPv4Addr2Octetstring
	Type of the result: octetstring

Parameters:
IPAddr ipAddr

Description

converts an IPv4 Address (in dotted separated decimal text format) into an octetstring (32-bit address, according to RFC 1035, section 3.4.1)

	o_IPv6Addr2Octetstring
	Type of the result: octetstring

Parameters:
IPAddr ipAddr

Description

converts an IPv6 Address (in text format, colon separated hexadecimal format) into an octetstring (128-bit address, according to RFC 3513)

	o_isIPv4Addr
	Type of the result: boolean

Parameters:
IPAddr ipAddr

Description

checks whether the IP Address in text format (dotted separated decimal) corresponds to an IPv4 address

	o_isIPv6Addr
	Type of the result: boolean

Parameters:
IPAddr ipAddr

Description

checks that the IP Address in text format (colon separated hexadecimal format) corresponds to an IPv6 address

	o_MD5
	Type of the result: charstring

Parameters:
charstring p_Data

Description

calculates the MD5 Message-Digest Algorithm according to RFC 1321

	o_PutInLowercase
	Type of the result: charstring

Parameters:
charstring par_string

Description

returns the equivalent string in lower case

8.4
AT commands
No AT commands have yet been defined for IMS operations

Annex A (normative):
Abstract Test Suites (ATS)

This annex contains the approved ATSs.

The ATSs have been produced using the Testing and Test Control Notation version 3 (TTCN3) according to ES 201 873 [12].

A.1
Version of specifications

Table A.1 shows the version of the test specifications which the delivered ATSs are referred to.

Table A.1: Versions of the test and Core specifications

	Core specifications
	3GPP TS 24.229 [11]

	Test specifications
	3GPP TS 34.229-1 [5]

	
	3GPP TS 34.229-2 [6]

	
	3GPP TS 34.123-3 [2]

A.2
IMS-CC ATS

Table A.2: IMS-CC TTCN test cases

	Test case
	Description

	
	

	7.1
	P-CSCF Discovery via PDP Context

	7.2
	P-CSCF Discovery via DHCP – IPv4

	7.4
	P-CSCF Discovery by DHCP - IPv6

	7.6
	P-CSCF Discovery by DHCP – IPv6 (UE does not Request P-CSCF discovery by PCO, SS includes P-CSCF Address(es) in PCO)

	8.1
	Initial registration

	8.2
	User Initiated Re-Registration

	8.3
	Mobile Initiated Deregistration

	8.4
	Invalid behaviour- 423 Interval too brief

	8.5
	Initial registration for early IMS security

	8.6
	Initial registration for combined IMS security and early IMS security against a network with early IMS support only

	8.7
	Initial registration for combined IMS security and early IMS security with SIM application

	9.1
	Invalid Behaviour – MAC Parameter Invalid

	10.1
	Invalid Behaviour – 503 Service Unavailable

	11.1
	Network-initiated deregistration

	13.1
	SigComp in the Initial registration

	14.1
	Emergency Call Initiation – Using CS domain

The ATS is contained in an ASCII file (IMS_CC.ttcn) which accompanies the present document.

A.2.3
Optional IP-CAN TTCN 2++ interface
FFS.

Annex B (normative):
Partial IXIT proforma

Notwithstanding the provisions of the copyright related to the text of the present document, The Organizational Partners of 3GPP grant that users of the present document may freely reproduce the partial IXIT proforma in this annex so that it can be used for its intended purposes and may further publish the completed partial IXIT.

B.0
Introduction

This partial IXIT proforma contained in the present document is provided for completion, when the related Abstract Test Suite is to be used against the Implementation Under Test (IUT).

Text in italics is comments for guidance for the production of a IXIT, and is not to be included in the actual IXIT.

The completed partial IXIT will normally be used in conjunction with the completed ICS, as it adds precision to the information provided by the ICS.

B.1
Parameter values

Table B.1: PIXIT

	Parameter name
	Description
	Type
	Default value
	Supported value

	Px_ArbitraryValueFor_gr
	Arbitrary value for gr
	charstring
	";gr=urn%3Auuid%3Af81d4fae-7dec-11d0-a765-00a0c91e6bf6"
	

	px_AssociatedTelUri
	Arbitrary TEL URI for the user
	charstring
	tel:+358-555-1234567
	

	px_AuthAMF
	Authentication Management Field (16 bits).
	bitstring (16)
	'0000000000000000'B
	The value shall be different from '1111 1111 1111 1111'B (AMFresynch)

	px_AuthK
	Authentication Key (128 bits)
	bitstring (128)
	'01011110010010101011001101011000100100010011011101011101001010101110111010000001001011100110011111000011000010011010011000101001'B
	

	px_AuthN
	Length of Extended value

min 31, max 127 (TS 34.108 cl. 8.1.2)
	integer
	127
	

	px_AuthRAND
	Authentication / Random challenge (128 bits)
	bitstring (128)
	'01010101…01'B
	

	px_BearerInfo1
	Initial Bearer to be used
	integer
	1
	

	px_BearerInfo2
	Bearer to be used for Secondary PDP Context
	integer
	2
	

	px_CalleeUri
	URI of Callee, send in INVITE
	charstring
	"sip:User-B@3gpp.org"
	

	px_CalleeContactUri
	URI to be used to contact Callee
	charstring
	"sip:User-B@3gpp.org"
	

	px_CellId
	Utran cell Id
	charstring
	'”0010100010000001”
	See TS 24.229 clause 7.2A.4.3

	px_CiphAlgo_Def
	Ciphering Algorithm
	CiphAlgo
	nociph
	enumerated type: des_ede3_cbc, aes_cbc or nociph

	px_DHCPServer_IPAddr
	IP address of DHCP server

(in v4 or v6 format)
	IPAddr
	"10.122.11.33"
	

	px_DNS_DomainName
	DNS server fully qualified domain name (FQDN)
	charstring
	"dnsserver.3gpp.org"
	

	px_DNSServer_IPAddr
	IP address of DNS server

(in v4 or v6 format)
	IPAddr
	"10.122.11.33"

	

	Px_FeatureParamValue
	Feature Parameter Value
	charstring
	"+g.3gpp.app_ref="urn%3Aurn-xxx%3A3gpp-service.ims.icsi.mmtel"
	

	px_HomeDomainName
	Home Domain Name when using ISIM or the home domain name derived from px_IMSI when using USIM (preceded by ‘sip:’)
	charstring
	"sip:3gpp.org"
	

	px_InviteToTag
	Value of the tag in the To header related to Invite
	charstring
	"abc-InviteToTag"
	

	px_IPSecAlgorithm
	Integrity Algorithm
	IntAlgo
	hmac_md5_96
	enumerated type; hmac_md5_96, hmac_sha_1_96

	px_Opaque
	String of data, specified by the server, which should be returned by the client unchanged in the Authorization header of subsequent requests with URIs in the same protection space.
	charstring
	"5ccc069c403ebaf9f0171e9517f40e41"
	

	px_P_CSCF_DomainName
	P-CSCF fully qualified domain name (FQDN)
	charstring
	"pcscf.3gpp.org"
	

	px_P_CSCF_DomainName_2
	Additional P-CSCF FQDN (Full Qualified Domain Name) for special tests
	charstring
	"pcscf2.3gpp.org"
	

	px_P_CSCF_DomainName_3
	 Additional P-CSCF FQDN (Full Qualified Domain Name) for special tests
	charstring
	"pcscf3.3gpp.org"
	

	px_P_CSCF_IPAddr
	IP address of P-CSCF

(in v4 or v6 format)
	IPAddr
	"10.122.11.33"
	

	px_P_CSCF_IPAddr_2
	Additional P-CSCF IPaddress for special tests

(in v4 or v6 format)
	IPAddr
	"10.122.11.34"
	

	px_P_CSCF_IPAddr_3
	 Additional P-CSCF IPaddress for special tests

(in v4 or v6 format)
	IPAddr
	"10.122.11.35"
	

	px_Pcscf
	P-CSCF fully qualified domain name that resolves to the IP address of SS
	charstring
	"pcscf.3gpp.org"
	

	px_PeerUE_IPAddr
	IP address of peer UE

(in v4 or v6 format)
	IPAddr
	"10.122.11.55
	

	px_Port_pc
	Protected Client port at the SS (simulated P-CSCF)
	integer
	5061
	

	px_Port_ps
	Protected Server port at the SS (simulated P-CSCF)
	integer
	5062
	

	px_Port_ps_NoSec
	Unprotected Server port at the SS (simulated P-CSCF)
	integer
	5060
	

	px_Private_UserId
	Private User Identity when using ISIM or private user identity derived from px_IMSI when using USIM or SIM
	charstring
	"privateuser@3gpp.org"
	

	px_Public_UserId
	Public User Identity when using ISIM or public user identity derived from px_IMSI when using USIM or SIM
	charstring
	"sip:localuser@3gpp.org"
	

	px_RANTech
	RAN Technology
	RANTech
	UTRAN_FDD
	enumerated type: GERAN, UTRAN_FDD or UTRAN_TDD

	px_RegisterExpiration
	Value (in seconds) of the “expires” parameter in the Contact header
	charstring
	"600"
	

	px_RSeqNumFor183
	Value in the RSeq header in 183 Session in Progress (value between 1 and 2**32 – 1)
	integer
	1
	

	px_Scscf
	S-CSCF fully qualified domain name that does not resolve to the IP address of SS
	charstring
	"scscf@3gpp.org"
	

	px_SS_SipUri
	SIP URI with IP Address or FQDN of SS (simulated P-CSCF)
	charstring
	"sip:pcscf.3gpp.org"
	

	Px_TempGRUUForUE
	Temporary GRUU for UE
	charstring
	"sip:tgruu.7hs==jd7vnzga5w7fajsc7-ajd6fabz0f8g5@"
	

	px_ToTagRegister
	Value of the tag in the To header
	charstring
	"abc-ToTag"
	

	px_ToTagSubscribeDialog
	Value of the tag in the To header related to Subscribe
	charstring
	"abc-SubscribeToTag"
	

	Px_UEInstanceId
	UE Instance Identity
	charstring
	"<urn:uuid:00000000-0000-1000-8000-000A95A0E128>"
	

	px_UE_IPAddr
	IP address assigned to UE

(in v4 or v6 format)
	IPAddr
	"10.122.11.145"
	

	px_UE_SipUri
	SIP URI with IP Address or FQDN of UE
	
	“sip: 10.122.11.145”
	

	px_UeWithSIM
	UE has a SIM inserted
	boolean
	false
	

	px_TestAutomation
	If set, MMI commands are sent to the MMI port instead to a pop-up window
	boolean
	false
	

B.1.1
SDP parameters for MT call test case

This clause contains parameters to describe one to three media that the SS will propose to the UE in the INVITE Request. This information shall be compatible with the UE's capabilities.

Table B.2: SDP parameters for MT call

	Parameter name
	Description
	Type
	Default value
	Supported value

	px_NumberOfMedia
	Number of media description
	integer
	1
	1, 2, 3

	For each media description, the following parameters shall be supplied:

	px_Media
	Media type
	charstring
	“audio”
	audio, video, text, application, message

	px_MediaPort
	Transport port to which the media stream is sent
	integer
	49230
	Integer within the range 49152 - 65535

	px_Proto
	Transport protocol
	charstring
	“RTP/AVP”
	UDP, RTP/AVP, RTP/SAVP, TCP, RTP/AVPF, TCP/TLS

	px_FmtNumber
	Number of Media format description
	integer
	3
	

	px_FmtValues
	Value of each media format description (in a comma separated list)
	charstring
	“96, 97, 98”
	

	px_Bandwidth
	Bandwidth value for b=AS (only if
RTP/RTCP is used)
	integer
	75
	

	px_RS_Bandwidth
	Bandwidth value for b=RS (only if
RTP/RTCP is used)
	integer
	75
	

	px_RR_Bandwidth
	Bandwidth value for b=RR (only if
RTP/RTCP is used)
	integer
	75
	

	px_AttribNumber
	Number of attribute ("a=") lines (excluding 'curr' and 'des' lines)
	integer
	4
	

	px_AttribValues
	Value of each of the attribute lines, excluding 'curr' and 'des' lines (in a comma separated list).
	charstring
	“rtpmap:96 L8/8000, rtpmap:97 L16/8000, rtpmap:98 L16/11025/2, maxptime:80”
	

	px_LocalDir
	Direction tag for desired local resource
	charstring
	“sendrecv”
	sendrecv, send, recv

	px_RemoteDir
	Direction tag for desired remote resource
	charstring
	“sendrecv”
	sendrecv, send, recv

B.2
MMI questions

Table B.3 requests additional information needed for the execution of the MMI commands used in the ATS.

Table B.3: MMI questions

	Required information for MMI question

	Please REGISTER IPv4

	Please REGISTER IPv6

	Please make a Call

	Please release the Call

	Please switch off the UE

	Please switch on the UE

	Please configure UE to initiate a Dedicated PDP Context

	Please configure UE to initiate P-CSCF Discovery via PCO

	Please configure UE to initiate P-CSCF Discovery via DHCP

	Please de-REGISTER

	Please initiate emergency call

Annex C (informative):
Additional information to IXIT

Notwithstanding the provisions of the copyright related to the text of the present document, The Organizational Partners of 3GPP grant that users of the present document may freely reproduce the IXIT proforma in this annex so that it can be used for its intended purposes and may further publish the completed IXIT.
Additional information may be provided when completing the IXIT questions listed in annex A.

C.1
Identification Summary

Table C.1 is completed by the test laboratory. The item "Contract References" is optional.

Table C.1: Identification Summary

	IXIT Reference Number
	

	Test Laboratory Name
	

	Date of Issue
	

	Issued to (name of client)
	

	Contract References
	

C.2
Abstract Test Suite Summary

In table C.2 the test laboratory provides the version number of the protocol specification and the version number of ATS which are used in the conformance testing.

Table C.2: ATS Summary

	Protocol Specification
	3GPP TS 24.229

	Version of Protocol Specification
	

	Test Specification in prose
	3GPP TS 34.229-1

	Version of TSS & TP Specification
	

	ATS Specification
	3GPP TS 34.229-3

	Version of ATS Specification
	

	Abstract Test Method
	Distributed Test Method

C.3
Test Laboratory

C.3.1
Test Laboratory Identification

The test laboratory provides the following information.

Table C.3: Test Laboratory Identification

	Name of Test Laboratory
	

	Postal Address
	

	Office address
	

	e-mail address
	

	Telephone Number
	

	FAX Number
	

C.3.2
Accreditation status of the test service

The test laboratory provides the following information.

Table C.4: Accreditation status of the test service

	Accreditation status
	

	Accreditation Reference
	

C.3.3
Manager of Test Laboratory

The test laboratory provides the information about the manager of test laboratory in table C.5.

Table C.5: Manager of Test Laboratory

	Name of Manager of Test Laboratory
	

	e-mail address
	

	Telephone Number
	

	FAX Number
	

	E-mail Address
	

C.3.4
Contact person of Test Laboratory

The test laboratory provides the information about the contact person of test laboratory in table C.6.

Table C.6: Contact person of Test Laboratory

	Name of Contact of Test Laboratory
	

	e-mail address
	

	Telephone Number
	

	FAX Number
	

	E-mail Address
	

C.3.5
Means of Testing

In table C.7, the test laboratory provides a statement of conformance of the Means Of Testing (MOT) to the reference standardized ATS, and identifies all restrictions for the test execution required by the MOT beyond those stated in the reference standardized ATS.

Table C.7: Means of Testing

	Means of Testing

	

C.3.6
Instructions for Completion

In table C.8, the test laboratory provides any specific instructions necessary for completion and return of the proforma from the client.

Table C.8: Instruction for Completion

	Instructions for Completion

	

C.4
Client

C.4.1
Client Identification

The client provides the identification in table C.9.

Table C.9: Client Identification

	Name of Client
	

	Postal Address
	

	Office Address
	

	Telephone Number
	

	FAX Number
	

C.4.2
Client Test Manager

In table C.10 the client provides information about the test manager.

Table C.10: Client Test Manager

	Name of Client Test Manager
	

	Telephone Number
	

	FAX Number
	

	E-mail Address
	

C.4.3
Client Contact person

In table C.11 the client provides information about the test contact person.

Table C.11: Client Contact person

	Name of Client contact person
	

	Telephone Number
	

	FAX Number
	

	E-mail Address
	

C.4.4
Test Facilities Required

In table C.12, the client records the particular facilities required for testing, if a range of facilities is provided by the test laboratory.

Table C.12: Test Facilities Required

	Test Facilities Required

	

C.5
System Under Test

C.5.1
SUT Information

The client provides information about the SUT in table C.13.

Table C.13: SUT Information

	System Name
	

	System Version
	

	SCS Reference
	

	Machine Configuration
	

	Operating System Identification
	

	IUT Identification
	

	ICS Reference for the IUT
	

C.5.2
Limitations of the SUT

In table C.14, the client provides information explaining if any of the abstract tests cannot be executed.

Table C.14: Limitation of the SUT

	Limitations of the SUT

	

C.5.3
Environmental Conditions

In table C.15 the client provides information about any tighter environmental conditions for the correct operation of the SUT.

Table C.15: Environmental Conditions

	Environmental Conditions

	

C.6
Ancillary Protocols

This clause is completed by the client in conjunction with the test laboratory.

In the following tables, the client identifies relevant information concerning each ancillary protocol in the SUT other than the IUT itself. One table for one ancillary protocol.

Based on the MOT the test laboratory should create question proforma for each ancillary protocol in the blank space following each table. The information required is dependent on the MOT and the SUT, and covers all the addressing, parameter values, timer values and facilities (relevant to ENs) as defined by the ICS for the ancillary protocol.

C.6.1
Ancillary Protocols 1

Table C.16: Ancillary Protocol 1

	Protocol Name
	

	Version number
	

	ICS Reference (optional)
	

	IXIT Reference (optional)
	

	PCTR Reference (optional)
	

C.6.2
Ancillary Protocols 2

Table C.17: Ancillary Protocol 2

	Protocol Name
	

	Version number
	

	ICS Reference (optional)
	

	IXIT Reference (optional)
	

	PCTR Reference (optional)
	

Annex D (informative):
PCTR Proforma

Notwithstanding the provisions of the copyright related to the text of the present document, The Organizational Partners of 3GPP grant that users of the present document may freely reproduce the PCTR proforma in this annex so that it can be used for its intended purposes and may further publish the completed PCTR.

PROTOCOL

Conformance Test Report

(PCTR)

Universal Mobile Telecommunication System, UMTS,

User Equipment-Network Access
Layer 3 Signalling Functions

	Test Candidate
	

	Name
:
	SUT name

	Model
:
	model

	H/W version
:
	hw

	S/W version
:
	sw

	Serial No.
:
	serienr

	
Client
	

	Name
:
	

	Street / No.
:
	

	Postal Code / City:
	

	Country
:
	

	This Test Report shall not be reproduced except in full without the written permission of TEST LAB REFERENCE, and shall not be quoted out of context.

Annex E (informative):
TTCN3 style guide for 3GPP IMS ATS
E.1
General rules for 3GPP ATSs

A detailed guide on 3GPP ATS style can be found in TS 34.123-3 [4], Annex E. Although the guidelines in TS 34.123-3 [4] were written for TTCN-2 ATSs, most of them are applicable to ATSs written in TTCN-3 and were considered when designing the IMS ATS in TTCN-3 whenever it was possible.

E.2
3GPP IMS ATS implementation guidelines

The content of this clause is specific for IMS ATS written in TTCN-3.

E.2.1
Grouping of similar objects

In order to aid readability and to add logical structure to the test suite, definitions shall be collected in named groups by using the TTCN-3 keyword 'group'.

EXAMPLE:
Header field types are grouped under the group name HeaderFieldTypes.

group HeaderFieldTypes
{

type record Accept {

FieldName fieldName(ACCEPT_E),

AcceptBody_List acceptArgs optional

}

type record AcceptEncoding {

FieldName fieldName(ACCEPT_ENCODING_E),

ContentCoding_List contentCoding optional

}
….
}

E.2.2
'Visible' test case description

A short description of the test cases shall be made available for System Simulator manufacturers use. This shall be done by using the keywords 'with' and 'extension' at the end of the test case.

Please Note: This field is for information purposes in the SS only

EXAMPLE:
Test case description for test case 8.1.

testcase TC_8_1() runs on IMSComponent system SystemInterfaces
 {

TGuard.start;

ts_InitPorts ();

v_Default := activate(ts_DefaultDef());

ts_ConfigureIPAddr (px_SS_IPAddr);

ts_Preamble(px_BearerInfo, px_SS_IPAddr, px_UE_IPAddr);

ts_Register_Authentication();

ts_Register_SubscribeNotify ();

ts_Postamble(px_BearerInfo);
 }

with {extension " Description: Test to verify that the UE can correctly register to IMS services when equipped with UICC that contains either both ISIM and USIM applications or only USIM application but not ISIM. The process consists of sending initial registration to S-SCSCF via the P-CSCF discovered, authenticating the user and finally subscribing the registration event package for the registered default public user identity."}// end testcase TC_8_1
E.2.3
Naming conventions

The following prefixes shall be used when creating new objects in TTCN-3.

Table E.1: Prefixes used for TTCN-3 objects

	TTCN object
	Case of first character
	Prefix
	Comment

	TTCN Module
	Upper
	IMS_CC
	

	External function
	Upper
	o_
	Note 1

	Function parameters
	Upper
	p_
	

	Functions
	Upper
	ts_
	

	Test Case Selection Expression
	
	
	

	Constant
	Upper
	<NAME IN CAPITALS>
	

	Variable
	Upper
	v_
	Note 2

	General Variable
	Upper
	gv_
	Note 3

	Port Types
	Upper
	-
	

	Port Names
	Lower
	-
	

	Timer
	Upper
	T
	

	General templates
	Upper
	t_
	

	Templates for Config ASPs
	Upper
	c_
	

	Templates for Header types
	Upper
	h[r|s]_
	Note 4

	Templates for Method types
	Upper
	m[b|r|s]
	Note 4

	Templates for XML types
	Upper
	x[r|s]_
	Note 4

	Templates for SDP types
	Upper
	d[b|r|s]_
	

	Test Suite Parameter (PICS)
	Upper
	pc_
	

	Test Suite Parameter (PIXIT)
	Upper
	px_
	

	Test Case
	Upper
	TC_
	Note 5

	NOTE 1:
External functions are the equivalent to test suite operations in TTCN-2.

NOTE 2:
These are local variables, only visible in the functions where they are defined.

NOTE 3:
General variables are those defined within the TTCN-3 components. They are visible to all the functions run in the component.

NOTE 4:
Prefix for templates can be followed by the following indicators:

- 'b' shall be included in base templates. Normally, templates without the 'b' indicator are modified
templates from a parent (or base) template.

- 'r' shall be present to indicate that the object is only used in receive statements (i.e. the template may
contain wildcards).

- 's' shall be present to indicate that the object is only used in send statements.

NOTE 5:
Test case names will correspond to the clause in the prose that specifies the test purpose. E.g. TC_8_1. An additional digit may be specified if more than one test case is used to achieve the test purpose. If an additional digit is required, this probably means that the test prose are not well defined.

Annex F (informative):
BNF Message Definitions

This is a list of all the BNF definitions required for the ATS, compiled from all necessary RFCs.

F.1
RFC 3261

25 Augmented BNF for the SIP Protocol

 All of the mechanisms specified in this document are described in

 both prose and an augmented Backus-Naur Form (BNF) defined in RFC

 2234 [10]. Section 6.1 of RFC 2234 defines a set of core rules that

 are used by this specification, and not repeated here. Implementers

 need to be familiar with the notation and content of RFC 2234 in

 order to understand this specification. Certain basic rules are in

 uppercase, such as SP, LWS, HTAB, CRLF, DIGIT, ALPHA, etc. Angle

 brackets are used within definitions to clarify the use of rule

 names.

 The use of square brackets is redundant syntactically. It is used as

 a semantic hint that the specific parameter is optional to use.

25.1 Basic Rules

 The following rules are used throughout this specification to

 describe basic parsing constructs. The US-ASCII coded character set

 is defined by ANSI X3.4-1986.

 alphanum = ALPHA / DIGIT

 Several rules are incorporated from RFC 2396 [5] but are updated to

 make them compliant with RFC 2234 [10]. These include:

 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"

 / "$" / ","

 unreserved = alphanum / mark

 mark = "-" / "_" / "." / "!" / "~" / "*" / "'"

 / "(" / ")"

 escaped = "%" HEXDIG HEXDIG

 SIP header field values can be folded onto multiple lines if the

 continuation line begins with a space or horizontal tab. All linear

 white space, including folding, has the same semantics as SP. A

 recipient MAY replace any linear white space with a single SP before

 interpreting the field value or forwarding the message downstream.

 This is intended to behave exactly as HTTP/1.1 as described in RFC

 2616 [8]. The SWS construct is used when linear white space is

 optional, generally between tokens and separators.

 LWS = [*WSP CRLF] 1*WSP ; linear whitespace

 SWS = [LWS] ; sep whitespace

 To separate the header name from the rest of value, a colon is used,

 which, by the above rule, allows whitespace before, but no line

 break, and whitespace after, including a linebreak. The HCOLON

 defines this construct.

 HCOLON = *(SP / HTAB) ":" SWS

 The TEXT-UTF8 rule is only used for descriptive field contents and

 values that are not intended to be interpreted by the message parser.

 Words of *TEXT-UTF8 contain characters from the UTF-8 charset (RFC

 2279 [7]). The TEXT-UTF8-TRIM rule is used for descriptive field

 contents that are n t quoted strings, where leading and trailing LWS

 is not meaningful. In this regard, SIP differs from HTTP, which uses

 the ISO 8859-1 character set.

 TEXT-UTF8-TRIM = 1*TEXT-UTF8char *(*LWS TEXT-UTF8char)

 TEXT-UTF8char = %x21-7E / UTF8-NONASCII

 UTF8-NONASCII = %xC0-DF 1UTF8-CONT

 / %xE0-EF 2UTF8-CONT

 / %xF0-F7 3UTF8-CONT

 / %xF8-Fb 4UTF8-CONT

 / %xFC-FD 5UTF8-CONT

 UTF8-CONT = %x80-BF

 A CRLF is allowed in the definition of TEXT-UTF8-TRIM only as part of

 a header field continuation. It is expected that the folding LWS

 will be replaced with a single SP before interpretation of the TEXT-

 UTF8-TRIM value.

 Hexadecimal numeric characters are used in several protocol elements.

 Some elements (authentication) force hex alphas to be lower case.

 LHEX = DIGIT / %x61-66 ;lowercase a-f

 Many SIP header field values consist of words separated by LWS or

 special characters. Unless otherwise stated, tokens are case-

 insensitive. These special characters MUST be in a quoted string to

 be used within a parameter value. The word construct is used in

 Call-ID to allow most separators to be used.

 token = 1*(alphanum / "-" / "." / "!" / "%" / "*"

 / "_" / "+" / "`" / "'" / "~")

 separators = "(" / ")" / "<" / ">" / "@" /

 "," / ";" / ":" / "\" / DQUOTE /

 "/" / "[" / "]" / "?" / "=" /

 "{" / "}" / SP / HTAB

 word = 1*(alphanum / "-" / "." / "!" / "%" / "*" /

 "_" / "+" / "`" / "'" / "~" /

 "(" / ")" / "<" / ">" /

 ":" / "\" / DQUOTE /

 "/" / "[" / "]" / "?" /

 "{" / "}")

 When tokens are used or separators are used between elements,

 whitespace is often allowed before or after these characters:

 STAR = SWS "*" SWS ; asterisk

 SLASH = SWS "/" SWS ; slash

 EQUAL = SWS "=" SWS ; equal

 LPAREN = SWS "(" SWS ; left parenthesis

 RPAREN = SWS ")" SWS ; right parenthesis

 RAQUOT = ">" SWS ; right angle quote

 LAQUOT = SWS "<"; left angle quote

 COMMA = SWS "," SWS ; comma

 SEMI = SWS ";" SWS ; semicolon

 COLON = SWS ":" SWS ; colon

 LDQUOT = SWS DQUOTE; open double quotation mark

 RDQUOT = DQUOTE SWS ; close double quotation mark

 Comments can be included in some SIP header fields by surrounding the

 comment text with parentheses. Comments are only allowed in fields

 containing "comment" as part of their field value definition. In all

 other fields, parentheses are considered part of the field value.

 comment = LPAREN *(ctext / quoted-pair / comment) RPAREN

 ctext = %x21-27 / %x2A-5B / %x5D-7E / UTF8-NONASCII

 / LWS

 ctext includes all chars except left and right parens and backslash.

 A string of text is parsed as a single word if it is quoted using

 double-quote marks. In quoted strings, quotation marks (") and

 backslashes (\) need to be escaped.

 quoted-string = SWS DQUOTE *(qdtext / quoted-pair) DQUOTE

 qdtext = LWS / %x21 / %x23-5B / %x5D-7E

 / UTF8-NONASCII

 The backslash character ("\") MAY be used as a single-character

 quoting mechanism only within quoted-string and comment constructs.

 Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this

 mechanism to avoid conflict with line folding and header separation.

quoted-pair = "\" (%x00-09 / %x0B-0C

 / %x0E-7F)

SIP-URI = "sip:" [userinfo] hostport

 uri-parameters [headers]

SIPS-URI = "sips:" [userinfo] hostport

 uri-parameters [headers]

userinfo = (user / telephone-subscriber) [":" password] "@"

user = 1*(unreserved / escaped / user-unreserved)

user-unreserved = "&" / "=" / "+" / "$" / "," / ";" / "?" / "/"

password = *(unreserved / escaped /

 "&" / "=" / "+" / "$" / ",")

hostport = host [":" port]

host = hostname / IPv4address / IPv6reference

hostname = *(domainlabel ".") toplabel ["."]

domainlabel = alphanum

 / alphanum *(alphanum / "-") alphanum

toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum

IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT

IPv6reference = "[" IPv6address "]"

IPv6address = hexpart [":" IPv4address]

hexpart = hexseq / hexseq "::" [hexseq] / "::" [hexseq]

hexseq = hex4 *(":" hex4)

hex4 = 1*4HEXDIG

port = 1*DIGIT

 The BNF for telephone-subscriber can be found in RFC 2806 [9]. Note,

 however, that any characters allowed there that are not allowed in

 the user part of the SIP URI MUST be escaped.

uri-parameters = *(";" uri-parameter)

uri-parameter = transport-param / user-param / method-param

 / ttl-param / maddr-param / lr-param / other-param

transport-param = "transport="

 ("udp" / "tcp" / "sctp" / "tls"

 / other-transport)

other-transport = token

user-param = "user=" ("phone" / "ip" / other-user)

other-user = token

method-param = "method=" Method

ttl-param = "ttl=" ttl

maddr-param = "maddr=" host

lr-param = "lr"

other-param = pname ["=" pvalue]

pname = 1*paramchar

pvalue = 1*paramchar

paramchar = param-unreserved / unreserved / escaped

param-unreserved = "[" / "]" / "/" / ":" / "&" / "+" / "$"

headers = "?" header *("&" header)

header = hname "=" hvalue

hname = 1*(hnv-unreserved / unreserved / escaped)

hvalue = *(hnv-unreserved / unreserved / escaped)

hnv-unreserved = "[" / "]" / "/" / "?" / ":" / "+" / "$"

SIP-message = Request / Response

Request = Request-Line

 *(message-header)

 CRLF

 [message-body]

Request-Line = Method SP Request-URI SP SIP-Version CRLF

Request-URI = SIP-URI / SIPS-URI / absoluteURI

absoluteURI = scheme ":" (hier-part / opaque-part)

hier-part = (net-path / abs-path) ["?" query]

net-path = "//" authority [abs-path]

abs-path = "/" path-segments

opaque-part = uric-no-slash *uric

uric = reserved / unreserved / escaped

uric-no-slash = unreserved / escaped / ";" / "?" / ":" / "@"

 / "&" / "=" / "+" / "$" / ","

path-segments = segment *("/" segment)

segment = *pchar *(";" param)

param = *pchar

pchar = unreserved / escaped /

 ":" / "@" / "&" / "=" / "+" / "$" / ","

scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")

authority = srvr / reg-name

srvr = [[userinfo "@"] hostport]

reg-name = 1*(unreserved / escaped / "$" / ","

 / ";" / ":" / "@" / "&" / "=" / "+")

query = *uric

SIP-Version = "SIP" "/" 1*DIGIT "." 1*DIGIT

message-header = (Accept

 / Accept-Encoding

 / Accept-Language

 / Alert-Info

 / Allow

 / Authentication-Info

 / Authorization

 / Call-ID

 / Call-Info

 / Contact

 / Content-Disposition

 / Content-Encoding

 / Content-Language

 / Content-Length

 / Content-Type

 / CSeq

 / Date

 / Error-Info

 / Expires

 / From

 / In-Reply-To

 / Max-Forwards

 / MIME-Version

 / Min-Expires

 / Organization

 / Priority

 / Proxy-Authenticate

 / Proxy-Authorization

 / Proxy-Require

 / Record-Route

 / Reply-To

 / Require

 / Retry-After

 / Route

 / Server

 / Subject

 / Supported

 / Timestamp

 / To

 / Unsupported

 / User-Agent

 / Via

 / Warning

 / WWW-Authenticate

 / extension-header) CRLF

INVITEm = %x49.4E.56.49.54.45 ; INVITE in caps

ACKm = %x41.43.4B ; ACK in caps

OPTIONSm = %x4F.50.54.49.4F.4E.53 ; OPTIONS in caps

BYEm = %x42.59.45 ; BYE in caps

CANCELm = %x43.41.4E.43.45.4C ; CANCEL in caps

REGISTERm = %x52.45.47.49.53.54.45.52 ; REGISTER in caps

Method = INVITEm / ACKm / OPTIONSm / BYEm

 / CANCELm / REGISTERm

 / extension-method

extension-method = token

Response = Status-Line

 *(message-header)

 CRLF

 [message-body]

Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF

Status-Code = Informational

 / Redirection

 / Success

 / Client-Error

 / Server-Error

 / Global-Failure

 / extension-code

extension-code = 3DIGIT

Reason-Phrase = *(reserved / unreserved / escaped

 / UTF8-NONASCII / UTF8-CONT / SP / HTAB)

Informational = "100" ; Trying

 / "180" ; Ringing

 / "181" ; Call Is Being Forwarded

 / "182" ; Queued

 / "183" ; Session Progress

Success = "200" ; OK

Redirection = "300" ; Multiple Choices

 / "301" ; Moved Permanently

 / "302" ; Moved Temporarily

 / "305" ; Use Proxy

 / "380" ; Alternative Service

Client-Error = "400" ; Bad Request

 / "401" ; Unauthorized

 / "402" ; Payment Required

 / "403" ; Forbidden

 / "404" ; Not Found

 / "405" ; Method Not Allowed

 / "406" ; Not Acceptable

 / "407" ; Proxy Authentication Required

 / "408" ; Request Timeout

 / "410" ; Gone

 / "413" ; Request Entity Too Large

 / "414" ; Request-URI Too Large

 / "415" ; Unsupported Media Type

 / "416" ; Unsupported URI Scheme

 / "420" ; Bad Extension

 / "421" ; Extension Required

 / "423" ; Interval Too Brief

 / "480" ; Temporarily not available

 / "481" ; Call Leg/Transaction Does Not Exist

 / "482" ; Loop Detected

 / "483" ; Too Many Hops

 / "484" ; Address Incomplete

 / "485" ; Ambiguous

 / "486" ; Busy Here

 / "487" ; Request Terminated

 / "488" ; Not Acceptable Here

 / "491" ; Request Pending

 / "493" ; Undecipherable

Server-Error = "500" ; Internal Server Error

 / "501" ; Not Implemented

 / "502" ; Bad Gateway

 / "503" ; Service Unavailable

 / "504" ; Server Time-out

 / "505" ; SIP Version not supported

 / "513" ; Message Too Large

Global-Failure = "600" ; Busy Everywhere

 / "603" ; Decline

 / "604" ; Does not exist anywhere

 / "606" ; Not Acceptable

Accept = "Accept" HCOLON

 [accept-range *(COMMA accept-range)]

accept-range = media-range *(SEMI accept-param)

media-range = ("*/*"

 / (m-type SLASH "*")

 / (m-type SLASH m-subtype)

) *(SEMI m-parameter)

accept-param = ("q" EQUAL qvalue) / generic-param

qvalue = ("0" ["." 0*3DIGIT])

 / ("1" ["." 0*3("0")])

generic-param = token [EQUAL gen-value]

gen-value = token / host / quoted-string

Accept-Encoding = "Accept-Encoding" HCOLON

 [encoding *(COMMA encoding)]

encoding = codings *(SEMI accept-param)

codings = content-coding / "*"

content-coding = token

Accept-Language = "Accept-Language" HCOLON

 [language *(COMMA language)]

language = language-range *(SEMI accept-param)

language-range = ((1*8ALPHA *("-" 1*8ALPHA)) / "*")

Alert-Info = "Alert-Info" HCOLON alert-param *(COMMA alert-param)

alert-param = LAQUOT absoluteURI RAQUOT *(SEMI generic-param)

Allow = "Allow" HCOLON [Method *(COMMA Method)]

Authorization = "Authorization" HCOLON credentials

credentials = ("Digest" LWS digest-response)

 / other-response

digest-response = dig-resp *(COMMA dig-resp)

dig-resp = username / realm / nonce / digest-uri

 / dresponse / algorithm / cnonce

 / opaque / message-qop

 / nonce-count / auth-param

username = "username" EQUAL username-value

username-value = quoted-string

digest-uri = "uri" EQUAL LDQUOT digest-uri-value RDQUOT

digest-uri-value = rquest-uri ; Equal to request-uri as specified

 by HTTP/1.1

message-qop = "qop" EQUAL qop-value

cnonce = "cnonce" EQUAL cnonce-value

cnonce-value = nonce-value

nonce-count = "nc" EQUAL nc-value

nc-value = 8LHEX

dresponse = "response" EQUAL request-digest

request-digest = LDQUOT 32LHEX RDQUOT

auth-param = auth-param-name EQUAL

 (token / quoted-string)

auth-param-name = token

other-response = auth-scheme LWS auth-param

 *(COMMA auth-param)

auth-scheme = token

Authentication-Info = "Authentication-Info" HCOLON ainfo

 *(COMMA ainfo)

ainfo = nextnonce / message-qop

 / response-auth / cnonce

 / nonce-count

nextnonce = "nextnonce" EQUAL nonce-value

response-auth = "rspauth" EQUAL response-digest

response-digest = LDQUOT *LHEX RDQUOT

Call-ID = ("Call-ID" / "i") HCOLON callid

callid = word ["@" word]

Call-Info = "Call-Info" HCOLON info *(COMMA info)

info = LAQUOT absoluteURI RAQUOT *(SEMI info-param)

info-param = ("purpose" EQUAL ("icon" / "info"

 / "card" / token)) / generic-param

Contact = ("Contact" / "m") HCOLON

 (STAR / (contact-param *(COMMA contact-param)))

contact-param = (name-addr / addr-spec) *(SEMI contact-params)

name-addr = [display-name] LAQUOT addr-spec RAQUOT

addr-spec = SIP-URI / SIPS-URI / absoluteURI

display-name = *(token LWS)/ quoted-string

contact-params = c-p-q / c-p-expires / feature-param
(taken from RFC 3840) / contact-extension

 c-p-q = "q" EQUAL qvalue

c-p-expires = "expires" EQUAL delta-seconds

contact-extension = generic-param

delta-seconds = 1*DIGIT

Content-Disposition = "Content-Disposition" HCOLON

 disp-type *(SEMI disp-param)

disp-type = "render" / "session" / "icon" / "alert"

 / disp-extension-token

disp-param = handling-param / generic-param

handling-param = "handling" EQUAL

 ("optional" / "required"

 / other-handling)

other-handling = token

disp-extension-token = token

Content-Encoding = ("Content-Encoding" / "e") HCOLON

 content-coding *(COMMA content-coding)

Content-Language = "Content-Language" HCOLON

 language-tag *(COMMA language-tag)

language-tag = primary-tag *("-" subtag)

primary-tag = 1*8ALPHA

subtag = 1*8ALPHA

Content-Length = ("Content-Length" / "l") HCOLON 1*DIGIT

Content-Type = ("Content-Type" / "c") HCOLON media-type

media-type = m-type SLASH m-subtype *(SEMI m-parameter)

m-type = discrete-type / composite-type

discrete-type = "text" / "image" / "audio" / "video"

 / "application" / extension-token

composite-type = "message" / "multipart" / extension-token

extension-token = ietf-token / x-token

ietf-token = token

x-token = "x-" token

m-subtype = extension-token / iana-token

iana-token = token

m-parameter = m-attribute EQUAL m-value

m-attribute = token

m-value = token / quoted-string

CSeq = "CSeq" HCOLON 1*DIGIT LWS Method

Date = "Date" HCOLON SIP-date

SIP-date = rfc1123-date

rfc1123-date = wkday "," SP date1 SP time SP "GMT"

date1 = 2DIGIT SP month SP 4DIGIT

 ; day month year (e.g. 02 Jun 1982)

time = 2DIGIT ":" 2DIGIT ":" 2DIGIT

 ; 00:00:00 - 23:59:59

wkday = "Mon" / "Tue" / "Wed"

 / "Thu" / "Fri" / "Sat" / "Sun"

month = "Jan" / "Feb" / "Mar" / "Apr"

 / "May" / "Jun" / "Jul" / "Aug"

 / "Sep" / "Oct" / "Nov" / "Dec"

Error-Info = "Error-Info" HCOLON error-uri *(COMMA error-uri)

error-uri = LAQUOT absoluteURI RAQUOT *(SEMI generic-param)

Expires = "Expires" HCOLON delta-seconds

From = ("From" / "f") HCOLON from-spec

from-spec = (name-addr / addr-spec)

 *(SEMI from-param)

from-param = tag-param / generic-param

tag-param = "tag" EQUAL token

In-Reply-To = "In-Reply-To" HCOLON callid *(COMMA callid)

Max-Forwards = "Max-Forwards" HCOLON 1*DIGIT

MIME-Version = "MIME-Version" HCOLON 1*DIGIT "." 1*DIGIT

Min-Expires = "Min-Expires" HCOLON delta-seconds

Organization = "Organization" HCOLON [TEXT-UTF8-TRIM]

Priority = "Priority" HCOLON priority-value

priority-value = "emergency" / "urgent" / "normal"

 / "non-urgent" / other-priority

other-priority = token

Proxy-Authenticate = "Proxy-Authenticate" HCOLON challenge

challenge = ("Digest" LWS digest-cln *(COMMA digest-cln))

 / other-challenge

other-challenge = auth-scheme LWS auth-param

 *(COMMA auth-param)

digest-cln = realm / domain / nonce

 / opaque / stale / algorithm

 / qop-options / auth-param

realm = "realm" EQUAL realm-value

realm-value = quoted-string

domain = "domain" EQUAL LDQUOT URI

 *(1*SP URI) RDQUOT

URI = absoluteURI / abs-path

nonce = "nonce" EQUAL nonce-value

nonce-value = quoted-string

opaque = "opaque" EQUAL quoted-string

stale = "stale" EQUAL ("true" / "false")

algorithm = "algorithm" EQUAL ("MD5" / "MD5-sess"

 / token)

qop-options = "qop" EQUAL LDQUOT qop-value

 *("," qop-value) RDQUOT

qop-value = "auth" / "auth-int" / token

Proxy-Authorization = "Proxy-Authorization" HCOLON credentials

Proxy-Require = "Proxy-Require" HCOLON option-tag

 *(COMMA option-tag)

option-tag = token

Record-Route = "Record-Route" HCOLON rec-route *(COMMA rec-route)

rec-route = name-addr *(SEMI rr-param)

rr-param = generic-param

Reply-To = "Reply-To" HCOLON rplyto-spec

rplyto-spec = (name-addr / addr-spec)

 *(SEMI rplyto-param)

rplyto-param = generic-param

Require = "Require" HCOLON option-tag *(COMMA option-tag)

Retry-After = "Retry-After" HCOLON delta-seconds

 [comment] *(SEMI retry-param)

retry-param = ("duration" EQUAL delta-seconds)

 / generic-param

Route = "Route" HCOLON route-param *(COMMA route-param)

route-param = name-addr *(SEMI rr-param)

Server = "Server" HCOLON server-val *(LWS server-val)

server-val = product / comment

product = token [SLASH product-version]

product-version = token

Subject = ("Subject" / "s") HCOLON [TEXT-UTF8-TRIM]

Supported = ("Supported" / "k") HCOLON

 [option-tag *(COMMA option-tag)]

Timestamp = "Timestamp" HCOLON 1*(DIGIT)

 ["." *(DIGIT)] [LWS delay]

delay = *(DIGIT) ["." *(DIGIT)]

To = ("To" / "t") HCOLON (name-addr

 / addr-spec) *(SEMI to-param)

to-param = tag-param / generic-param

Unsupported = "Unsupported" HCOLON option-tag *(COMMA option-tag)

User-Agent = "User-Agent" HCOLON server-val *(LWS server-val)

Via = ("Via" / "v") HCOLON via-parm *(COMMA via-parm)

via-parm = sent-protocol LWS sent-by *(SEMI via-params)

via-params = via-ttl / via-maddr

 / via-received / via-branch

 / via-extension

via-ttl = "ttl" EQUAL ttl

via-maddr = "maddr" EQUAL host

via-received = "received" EQUAL (IPv4address / IPv6address)

via-branch = "branch" EQUAL token

via-extension = generic-param

sent-protocol = protocol-name SLASH protocol-version

 SLASH transport

protocol-name = "SIP" / token

protocol-version = token

transport = "UDP" / "TCP" / "TLS" / "SCTP"

 / other-transport

sent-by = host [COLON port]

ttl = 1*3DIGIT ; 0 to 255

Warning = "Warning" HCOLON warning-value *(COMMA warning-value)

warning-value = warn-code SP warn-agent SP warn-text

warn-code = 3DIGIT

warn-agent = hostport / pseudonym

 ; the name or pseudonym of the server adding

 ; the Warning header, for use in debugging

warn-text = quoted-string

pseudonym = token

WWW-Authenticate = "WWW-Authenticate" HCOLON challenge

extension-header = header-name HCOLON header-value

header-name = token

header-value = *(TEXT-UTF8char / UTF8-CONT / LWS)

message-body = *OCTET

Header field where proxy ACK BYE CAN INV OPT REG

 Accept R - o - o m* o

 Accept 2xx - - - o m* o

 Accept 415 - c - c c c

 Accept-Encoding R - o - o o o

 Accept-Encoding 2xx - - - o m* o

 Accept-Encoding 415 - c - c c c

 Accept-Language R - o - o o o

 Accept-Language 2xx - - - o m* o

 Accept-Language 415 - c - c c c

 Alert-Info R ar - - - o - -

 Alert-Info 180 ar - - - o - -

 Allow R - o - o o o

 Allow 2xx - o - m* m* o

 Allow r - o - o o o

 Allow 405 - m - m m m

 Authentication-Info 2xx - o - o o o

 Authorization R o o o o o o

 Call-ID c r m m m m m m

 Call-Info ar - - - o o o

 Contact R o - - m o o

 Contact 1xx - - - o - -

 Contact 2xx - - - m o o

 Contact 3xx d - o - o o o

 Contact 485 - o - o o o

 Content-Disposition o o - o o o

 Content-Encoding o o - o o o

 Content-Language o o - o o o

 Content-Length ar t t t t t t

 Content-Type * * - * * *

 CSeq c r m m m m m m

 Date a o o o o o o

 Error-Info 300-699 a - o o o o o

 Expires - - - o - o

 From c r m m m m m m

 In-Reply-To R - - - o - -

 Max-Forwards R amr m m m m m m

 Min-Expires 423 - - - - - m

 MIME-Version o o - o o o

 Organization ar - - - o o o

 Header field where proxy ACK BYE CAN INV OPT REG

 Priority R ar - - - o - -

 Proxy-Authenticate 407 ar - m - m m m

 Proxy-Authenticate 401 ar - o o o o o

 Proxy-Authorization R dr o o - o o o

 Proxy-Require R ar - o - o o o

 Record-Route R ar o o o o o -

 Record-Route 2xx,18x mr - o o o o -

 Reply-To - - - o - -

 Require ar - c - c c c

 Retry-After 404,413,480,486 - o o o o o

 500,503 - o o o o o

 600,603 - o o o o o

 Route R adr c c c c c c

 Server r - o o o o o

 Subject R - - - o - -

 Supported R - o o m* o o

 Supported 2xx - o o m* m* o

 Timestamp o o o o o o

 To c(1) r m m m m m m

 Unsupported 420 - m - m m m

 User-Agent o o o o o o

 Via R amr m m m m m m

 Via rc dr m m m m m m

 Warning r - o o o o o

 WWW-Authenticate 401 ar - m - m m m

 WWW-Authenticate 407 ar - o - o o o

F.2
RFC 3262

 PRACKm = %x50.52.41.43.4B ; PRACK in caps

 Method = INVITEm / ACKm / OPTIONSm / BYEm

 / CANCELm / REGISTERm / PRACKm

 / extension-method

 RAck = "RAck" HCOLON response-num LWS CSeq-num LWS Method

 response-num = 1*DIGIT

 CSeq-num = 1*DIGIT

 RSeq = "RSeq" HCOLON response-num

 Header field where proxy ACK BYE CAN INV OPT REG PRA

 __

 RAck R - - - - - - m

 RSeq 1xx - - - o - - -

 Header field where PRACK

 Accept R o

 Accept 2xx -

 Accept 415 c

 Accept-Encoding R o

 Accept-Encoding 2xx -

 Accept-Encoding 415 c

 Accept-Language R o

 Accept-Language 2xx -

 Accept-Language 415 c

 Alert-Info R -

 Alert-Info 180 -

 Allow R o

 Allow 2xx o

 Allow r o

 Allow 405 m

 Authentication-Info 2xx o

 Authorization R o

 Call-ID c m

 Call-Info -

 Contact R -

 Contact 1xx -

 Contact 2xx -

 Contact 3xx o

 Contact 485 o

 Content-Disposition o

 Content-Encoding o

 Content-Language o

 Content-Length t

 Content-Type *

 CSeq c m

 Date o

 Error-Info 300-699 o

 Expires -

 From c m

 In-Reply-To R -

 Max-Forwards R m

 Min-Expires 423 -

 MIME-Version o

 Organization -

 Priority R -

 Proxy-Authenticate 407 m

 Proxy-Authenticate 401 o

 Proxy-Authorization R o

 Proxy-Require R o

 Record-Route R o

 Record-Route 2xx,18x o

 Reply-To -

 Require c

 Retry-After 404,413,480,486 o

 500,503 o

 600,603 o

 Route R c

 Server r o

 Subject R -

 Supported R o

 Supported 2xx o

 Timestamp o

 To c m

 Unsupported 420 m

 User-Agent o

 Via c m

 Warning r o

 WWW-Authenticate 401 m

F.3
RFC 3265

6.4. Response Codes

 This document registers two new response codes. These response codes

 are defined by the following information, which is to be added to the

 method and response-code sub-registry under

 http://www.iana.org/assignments/sip-parameters.

 Response Code Number: 202

 Default Reason Phrase: Accepted

 Response Code Number: 489

 Default Reason Phrase: Bad Event

7.1. New Methods

 This document describes two new SIP methods: SUBSCRIBE and

 NOTIFY.

SUBSCRIBE and NOTIFY methods:

 Header Where SUB NOT

 ------ ----- --- ---

 Accept R o o

 Accept 2xx - -

 Accept 415 o o

 Accept-Encoding R o o

 Accept-Encoding 2xx - -

 Accept-Encoding 415 o o

 Accept-Language R o o

 Accept-Language 2xx - -

 Accept-Language 415 o o

 Alert-Info R - -

 Alert-Info 180 - -

 Allow R o o

 Allow 2xx o o

 Allow r o o

 Allow 405 m m

 Authentication-Info 2xx o o

 Authorization R o o

 Call-ID c m m

 Contact R m m

 Contact 1xx o o

 Contact 2xx m o

 Contact 3xx m m

 Contact 485 o o

 Content-Disposition o o

 Content-Encoding o o

 Content-Language o o

 Content-Length t t

 Content-Type * *

 CSeq c m m

 Date o o

 Error-Info 300-699 o o

 Expires o -

 Expires 2xx m -

 From c m m

 In-Reply-To R - -

 Max-Forwards R m m

 Min-Expires 423 m -

 MIME-Version o o

 Organization o -

 Priority R o -

 Proxy-Authenticate 407 m m

 Proxy-Authorization R o o

 Proxy-Require R o o

 RAck R - -

 Record-Route R o o

 Record-Route 2xx,401,484 o o

 Reply-To - -

 Require o o

 Retry-After 404,413,480,486 o o

 Retry-After 500,503 o o

 Retry-After 600,603 o o

 Route R c c

 RSeq 1xx o o

 Server r o o

 Subject R - -

 Supported R o o

 Supported 2xx o o

 Timestamp o o

 To c(1) m m

 Unsupported 420 o o

 User-Agent o o

 Via c m m

 Warning R - o

 Warning r o o

 WWW-Authenticate 401 m m

7.4. Augmented BNF Definitions

 The Augmented BNF definitions for the various new and modified syntax

 elements follows. The notation is as used in SIP [1], and any

 elements not defined in this section are as defined in SIP and the

 documents to which it refers.

 SUBSCRIBEm = %x53.55.42.53.43.52.49.42.45 ; SUBSCRIBE in caps

 NOTIFYm = %x4E.4F.54.49.46.59 ; NOTIFY in caps

 extension-method = SUBSCRIBEm / NOTIFYm / token

 Event = ("Event" / "o") HCOLON event-type

 *(SEMI event-param)

 event-type = event-package *("." event-template)

 event-package = token-nodot

 event-template = token-nodot

 token-nodot = 1*(alphanum / "-" / "!" / "%" / "*"

 / "_" / "+" / "`" / "'" / "~")

 event-param = generic-param / ("id" EQUAL token)

 Allow-Events = ("Allow-Events" / "u") HCOLON event-type

 *(COMMA event-type)

 Subscription-State = "Subscription-State" HCOLON substate-value

 *(SEMI subexp-params)

 substate-value = "active" / "pending" / "terminated"

 / extension-substate

 extension-substate = token

 subexp-params = ("reason" EQUAL event-reason-value)

 / ("expires" EQUAL delta-seconds)

 / ("retry-after" EQUAL delta-seconds)

 / generic-param

 event-reason-value = "deactivated"

 / "probation"

 / "rejected"

 / "timeout"

 / "giveup"

 / "noresource"

 / event-reason-extension

 event-reason-extension = token

 Header field where proxy ACK BYE CAN INV OPT REG PRA SUB NOT

 Allow-Events R o o - o o o o o o

 Allow-Events 2xx - o - o o o o o o

 Allow-Events 489 - - - - - - - m m

 Event R - - - - - - - m m

 Subscription-State R - - - - - - - - m

F.4
RFC 3311

UPDATE method:

 Header field where proxy UPDATE

 Accept R o

 Accept 2xx o

 Accept 415 c

 Accept-Encoding R o

 Accept-Encoding 2xx o

 Accept-Encoding 415 c

 Accept-Language R o

 Accept-Language 2xx o

 Accept-Language 415 c

 Alert-Info -

 Allow R o

 Allow 2xx o

 Allow r o

 Allow 405 m

 Allow-Events (1) -

 Authentication-Info 2xx o

 Authorization R o

 Call-ID c r m

 Call-Info ar o

 Contact R m

 Contact 1xx o

 Contact 2xx m

 Contact 3xx d o

 Contact 485 o

 Content-Disposition o

 Content-Encoding o

 Content-Language o

 Content-Length ar t

 Content-Type *

 CSeq c r m

 Date a o

 Error-Info 300-699 a o

 Event (1) -

 Expires -

 From c r m

 In-Reply-To -

 Max-Forwards R amr m

 Min-Expires -

 MIME-Version o

 Organization ar o

 Priority -

 Proxy-Authenticate 407 ar m

 Proxy-Authenticate 401 ar o

 Proxy-Authorization R dr o

 Proxy-Require R ar o

 RAck R -

 Record-Route R ar o

 Record-Route 2xx,18x mr o

 Reply-To -

 Require ar c

 Retry-After 404,413,480,486 o

 500,503 o

 600,603 o

 Route R adr c

 RSeq - -

 Server r o

 Subject - -

 Subscription-State (1) -

 Supported R o

 Supported 2xx o

 Timestamp o

 To c r m

 Unsupported 420 m

 User-Agent o

 Via R amr m

 Via rc dr m

 Warning r o

 WWW-Authenticate 401 ar m

 WWW-Authenticate 407 ar o

F.5
RFC 3313

 P-Media-Authorization = "P-Media-Authorization" HCOLON

 P-Media-Authorization-Token

 *(COMMA P-Media-Authorization-Token)

 P-Media-Authorization-Token = 1*HEXDIG

 Where proxy ACK BYE CAN INV OPT REG

 P-Media-Authorization R ad o - - o - -

 P-Media-Authorization 2xx ad - - - o - -

 P-Media-Authorization 101-199 ad - - - o - -

 Where proxy INF PRA UPD SUB NOT

 P-Media-Authorization R ad - o o - -

 P-Media-Authorization 2xx ad - o o - -

F.6
RFC 3323

 Privacy-hdr = "Privacy" HCOLON priv-value *(";" priv-value)

 priv-value = "header" / "session" / "user" / "none" / "critical"

 / token

 Header field where proxy ACK BYE CAN INV OPT REG

 Privacy amrd o o o o o o

 Header field SUB NOT PRK IFO UPD MSG

 Privacy o o o o o o

F.7
RFC 3325

9.1 The P-Asserted-Identity Header

 The P-Asserted-Identity header field is used among trusted SIP

 entities (typically intermediaries) to carry the identity of the user

 sending a SIP message as it was verified by authentication.

 PAssertedID = "P-Asserted-Identity" HCOLON PAssertedID-value

 *(COMMA PAssertedID-value)

 PAssertedID-value = name-addr / addr-spec

 A P-Asserted-Identity header field value MUST consist of exactly one

 name-addr or addr-spec. There may be one or two P-Asserted-Identity

 values. If there is one value, it MUST be a sip, sips, or tel URI.

 If there are two values, one value MUST be a sip or sips URI and the

 other MUST be a tel URI. It is worth noting that proxies can (and

 will) add and remove this header field.

9.2 The P-Preferred-Identity Header

 The P-Preferred-Identity header field is used from a user agent to a

 trusted proxy to carry the identity the user sending the SIP message

 wishes to be used for the P-Asserted-Header field value that the

 trusted element will insert.

 PPreferredID = "P-Preferred-Identity" HCOLON PPreferredID-value

 *(COMMA PPreferredID-value)

 PPreferredID-value = name-addr / addr-spec

 A P-Preferred-Identity header field value MUST consist of exactly one

 name-addr or addr-spec. There may be one or two P-Preferred-Identity

 values. If there is one value, it MUST be a sip, sips, or tel URI.

 If there are two values, one value MUST be a sip or sips URI and the

 other MUST be a tel URI. It is worth noting that proxies can (and

 will) remove this header field.

9.3 The "id" Privacy Type

 This specification adds a new privacy type ("priv-value") to the

 Privacy header, defined in [2]. The presence of this privacy type in

 a Privacy header field indicates that the user would like the Network

 Asserted Identity to be kept private with respect to SIP entities

 outside the Trust Domain with which the user authenticated. Note

 that a user requesting multiple types of privacy MUST include all of

 the requested privacy types in its Privacy header field value.

 priv-value = "id"

 Example:

 Privacy: id

 Header field where proxy ACK BYE CAN INV OPT REG

 ------------ ----- ----- --- --- --- --- --- ---

 P-Asserted-Identity adr - o - o o -

 SUB NOT REF INF UPD PRA

 --- --- --- --- --- ---

 o o o - - -

 Header field where proxy ACK BYE CAN INV OPT REG

 ------------ ----- ----- --- --- --- --- --- ---

 P-Preferred-Identity adr - o - o o -

 SUB NOT REF INF UPD PRA

 --- --- --- --- --- ---

 o o o - - -

F.8
RFC 3326

Reason = "Reason" HCOLON reason-value *(COMMA reason-value)

 reason-value = protocol *(SEMI reason-params)

 protocol = "SIP" / "Q.850" / token

 reason-params = protocol-cause / reason-text

 / reason-extension

 protocol-cause = "cause" EQUAL cause

 cause = 1*DIGIT

 reason-text = "text" EQUAL quoted-string

 reason-extension = generic-param

 The following values for the protocol field have been defined:

 SIP: The cause parameter contains a SIP status code.

 Q.850: The cause parameter contains an ITU-T Q.850 cause value

 in decimal representation.

 Examples are:

 Reason: SIP ;cause=200 ;text="Call completed elsewhere"

 Reason: Q.850 ;cause=16 ;text="Terminated"

 Reason: SIP ;cause=600 ;text="Busy Everywhere"

 Reason: SIP ;cause=580 ;text="Precondition Failure"

F.9
RFC 3327

 Path = "Path" HCOLON path-value *(COMMA path-value)

 path-value = name-addr *(SEMI rr-param)

 Note that the Path header field values conform to the syntax of a

 Route element as defined in [1]. As suggested therein, such values

 MUST include the loose-routing indicator parameter ";lr" for full

 compliance with [1].

 Header field where proxy ACK BYE CAN INV OPT REG

 Path R ar - - - - - o

 Path 2xx - - - - - - o

F.10
RFC 3329

security-client = "Security-Client" HCOLON

 sec-mechanism *(COMMA sec-mechanism)

security-server = "Security-Server" HCOLON

 sec-mechanism *(COMMA sec-mechanism)

security-verify = "Security-Verify" HCOLON

 sec-mechanism *(COMMA sec-mechanism)

sec-mechanism = mechanism-name *(SEMI mech-parameters)

mechanism-name = ("digest" / "tls" / "ipsec-ike" /

 "ipsec-man" / token)

mech-parameters = (preference / digest-algorithm /

 digest-qop / digest-verify / extension)

preference = "q" EQUAL qvalue

qvalue = ("0" ["." 0*3DIGIT])

 / ("1" ["." 0*3("0")])

digest-algorithm = "d-alg" EQUAL token

digest-qop = "d-qop" EQUAL token

digest-verify = "d-ver" EQUAL LDQUOT 32LHEX RDQUOT

extension = generic-param

Note that qvalue is already defined in the SIP BNF [1]. We have copied its definitions here for completeness.

The parameters described by the BNF above have the following semantics:

 Mechanism-name

 This token identifies the security mechanism supported by the

 client, when it appears in a Security-Client header field; or

 by the server, when it appears in a Security-Server or in a

 Security-Verify header field. The mechanism-name tokens are

 registered with the IANA. This specification defines four

 values:

 * "tls" for TLS [3].

 * "digest" for HTTP Digest [4].

 * "ipsec-ike" for IPsec with IKE [2].

 * "ipsec-man" for manually keyed IPsec without IKE.

 Preference

 The "q" value indicates a relative preference for the

 particular mechanism. The higher the value the more preferred

 the mechanism is. All the security mechanisms MUST have

 different "q" values. It is an error to provide two mechanisms

 with the same "q" value.

 Digest-algorithm

 This optional parameter is defined here only for HTTP Digest

 [4] in order to prevent the bidding-down attack for the HTTP

 Digest algorithm parameter. The content of the field may have

 same values as defined in [4] for the "algorithm" field.

 Digest-qop

 This optional parameter is defined here only for HTTP Digest

 [4] in order to prevent the bidding-down attack for the HTTP

 Digest qop parameter. The content of the field may have same

 values as defined in [4] for the "qop" field.

 Digest-verify

 This optional parameter is defined here only for HTTP Digest

 [4] in order to prevent the bidding-down attack for the SIP

 security mechanism agreement (this document). The content of

 the field is counted exactly the same way as "request-digest"

 in [4] except that the Security-Server header field is included

 in the A2 parameter. If the "qop" directive's value is "auth"

 or is unspecified, then A2 is:

 A2 = Method ":" digest-uri-value ":" security-server

 If the "qop" value is "auth-int", then A2 is:

 A2 = Method ":" digest-uri-value ":" H(entity-body) ":"

 security-server

 All linear white spaces in the Security-Server header field

 MUST be replaced by a single SP before calculating or

 interpreting the digest-verify parameter. Method, digest-uri-

 value, entity-body, and any other HTTP Digest parameter are as

 specified in [4].

 Header field where proxy ACK BYE CAN INV OPT REG

 Security-Client R ard - o - o o o

 Security-Server 421,494 - o - o o o

 Security-Verify R ard - o - o o o

 Header field where proxy SUB NOT PRK IFO UPD MSG

 Security-Client R ard o o - o o o

 Security-Server 421,494 o o - o o o

 Security-Verify R ard o o - o o o

F.11
RFC 3428

MESSAGE method:

 Header Field where proxy MESSAGE

 __

 Accept R -

 Accept 2xx -

 Accept 415 m*

 Accept-Encoding R -

 Accept-Encoding 2xx -

 Accept-Encoding 415 m*

 Accept-Language R -

 Accept-Language 2xx -

 Accept-Language 415 m*

 Alert-Info R -

 Alert-Info 180 -

 Allow R o

 Allow 2xx o

 Allow r o

 Allow 405 m

 Authentication-Info 2xx o

 Authorization R o

 Call-ID c r m

 Call-Info ar o

 Contact R -

 Contact 1xx -

 Contact 2xx -

 Contact 3xx o

 Contact 485 o

 Content-Disposition o

 Content-Encoding o

 Content-Language o

 Content-Length ar t

 Content-Type *

 CSeq c r m

 Date a o

 Error-Info 300-699 a o

 Expires o

 From c r m

 In-Reply-To R o

 Max-Forwards R amr m

 Organization ar o

 Priority R ar o

 Proxy-Authenticate 407 ar m

 Proxy-Authenticate 401 ar o

 Proxy-Authorization R dr o

 Proxy-Require R ar o

 Record-Route ar -

 Reply-To o

 Require ar c

 Retry-After 404,413,480,486 o

 500,503 o

 600,603 o

 Route R adr o

 Server r o

 Subject R o

 Timestamp o

 To c(1) r m

 Unsupported 420 o

 User-Agent o

 Via R amr m

 Via rc dr m

 Warning r o

 WWW-Authenticate 401 ar m

 WWW-Authenticate 407 ar o

 (1): copied with possible addition of tag

F.12
RFC 3455

5.1 P-Associated-URI header syntax

 The syntax of the P-Associated-URI header is described as follows:

 P-Associated-URI = "P-Associated-URI" HCOLON

 (p-aso-uri-spec)

 *(COMMA p-aso-uri-spec)

 p-aso-uri-spec = name-addr *(SEMI ai-param)

 ai-param = generic-param

5.2 P-Called-Party-ID header syntax

 The syntax of the P-Called-Party-ID header is described as follows:

 P-Called-Party-ID = "P-Called-Party-ID" HCOLON

 called-pty-id-spec

 called-pty-id-spec = name-addr *(SEMI cpid-param)

 cpid-param = generic-param

5.3 P-Visited-Network-ID header syntax

 The syntax of the P-Visited-Network-ID header is described as

 follows:

 P-Visited-Network-ID = "P-Visited-Network-ID" HCOLON

 vnetwork-spec

 *(COMMA vnetwork-spec)

 vnetwork-spec = (token / quoted-string)

 *(SEMI vnetwork-param)

 vnetwork-param = generic-param

5.4 P-Access-Network-Info header syntax

 The syntax of the P-Access-Network-Info header is described as

 follows:

 P-Access-Network-Info = "P-Access-Network-Info" HCOLON

 access-net-spec

 access-net-spec = access-type *(SEMI access-info)

 access-type = "IEEE-802.11a" / "IEEE-802.11b" /

 "3GPP-GERAN" / "3GPP-UTRAN-FDD" /

 "3GPP-UTRAN-TDD" /

 "3GPP-CDMA2000" / token

 access-info = cgi-3gpp / utran-cell-id-3gpp /

 extension-access-info

 extension-access-info = gen-value

 cgi-3gpp = "cgi-3gpp" EQUAL

 (token / quoted-string)

 utran-cell-id-3gpp = "utran-cell-id-3gpp" EQUAL

 (token / quoted-string)

 The access-info may contain additional information relating to the

 access network. The values for "cgi-3gpp" and "utran-cell-id-3gpp"

 are defined in 3GPP TS 24.229 [15].

5.5 P-Charging-Function-Addresses header syntax

 The syntax for the P-Charging-Function-Addresses header is described

 as follows:

 P-Charging-Addr = "P-Charging-Function-Addresses" HCOLON

 charge-addr-params

 *(SEMI charge-addr-params)

 charge-addr-params = ccf / ecf / generic-param

 ccf = "ccf" EQUAL gen-value

 ecf = "ecf" EQUAL gen-value

5.6 P-Charging-Vector header syntax

 The syntax for the P-Charging-Vector header is described as

 follows:

 P-Charging-Vector = "P-Charging-Vector" HCOLON icid-value

 *(SEMI charge-params)

 charge-params = icid-gen-addr / orig-ioi /

 term-ioi / generic-param

 icid-value = "icid-value" EQUAL gen-value

 icid-gen-addr = "icid-generated-at" EQUAL host

 orig-ioi = "orig-ioi" EQUAL gen-value

 term-ioi = "term-ioi" EQUAL gen-value

 Header field where proxy ACK BYE CAN INV OPT REG

 P-Associated-URI 2xx - - - - - o

 P-Called-Party-ID R amr - - - o o -

 P-Visited-Network-ID R ad - - - o o o

 P-Access-Network-Info dr - o - o o o

 P-Charging-Vector admr - o - o o o

 P-Charging-Function- adr - o - o o o

 Addresses

 Header field SUB NOT PRA INF UPD MSG REF

 P-Associated-URI - - - - - - -

 P-Called-Party-ID o - - - - o o

 P-Visited-Network-ID o - - - - o o

 P-Access-Network-Info o o o o o o o

 P-Charging-Vector o o o o o o o

 P-Charging-Function- o o o o o o o

 Addresses

See also 3GPP TS 24.229, clause 7.2a.5.2 for the syntax of extenstions to the P-Charging-Vector header field.

F.13
RFC 3515

REFER method:

 Header Where REFER

 __
 Accept R o
 Accept 2xx -
 Accept 415 c
 Accept-Encoding R o
 Accept-Encoding 2xx -
 Accept-Encoding 415 c
 Accept-Language R o
 Accept-Language 2xx -
 Accept-Language 415 c
 Alert-Info -
 Allow Rr o
 Allow 405 m
 Authentication-Info 2xx o
 Authorization R o
 Call-ID c m
 Call-Info -
 Contact R m
 Contact 1xx -
 Contact 2xx m
 Contact 3-6xx o
 Content-Disposition o
 Content-Encoding o
 Content-Language o
 Content-Length o
 Content-Type *
 CSeq c m
 Date o
 Error-Info 3-6xx o
 Expires R o
 From c m
 In-Reply-To -
 Max-Forwards R m
 Min-Expires -
 MIME-Version o
 Organization o
 Priority R -
 Proxy-Authenticate 401 o
 Proxy-Authenticate 407 m
 Proxy-Authorization R o
 Proxy-Require R o
 Record-Route R o
 Record-Route 2xx,18x o
 Reply-To -
 Require c
 Retry-After 404,413,480,486 o
 Retry-After 500,503 o
 Retry-After 600,603 o
 Route R c
 Server r o
 Subject R -
 Supported R,2xx o
 Timestamp o
 To c(1) m
 Unsupported 420 o
 User-Agent o
 Via c(2) m
 Warning r o
 WWW-Authenticate 401 m
 WWW-Authenticate 407 o

 Refer-To is a request header field (request-header) as defined by
 [1]. It only appears in a REFER request. It provides a URL to
 reference.

 Refer-To = ("Refer-To" / "r") HCOLON (name-addr / addr-spec) *
 (SEMI generic-param)

 Header field where proxy ACK BYE CAN INV OPT REG

 Refer-To R - - - - - -

F.14
RFC 3608

 Service-Route = "Service-Route" HCOLON sr-value *(COMMA sr-value)

 sr-value = name-addr *(SEMI rr-param)

 Note that the Service-Route header field values MUST conform to the
 syntax of a Route element as defined in [3]. As suggested therein,
 such values MUST include the loose-routing indicator parameter ";lr"
 for full compliance with [3].

 Header field where proxy ACK BYE CAN INV OPT REG PRA

 Service-Route 2xx ar - - - - - o -

F.15
RFC 3840

 feature-param = enc-feature-tag [EQUAL LDQUOT (tag-value-list
 / string-value) RDQUOT]
 enc-feature-tag = base-tags / other-tags
 base-tags = "audio" / "automata" /
 "class" / "duplex" / "data" /
 "control" / "mobility" / "description" /
 "events" / "priority" / "methods" /
 "schemes" / "application" / "video" /
 "language" / "type" / "isfocus" /
 "actor" / "text" / "extensions"
 other-tags = "+" ftag-name
 ftag-name = ALPHA *(ALPHA / DIGIT / "!" / "'" /
 "." / "-" / "%")
 tag-value-list = tag-value *("," tag-value)
 tag-value = ["!"] (token-nobang / boolean / numeric)
 token-nobang = 1*(alphanum / "-" / "." / "%" / "*"
 / "_" / "+" / "`" / "'" / "~")
 boolean = "TRUE" / "FALSE"
 numeric = "#" numeric-relation number
 numeric-relation = ">=" / "<=" / "=" / (number ":")
 number = ["+" / "-"] 1*DIGIT ["." 0*DIGIT]
 string-value = "<" *(qdtext-no-abkt / quoted-pair) ">"
 qdtext-no-abkt = LWS / %x21 / %x23-3B / %x3D
 / %x3F-5B / %x5D-7E / UTF8-NONASCII

F.16
RFC 3841

 Request-Disposition = ("Request-Disposition" / "d") HCOLON
 directive *(COMMA directive)
 directive = proxy-directive / cancel-directive /
 fork-directive / recurse-directive /
 parallel-directive / queue-directive
 proxy-directive = "proxy" / "redirect"
 cancel-directive = "cancel" / "no-cancel"
 fork-directive = "fork" / "no-fork"
 recurse-directive = "recurse" / "no-recurse"
 parallel-directive = "parallel" / "sequential"
 queue-directive = "queue" / "no-queue"

 Accept-Contact = ("Accept-Contact" / "a") HCOLON ac-value
 *(COMMA ac-value)
 Reject-Contact = ("Reject-Contact" / "j") HCOLON rc-value
 *(COMMA rc-value)
 ac-value = "*" *(SEMI ac-params)
 rc-value = "*" *(SEMI rc-params)
 ac-params = feature-param / req-param
 / explicit-param / generic-param
 ;;feature param from RFC 3840
 ;;generic-param from RFC 3261
 rc-params = feature-param / generic-param
 req-param = "require"
 explicit-param = "explicit"

 Despite the BNF, there MUST NOT be more than one req-param or
 explicit-param in an ac-params. Furthermore, there can only be one
 instance of any feature tag in feature-param.

 Header field where proxy ACK BYE CAN INV OPT REG

 Accept-Contact R ar o o o o o -
 Reject-Contact R ar o o o o o -
 Request-Disposition R ar o o o o o o

 Figure 2: Accept-Contact, Reject-Contact, and Request-Disposition
 header fields

 Header field where proxy PRA UPD SUB NOT INF MSG REF

 Accept-Contact R ar o o o o o o o
 Reject-Contact R ar o o o o o o o
 Request-Disposition R ar o o o o o o o

F.17
RFC 3891

 Replaces = "Replaces" HCOLON callid *(SEMI replaces-param)
 replaces-param = to-tag / from-tag / early-flag / generic-param
 to-tag = "to-tag" EQUAL token
 from-tag = "from-tag" EQUAL token
 early-flag = "early-only"

 A Replaces header field MUST contain exactly one to-tag and exactly
 one from-tag, as they are required for unique dialog matching. For
 compatibility with dialogs initiated by RFC 2543 [9] compliant UAs, a
 tag of zero matches both tags of zero and null. A Replaces header
 field MAY contain the early-flag.

 Header field where proxy ACK BYE CAN INV OPT REG MSG
 ------------ ----- ----- --- --- --- --- --- --- ---
 Replaces R - - - o - - -

 SUB NOT REF INF UPD PRA PUB
 --- --- --- --- --- --- ---
 Replaces R - - - - - - -

F.18
RFC 3892

 Referred-By = ("Referred-By" / "b") HCOLON referrer-uri
 *(SEMI (referredby-id-param / generic-param))

 referrer-uri = (name-addr / addr-spec)

 referredby-id-param = "cid" EQUAL sip-clean-msg-id

 sip-clean-msg-id = LDQUOT dot-atom "@" (dot-atom / host) RDQUOT

 dot-atom = atom *("." atom)

 atom = 1*(alphanum / "-" / "!" / "%" / "*" /
 "_" / "+" / "'" / "`" / "~")

 Since the Content-ID appears as a SIP header parameter value which
 must conform to the expansion of the gen-value defined in [5], this
 grammar produces values in the intersection of the expansions of
 gen-value and msg-id from [9]. The double-quotes surrounding the
 sip-clean-msg-id MUST be replaced with left and right angle brackets
 to derive the Content-ID used in the message's MIME body. For
 example,

 Referred-By: sip:r@ref.example;cid="2UWQFN309shb3@ref.example"
 indicates the token is in the body part containing

 Content-ID: <2UWQFN309shb3@ref.example>

 If the referrer-uri contains a comma, question mark, or semicolon,
 (for example, if it contains URI parameters) the URI MUST be enclosed
 in angle brackets (< and >). Any URI parameters are contained within
 these brackets. If the URI is not enclosed in angle brackets, any
 semicolon-delimited parameters are header-parameters, not URI
 parameters.

 Header field where proxy ACK BYE CAN INV OPT REG

 Referred-By R - o - o o o

F.19
RFC 3903

 PUBLISHm = %x50.55.42.4C.49.53.48 ; PUBLISH in caps.
 extension-method = PUBLISHm / token
 SIP-ETag = "SIP-ETag" HCOLON entity-tag
 SIP-If-Match = "SIP-If-Match" HCOLON entity-tag
 entity-tag = token

 +---------------------+------------+---------+
 | Header Field | where
| PUBLISH |
 +---------------------+------------+---------+
 | Accept | R

| o |
 | Accept | 2xx

| - |
 | Accept | 415

| m* |
 | Accept-Encoding | R

| o |
 | Accept-Encoding | 2xx

| - |
 | Accept-Encoding | 415

| m* |
 | Accept-Language | R

| o |
 | Accept-Language | 2xx

| - |
 | Accept-Language | 415

| m* |
 | Alert-Info |

| - |
 | Allow | R

| o |
 | Allow | r

| o |
 | Allow | 405

| m |
 | Allow-Events | R

| o |
 | Allow-Events | 489

| m |
 | Authentication-Info | 2xx

| o |
 | Authorization | R

| o |
 | Call-ID | c

| m |
 | Call-Info |

| o |
 | Contact | R

| - |
 | Contact | 1xx

| - |
 | Contact | 2xx

| - |
 | Contact | 3xx

| o |
 | Contact | 485

| o |
 | Content-Disposition |

| o |
 | Content-Encoding |

| o |
 | Content-Language |

| o |
 | Content-Length |

| t |
 | Content-Type |

| * |
 | CSeq | c

| m |
 | Date |

| o |
 | Event | R

| m |
 | Error-Info | 300-699

| o |
 | Expires |

| o |
 | Expires | 2xx

| m |
 | From | c

| m |
 | In-Reply-To | R

| - |
 | Max-Forwards | R

| m |
 | Min-Expires | 423

| m |
 | MIME-Version |

| o |
 | Organization |

| o |
Priority	R	o
Proxy-Authenticate	407	m
Proxy-Authenticate	401	o
Proxy-Authorization	R	o
Proxy-Require	R	o
Record-Route		-
Reply-To		-
Require		o
Retry-After	404,413,480,486 o	
Retry-After	500,503	o
Retry-After	600,603	o
Route	R	c
Server	r	o
Subject	R	o
Supported	R	o
Supported	2xx	o
Timestamp		o
To	c(1)	m
Unsupported	420	o
User-Agent		o
Via	R	m
Via	rc	m
Warning	r	o
WWW-Authenticate	401	m
WWW-Authenticate	407	o
 +---------------------+------------+---------+

 +--------------+-------+-------+-----+-----+-----+-----+-----+
 | Header Field | where | proxy | ACK | BYE | CAN | INF | INV |
 +--------------+-------+-------+-----+-----+-----+-----+-----+
 | SIP-ETag | 2xx | | - | - | - | - | - |
 | SIP-If-Match | R | | - | - | - | - | - |
 +--------------+-------+-------+-----+-----+-----+-----+-----+

 +--------------+-------+-------+-----+-----+-----+-----+-----+
 | Header Field | where | proxy | NOT | OPT | PRA | REG | SUB |
 +--------------+-------+-------+-----+-----+-----+-----+-----+
 | SIP-ETag | 2xx | | - | - | - | - | - |
 | SIP-If-Match | R | | - | - | - | - | - |
 +--------------+-------+-------+-----+-----+-----+-----+-----+

 +--------------+-------+-------+-----+-----+-----+---------+
 | Header Field | where | proxy | UPD | MSG | REF | PUBLISH |
 +--------------+-------+-------+-----+-----+-----+---------+
 | SIP-ETag | 2xx | | - | - | - | m |
 | SIP-If-Match | R | | - | - | - | o |
 +--------------+-------+-------+-----+-----+-----+---------+

F.20
RFC 3911

 Join = "Join" HCOLON callid *(SEMI join-param)
 join-param = to-tag / from-tag / generic-param
 to-tag = "to-tag" EQUAL token
 from-tag = "from-tag" EQUAL token

 A Join header MUST contain exactly one to-tag and exactly one from-
 tag, as they are required for unique dialog matching. For
 compatibility with dialogs initiated by RFC 2543 [11] compliant UAs,
 a to-tag of zero matches both a to-tag value of zero and a null to-
 tag. Likewise, a from-tag of zero matches both a to-tag value of
 zero and a null from-tag.

 Header field where proxy ACK BYE CAN INV OPT REG MSG
 ------------ ----- ----- --- --- --- --- --- --- ---
 Join R - - - o - - -

 SUB NOT REF INF UPD PRA PUB
 --- --- --- --- --- --- ---
 Join R - - - - - - -

F.21
RFC 4028

 Min-SE = "Min-SE" HCOLON delta-seconds *(SEMI generic-param)

 Session-Expires = ("Session-Expires" / "x") HCOLON delta-seconds

 *(SEMI se-params)

 se-params = refresher-param / generic-param

 refresher-param = "refresher" EQUAL ("uas" / "uac")

 +---------------+-----+-----+---+---+---+---+---+---+---+---+---+---+

 | Header |where|proxy|ACK|BYE|CAN|INV|OPT|REG|PRA|UPD|SUB|NOT|

 +---------------+-----+-----+---+---+---+---+---+---+---+---+---+---+

 |Session-Expires| R | amr | - | - | - | o | - | - | - | o | - | - |

 | | | | | | | | | | | | | |

 |Session-Expires| 2xx | ar | - | - | - | o | - | - | - | o | - | - |

 | | | | | | | | | | | | | |

 |Min-SE | R | amr | - | - | - | o | - | - | - | o | - | - |

 | | | | | | | | | | | | | |

 |Min-SE | 422 | | - | - | - | m | - | - | - | m | - | - |

Annex G (informative):
DHCP and DNS Message Definitions

This is a list of the DNS and DHCP (v4 and v6) definitions compiled from all necessary RFCs.
G.1
RFC 1035

3.2. RR definitions

3.2.1. Format

All RRs have the same top level format shown below:

 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | |

 / /

 / NAME /

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | TYPE |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | CLASS |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | TTL |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | RDLENGTH |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 / RDATA /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NAME an owner name, i.e., the name of the node to which this

 resource record pertains.

TYPE two octets containing one of the RR TYPE codes.

CLASS two octets containing one of the RR CLASS codes.

TTL a 32 bit signed integer that specifies the time interval

 that the resource record may be cached before the source

 of the information should again be consulted. Zero

 values are interpreted to mean that the RR can only be

 used for the transaction in progress, and should not be

 cached. For example, SOA records are always distributed

 with a zero TTL to prohibit caching. Zero values can

 also be used for extremely volatile data.

RDLENGTH an unsigned 16 bit integer that specifies the length in

 octets of the RDATA field.

RDATA a variable length string of octets that describes the

 resource. The format of this information varies

 according to the TYPE and CLASS of the resource record.

3.3. Standard RRs

The following RR definitions are expected to occur, at least

potentially, in all classes. In particular, NS, SOA, CNAME, and PTR

will be used in all classes, and have the same format in all classes.

Because their RDATA format is known, all domain names in the RDATA

section of these RRs may be compressed.

<domain-name> is a domain name represented as a series of labels, and

terminated by a label with zero length. <character-string> is a single

length octet followed by that number of characters. <character-string>

is treated as binary information, and can be up to 256 characters in

length (including the length octet).

3.3.1. CNAME RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / CNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

CNAME A <domain-name> which specifies the canonical or primary

 name for the owner. The owner name is an alias.

CNAME RRs cause no additional section processing, but name servers may

choose to restart the query at the canonical name in certain cases. See

the description of name server logic in [RFC-1034] for details.

3.3.2. HINFO RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / CPU /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / OS /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

CPU A <character-string> which specifies the CPU type.

OS A <character-string> which specifies the operating

 system type.

Standard values for CPU and OS can be found in [RFC-1010].

HINFO records are used to acquire general information about a host. The

main use is for protocols such as FTP that can use special procedures

when talking between machines or operating systems of the same type.

3.3.3. MB RDATA format (EXPERIMENTAL)

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / MADNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MADNAME A <domain-name> which specifies a host which has the

 specified mailbox.

MB records cause additional section processing which looks up an A type

RRs corresponding to MADNAME.

3.3.4. MD RDATA format (Obsolete)

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / MADNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MADNAME A <domain-name> which specifies a host which has a mail

 agent for the domain which should be able to deliver

 mail for the domain.

MD records cause additional section processing which looks up an A type

record corresponding to MADNAME.

MD is obsolete. See the definition of MX and [RFC-974] for details of

the new scheme. The recommended policy for dealing with MD RRs found in

a master file is to reject them, or to convert them to MX RRs with a

preference of 0.

3.3.5. MF RDATA format (Obsolete)

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / MADNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MADNAME A <domain-name> which specifies a host which has a mail

 agent for the domain which will accept mail for

 forwarding to the domain.

MF records cause additional section processing which looks up an A type

record corresponding to MADNAME.

MF is obsolete. See the definition of MX and [RFC-974] for details ofw

the new scheme. The recommended policy for dealing with MD RRs found in

a master file is to reject them, or to convert them to MX RRs with a

preference of 10.

3.3.6. MG RDATA format (EXPERIMENTAL)

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / MGMNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MGMNAME A <domain-name> which specifies a mailbox which is a

 member of the mail group specified by the domain name.

MG records cause no additional section processing.

3.3.7. MINFO RDATA format (EXPERIMENTAL)

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / RMAILBX /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / EMAILBX /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

RMAILBX A <domain-name> which specifies a mailbox which is

 responsible for the mailing list or mailbox. If this

 domain name names the root, the owner of the MINFO RR is

 responsible for itself. Note that many existing mailing

 lists use a mailbox X-request for the RMAILBX field of

 mailing list X, e.g., Msgroup-request for Msgroup. This

 field provides a more general mechanism.

EMAILBX A <domain-name> which specifies a mailbox which is to

 receive error messages related to the mailing list or

 mailbox specified by the owner of the MINFO RR (similar

 to the ERRORS-TO: field which has been proposed). If

 this domain name names the root, errors should be

 returned to the sender of the message.

MINFO records cause no additional section processing. Although these

records can be associated with a simple mailbox, they are usually used

with a mailing list.

3.3.8. MR RDATA format (EXPERIMENTAL)

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / NEWNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NEWNAME A <domain-name> which specifies a mailbox which is the

 proper rename of the specified mailbox.

MR records cause no additional section processing. The main use for MR

is as a forwarding entry for a user who has moved to a different

mailbox.

3.3.9. MX RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | PREFERENCE |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / EXCHANGE /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PREFERENCE A 16 bit integer which specifies the preference given to

 this RR among others at the same owner. Lower values

 are preferred.

EXCHANGE A <domain-name> which specifies a host willing to act as

 a mail exchange for the owner name.

MX records cause type A additional section processing for the host

specified by EXCHANGE. The use of MX RRs is explained in detail in

[RFC-974].

3.3.10. NULL RDATA format (EXPERIMENTAL)

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / <anything> /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Anything at all may be in the RDATA field so long as it is 65535 octets

or less.

NULL records cause no additional section processing. NULL RRs are not

allowed in master files. NULLs are used as placeholders in some

experimental extensions of the DNS.

3.3.11. NS RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / NSDNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NSDNAME A <domain-name> which specifies a host which should be

 authoritative for the specified class and domain.

NS records cause both the usual additional section processing to locate

a type A record, and, when used in a referral, a special search of the

zone in which they reside for glue information.

The NS RR states that the named host should be expected to have a zone

starting at owner name of the specified class. Note that the class may

not indicate the protocol family which should be used to communicate

with the host, although it is typically a strong hint. For example,

hosts which are name servers for either Internet (IN) or Hesiod (HS)

class information are normally queried using IN class protocols.

3.3.12. PTR RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / PTRDNAME /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

PTRDNAME A <domain-name> which points to some location in the

 domain name space.

PTR records cause no additional section processing. These RRs are used

in special domains to point to some other location in the domain space.

These records are simple data, and don't imply any special processing

similar to that performed by CNAME, which identifies aliases. See the

description of the IN-ADDR.ARPA domain for an example.

3.3.13. SOA RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / MNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / RNAME /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | SERIAL |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | REFRESH |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | RETRY |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | EXPIRE |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | MINIMUM |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

MNAME The <domain-name> of the name server that was the

 original or primary source of data for this zone.

RNAME A <domain-name> which specifies the mailbox of the

 person responsible for this zone.

SERIAL The unsigned 32 bit version number of the original copy

 of the zone. Zone transfers preserve this value. This

 value wraps and should be compared using sequence space

 arithmetic.

REFRESH A 32 bit time interval before the zone should be

 refreshed.

RETRY A 32 bit time interval that should elapse before a

 failed refresh should be retried.

EXPIRE A 32 bit time value that specifies the upper limit on

 the time interval that can elapse before the zone is no

 longer authoritative.

MINIMUM The unsigned 32 bit minimum TTL field that should be

 exported with any RR from this zone.

SOA records cause no additional section processing.

All times are in units of seconds.

Most of these fields are pertinent only for name server maintenance

operations. However, MINIMUM is used in all query operations that

retrieve RRs from a zone. Whenever a RR is sent in a response to a

query, the TTL field is set to the maximum of the TTL field from the RR

and the MINIMUM field in the appropriate SOA. Thus MINIMUM is a lower

bound on the TTL field for all RRs in a zone. Note that this use of

MINIMUM should occur when the RRs are copied into the response and not

when the zone is loaded from a master file or via a zone transfer. The

reason for this provison is to allow future dynamic update facilities to

change the SOA RR with known semantics.

3.3.14. TXT RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / TXT-DATA /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

TXT-DATA One or more <character-string>s.

TXT RRs are used to hold descriptive text. The semantics of the text

depends on the domain where it is found.

3.4. Internet specific RRs

3.4.1. A RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ADDRESS |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ADDRESS A 32 bit Internet address.

Hosts that have multiple Internet addresses will have multiple A

records.

A records cause no additional section processing. The RDATA section of

an A line in a master file is an Internet address expressed as four

decimal numbers separated by dots without any imbedded spaces (e.g.,

"10.2.0.52" or "192.0.5.6").

3.4.2. WKS RDATA format

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ADDRESS |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | PROTOCOL | |

 +--+--+--+--+--+--+--+--+ |

 | |

 / <BIT MAP> /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ADDRESS An 32 bit Internet address

PROTOCOL An 8 bit IP protocol number

<BIT MAP> A variable length bit map. The bit map must be a

 multiple of 8 bits long.

The WKS record is used to describe the well known services supported by

a particular protocol on a particular internet address. The PROTOCOL

field specifies an IP protocol number, and the bit map has one bit per

port of the specified protocol. The first bit corresponds to port 0,

the second to port 1, etc. If the bit map does not include a bit for a

protocol of interest, that bit is assumed zero. The appropriate values

and mnemonics for ports and protocols are specified in [RFC-1010].

For example, if PROTOCOL=TCP (6), the 26th bit corresponds to TCP port

25 (SMTP). If this bit is set, a SMTP server should be listening on TCP

port 25; if zero, SMTP service is not supported on the specified

address.

The purpose of WKS RRs is to provide availability information for

servers for TCP and UDP. If a server supports both TCP and UDP, or has

multiple Internet addresses, then multiple WKS RRs are used.

WKS RRs cause no additional section processing.

In master files, both ports and protocols are expressed using mnemonics

or decimal numbers.

4. MESSAGES

4.1. Format

All communications inside of the domain protocol are carried in a single

format called a message. The top level format of message is divided

into 5 sections (some of which are empty in certain cases) shown below:

 +---------------------+

 | Header |

 +---------------------+

 | Question | the question for the name server

 +---------------------+

 | Answer | RRs answering the question

 +---------------------+

 | Authority | RRs pointing toward an authority

 +---------------------+

 | Additional | RRs holding additional information

 +---------------------+

The header section is always present. The header includes fields that

specify which of the remaining sections are present, and also specify

whether the message is a query or a response, a standard query or some

other opcode, etc.

The names of the sections after the header are derived from their use in

standard queries. The question section contains fields that describe a

question to a name server. These fields are a query type (QTYPE), a

query class (QCLASS), and a query domain name (QNAME). The last three

sections have the same format: a possibly empty list of concatenated

resource records (RRs). The answer section contains RRs that answer the

question; the authority section contains RRs that point toward an

authoritative name server; the additional records section contains RRs

which relate to the query, but are not strictly answers for the

question.

4.1.1. Header section format

The header contains the following fields:

 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ID |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 |QR| Opcode |AA|TC|RD|RA| Z | RCODE |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | QDCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ANCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | NSCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ARCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

ID A 16 bit identifier assigned by the program that

 generates any kind of query. This identifier is copied

 the corresponding reply and can be used by the requester

 to match up replies to outstanding queries.

QR A one bit field that specifies whether this message is a

 query (0), or a response (1).

OPCODE A four bit field that specifies kind of query in this

 message. This value is set by the originator of a query

 and copied into the response. The values are:

 0 a standard query (QUERY)

 1 an inverse query (IQUERY)

 2 a server status request (STATUS)

 3-15 reserved for future use

AA Authoritative Answer - this bit is valid in responses,

 and specifies that the responding name server is an

 authority for the domain name in question section.

 Note that the contents of the answer section may have

 multiple owner names because of aliases. The AA bit

 corresponds to the name which matches the query name, or

 the first owner name in the answer section.

TC TrunCation - specifies that this message was truncated

 due to length greater than that permitted on the

 transmission channel.

RD Recursion Desired - this bit may be set in a query and

 is copied into the response. If RD is set, it directs

 the name server to pursue the query recursively.

 Recursive query support is optional.

RA Recursion Available - this be is set or cleared in a

 response, and denotes whether recursive query support is

 available in the name server.

Z Reserved for future use. Must be zero in all queries

 and responses.

RCODE Response code - this 4 bit field is set as part of

 responses. The values have the following

 interpretation:

 0 No error condition

 1 Format error - The name server was

 unable to interpret the query.

 2 Server failure - The name server was

 unable to process this query due to a

 problem with the name server.

 3 Name Error - Meaningful only for

 responses from an authoritative name

 server, this code signifies that the

 domain name referenced in the query does

 not exist.

 4 Not Implemented - The name server does

 not support the requested kind of query.

 5 Refused - The name server refuses to

 perform the specified operation for

 policy reasons. For example, a name

 server may not wish to provide the

 information to the particular requester,

 or a name server may not wish to perform

 a particular operation (e.g., zone

 transfer) for particular data.

 6-15 Reserved for future use.

QDCOUNT an unsigned 16 bit integer specifying the number of

 entries in the question section.

ANCOUNT an unsigned 16 bit integer specifying the number of

 resource records in the answer section.

NSCOUNT an unsigned 16 bit integer specifying the number of name

 server resource records in the authority records

 section.

ARCOUNT an unsigned 16 bit integer specifying the number of

 resource records in the additional records section.

4.1.2. Question section format

The question section is used to carry the "question" in most queries,

i.e., the parameters that define what is being asked. The section

contains QDCOUNT (usually 1) entries, each of the following format:

 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | |

 / QNAME /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | QTYPE |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | QCLASS |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

QNAME a domain name represented as a sequence of labels, where

 each label consists of a length octet followed by that

 number of octets. The domain name terminates with the

 zero length octet for the null label of the root. Note

 that this field may be an odd number of octets; no

 padding is used.

QTYPE a two octet code which specifies the type of the query.

 The values for this field include all codes valid for a

 TYPE field, together with some more general codes which

 can match more than one type of RR.

QCLASS a two octet code that specifies the class of the query.

 For example, the QCLASS field is IN for the Internet.

4.1.3. Resource record format

The answer, authority, and additional sections all share the same

format: a variable number of resource records, where the number of

records is specified in the corresponding count field in the header.

Each resource record has the following format:

 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | |

 / /

 / NAME /

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | TYPE |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | CLASS |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | TTL |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | RDLENGTH |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 / RDATA /

 / /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

where:

NAME a domain name to which this resource record pertains.

TYPE two octets containing one of the RR type codes. This

 field specifies the meaning of the data in the RDATA

 field.

CLASS two octets which specify the class of the data in the

 RDATA field.

TTL a 32 bit unsigned integer that specifies the time

 interval (in seconds) that the resource record may be

 cached before it should be discarded. Zero values are

 interpreted to mean that the RR can only be used for the

 transaction in progress, and should not be cached.

RDLENGTH an unsigned 16 bit integer that specifies the length in

 octets of the RDATA field.

RDATA a variable length string of octets that describes the

 resource. The format of this information varies

 according to the TYPE and CLASS of the resource record.

 For example, the if the TYPE is A and the CLASS is IN,

 the RDATA field is a 4 octet ARPA Internet address.

G.2
RFC 1533
3.1. Pad Option

 The pad option can be used to cause subsequent fields to align on

 word boundaries.

 The code for the pad option is 0, and its length is 1 octet.

 Code

 +-----+

 | 0 |

 +-----+

3.2. End Option

 The end option marks the end of valid information in the vendor

 field. Subsequent octets should be filled with pad options.

 The code for the end option is 255, and its length is 1 octet.

 Code

 +-----+

 | 255 |

 +-----+

3.3. Subnet Mask

 The subnet mask option specifies the client's subnet mask as per RFC

 950 [5].

 If both the subnet mask and the router option are specified in a DHCP

 reply, the subnet mask option MUST be first.

 The code for the subnet mask option is 1, and its length is 4 octets.

 Code Len Subnet Mask

 +-----+-----+-----+-----+-----+-----+

 | 1 | 4 | m1 | m2 | m3 | m4 |

 +-----+-----+-----+-----+-----+-----+

3.4. Time Offset

 The time offset field specifies the offset of the client's subnet in

 seconds from Coordinated Universal Time (UTC). The offset is

 expressed as a signed 32-bit integer.

 The code for the time offset option is 2, and its length is 4 octets.

 Code Len Time Offset

 +-----+-----+-----+-----+-----+-----+

 | 2 | 4 | n1 | n2 | n3 | n4 |

 +-----+-----+-----+-----+-----+-----+

3.5. Router Option

 The router option specifies a list of IP addresses for routers on the

 client's subnet. Routers SHOULD be listed in order of preference.

 The code for the router option is 3. The minimum length for the

 router option is 4 octets, and the length MUST always be a multiple

 of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 3 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.6. Time Server Option

 The time server option specifies a list of RFC 868 [6] time servers

 available to the client. Servers SHOULD be listed in order of

 preference.

 The code for the time server option is 4. The minimum length for

 this option is 4 octets, and the length MUST always be a multiple of

 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 4 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.7. Name Server Option

 The name server option specifies a list of IEN 116 [7] name servers

 available to the client. Servers SHOULD be listed in order of

 preference.

 The code for the name server option is 5. The minimum length for

 this option is 4 octets, and the length MUST always be a multiple of

 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 5 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.8. Domain Name Server Option

 The domain name server option specifies a list of Domain Name System

 (STD 13, RFC 1035 [8]) name servers available to the client. Servers

 SHOULD be listed in order of preference.

 The code for the domain name server option is 6. The minimum length

 for this option is 4 octets, and the length MUST always be a multiple

 of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 6 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.9. Log Server Option

 The log server option specifies a list of MIT-LCS UDP log servers

 available to the client. Servers SHOULD be listed in order of

 preference.

 The code for the log server option is 7. The minimum length for this

 option is 4 octets, and the length MUST always be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 7 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.10. Cookie Server Option

 The cookie server option specifies a list of RFC 865 [9] cookie

 servers available to the client. Servers SHOULD be listed in order

 of preference.

 The code for the log server option is 8. The minimum length for this

 option is 4 octets, and the length MUST always be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 8 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.11. LPR Server Option

 The LPR server option specifies a list of RFC 1179 [10] line printer

 servers available to the client. Servers SHOULD be listed in order

 of preference.

 The code for the LPR server option is 9. The minimum length for this

 option is 4 octets, and the length MUST always be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 9 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.12. Impress Server Option

 The Impress server option specifies a list of Imagen Impress servers

 available to the client. Servers SHOULD be listed in order of

 preference.

 The code for the Impress server option is 10. The minimum length for

 this option is 4 octets, and the length MUST always be a multiple of

 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 10 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.13. Resource Location Server Option

 This option specifies a list of RFC 887 [11] Resource Location

 servers available to the client. Servers SHOULD be listed in order

 of preference.

 The code for this option is 11. The minimum length for this option

 is 4 octets, and the length MUST always be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 11 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.14. Host Name Option

 This option specifies the name of the client. The name may or may

 not be qualified with the local domain name (see section 3.17 for the

 preferred way to retrieve the domain name). See RFC 1035 for

 character set restrictions.

 The code for this option is 12, and its minimum length is 1.

 Code Len Host Name

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 12 | n | h1 | h2 | h3 | h4 | h5 | h6 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

3.15. Boot File Size Option

 This option specifies the length in 512-octet blocks of the default

 boot image for the client. The file length is specified as an

 unsigned 16-bit integer.

 The code for this option is 13, and its length is 2.

 Code Len File Size

 +-----+-----+-----+-----+

 | 13 | 2 | l1 | l2 |

 +-----+-----+-----+-----+

3.16. Merit Dump File

 This option specifies the path-name of a file to which the client's

 core image should be dumped in the event the client crashes. The

 path is formatted as a character string consisting of characters from

 the NVT ASCII character set.

 The code for this option is 14. Its minimum length is 1.

 Code Len Dump File Pathname

 +-----+-----+-----+-----+-----+-----+---

 | 14 | n | n1 | n2 | n3 | n4 | ...

 +-----+-----+-----+-----+-----+-----+---

3.17. Domain Name

 This option specifies the domain name that client should use when

 resolving hostnames via the Domain Name System.

 The code for this option is 15. Its minimum length is 1.

 Code Len Domain Name

 +-----+-----+-----+-----+-----+-----+--

 | 15 | n | d1 | d2 | d3 | d4 | ...

 +-----+-----+-----+-----+-----+-----+--

3.18. Swap Server

 This specifies the IP address of the client's swap server.

 The code for this option is 16 and its length is 4.

 Code Len Swap Server Address

 +-----+-----+-----+-----+-----+-----+

 | 16 | n | a1 | a2 | a3 | a4 |

 +-----+-----+-----+-----+-----+-----+

3.19. Root Path

 This option specifies the path-name that contains the client's root

 disk. The path is formatted as a character string consisting of

 characters from the NVT ASCII character set.

 The code for this option is 17. Its minimum length is 1.

 Code Len Root Disk Pathname

 +-----+-----+-----+-----+-----+-----+---

 | 17 | n | n1 | n2 | n3 | n4 | ...

 +-----+-----+-----+-----+-----+-----+---

3.20. Extensions Path

 A string to specify a file, retrievable via TFTP, which contains

 information which can be interpreted in the same way as the 64-octet

 vendor-extension field within the BOOTP response, with the following

 exceptions:

 - the length of the file is unconstrained;

 - all references to Tag 18 (i.e., instances of the

 BOOTP Extensions Path field) within the file are

 ignored.

 The code for this option is 18. Its minimum length is 1.

 Code Len Extensions Pathname

 +-----+-----+-----+-----+-----+-----+---

 | 18 | n | n1 | n2 | n3 | n4 | ...

 +-----+-----+-----+-----+-----+-----+---

4. IP Layer Parameters per Host

 This section details the options that affect the operation of the IP

 layer on a per-host basis.

4.1. IP Forwarding Enable/Disable Option

 This option specifies whether the client should configure its IP

 layer for packet forwarding. A value of 0 means disable IP

 forwarding, and a value of 1 means enable IP forwarding.

 The code for this option is 19, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 19 | 1 | 0/1 |

 +-----+-----+-----+

4.2. Non-Local Source Routing Enable/Disable Option

 This option specifies whether the client should configure its IP

 layer to allow forwarding of datagrams with non-local source routes

 (see Section 3.3.5 of [4] for a discussion of this topic). A value

 of 0 means disallow forwarding of such datagrams, and a value of 1

 means allow forwarding.

 The code for this option is 20, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 20 | 1 | 0/1 |

 +-----+-----+-----+

4.3. Policy Filter Option

 This option specifies policy filters for non-local source routing.

 The filters consist of a list of IP addresses and masks which specify

 destination/mask pairs with which to filter incoming source routes.

 Any source routed datagram whose next-hop address does not match one

 of the filters should be discarded by the client.

 See [4] for further information.

 The code for this option is 21. The minimum length of this option is

 8, and the length MUST be a multiple of 8.

 Code Len Address 1 Mask 1

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 | 21 | n | a1 | a2 | a3 | a4 | m1 | m2 | m3 | m4 |

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 Address 2 Mask 2

 +-----+-----+-----+-----+-----+-----+-----+-----+---

 | a1 | a2 | a3 | a4 | m1 | m2 | m3 | m4 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+---

4.4. Maximum Datagram Reassembly Size

 This option specifies the maximum size datagram that the client

 should be prepared to reassemble. The size is specified as a 16-bit

 unsigned integer. The minimum value legal value is 576.

 The code for this option is 22, and its length is 2.

 Code Len Size

 +-----+-----+-----+-----+

 | 22 | 2 | s1 | s2 |

 +-----+-----+-----+-----+

4.5. Default IP Time-to-live

 This option specifies the default time-to-live that the client should

 use on outgoing datagrams. The TTL is specified as an octet with a

 value between 1 and 255.

 The code for this option is 23, and its length is 1.

 Code Len TTL

 +-----+-----+-----+

 | 23 | 1 | ttl |

 +-----+-----+-----+

4.6. Path MTU Aging Timeout Option

 This option specifies the timeout (in seconds) to use when aging Path

 MTU values discovered by the mechanism defined in RFC 1191 [12]. The

 timeout is specified as a 32-bit unsigned integer.

 The code for this option is 24, and its length is 4.

 Code Len Timeout

 +-----+-----+-----+-----+-----+-----+

 | 24 | 4 | t1 | t2 | t3 | t4 |

 +-----+-----+-----+-----+-----+-----+

4.7. Path MTU Plateau Table Option

 This option specifies a table of MTU sizes to use when performing

 Path MTU Discovery as defined in RFC 1191. The table is formatted as

 a list of 16-bit unsigned integers, ordered from smallest to largest.

 The minimum MTU value cannot be smaller than 68.

 The code for this option is 25. Its minimum length is 2, and the

 length MUST be a multiple of 2.

 Code Len Size 1 Size 2

 +-----+-----+-----+-----+-----+-----+---

 | 25 | n | s1 | s2 | s1 | s2 | ...

 +-----+-----+-----+-----+-----+-----+---

5. IP Layer Parameters per Interface

 This section details the options that affect the operation of the IP

 layer on a per-interface basis. It is expected that a client can

 issue multiple requests, one per interface, in order to configure

 interfaces with their specific parameters.

5.1. Interface MTU Option

 This option specifies the MTU to use on this interface. The MTU is

 specified as a 16-bit unsigned integer. The minimum legal value for

 the MTU is 68.

 The code for this option is 26, and its length is 2.

 Code Len MTU

 +-----+-----+-----+-----+

 | 26 | 2 | m1 | m2 |

 +-----+-----+-----+-----+

5.2. All Subnets are Local Option

 This option specifies whether or not the client may assume that all

 subnets of the IP network to which the client is connected use the

 same MTU as the subnet of that network to which the client is

 directly connected. A value of 1 indicates that all subnets share

 the same MTU. A value of 0 means that the client should assume that

 some subnets of the directly connected network may have smaller MTUs.

 The code for this option is 27, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 27 | 1 | 0/1 |

 +-----+-----+-----+

5.3. Broadcast Address Option

 This option specifies the broadcast address in use on the client's

 subnet. Legal values for broadcast addresses are specified in

 section 3.2.1.3 of [4].

 The code for this option is 28, and its length is 4.

 Code Len Broadcast Address

 +-----+-----+-----+-----+-----+-----+

 | 28 | 4 | b1 | b2 | b3 | b4 |

 +-----+-----+-----+-----+-----+-----+

5.4. Perform Mask Discovery Option

 This option specifies whether or not the client should perform subnet

 mask discovery using ICMP. A value of 0 indicates that the client

 should not perform mask discovery. A value of 1 means that the

 client should perform mask discovery.

 The code for this option is 29, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 29 | 1 | 0/1 |

 +-----+-----+-----+

5.5. Mask Supplier Option

 This option specifies whether or not the client should respond to

 subnet mask requests using ICMP. A value of 0 indicates that the

 client should not respond. A value of 1 means that the client should

 respond.

 The code for this option is 30, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 30 | 1 | 0/1 |

 +-----+-----+-----+

5.6. Perform Router Discovery Option

 This option specifies whether or not the client should solicit

 routers using the Router Discovery mechanism defined in RFC 1256

 [13]. A value of 0 indicates that the client should not perform

 router discovery. A value of 1 means that the client should perform

 router discovery.

 The code for this option is 31, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 31 | 1 | 0/1 |

 +-----+-----+-----+

5.7. Router Solicitation Address Option

 This option specifies the address to which the client should transmit

 router solicitation requests.

 The code for this option is 32, and its length is 4.

 Code Len Address

 +-----+-----+-----+-----+-----+-----+

 | 32 | 4 | a1 | a2 | a3 | a4 |

 +-----+-----+-----+-----+-----+-----+

5.8. Static Route Option

 This option specifies a list of static routes that the client should

 install in its routing cache. If multiple routes to the same

 destination are specified, they are listed in descending order of

 priority.

 The routes consist of a list of IP address pairs. The first address

 is the destination address, and the second address is the router for

 the destination.

 The default route (0.0.0.0) is an illegal destination for a static

 route. See section 3.5 for information about the router option.

 The code for this option is 33. The minimum length of this option is

 8, and the length MUST be a multiple of 8.

 Code Len Destination 1 Router 1

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 | 33 | n | d1 | d2 | d3 | d4 | r1 | r2 | r3 | r4 |

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 Destination 2 Router 2

 +-----+-----+-----+-----+-----+-----+-----+-----+---

 | d1 | d2 | d3 | d4 | r1 | r2 | r3 | r4 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+---

6. Link Layer Parameters per Interface

 This section lists the options that affect the operation of the data

 link layer on a per-interface basis.

6.1. Trailer Encapsulation Option

 This option specifies whether or not the client should negotiate the

 use of trailers (RFC 893 [14]) when using the ARP protocol. A value

 of 0 indicates that the client should not attempt to use trailers. A

 value of 1 means that the client should attempt to use trailers.

 The code for this option is 34, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 34 | 1 | 0/1 |

 +-----+-----+-----+

6.2. ARP Cache Timeout Option

 This option specifies the timeout in seconds for ARP cache entries.

 The time is specified as a 32-bit unsigned integer.

 The code for this option is 35, and its length is 4.

 Code Len Time

 +-----+-----+-----+-----+-----+-----+

 | 35 | 4 | t1 | t2 | t3 | t4 |

 +-----+-----+-----+-----+-----+-----+

6.3. Ethernet Encapsulation Option

 This option specifies whether or not the client should use Ethernet

 Version 2 (RFC 894 [15]) or IEEE 802.3 (RFC 1042 [16]) encapsulation

 if the interface is an Ethernet. A value of 0 indicates that the

 client should use RFC 894 encapsulation. A value of 1 means that the

 client should use RFC 1042 encapsulation.

 The code for this option is 36, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 36 | 1 | 0/1 |

 +-----+-----+-----+

7. TCP Parameters

 This section lists the options that affect the operation of the TCP

 layer on a per-interface basis.

7.1. TCP Default TTL Option

 This option specifies the default TTL that the client should use when

 sending TCP segments. The value is represented as an 8-bit unsigned

 integer. The minimum value is 1.

 The code for this option is 37, and its length is 1.

 Code Len TTL

 +-----+-----+-----+

 | 37 | 1 | n |

 +-----+-----+-----+

7.2. TCP Keepalive Interval Option

 This option specifies the interval (in seconds) that the client TCP

 should wait before sending a keepalive message on a TCP connection.

 The time is specified as a 32-bit unsigned integer. A value of zero

 indicates that the client should not generate keepalive messages on

 connections unless specifically requested by an application.

 The code for this option is 38, and its length is 4.

 Code Len Time

 +-----+-----+-----+-----+-----+-----+

 | 38 | 4 | t1 | t2 | t3 | t4 |

 +-----+-----+-----+-----+-----+-----+

7.3. TCP Keepalive Garbage Option

 This option specifies the whether or not the client should send TCP

 keepalive messages with a octet of garbage for compatibility with

 older implementations. A value of 0 indicates that a garbage octet

 should not be sent. A value of 1 indicates that a garbage octet

 should be sent.

 The code for this option is 39, and its length is 1.

 Code Len Value

 +-----+-----+-----+

 | 39 | 1 | 0/1 |

 +-----+-----+-----+

8. Application and Service Parameters

 This section details some miscellaneous options used to configure

 miscellaneous applications and services.

8.1. Network Information Service Domain Option

 This option specifies the name of the client's NIS [17] domain. The

 domain is formatted as a character string consisting of characters

 from the NVT ASCII character set.

 The code for this option is 40. Its minimum length is 1.

 Code Len NIS Domain Name

 +-----+-----+-----+-----+-----+-----+---

 | 40 | n | n1 | n2 | n3 | n4 | ...

 +-----+-----+-----+-----+-----+-----+---

8.2. Network Information Servers Option

 This option specifies a list of IP addresses indicating NIS servers

 available to the client. Servers SHOULD be listed in order of

 preference.

 The code for this option is 41. Its minimum length is 4, and the

 length MUST be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 41 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

8.3. Network Time Protocol Servers Option

 This option specifies a list of IP addresses indicating NTP [18]

 servers available to the client. Servers SHOULD be listed in order

 of preference.

 The code for this option is 42. Its minimum length is 4, and the

 length MUST be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 42 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

8.4. Vendor Specific Information

 This option is used by clients and servers to exchange vendor-

 specific information. The information is an opaque object of n

 octets, presumably interpreted by vendor-specific code on the clients

 and servers. The definition of this information is vendor specific.

 The vendor is indicated in the class-identifier option. Servers not

 equipped to interpret the vendor-specific information sent by a

 client MUST ignore it (although it may be reported). Clients which

 do not receive desired vendor-specific information SHOULD make an

 attempt to operate without it, although they may do so (and announce

 they are doing so) in a degraded mode.

 If a vendor potentially encodes more than one item of information in

 this option, then the vendor SHOULD encode the option using

 "Encapsulated vendor-specific options" as described below:

 The Encapsulated vendor-specific options field SHOULD be encoded as a

 sequence of code/length/value fields of identical syntax to the DHCP

 options field with the following exceptions:

 1) There SHOULD NOT be a "magic cookie" field in the encapsulated

 vendor-specific extensions field.

 2) Codes other than 0 or 255 MAY be redefined by the vendor within

 the encapsulated vendor-specific extensions field, but SHOULD

 conform to the tag-length-value syntax defined in section 2.

 3) Code 255 (END), if present, signifies the end of the

 encapsulated vendor extensions, not the end of the vendor

 extensions field. If no code 255 is present, then the end of

 the enclosing vendor-specific information field is taken as the

 end of the encapsulated vendor-specific extensions field.

 The code for this option is 43 and its minimum length is 1.

 Code Len Vendor-specific information

 +-----+-----+-----+-----+---

 | 43 | n | i1 | i2 | ...

 +-----+-----+-----+-----+---

 When encapsulated vendor-specific extensions are used, the

 information bytes 1-n have the following format:

 Code Len Data item Code Len Data item Code

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 | T1 | n | d1 | d2 | ... | T2 | n | D1 | D2 | ... | ... |

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

8.5. NetBIOS over TCP/IP Name Server Option

 The NetBIOS name server (NBNS) option specifies a list of RFC

 1001/1002 [19] [20] NBNS name servers listed in order of preference.

 The code for this option is 44. The minimum length of the option is

 4 octets, and the length must always be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----

 | 44 | n | a1 | a2 | a3 | a4 | b1 | b2 | b3 | b4 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----

8.6. NetBIOS over TCP/IP Datagram Distribution Server Option

 The NetBIOS datagram distribution server (NBDD) option specifies a

 list of RFC 1001/1002 NBDD servers listed in order of preference. The

 code for this option is 45. The minimum length of the option is 4

 octets, and the length must always be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----

 | 45 | n | a1 | a2 | a3 | a4 | b1 | b2 | b3 | b4 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----

8.7. NetBIOS over TCP/IP Node Type Option

 The NetBIOS node type option allows NetBIOS over TCP/IP clients which

 are configurable to be configured as described in RFC 1001/1002. The

 value is specified as a single octet which identifies the client type

 as follows:

 Value Node Type

 ----- ---------

 0x1 B-node

 0x2 P-node

 0x4 M-node

 0x8 H-node

 In the above chart, the notation '0x' indicates a number in base-16

 (hexadecimal).

 The code for this option is 46. The length of this option is always

 1.

 Code Len Node Type

 +-----+-----+-----------+

 | 46 | 1 | see above |

 +-----+-----+-----------+

8.8. NetBIOS over TCP/IP Scope Option

 The NetBIOS scope option specifies the NetBIOS over TCP/IP scope

 parameter for the client as specified in RFC 1001/1002. See [19],

 [20], and [8] for character-set restrictions.

 The code for this option is 47. The minimum length of this option is

 1.

 Code Len NetBIOS Scope

 +-----+-----+-----+-----+-----+-----+----

 | 47 | n | s1 | s2 | s3 | s4 | ...

 +-----+-----+-----+-----+-----+-----+----

8.9. X Window System Font Server Option

 This option specifies a list of X Window System [21] Font servers

 available to the client. Servers SHOULD be listed in order of

 preference.

 The code for this option is 48. The minimum length of this option is

 4 octets, and the length MUST be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+---

 | 48 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+---

8.10. X Window System Display Manager Option

 This option specifies a list of IP addresses of systems that are

 running the X Window System Display Manager and are available to the

 client.

 Addresses SHOULD be listed in order of preference.

 The code for the this option is 49. The minimum length of this option

 is 4, and the length MUST be a multiple of 4.

 Code Len Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+---

 | 49 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+---

9. DHCP Extensions

 This section details the options that are specific to DHCP.

9.1. Requested IP Address

 This option is used in a client request (DHCPDISCOVER) to allow the

 client to request that a particular IP address be assigned.

 The code for this option is 50, and its length is 4.

 Code Len Address

 +-----+-----+-----+-----+-----+-----+

 | 50 | 4 | a1 | a2 | a3 | a4 |

 +-----+-----+-----+-----+-----+-----+

9.2. IP Address Lease Time

 This option is used in a client request (DHCPDISCOVER or DHCPREQUEST)

 to allow the client to request a lease time for the IP address. In a

 server reply (DHCPOFFER), a DHCP server uses this option to specify

 the lease time it is willing to offer.

 The time is in units of seconds, and is specified as a 32-bit

 unsigned integer.

 The code for this option is 51, and its length is 4.

 Code Len Lease Time

 +-----+-----+-----+-----+-----+-----+

 | 51 | 4 | t1 | t2 | t3 | t4 |

 +-----+-----+-----+-----+-----+-----+

9.3. Option Overload

 This option is used to indicate that the DHCP "sname" or "file"

 fields are being overloaded by using them to carry DHCP options. A

 DHCP server inserts this option if the returned parameters will

 exceed the usual space allotted for options.

 If this option is present, the client interprets the specified

 additional fields after it concludes interpretation of the standard

 option fields.

 The code for this option is 52, and its length is 1. Legal values

 for this option are:

 Value Meaning

 ----- --------

 1 the "file" field is used to hold options

 2 the "sname" field is used to hold options

 3 both fields are used to hold options

 Code Len Value

 +-----+-----+-----+

 | 52 | 1 |1/2/3|

 +-----+-----+-----+

9.4. DHCP Message Type

 This option is used to convey the type of the DHCP message. The code

 for this option is 53, and its length is 1. Legal values for this

 option are:

 Value Message Type

 ----- ------------

 1 DHCPDISCOVER

 2 DHCPOFFER

 3 DHCPREQUEST

 4 DHCPDECLINE

 5 DHCPACK

 6 DHCPNAK

 7 DHCPRELEASE

 Code Len Type

 +-----+-----+-----+

 | 53 | 1 | 1-7 |

 +-----+-----+-----+

9.5. Server Identifier

 This option is used in DHCPOFFER and DHCPREQUEST messages, and may

 optionally be included in the DHCPACK and DHCPNAK messages. DHCP

 servers include this option in the DHCPOFFER in order to allow the

 client to distinguish between lease offers. DHCP clients indicate

 which of several lease offers is being accepted by including this

 option in a DHCPREQUEST message.

 The identifier is the IP address of the selected server.

 The code for this option is 54, and its length is 4.

 Code Len Address

 +-----+-----+-----+-----+-----+-----+

 | 54 | 4 | a1 | a2 | a3 | a4 |

 +-----+-----+-----+-----+-----+-----+

9.6. Parameter Request List

 This option is used by a DHCP client to request values for specified

 configuration parameters. The list of requested parameters is

 specified as n octets, where each octet is a valid DHCP option code

 as defined in this document.

 The client MAY list the options in order of preference. The DHCP

 server is not required to return the options in the requested order,

 but MUST try to insert the requested options in the order requested

 by the client.

 The code for this option is 55. Its minimum length is 1.

 Code Len Option Codes

 +-----+-----+-----+-----+---

 | 55 | n | c1 | c2 | ...

 +-----+-----+-----+-----+---

9.7. Message

 This option is used by a DHCP server to provide an error message to a

 DHCP client in a DHCPNAK message in the event of a failure. A client

 may use this option in a DHCPDECLINE message to indicate the why the

 client declined the offered parameters. The message consists of n

 octets of NVT ASCII text, which the client may display on an

 available output device.

 The code for this option is 56 and its minimum length is 1.

 Code Len Text

 +-----+-----+-----+-----+---

 | 56 | n | c1 | c2 | ...

 +-----+-----+-----+-----+---

9.8. Maximum DHCP Message Size

 This option specifies the maximum length DHCP message that it is

 willing to accept. The length is specified as an unsigned 16-bit

 integer. A client may use the maximum DHCP message size option in

 DHCPDISCOVER or DHCPREQUEST messages, but should not use the option

 in DHCPDECLINE messages.

 The code for this option is 57, and its length is 2. The minimum

 legal value is 576 octets.

 Code Len Length

 +-----+-----+-----+-----+

 | 57 | 2 | l1 | l2 |

 +-----+-----+-----+-----+

9.9. Renewal (T1) Time Value

 This option specifies the time interval from address assignment until

 the client transitions to the RENEWING state.

 The value is in units of seconds, and is specified as a 32-bit

 unsigned integer.

 The code for this option is 58, and its length is 4.

 Code Len T1 Interval

 +-----+-----+-----+-----+-----+-----+

 | 58 | 4 | t1 | t2 | t3 | t4 |

 +-----+-----+-----+-----+-----+-----+

9.10. Rebinding (T2) Time Value

 This option specifies the time interval from address assignment until

 the client transitions to the REBINDING state.

 The value is in units of seconds, and is specified as a 32-bit

 unsigned integer.

 The code for this option is 59, and its length is 4.

 Code Len T2 Interval

 +-----+-----+-----+-----+-----+-----+

 | 59 | 4 | t1 | t2 | t3 | t4 |

 +-----+-----+-----+-----+-----+-----+

9.11. Class-identifier

 This option is used by DHCP clients to optionally identify the type

 and configuration of a DHCP client. The information is a string of n

 octets, interpreted by servers. Vendors and sites may choose to

 define specific class identifiers to convey particular configuration

 or other identification information about a client. For example, the

 identifier may encode the client's hardware configuration. Servers

 not equipped to interpret the class-specific information sent by a

 client MUST ignore it (although it may be reported).

 The code for this option is 60, and its minimum length is 1.

 Code Len Class-Identifier

 +-----+-----+-----+-----+---

 | 60 | n | i1 | i2 | ...

 +-----+-----+-----+-----+---

9.12. Client-identifier

 This option is used by DHCP clients to specify their unique

 identifier. DHCP servers use this value to index their database of

 address bindings. This value is expected to be unique for all

 clients in an administrative domain.

 Identifiers consist of a type-value pair, similar to the

 It is expected that this field will typically contain a hardware type

 and hardware address, but this is not required. Current legal values

 for hardware types are defined in [22].

 The code for this option is 61, and its minimum length is 2.

 Code Len Type Client-Identifier

 +-----+-----+-----+-----+-----+---

 | 61 | n | t1 | i1 | i2 | ...

 +-----+-----+-----+-----+-----+---

G.3
RFC 2131
2. Protocol Summary

 From the client's point of view, DHCP is an extension of the BOOTP

 mechanism. This behavior allows existing BOOTP clients to

 interoperate with DHCP servers without requiring any change to the

 clients' initialization software. RFC 1542 [2] details the

 interactions between BOOTP and DHCP clients and servers [9]. There

 are some new, optional transactions that optimize the interaction

 between DHCP clients and servers that are described in sections 3 and

 4.

 Figure 1 gives the format of a DHCP message and table 1 describes

 each of the fields in the DHCP message. The numbers in parentheses

 indicate the size of each field in octets. The names for the fields

 given in the figure will be used throughout this document to refer to

 the fields in DHCP messages.

 There are two primary differences between DHCP and BOOTP. First,

 DHCP defines mechanisms through which clients can be assigned a

 network address for a finite lease, allowing for serial reassignment

 of network addresses to different clients. Second, DHCP provides the

 mechanism for a client to acquire all of the IP configuration

 parameters that it needs in order to operate.

 DHCP introduces a small change in terminology intended to clarify the

 meaning of one of the fields. What was the "vendor extensions" field

 in BOOTP has been re-named the "options" field in DHCP. Similarly,

 the tagged data items that were used inside the BOOTP "vendor

 extensions" field, which were formerly referred to as "vendor

 extensions," are now termed simply "options."

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | op (1) | htype (1) | hlen (1) | hops (1) |

 +---------------+---------------+---------------+---------------+

 | xid (4) |

 +-------------------------------+-------------------------------+

 | secs (2) | flags (2) |

 +-------------------------------+-------------------------------+

 | ciaddr (4) |

 +---+

 | yiaddr (4) |

 +---+

 | siaddr (4) |

 +---+

 | giaddr (4) |

 +---+

 | |

 | chaddr (16) |

 | |

 | |

 +---+

 | |

 | sname (64) |

 +---+

 | |

 | file (128) |

 +---+

 | |

 | options (variable) |

 +---+

 Figure 1: Format of a DHCP message

 DHCP defines a new 'client identifier' option that is used to pass an

 explicit client identifier to a DHCP server. This change eliminates

 the overloading of the 'chaddr' field in BOOTP messages, where

 'chaddr' is used both as a hardware address for transmission of BOOTP

 reply messages and as a client identifier. The 'client identifier'

 is an opaque key, not to be interpreted by the server; for example,

 the 'client identifier' may contain a hardware address, identical to

 the contents of the 'chaddr' field, or it may contain another type of

 identifier, such as a DNS name. The 'client identifier' chosen by a

 DHCP client MUST be unique to that client within the subnet to which

 the client is attached. If the client uses a 'client identifier' in

 one message, it MUST use that same identifier in all subsequent

 messages, to ensure that all servers correctly identify the client.

 DHCP clarifies the interpretation of the 'siaddr' field as the

 address of the server to use in the next step of the client's

 bootstrap process. A DHCP server may return its own address in the

 'siaddr' field, if the server is prepared to supply the next

 bootstrap service (e.g., delivery of an operating system executable

 image). A DHCP server always returns its own address in the 'server

 identifier' option.

 FIELD OCTETS DESCRIPTION

 ----- ------ -----------

 op 1 Message op code / message type.

 1 = BOOTREQUEST, 2 = BOOTREPLY

 htype 1 Hardware address type, see ARP section in "Assigned

 Numbers" RFC; e.g., '1' = 10mb ethernet.

 hlen 1 Hardware address length (e.g. '6' for 10mb

 ethernet).

 hops 1 Client sets to zero, optionally used by relay agents

 when booting via a relay agent.

 xid 4 Transaction ID, a random number chosen by the

 client, used by the client and server to associate

 messages and responses between a client and a

 server.

 secs 2 Filled in by client, seconds elapsed since client

 began address acquisition or renewal process.

 flags 2 Flags (see figure 2).

 ciaddr 4 Client IP address; only filled in if client is in

 BOUND, RENEW or REBINDING state and can respond

 to ARP requests.

 yiaddr 4 'your' (client) IP address.

 siaddr 4 IP address of next server to use in bootstrap;

 returned in DHCPOFFER, DHCPACK by server.

 giaddr 4 Relay agent IP address, used in booting via a

 relay agent.

 chaddr 16 Client hardware address.

 sname 64 Optional server host name, null terminated string.

 file 128 Boot file name, null terminated string; "generic"

 name or null in DHCPDISCOVER, fully qualified

 directory-path name in DHCPOFFER.

 options var Optional parameters field. See the options

 documents for a list of defined options.

 Table 1: Description of fields in a DHCP message

 The 'options' field is now variable length. A DHCP client must be

 prepared to receive DHCP messages with an 'options' field of at least

 length 312 octets. This requirement implies that a DHCP client must

 be prepared to receive a message of up to 576 octets, the minimum IP

 datagram size an IP host must be prepared to accept [3]. DHCP

 clients may negotiate the use of larger DHCP messages through the

 'maximum DHCP message size' option. The options field may be further

 extended into the 'file' and 'sname' fields.

 In the case of a client using DHCP for initial configuration (before

 the client's TCP/IP software has been completely configured), DHCP

 requires creative use of the client's TCP/IP software and liberal

 interpretation of RFC 1122. The TCP/IP software SHOULD accept and

 forward to the IP layer any IP packets delivered to the client's

 hardware address before the IP address is configured; DHCP servers

 and BOOTP relay agents may not be able to deliver DHCP messages to

 clients that cannot accept hardware unicast datagrams before the

 TCP/IP software is configured.

 To work around some clients that cannot accept IP unicast datagrams

 before the TCP/IP software is configured as discussed in the previous

 paragraph, DHCP uses the 'flags' field [21]. The leftmost bit is

 defined as the BROADCAST (B) flag. The semantics of this flag are

 discussed in section 4.1 of this document. The remaining bits of the

 flags field are reserved for future use. They MUST be set to zero by

 clients and ignored by servers and relay agents. Figure 2 gives the

 format of the 'flags' field.

 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |B| MBZ |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 B: BROADCAST flag

 MBZ: MUST BE ZERO (reserved for future use)

 Figure 2: Format of the 'flags' field

G.4
RFC 3315

6. Client/Server Message Formats

 All DHCP messages sent between clients and servers share an identical

 fixed format header and a variable format area for options.

 All values in the message header and in options are in network byte

 order.

 Options are stored serially in the options field, with no padding

 between the options. Options are byte-aligned but are not aligned in

 any other way such as on 2 or 4 byte boundaries.

 The following diagram illustrates the format of DHCP messages sent

 between clients and servers:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | msg-type | transaction-id |

 +-+

 | |

 . options .

 . (variable) .

 | |

 +-+

 msg-type Identifies the DHCP message type; the

 available message types are listed in

 section 5.3.

 transaction-id The transaction ID for this message exchange.

 options Options carried in this message; options are

 described in section 22.

7. Relay Agent/Server Message Formats

 Relay agents exchange messages with servers to relay messages between

 clients and servers that are not connected to the same link.

 All values in the message header and in options are in network byte

 order.

 Options are stored serially in the options field, with no padding

 between the options. Options are byte-aligned but are not aligned in

 any other way such as on 2 or 4 byte boundaries.

 There are two relay agent messages, which share the following format:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | msg-type | hop-count | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

 | |

 | link-address |

 | |

 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|

 | | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

 | |

 | peer-address |

 | |

 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|

 | | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

 . .

 . options (variable number and length)

 | |

 +-+

22. DHCP Options

 Options are used to carry additional information and parameters in

 DHCP messages. Every option shares a common base format, as

 described in section 22.1. All values in options are represented in

 network byte order.

 This document describes the DHCP options defined as part of the base

 DHCP specification. Other options may be defined in the future in

 separate documents.

 Unless otherwise noted, each option may appear only in the options

 area of a DHCP message and may appear only once. If an option does

 appear multiple times, each instance is considered separate and the

 data areas of the options MUST NOT be concatenated or otherwise

 combined.

22.1. Format of DHCP Options

 The format of DHCP options is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | option-code | option-len |

 +-+

 | option-data |

 | (option-len octets) |

 +-+

 option-code An unsigned integer identifying the specific option

 type carried in this option.

 option-len An unsigned integer giving the length of the

 option-data field in this option in octets.

 option-data The data for the option; the format of this data

 depends on the definition of the option.

 DHCPv6 options are scoped by using encapsulation. Some options apply

 generally to the client, some are specific to an IA, and some are

 specific to the addresses within an IA. These latter two cases are

 discussed in sections 22.4 and 22.6.

22.2. Client Identifier Option

 The Client Identifier option is used to carry a DUID (see section 9)

 identifying a client between a client and a server. The format of

 the Client Identifier option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_CLIENTID | option-len |

 +-+

 . .

 . DUID .

 . (variable length) .

 . .

 +-+

 option-code OPTION_CLIENTID (1).

 option-len Length of DUID in octets.

 DUID The DUID for the client.

22.3. Server Identifier Option

 The Server Identifier option is used to carry a DUID (see section 9)

 identifying a server between a client and a server. The format of

 the Server Identifier option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_SERVERID | option-len |

 +-+

 . .

 . DUID .

 . (variable length) .

 . .

 +-+

 option-code OPTION_SERVERID (2).

 option-len Length of DUID in octets.

 DUID The DUID for the server.

22.4. Identity Association for Non-temporary Addresses Option

 The Identity Association for Non-temporary Addresses option (IA_NA

 option) is used to carry an IA_NA, the parameters associated with the

 IA_NA, and the non-temporary addresses associated with the IA_NA.

 Addresses appearing in an IA_NA option are not temporary addresses

 (see section 22.5).

 The format of the IA_NA option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_IA_NA | option-len |

 +-+

 | IAID (4 octets) |

 +-+

 | T1 |

 +-+

 | T2 |

 +-+

 | |

 . IA_NA-options .

 . .

 +-+

 option-code OPTION_IA_NA (3).

 option-len 12 + length of IA_NA-options field.

 IAID The unique identifier for this IA_NA; the

 IAID must be unique among the identifiers for

 all of this client's IA_NAs. The number

 space for IA_NA IAIDs is separate from the

 number space for IA_TA IAIDs.

 T1 The time at which the client contacts the

 server from which the addresses in the IA_NA

 were obtained to extend the lifetimes of the

 addresses assigned to the IA_NA; T1 is a

 time duration relative to the current time

 expressed in units of seconds.

 T2 The time at which the client contacts any

 available server to extend the lifetimes of

 the addresses assigned to the IA_NA; T2 is a

 time duration relative to the current time

 expressed in units of seconds.

 IA_NA-options Options associated with this IA_NA.

 The IA_NA-options field encapsulates those options that are specific

 to this IA_NA. For example, all of the IA Address Options carrying

 the addresses associated with this IA_NA are in the IA_NA-options

 field.

 An IA_NA option may only appear in the options area of a DHCP

 message. A DHCP message may contain multiple IA_NA options.

 The status of any operations involving this IA_NA is indicated in a

 Status Code option in the IA_NA-options field.

 Note that an IA_NA has no explicit "lifetime" or "lease length" of

 its own. When the valid lifetimes of all of the addresses in an

 IA_NA have expired, the IA_NA can be considered as having expired.

 T1 and T2 are included to give servers explicit control over when a

 client recontacts the server about a specific IA_NA.

 In a message sent by a client to a server, values in the T1 and T2

 fields indicate the client's preference for those parameters. The

 client sets T1 and T2 to 0 if it has no preference for those values.

 In a message sent by a server to a client, the client MUST use the

 values in the T1 and T2 fields for the T1 and T2 parameters, unless

 those values in those fields are 0. The values in the T1 and T2

 fields are the number of seconds until T1 and T2.

 The server selects the T1 and T2 times to allow the client to extend

 the lifetimes of any addresses in the IA_NA before the lifetimes

 expire, even if the server is unavailable for some short period of

 time. Recommended values for T1 and T2 are .5 and .8 times the

 shortest preferred lifetime of the addresses in the IA that the

 server is willing to extend, respectively. If the "shortest"

 preferred lifetime is 0xffffffff ("infinity"), the recommended T1 and

 T2 values are also 0xffffffff. If the time at which the addresses in

 an IA_NA are to be renewed is to be left to the discretion of the

 client, the server sets T1 and T2 to 0.

 If a server receives an IA_NA with T1 greater than T2, and both T1

 and T2 are greater than 0, the server ignores the invalid values of

 T1 and T2 and processes the IA_NA as though the client had set T1 and

 T2 to 0.

 If a client receives an IA_NA with T1 greater than T2, and both T1

 and T2 are greater than 0, the client discards the IA_NA option and

 processes the remainder of the message as though the server had not

 included the invalid IA_NA option.

 Care should be taken in setting T1 or T2 to 0xffffffff ("infinity").

 A client will never attempt to extend the lifetimes of any addresses

 in an IA with T1 set to 0xffffffff. A client will never attempt to

 use a Rebind message to locate a different server to extend the

 lifetimes of any addresses in an IA with T2 set to 0xffffffff.

22.5. Identity Association for Temporary Addresses Option

 The Identity Association for the Temporary Addresses (IA_TA) option

 is used to carry an IA_TA, the parameters associated with the IA_TA

 and the addresses associated with the IA_TA. All of the addresses in

 this option are used by the client as temporary addresses, as defined

 in RFC 3041 [12]. The format of the IA_TA option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_IA_TA | option-len |

 +-+

 | IAID (4 octets) |

 +-+

 | |

 . IA_TA-options .

 . .

 +-+

 option-code OPTION_IA_TA (4).

 option-len 4 + length of IA_TA-options field.

 IAID The unique identifier for this IA_TA; the

 IAID must be unique among the identifiers

 for all of this client's IA_TAs. The number

 space for IA_TA IAIDs is separate from the

 number space for IA_NA IAIDs.

 IA_TA-options Options associated with this IA_TA.

 The IA_TA-Options field encapsulates those options that are specific

 to this IA_TA. For example, all of the IA Address Options carrying

 the addresses associated with this IA_TA are in the IA_TA-options

 field.

 Each IA_TA carries one "set" of temporary addresses; that is, at most

 one address from each prefix assigned to the link to which the client

 is attached.

 An IA_TA option may only appear in the options area of a DHCP

 message. A DHCP message may contain multiple IA_TA options.

 The status of any operations involving this IA_TA is indicated in a

 Status Code option in the IA_TA-options field.

 Note that an IA has no explicit "lifetime" or "lease length" of its

 own. When the valid lifetimes of all of the addresses in an IA_TA

 have expired, the IA can be considered as having expired.

 An IA_TA option does not include values for T1 and T2. A client MAY

 request that the lifetimes on temporary addresses be extended by

 including the addresses in a IA_TA option sent in a Renew or Rebind

 message to a server. For example, a client would request an

 extension on the lifetime of a temporary address to allow an

 application to continue to use an established TCP connection.

 The client obtains new temporary addresses by sending an IA_TA option

 with a new IAID to a server. Requesting new temporary addresses from

 the server is the equivalent of generating new temporary addresses as

 described in RFC 3041. The server will generate new temporary

 addresses and return them to the client. The client should request

 new temporary addresses before the lifetimes on the previously

 assigned addresses expire.

 A server MUST return the same set of temporary address for the same

 IA_TA (as identified by the IAID) as long as those addresses are

 still valid. After the lifetimes of the addresses in an IA_TA have

 expired, the IAID may be reused to identify a new IA_TA with new

 temporary addresses.

 This option MAY appear in a Confirm message if the lifetimes on the

 temporary addresses in the associated IA have not expired.

22.6. IA Address Option

 The IA Address option is used to specify IPv6 addresses associated

 with an IA_NA or an IA_TA. The IA Address option must be

 encapsulated in the Options field of an IA_NA or IA_TA option. The

 Options field encapsulates those options that are specific to this

 address.

 The format of the IA Address option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_IAADDR | option-len |

 +-+

 | |

 | IPv6 address |

 | |

 | |

 +-+

 | preferred-lifetime |

 +-+

 | valid-lifetime |

 +-+

 . .

 . IAaddr-options .

 . .

 +-+

 option-code OPTION_IAADDR (5).

 option-len 24 + length of IAaddr-options field.

 IPv6 address An IPv6 address.

 preferred-lifetime The preferred lifetime for the IPv6 address in

 the option, expressed in units of seconds.

 valid-lifetime The valid lifetime for the IPv6 address in the

 option, expressed in units of seconds.

 IAaddr-options Options associated with this address.

 In a message sent by a client to a server, values in the preferred

 and valid lifetime fields indicate the client's preference for those

 parameters. The client may send 0 if it has no preference for the

 preferred and valid lifetimes. In a message sent by a server to a

 client, the client MUST use the values in the preferred and valid

 lifetime fields for the preferred and valid lifetimes. The values in

 the preferred and valid lifetimes are the number of seconds remaining

 in each lifetime.

 A client discards any addresses for which the preferred lifetime is

 greater than the valid lifetime. A server ignores the lifetimes set

 by the client if the preferred lifetime is greater than the valid

 lifetime and ignores the values for T1 and T2 set by the client if

 those values are greater than the preferred lifetime.

 Care should be taken in setting the valid lifetime of an address to

 0xffffffff ("infinity"), which amounts to a permanent assignment of

 an address to a client.

 An IA Address option may appear only in an IA_NA option or an IA_TA

 option. More than one IA Address Option can appear in an IA_NA

 option or an IA_TA option.

 The status of any operations involving this IA Address is indicated

 in a Status Code option in the IAaddr-options field.

22.7. Option Request Option

 The Option Request option is used to identify a list of options in a

 message between a client and a server. The format of the Option

 Request option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_ORO | option-len |

 +-+

 | requested-option-code-1 | requested-option-code-2 |

 +-+

 | ... |

 +-+

 option-code OPTION_ORO (6).

 option-len 2 * number of requested options.

 requested-option-code-n The option code for an option requested by

 the client.

 A client MAY include an Option Request option in a Solicit, Request,

 Renew, Rebind, Confirm or Information-request message to inform the

 server about options the client wants the server to send to the

 client. A server MAY include an Option Request option in a

 Reconfigure option to indicate which options the client should

 request from the server.

22.8. Preference Option

 The Preference option is sent by a server to a client to affect the

 selection of a server by the client.

 The format of the Preference option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_PREFERENCE | option-len |

 +-+

 | pref-value |

 +-+-+-+-+-+-+-+-+

 option-code OPTION_PREFERENCE (7).

 option-len 1.

 pref-value The preference value for the server in this message.

 A server MAY include a Preference option in an Advertise message to

 control the selection of a server by the client. See section 17.1.3

 for the use of the Preference option by the client and the

 interpretation of Preference option data value.

22.9. Elapsed Time Option

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_ELAPSED_TIME | option-len |

 +-+

 | elapsed-time |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 option-code OPTION_ELAPSED_TIME (8).

 option-len 2.

 elapsed-time The amount of time since the client began its

 current DHCP transaction. This time is expressed in

 hundredths of a second (10^-2 seconds).

 A client MUST include an Elapsed Time option in messages to indicate

 how long the client has been trying to complete a DHCP message

 exchange. The elapsed time is measured from the time at which the

 client sent the first message in the message exchange, and the

 elapsed-time field is set to 0 in the first message in the message

 exchange. Servers and Relay Agents use the data value in this option

 as input to policy controlling how a server responds to a client

 message. For example, the elapsed time option allows a secondary

 DHCP server to respond to a request when a primary server has not

 answered in a reasonable time. The elapsed time value is an

 unsigned, 16 bit integer. The client uses the value 0xffff to

 represent any elapsed time values greater than the largest time value

 that can be represented in the Elapsed Time option.

22.10. Relay Message Option

 The Relay Message option carries a DHCP message in a Relay-forward or

 Relay-reply message.

 The format of the Relay Message option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_RELAY_MSG | option-len |

 +-+

 | |

 . DHCP-relay-message .

 . .

 . .

 +-+

 option-code OPTION_RELAY_MSG (9)

 option-len Length of DHCP-relay-message

 DHCP-relay-message In a Relay-forward message, the received

 message, relayed verbatim to the next relay agent

 or server; in a Relay-reply message, the message to

 be copied and relayed to the relay agent or client

 whose address is in the peer-address field of the

 Relay-reply message

22.11. Authentication Option

 The Authentication option carries authentication information to

 authenticate the identity and contents of DHCP messages. The use of

 the Authentication option is described in section 21. The format of

 the Authentication option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_AUTH | option-len |

 +-+

 | protocol | algorithm | RDM | |

 +-+ |

 | |

 | replay detection (64 bits) +-+-+-+-+-+-+-+-+

 | | auth-info |

 +-+ |

 . authentication information .

 . (variable length) .

 +-+

 option-code OPTION_AUTH (11)

 option-len 11 + length of authentication

 information field

 protocol The authentication protocol used in

 this authentication option

 algorithm The algorithm used in the

 authentication protocol

 RDM The replay detection method used in

 this authentication option

 Replay detection The replay detection information for

 the RDM

 authentication information The authentication information,

 as specified by the protocol and

 algorithm used in this authentication

 option

22.12. Server Unicast Option

 The server sends this option to a client to indicate to the client

 that it is allowed to unicast messages to the server. The format of

 the Server Unicast option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_UNICAST | option-len |

 +-+

 | |

 | server-address |

 | |

 | |

 +-+

 option-code OPTION_UNICAST (12).

 option-len 16.

 server-address The IP address to which the client should send

 messages delivered using unicast.

 The server specifies the IPv6 address to which the client is to send

 unicast messages in the server-address field. When a client receives

 this option, where permissible and appropriate, the client sends

 messages directly to the server using the IPv6 address specified in

 the server-address field of the option.

 When the server sends a Unicast option to the client, some messages

 from the client will not be relayed by Relay Agents, and will not

 include Relay Agent options from the Relay Agents. Therefore, a

 server should only send a Unicast option to a client when Relay

 Agents are not sending Relay Agent options. A DHCP server rejects

 any messages sent inappropriately using unicast to ensure that

 messages are relayed by Relay Agents when Relay Agent options are in

 use.

 Details about when the client may send messages to the server using

 unicast are in section 18.

22.13. Status Code Option

 This option returns a status indication related to the DHCP message

 or option in which it appears. The format of the Status Code option

 is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_STATUS_CODE | option-len |

 +-+

 | status-code | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

 . .

 . status-message .

 . .

 +-+

 option-code OPTION_STATUS_CODE (13).

 option-len 2 + length of status-message.

 status-code The numeric code for the status encoded in

 this option. The status codes are defined in

 section 24.4.

 status-message A UTF-8 encoded text string suitable for

 display to an end user, which MUST NOT be

 null-terminated.

 A Status Code option may appear in the options field of a DHCP

 message and/or in the options field of another option. If the Status

 Code option does not appear in a message in which the option could

 appear, the status of the message is assumed to be Success.

22.14. Rapid Commit Option

 The Rapid Commit option is used to signal the use of the two message

 exchange for address assignment. The format of the Rapid Commit

 option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_RAPID_COMMIT | 0 |

 +-+

 option-code OPTION_RAPID_COMMIT (14).

 option-len 0.

 A client MAY include this option in a Solicit message if the client

 is prepared to perform the Solicit-Reply message exchange described

 in section 17.1.1.

 A server MUST include this option in a Reply message sent in response

 to a Solicit message when completing the Solicit-Reply message

 exchange.

 DISCUSSION:

 Each server that responds with a Reply to a Solicit that includes

 a Rapid Commit option will commit the assigned addresses in the

 Reply message to the client, and will not receive any confirmation

 that the client has received the Reply message. Therefore, if

 more than one server responds to a Solicit that includes a Rapid

 Commit option, some servers will commit addresses that are not

 actually used by the client.

 The problem of unused addresses can be minimized, for example, by

 designing the DHCP service so that only one server responds to the

 Solicit or by using relatively short lifetimes for assigned

 addresses.

22.15. User Class Option

 The User Class option is used by a client to identify the type or

 category of user or applications it represents.

 The format of the User Class option is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_USER_CLASS | option-len |

 +-+

 . .

 . user-class-data .

 . .

 +-+

 option-code OPTION_USER_CLASS (15).

 option-len Length of user class data field.

 user-class-data The user classes carried by the client.

 The information contained in the data area of this option is

 contained in one or more opaque fields that represent the user class

 or classes of which the client is a member. A server selects

 configuration information for the client based on the classes

 identified in this option. For example, the User Class option can be

 used to configure all clients of people in the accounting department

 with a different printer than clients of people in the marketing

 department. The user class information carried in this option MUST

 be configurable on the client.

 The data area of the user class option MUST contain one or more

 instances of user class data. Each instance of the user class data

 is formatted as follows:

 +-...-+-+-+-+-+-+-+

 | user-class-len | opaque-data |

 +-...-+-+-+-+-+-+-+

 The user-class-len is two octets long and specifies the length of the

 opaque user class data in network byte order.

 A server interprets the classes identified in this option according

 to its configuration to select the appropriate configuration

 information for the client. A server may use only those user classes

 that it is configured to interpret in selecting configuration

 information for a client and ignore any other user classes. In

 response to a message containing a User Class option, a server

 includes a User Class option containing those classes that were

 successfully interpreted by the server, so that the client can be

 informed of the classes interpreted by the server.

22.16. Vendor Class Option

 This option is used by a client to identify the vendor that

 manufactured the hardware on which the client is running. The

 information contained in the data area of this option is contained in

 one or more opaque fields that identify details of the hardware

 configuration. The format of the Vendor Class option is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_VENDOR_CLASS | option-len |

 +-+

 | enterprise-number |

 +-+

 . .

 . vendor-class-data .

 +-+

 option-code OPTION_VENDOR_CLASS (16).

 option-len 4 + length of vendor class data field.

 enterprise-number The vendor's registered Enterprise Number as

 registered with IANA [6].

 vendor-class-data The hardware configuration of the host on

 which the client is running.

 The vendor-class-data is composed of a series of separate items, each

 of which describes some characteristic of the client's hardware

 configuration. Examples of vendor-class-data instances might include

 the version of the operating system the client is running or the

 amount of memory installed on the client.

 Each instance of the vendor-class-data is formatted as follows:

 +-...-+-+-+-+-+-+-+

 | vendor-class-len | opaque-data |

 +-...-+-+-+-+-+-+-+

 The vendor-class-len is two octets long and specifies the length of

 the opaque vendor class data in network byte order.

22.17. Vendor-specific Information Option

 This option is used by clients and servers to exchange

 vendor-specific information.

 The format of the Vendor-specific Information option is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_VENDOR_OPTS | option-len |

 +-+

 | enterprise-number |

 +-+

 . .

 . option-data .

 . .

 +-+

 option-code OPTION_VENDOR_OPTS (17)

 option-len 4 + length of option-data field

 enterprise-number The vendor's registered Enterprise Number as

 registered with IANA [6].

 option-data An opaque object of option-len octets,

 interpreted by vendor-specific code on the

 clients and servers

 The definition of the information carried in this option is vendor

 specific. The vendor is indicated in the enterprise-number field.

 Use of vendor-specific information allows enhanced operation,

 utilizing additional features in a vendor's DHCP implementation. A

 DHCP client that does not receive requested vendor-specific

 information will still configure the host device's IPv6 stack to be

 functional.

 The encapsulated vendor-specific options field MUST be encoded as a

 sequence of code/length/value fields of identical format to the DHCP

 options field. The option codes are defined by the vendor identified

 in the enterprise-number field and are not managed by IANA. Each of

 the encapsulated options is formatted as follows:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | opt-code | option-len |

 +-+

 . .

 . option-data .

 . .

 +-+

 opt-code The code for the encapsulated option.

 option-len An unsigned integer giving the length of the

 option-data field in this encapsulated option

 in octets.

 option-data The data area for the encapsulated option.

 Multiple instances of the Vendor-specific Information option may

 appear in a DHCP message. Each instance of the option is interpreted

 according to the option codes defined by the vendor identified by the

 Enterprise Number in that option.

22.18. Interface-Id Option

 The relay agent MAY send the Interface-id option to identify the

 interface on which the client message was received. If a relay agent

 receives a Relay-reply message with an Interface-id option, the relay

 agent relays the message to the client through the interface

 identified by the option.

 The format of the Interface ID option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_INTERFACE_ID | option-len |

 +-+

 . .

 . interface-id .

 . .

 +-+

 option-code OPTION_INTERFACE_ID (18).

 option-len Length of interface-id field.

 interface-id An opaque value of arbitrary length generated

 by the relay agent to identify one of the

 relay agent's interfaces.

 The server MUST copy the Interface-Id option from the Relay-Forward

 message into the Relay-Reply message the server sends to the relay

 agent in response to the Relay-Forward message. This option MUST NOT

 appear in any message except a Relay-Forward or Relay-Reply message.

 Servers MAY use the Interface-ID for parameter assignment policies.

 The Interface-ID SHOULD be considered an opaque value, with policies

 based on exact match only; that is, the Interface-ID SHOULD NOT be

 internally parsed by the server. The Interface-ID value for an

 interface SHOULD be stable and remain unchanged, for example, after

 the relay agent is restarted; if the Interface-ID changes, a server

 will not be able to use it reliably in parameter assignment policies.

22.19. Reconfigure Message Option

 A server includes a Reconfigure Message option in a Reconfigure

 message to indicate to the client whether the client responds with a

 Renew message or an Information-request message. The format of this

 option is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_RECONF_MSG | option-len |

 +-+

 | msg-type |

 +-+-+-+-+-+-+-+-+

 option-code OPTION_RECONF_MSG (19).

 option-len 1.

 msg-type 5 for Renew message, 11 for

 Information-request message.

 The Reconfigure Message option can only appear in a Reconfigure

 message.

22.20. Reconfigure Accept Option

 A client uses the Reconfigure Accept option to announce to the server

 whether the client is willing to accept Reconfigure messages, and a

 server uses this option to tell the client whether or not to accept

 Reconfigure messages. The default behavior, in the absence of this

 option, means unwillingness to accept Reconfigure messages, or

 instruction not to accept Reconfigure messages, for the client and

 server messages, respectively. The following figure gives the format

 of the Reconfigure Accept option:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_RECONF_ACCEPT | 0 |

 +-+

 option-code OPTION_RECONF_ACCEPT (20).

 option-len 0.

G.5
RFC 3319
3.1 SIP Servers Domain Name List

 The option length is followed by a sequence of labels, encoded

 according to Section 3.1 of RFC 1035 [5], quoted below:

 "Domain names in messages are expressed in terms of a sequence of

 labels. Each label is represented as a one octet length field

 followed by that number of octets. Since every domain name ends

 with the null label of the root, a domain name is terminated by a

 length byte of zero. The high order two bits of every length

 octet must be zero, and the remaining six bits of the length field

 limit the label to 63 octets or less. To simplify

 implementations, the total length of a domain name (i.e., label

 octets and label length octets) is restricted to 255 octets or

 less."

 RFC 1035 encoding was chosen to accommodate future

 internationalized domain name mechanisms.

 The option MAY contain multiple domain names, but these SHOULD refer

 to different NAPTR records, rather than different A records. The

 client MUST try the records in the order listed, applying the

 mechanism described in Section 4.1 of RFC 3263 [3] for each. The

 client only resolves the subsequent domain names if attempts to

 contact the first one failed or yielded no common transport protocols

 between client and server or denote a domain administratively

 prohibited by client policy. Domain names MUST be listed in order of

 preference.

 Use of multiple domain names is not meant to replace NAPTR or SRV

 records, but rather to allow a single DHCP server to indicate

 outbound proxy servers operated by multiple providers.

 The DHCPv6 option has the format shown in Fig. 1.

 option-code: OPTION_SIP_SERVER_D (21)

 option-length: Length of the 'SIP Server Domain Name List' field

 in octets; variable.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_SIP_SERVER_D | option-length |

 +-+

 | SIP Server Domain Name List |

 | ... |

 +-+

 Figure 1: DHCPv6 option for SIP Server Domain Name List

 SIP Server Domain Name List: The domain names of the SIP outbound

 proxy servers for the client to use. The domain names are encoded

 as specified in Section 8 ("Representation and use of domain

 names") of the DHCPv6 specification [1].

3.2 SIP Servers IPv6 Address List

 This option specifies a list of IPv6 addresses indicating SIP

 outbound proxy servers available to the client. Servers MUST be

 listed in order of preference.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | OPTION_SIP_SERVER_A | option-len |

 +-+

 | |

 | SIP server (IP address) |

 | |

 | |

 +-+

 | |

 | SIP server (IP address) |

 | |

 | |

 +-+

 | ... |

 +-+

 option-code: OPTION_SIP_SERVER_A (22)

 option-length: Length of the 'options' field in octets; must be a

 multiple of 16.

 SIP server: IPv6 address of a SIP server for the client to use.

 The servers are listed in the order of preference for

 use by the client.

G.6
RFC 3361

3.1 Domain Name List

 If the 'enc' byte has a value of 0, the encoding byte is followed by

 a sequence of labels, encoded according to Section 3.1 of RFC 1035

 [6], quoted below:

 Domain names in messages are expressed in terms of a sequence

 of labels. Each label is represented as a one octet length

 field followed by that number of octets. Since every domain

 name ends with the null label of the root, a domain name is

 terminated by a length byte of zero. The high order two bits

 of every length octet must be zero, and the remaining six bits

 of the length field limit the label to 63 octets or less. To

 simplify implementations, the total length of a domain name

 (i.e., label octets and label length octets) is restricted to

 255 octets or less.

 RFC 1035 encoding was chosen to accommodate future internationalized

 domain name mechanisms.

 The minimum length for this encoding is 3.

 The option MAY contain multiple domain names, but these SHOULD refer

 to different NAPTR records, rather than different A records. The

 client MUST try the records in the order listed, applying the

 mechanism described in Section 4.1 of RFC 3263 [3] for each. The

 client only resolves the subsequent domain names if attempts to

 contact the first one failed or yielded no common transport protocols

 between client and server or denote a domain administratively

 prohibited by client policy.

 Use of multiple domain names is not meant to replace NAPTR and

 SRV records, but rather to allow a single DHCP server to

 indicate outbound proxy servers operated by multiple providers.

 Clients MUST support compression according to the encoding in Section

 4.1.4 of "Domain Names - Implementation And Specification" [6].

 Since the domain names are supposed to be different domains,

 compression will likely have little effect, however.

 If the length of the domain list exceeds the maximum permissible

 within a single option (254 octets), then the domain list MUST be

 represented in the DHCP message as specified in [7].

 The DHCP option for this encoding has the following format:

 Code Len enc DNS name of SIP server

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 120 | n | 0 | s1 | s2 | s3 | s4 | s5 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 As an example, consider the case where the server wants to offer two

 outbound proxy servers, "example.com" and "example.net". These would

 be encoded as follows:

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 |120|27 | 0 | 7 |'e'|'x'|'a'|'m'|'p'|'l'|'e'| 3 |'c'|'o'|'m'| 0 |

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 +---+---+---+---+---+---+---+---+---+---+---+---+---+ | 7

 |'e'|'x'|'a'|'m'|'p'|'l'|'e'| 3 |'n'|'e'|'t'| 0 | +---+---+---

 +---+---+---+---+---+---+---+---+---+---+

3.2 IPv4 Address List

 If the 'enc' byte has a value of 1, the encoding byte is followed by

 a list of IPv4 addresses indicating SIP outbound proxy servers

 available to the client. Servers MUST be listed in order of

 preference.

 Its minimum length is 5, and the length MUST be a multiple of 4 plus

 one. The DHCP option for this encoding has the following format:

 Code Len enc Address 1 Address 2

 +-----+-----+-----+-----+-----+-----+-----+-----+--

 | 120 | n | 1 | a1 | a2 | a3 | a4 | a1 | ...

 +-----+-----+-----+-----+-----+-----+-----+-----+--

Annex H (informative):
Change history

	Meet-ing
	TSG doc
	CR
	Rev
	Subject
	Cat
	Old vers
	New vers
	WG doc

	RP-31
	RP-060054
	-
	-
	Update to version 1.0.0 and present to RAN#31 for information
	-
	-
	1.0.0
	R5-060513

	RP-34
	RP-060664
	-
	-
	Present version 1.3.0 to RAN#34 for information
	-
	-
	1.3.0
	R5-063500

	RP-35
	RP-070010
	-
	-
	Presented as version 2.0.0 for approval to go under revision control
	-
	-
	2.0.0
	R5-070456

	-
	-
	-
	-
	Upgrated to version 5.0.0 by the 3GPP support
	-
	-
	5.0.0
	-

	RP-36
	RP-070352
	0001
	-
	Addition of IMS-CC test case 8.6 to IMS_CC ATS V1.3.0
	F
	5.0.0
	5.1.0
	R5s070101

	RP-36
	RP-070353
	0002
	-
	CR to 34.229-3: Add new verified and e-mail agreed TTCN test cases in the TC lists in 34.229-3 (prose), Annex A
	F
	5.0.0
	5.1.0
	-

	RP-37
	RP-070594
	0003
	-
	Extension to TTCN ASP DeactivatePDPContextReq
	F
	5.1.0
	5.2.0
	R5-072509

	RP-37
	RP-070594
	0004
	-
	IMS CC / PIXIT parameter px_CellId
	F
	5.1.0
	5.2.0
	R5-072546

	RP-38
	RP-070870
	0007
	
	Addition of IMS-CC test case 8.5 to IMS_CC ATS V5.1.0
	B
	5.2.0
	5.3.0
	R5s070489

	RP-38
	RP-070870
	0008
	
	Addition of IMS-CC test case 8.7 to IMS_CC ATS V5.3.0
	B
	5.2.0
	5.3.0
	R5s070259

	RP-38
	RP-070870
	0009
	
	Addition of IMS-CC test case 9.1 to IMS_CC ATS V5.3.0
	B
	5.2.0
	5.3.0
	R5s070261

	RP-38
	RP-070889
	0010
	
	CR to 34.229-3: Add new verified and e-mail agreed TTCN test cases in the TC lists in 34.229-3 (prose), Annex A
	F
	5.2.0
	5.3.0
	-

	RP-38
	RP-070869
	0006
	
	Production of 34.229-3 pointer version in Rel-5 pointing to Rel-6 version
	F
	5.2.0
	5.3.0
	R5-073439

	RP-38
	RP-070869
	0005
	
	Addition of an MMI command
	F
	5.2.0
	6.0.0
	R5-073046

	RP-39
	RP-080098
	0011
	
	Update of MMI command strings
	F
	6.0.0
	6.1.0
	R5-080041

	RP-39
	RP-080089
	0012
	
	CR to 34.229-3: Add new verified and e-mail agreed TTCN test cases in the TC lists in 34.229-3 (prose), Annex A
	F
	6.0.0
	6.1.0
	-

	RP-39
	RP-080094
	0013
	
	Addition of IMS-CC test case 7.2 to IMS_CC ATS V5.3.0
	B
	6.0.0
	6.1.0
	R5s070535

	RP-39
	RP-080094
	0014
	
	Addition of IMS-CC test case 10.1 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070549

	RP-39
	RP-080094
	0015
	
	Addition of IMS-CC test case 8.3 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070545

	RP-39
	RP-080094
	0016
	
	Addition of IMS-CC test case 8.2 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070543

	RP-39
	RP-080094
	0017
	
	Addition of IMS-CC test case 7.6 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070539

	RP-39
	RP-080094
	0018
	
	Addition of IMS-CC test case 7.4 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070537

	RP-39
	RP-080094
	0019
	
	Addition of IMS-CC test case 11.1 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070551

	RP-39
	RP-080094
	0020
	
	Addition of IMS-CC test case 14.1 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070555

	RP-39
	RP-080094
	0021
	
	Addition of IMS-CC test case 13.1 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070553

	RP-39
	RP-080094
	0022
	
	Addition of IMS-CC test case 8.4 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070547

	RP-39
	RP-080094
	0023
	
	Addition of IMS-CC test case 8.1 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070541

	RP-39
	RP-080094
	0024
	
	Addition of IMS-CC test case 7.1 to IMS_CC ATS V5.1.0
	B
	6.0.0
	6.1.0
	R5s070491

	RP-39
	RP-080094
	0025
	
	Common corrections to IMS-CC test cases
	F
	6.0.0
	6.1.0
	R5s070534

	RP-40
	RP-080369
	0027
	
	Correction to regular expressions in IMS
	F
	6.1.0
	7.0.0
	R5s080036

	RP-40
	RP-080369
	0028
	
	IMS ATS / handling of P-Access-Network-Info header over non secure ports
	F
	6.1.0
	7.0.0
	R5s080063

	RP-40
	RP-080369
	0029
	
	IMS ATS / test case 9.1 / handling of authorization header in Register messages
	F
	6.1.0
	7.0.0
	R5s080085

	RP-40
	RP-080376
	0030
	
	Extend test model supporting XCAP test
	F
	6.1.0
	7.0.0
	R5-081036

