3GPP TR 33.884 V18.0.1 (2023-06)
27
Release 18

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 33.884 V18.0.1 (2023-06)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on security of application enablement aspects for subscriber-aware northbound API access
[bookmark: specRelease](Release 18)

		

	[image:]
	[image: 3GPP-logo_web]

	

	[bookmark: warningNotice]The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	5
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	8
3.1	Terms	8
3.2	Symbols	8
3.3	Abbreviations	8
5	Key issues	8
5.1	Key issue #1: Checking authentication and authorization of invoker	8
5.1.1	Key issue details	8
5.1.2	Potential security requirements	8
5.2	Key Issue #2: Checking authorization before allowing access	9
5.2.1	Key issue details	9
5.2.3	Potential security requirements	9
6	Proposed solutions	10
6.1	Solution #1: Resource Owner Authorization in API Invocation using OAuth Token	10
6.1.1	Introduction	10
6.1.2	Solution details	10
6.1.2.1	Architecture	10
6.1.2.2	Procedure	11
6.1.2.3	OAuth 2.0 role mapping	12
6.1.2.4	TokenCAPIF Profile	13
6.1.3	Evaluation	13
6.2	Solution #2: Authentication using OpenID Connect	13
6.2.1	Introduction	13
6.2.2	Solution details	14
6.2.3	Evaluation	15
6.3	Solution #3: UE Originated API invocation using OAuth Client Credential Grant	15
6.3.1	Introduction	15
6.3.2	Solution details	15
6.3.3	Evaluation	18
6.4	Solution #4: Authenticate and authorize UE in UE originated API invocation	18
6.4.1	Introduction	18
6.4.2	Solution details	19
6.4.3	Evaluation	21
6.5	Solution #5: Resource Owner based authorization for resource access	21
6.5.1	Introduction	21
6.5.2	Solution details	22
6.5.3	Evaluation	23
6.6	Solution #6: Authorization before allowing access to resources	23
6.6.1	Introduction	23
6.6.2	Solution details	24
6.6.3	Evaluation	27
6.7	Solution #7: Authorizing UE originated API invocation with PKCE flow	27
6.7.1	Introduction	27
6.7.2	Solution details	27
6.7.3	Evaluation	28
6.8	Solution #8: Validation of OAuth Token	28
6.8.1	Introduction	28
6.8.2	Solution details	29
6.8.3	Evaluation	29
6.9	Solution #9: OAuth 2.0 based API invocation procedure	30
6.9.1	Introduction	30
6.9.2	Solution details	30
6.9.3	Evaluation	32
6.10	Solution #10: UE credential based API invocation procedure	32
6.10.1	Introduction	32
6.10.2	Solution details	33
6.10.3	Evaluation	34
6.11	Solution #11: Providing and Revoking Resource Owner Authorization using OAuth 2.0 Authorization Code Grant	35
6.11.1	Introduction	35
6.11.2	Solution details	35
6.11.2.1	Architecture	35
6.11.2.2	Procedure	35
6.11.2.3	S-KID	37
6.11.2.4	KSNAAPPY derivation function	38
6.11.3	Evaluation	38
6.12	Solution #12: Providing and Revoking Resource Owner Authorization	38
6.12.1	Introduction	38
6.12.2	Solution details	39
6.12.2.1	Architecture	39
6.12.2.2	Procedure	39
6.12.2.3	S-KID	41
6.12.2.4	KAuz derivation function	42
6.12.2.5	Verification information derivation	42
6.12.3	Evaluation	42
6.13	Solution #13: Resource owner policies based authorization mechanism	42
6.13.1	Introduction	42
6.13.2	Solution details	43
6.13.3	Evaluation	43
6.14	Solution #14: Reusing CAPIF core function initiated revocation procedure to enable user authorization revocation	43
6.14.1	Introduction	43
6.14.2	Solution details	43
6.14.3	Evaluation	44
6.15	Solution #15: Authorization revocation to undo API invocation	44
6.15.1	Introduction	44
6.15.2	Solution details	44
6.15.3	Evaluation	45
6.16	Solution #16: Token Revocation using Short-lived Token	45
6.16.1	Introduction	45
6.16.2	Solution details	46
6.16.3	Evaluation	46
7	Conclusions	47
7.0	High level conclusions	47
Annex A: Change history	48

[bookmark: foreword][bookmark: _Toc138840293]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: scope][bookmark: _Toc138840294]
1	Scope
The scope of present document is based on the requirements for SNA (TS 22.261 clause 6.10.2) [2] and on the Study on application enablement aspects for subscriber-aware northbound API access (TR 23.700-95) [3].
The objective of this study is to:
1.	Identify potential new security requirements related to API invocation (such as user authorization) and define potential solutions to fulfil these requirements. This encompasses:
-	Whether and how CAPIF functions can determine the resource owner upon CAPIF invocation.
-	Whether and how CAPIF can support obtaining authorization from the resource owner.
-	Whether and how CAPIF can support revocation of authorization by the resource owner.
-	Whether and how CAPIF can support security procedures with the aim to reduce authorization inquiries for a nested API invocation.
	The study is not exclusively tailored to CAPIF, but should align with widely deployed authorization frameworks.
2. 	Identify potential security requirements for APIs used in SNAAPP and define potential solutions to fulfil these requirements.
This objective includes UE-originated API invocation.
[bookmark: references][bookmark: _Toc138840295]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 22.261: "Service requirements for the 5G system".
[3]	3GPP TR 23.700-95: "Study on application enablement aspects for subscriber-aware northbound API access".
[4]	IETF RFC 6749: "The OAuth 2.0 Authorization Framework".
[5]	3GPP TS 33.122: "Security aspects of Common API Framework (CAPIF) for 3GPP northbound APIs".
[6]	openID.net: "OpenID Connect Core 1.0 incorporating errata set 1". Available at: https://openid.net/specs/openid-connect-core-1_0.html
[7]	IETF RFC 7009: "OAuth 2.0 Token Revocation".
[8]	IETF RFC 7515: "JSON Web Signature (JWS)".
[9]	IETF RFC 7636: "Proof Key for Code Exchange by OAuth Public Clients".
[10]	IETF RFC 7662: " OAuth 2.0 Token Introspection".
[11]	IETF RFC 7542: "The Network Access Identifier".
[12]	3GPP TS 23.222: "Common API Framework for 3GPP Northbound APIs".
[13]	IETF RFC 2617: " HTTP Authentication: Basic and Digest Access Authentication".
[14]	3GPP TS 33.535: "Authentication and Key Management for Applications (AKMA) based on 3GPP credentials in the 5G System (5GS)".
[bookmark: definitions][bookmark: _Toc138840296]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc138840297]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
AEF	Application Exposure Function
ANF	authentication function
API	Application Programming Interface
Authz	Authorization
AZF	authorization function
CAPIF	Common API Framework for 3GPP northbound APIs
[bookmark: _Toc138840298]3.2	Symbols
Void
[bookmark: _Toc138840299]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
[bookmark: clause4][bookmark: _Toc138840300]5	Key issues
[bookmark: _Toc138840301]5.1	Key issue #1: Checking authentication and authorization of invoker
[bookmark: _Toc138840302]5.1.1	Key issue details
Only certain invokers are permitted to invoke subscriber aware northbound APIs, Therefore it is necessary to authenticate and authorize these invokers to access the APIs. The requirements for CAPIF apply.
For SNAAPP, the API invoker can also reside on a UE.
[bookmark: _Toc138840303]5.1.2	Potential security requirements
The requirements for the CAPIF-2 interface of 33.122 [5] clause 4.4 shall apply:
(quoted for convenience)
The CAPIF-2/2e reference points between the API invoker and API exposing function shall fulfil the following requirements:
-	 [CAPIF-SEC-4.4-a] Mutual authentication between the API invoker and the API exposing function shall be supported.
-	 [CAPIF-SEC-4.4-b] The transport of messages over the CAPIF-2 and CAPIF-2e reference points shall be integrity protected.
-	 [CAPIF-SEC-4.4-c] The transport of messages over the CAPIF-2 and CAPIF-2e reference points shall be protected from replay attacks.
-	 [CAPIF-SEC-4.4-d] The transport of messages over the CAPIF-2 and CAPIF-2e reference points shall be confidentiality protected.
-	 [CAPIF-SEC-4.4-e] Privacy of the 3GPP user over the CAPIF-2 and CAPIF-2e reference points shall be protected.
-	 [CAPIF-SEC-4.4-f] The API exposing function shall determine whether API invoker is authorized to access service API.
[bookmark: _Toc138840304]5.2	Key Issue #2: Checking authorization before allowing access
[bookmark: _Toc138840305]5.2.1	Key issue details
Resource owners need to be able to control access to their resources. In the use cases described in TR 23.700-95, the resource owner is the UE's user, or the UE's user has been given permission by the subscriber to authorize access to the resource.
[bookmark: _Toc138840306]5.2.3	Potential security requirements
-	Authn-1-ResOwner: when giving or revoking authorization, the resource owner shall be authenticated.
-	Authz-1-General: Access to resources of the resource owner via the northbound APIs shall only be allowed if the resource owner has authorized it.
-	Authz-2-App: Authorization shall be given to an application. Authentication of applications by the operating system of the UE is out of 3GPP scope.
-	Authz-4-Scope: The 5G system shall be able to limit the scope of API requests to resources owned by a resource owner.
-	Authz-5-Revoke: The resource owner shall be able to revoke authorization at any time. From then on access to resources based on the revoked authorization shall not be allowed.
Priv-1-MSISDN: The 5G system shall be able to preserve the confidentiality of the UE's external identity (i.e. MSISDN) against a third party.
[bookmark: _Toc138840307]6	Proposed solutions
[bookmark: _Toc138840308]6.1	Solution #1: Resource Owner Authorization in API Invocation using OAuth Token
[bookmark: _Toc138840309]6.1.1	Introduction
This solution addresses the requirement in KI#2.
This solution proposes to reuse OAuth 2.0 with authorization code grant model to obtain resource owner's authorization in case that an API invocation of network exposure is to process the resource owner's data.
NOTE 1: 	How the API invoker is authenticated to the authorization server is out of scope of this solution.
NOTE 2: 	How the Resource owner is authenticated to the authorization server is out of scope of this solution.
[bookmark: _Toc138840310]6.1.2	Solution details
[bookmark: _Toc138840311]6.1.2.1	Architecture

Figure 6.1.2.1-1: Architecture for CAPIF with SNA enhancement
The architecture is derived from solution 2 in TR 23.700-95 [3]. Definition of the authorization function, CAPIF-8 is the same. Triggerer has the same definition of resource owner client(s).
It is proposed that the authorization function is collocated with the CCF.
However, the difference is that CAPIF-9 defined in the TR 23.700-95 [3] is not needed in this solution because there is no communication with AEF, and CAPIF-3 can be reused if API related management is needed.
CAPIF-10 defined in the TR 23.700-95 [3] is not needed, because API invoker can reuse CAPIF-1 to get access token. A new interface CAPIF-X is introduced between API invoker and Triggers for OAuth 2.0 authorization code grant usage.
[bookmark: _Toc138840312]6.1.2.2	Procedure

Figure 6.1.2.2-1: Procedure of Obtaining Resource owner Authorization
As shown in the Figure 6.1.2.2-1, the details of obtaining resource owner authorization in API invocation is summarized as following:
1. API invoker obtains authentication and authorization method (e.g. method 1: TLS-PSK, or method 2: PKI, or method 3: TLS with OAuth token) as specified in clause 6.1 in TS 33.122 [5].
NOTE 1:	CCF needs to pre-configure with TLS with OAuth token method.
NOTE 2: Onboarding procedure is reused.
2. API invoker discovers service API as specified in clause 6.3.1.3 in TS 33.122 [5].
3. Resource owner triggers the API invocation. If resource owner authorization is needed for the invoked API and the method 3: TLS with OAuth token is selected, then the API invoker obtains tokenCAPIF via OAuth 2.0 with authorization code grant model as depicted in clause 6.1.2.3.
4. The API invoker invokes northbound API to the AEF as depicted in clause 6.5.2.1 or 6.5.2.2 in TS 33.122 [5]. The API Invocation message includes tokenCAPIF.
	The API invoker is pre-configured with a certificate and use TLS to authenticate with AEF.
5. The AEF verifies the tokenCAPIF in the message, and the profile of this token is depicted in clause 6.1.2.4. The AEF verifies the integrity of tokenCAPIF and checks whether IDs in the scope are align with the IDs in the API invocation message. If the verification is successful, it means the resource owner has authorized the API Invoker to access the API for the resource owned by the resource owner.
[bookmark: _Toc138840313]6.1.2.3	OAuth 2.0 role mapping
[image:]
Figure 6.1.2.3-1: Procedure of Obtaining Resource owner Authorization (from RFC 6749 [4])
OAuth 2.0 with authorization code grant model is depicted in clause 4.1 in RFC 6749 [4]. In this solution, the API invoker endorses the role of client, the triggerer endorses the role of user-agent. The Authorization Function authenticates the resource owner in step B, which depends on existing mechanism and is out of this solution. The API invoker (i.e. client) retrieves tokenCAPIF from the Authorization function in CCF. The scope of the tokenCAPIF includes API invoker ID, service API ID and resource owner ID (i.e. GPSI).
Authorization can be revoked according to mechanism defined in IETF RFC 7009 [7].
The resource owner ID is equal to the UE ID in the API invocation message, e.g. GPSI.
It takes use case 1 defined in Annex A.1 in TR 23.700-95 [3] as an example. An end user (i.e. resource owner) is playing a time-sensitive game using a game client application (i.e. triggerer) on the end user's UE communicating with a game server (i.e. API invoker), and wants to have a high-quality and low-latency communication for better service experience.
In step A, the end user requests the game client application, and the game client application requests game server to try to invoke the QoS API via CAPIF-X. The game server discoveries QoS API, and initiates OAuth procedure by contacting the game client application, and the game client application sends the requests to authorization server via CAPIF-8.
In step B, the Authorization Server requests the game client application to do user authentication and authorization via CAIPF-8 following RFC 2617 [13], it is also assumed that the game client application has TLS connection with Authorization Server, the end user may type in his MNO username and password and click "consent" for extra charging for QoS enhancement. The MNO user name may be set to the current MSISDN so that the authorization server can retrieve its subscription when the user has multiple subscriptions.
NOTE 1: 	It is assumed that authorization server has linkage between resource owner and GPSI.
In step C, after successful authentication and authorization, the authorization server provides authorization code to the game client application via CAPIF-8, and the game client application sends the authorization code to the game server via CAPIF-X.
In step D, the game server sends authorization code to authorization server via CAPIF-1/CAPIF-1e.
In step E, the game server gets tokenCAPIF from authorization server. The game server uses the tokenCAPIF to invoke QoS API via CAPIF-2/CAPIF-2e to modify the end user's QoS.
NOTE 2:	 The solution does not specify how out-of-scope steps are integrated into the in-scope steps.
[bookmark: _Toc138840314]6.1.2.4	TokenCAPIF Profile
The tokenCAPIF is protected by the JSON signature profile as specified in IETF RFC 7515 [8].
The claim in the tokenCAPIF includes the parameters defined in clause C.2.2 in TS 33.122 [5]. In addition, the "resource owner ID" and the resource ID related to the list services are also added in scope. The resource owner ID is equal to the UE ID in the API invocation message, e.g. GPSI.
[bookmark: _Toc138840315]6.1.3	Evaluation
The solution works when the TLS with OAuth token is selected.
This solution assumes that the resource owner is human user.
This solution addresses the requirements Authz-1, Authz-2, Authz-3 and Authz-4, but does not address the following requirements in KI#2:
-	This solution does not touch authentication of the resource owner or API invoker by the authorization server, it may be addressed by other solution.
-	This solution does not touch authentication between API invoker and CCF and authentication between API invoker and AEF, it may be addressed by other solution.
-	This solution does not touch revocation of authorization, it may be addressed by other solution.
-	This solution does not touch privacy of the UE's external identity against the third-party, it may be addressed by other solution. This solution does not address a static token claim issue after token revocation.
NOTE:	Clause 6.1.2.3 has provided mapping to the use case defined in TR 23.700-95 [3].
[bookmark: _Toc138840316]6.2	Solution #2: Authentication using OpenID Connect
[bookmark: _Toc138840317]6.2.1	Introduction
Authentication of the UE can be performed by including an OpenID Connect identity token. In OpenID Connect, the authorization server is usually also the OpenID provider. This solution separates these roles into the authorization function (AZF) and the authentication function (ANF).
[bookmark: _Toc138840318]6.2.2	Solution details

Figure 6.2.2-1: OpenID Connect for SNAAPP AFs
The flow follows the authorization code flow of OpenID Connect [6]. All communication is over TLS secured connections.
1.	Prior to any interaction, AZF should be registered with ANF, giving information that will be provided to the UE when requesting authentication.
2.	The UE accesses the AZF without identity token.
3.	The AZF shall redirect the UE to the ANF_URI, with the type set to code (to indicate authorization code flow), scope set to openid (to indicate that this is an openID request), client_ID set to its own ID, redirect_URI set to the URL to be used in step 8, and may set state to some state that can be used by AZF to reduce its internal state. Because sometimes it is necessary to authenticate the subscriber, and sometimes authentication of user is sufficient, the ANF shall offer separate endpoints for user and for subscriber authentication. The AZF shall be aware of which entity shall be authenticated based on configuration. Which authentication method is then chosen is between negotiated between UE/user and ANF and is out of scope of this solution.
4.	The UE shall access the ANF at the redirected to ANF_URI, including the parameters of step 3.
5.	The ANF shall authenticate the UE. This can be done in the usual way the home network authenticates the user, which may be GBA, AKMA, or using a proprietary method such as username/password.
6.	The ANF should request authorization to release the required personal information to the AZF from the user. In this setup, the ANF presents to the user the information that was made available to the ANF about the AZF in the enrolment.
7.	The ANF shall redirect the UE back to the AZF at the AZF_URI, including as code a single use token, which shall be specific to the AF, and as state the state that was set in step 3.
8.-9.	The AZF shall request the identity token from the ANF at its token endpoint. The ANF shall verify that the identity token is indeed being requested by the correct AZF, and, if correct, return the identity token to the AZF.
10.	The AZF shall verify the validity of the identity token according to RFC 6749, especially Sections 4.1.2 and 10.12.
The identity to be used shall be an external identity that the AZF can map to the resource owner's identity (subscriber/UE).
[bookmark: _Toc138840319]6.2.3	Evaluation
This solution can be used to address Authn-1-ResOwner.
[bookmark: _Toc138840320]6.3	Solution #3: UE Originated API invocation using OAuth Client Credential Grant
[bookmark: _Toc138840321]6.3.1	Introduction
According to KI#1 and the requirement referenced in KI#1, a UE shall be able to access a northbound API of the 5G system. The API invocation is triggered by an application, which is not visible to the 5G system.
Therefore, it is assumed that details of the interface between the application and the API invoker on the UE are out of scope of this solution.
It is proposed to use the OAuth client credential grant (specified in clause 4.4. of [4]) as a basis for the solution.
[bookmark: _Toc138840322]6.3.2	Solution details
The context of the components of the solution is visualized in Figure 6.3.2-1.
It is assumed that the application is deployed on the mobile device consisting of the UE. For instance, the application might be an app installed on a smartphone. Note, whether the application is considered being part of the UE or being collocated with the UE on a mobile device is a matter of interpretation and not relevant for the solution.
NOTE 1: 	In this solution the UE specific authorization and token claim is added on top of the already existing service authorization.
The API Invoker on the UE is taking the role of the OAuth Client. If CAPIF is applied, the Authorization Server is part the CAPIF Core Function. In this case the interface between API Invoker and Authorization Function is part of the CAPIF-1 interface.
CAPIF onboarding for assignment of Client Id and Client secret is not needed, since Client Id and Client secret can be derived from the 5G key hierarchy as explained in more detail in step 2 of the message flow below.

Figure 6.3.2-1: Solution components of UE originated API invocation
using OAuth client credential grant
A typical message flow executed for UE originated API invocation is depicted in Figure 6.3.2-2.

Figure 6.3.2-2: Message flow used for UE originated API invocation using
OAuth client credential grant
The individual steps are described below:
1. The flow is triggered by the application sending a request to the API invoker on the UE.
The interface between Application and API invoker including the authorization of the Application to use this interface is out of the scope of this solution.
It is assumed that this interface can be handled like other internal APIs on a mobile device, like access to cameras or GPS location.
2. Based on the received Request the API invoker on the UE (acting as an OAuth Client) sends an OAuth Token Request to the Authorization Server with the grant type set to "client_credentials".
The Token Request is sent as https request. As part of the session establishment the API invoker authenticates the Authorization Server by verifying the Authorization Server's server certificate.
The FQDN of the authorization server can be constructed in a way standardized by 3GPP. The operator can obtain a server certificate from one of the CAs, which are trusted by the operating system of the UE and whose root certificate are preinstalled in the operating system of the UE.
The scope parameter is set by the API invoker based on the request of the application such that it covers the necessary scope of the subsequent API request in step 5.
In line with the SA1 requirement that the Application itself is invisible to the 5G system the token request does not contain information related to the identity of the Application, but the solution introduces a new entity, API invoker, in the UE, which is visible to the 5G system.
The Token Request includes the authentication of the API Invoker using the API invoker's client credentials. The circumstance that the API invoker is located and associated with a UE can be exploited for instance by using AKMA
In this context the Authorization Server takes the role of the AKMA AF. The https protocol is used as Ua* protocol. Depending on whether the Authorization Server is regarded as trusted the Authorization Server can directly interact with the AAnF or via NEF. Depending on the choice the SUPI or the GPSI can be used as OAuth client Id. The AKMA key KAF can be used as client credential. Thus, the authorization header of the http Token Request sent from the UE to the authorization server can be used for http Basic authentication with A-KID and KAF as username and password, respectively. Alternatively, also http Digest authentication can be used. This can be decided during normative work.
3. The authorization server is authorizing the request based on the identity of the API Invoker and the requested scope by applying stored policies and permissions.
NOTE 2: This solution assumes that policies and permissions are pre-arranged at the authorization server. Since the application is not visible, the policies and permissions are in the granularity of UE level, not the application level.
4. In case of successful authorization the authorization server returns the token to the API invoker. The token includes claims, which reflect the granted scopes and permissions.
One of the claims of the issued token includes the identity of the UE.
NOTE 3: The authorization server knows the identity of the UE from the UE authentication executed in step 2. Whether GPSI or SUPI is used as UE identifier can be decided during normative work.
NOTE 4: Fine granular authorization scopes on the level of individual resources are not in scope of this solution. The solution assumes that it is sufficient to handle API calls, whose scope is clearly limited to resources owned by a single UE. That is, operations affecting several resources, like adding a UE to a LAN group, are not in scope. Hence, only UE identity is needed.
5. The API invoker is sending the actual API request to the AEF. The API request contains the token received in the previous step.
The API Request is sent as https request. As part of the session establishment the API invoker authenticates the AEF by verifying the Authorization Server's server certificate.
If mutual authentication is needed, AKMA can be used between API invoker and AEF (e.g. https digest authentication).
6. The AEF is validating the incoming request. That is, the AEF verifies the validity of the token, and the AEF verifies that the request is within the scope described by the claims in the token. The AEF especially ensures that the scope of API calls is restricted to resources owned the UE, whose identity is included in the token claims. API calls with a wider scope are rejected by the AEF.
7. In case of successful validation the AEF is executing the request by involving other NFs (not shown in the signalling diagram)
8. The AEF returns the result of the API call to the API invoker.
9. The API invoker completes the flow by sending a response to the application (which is based on and might include results received in the previous step.
NOTE 5: Authorization from the resource owner (i.e. the user) is not considered as part of the OAuth procedure using Client Credential Grant type.
[bookmark: _Toc138840323]6.3.3	Evaluation
The presented approach provides a solution for the case that API Invoker is part of the UE and that this API Invoker can be used by applications on a mobile device to utilize 5G northbound APIs. The approach is thus complementary to other solutions which target the case that the API Invoker is part of the third-party application.
Usage of AKMA guarantees that the client Id of the API Invoker is really bound to the Id of the UE.
Authentication of the UE is executed using http authentication mechanism, i.e. as part of the http token request.
CAPIF onboarding for assignment of Client Id and Client secret is not executed, since Client Id and Client secret can be derived from the 5G key hierarchy
In this solution the 5G system only authenticates and authorizes the UE. The 5G system does not authenticate or authorize the (invisible) third party application or a user. That is, the solution assumes that the UE is the resource owner or requesting party.
In case of one UE accessing resources of another UE, the subscriber of the second UE is not able to authorize the third-party application used on the first UE. Such scenarios can be avoided, if API calls are restricted to the scope of each UE and API invocation crossing UEs is handled on the application layer.
The main changes required for the solution are related to the deployment of the API Invoker on the UE and the definition of interface between API Invoker and the third-party application. However, this interface is out of scope of this solution and out of scope of SA3.
Changes are also needed with respect to the definition of a new claim in the access token identifying the UE and the ability of the AEF to restrict the scope of API calls to the UE identified in the token claims.
This solution cannot authorize the API invoker to access a specific resource (e.g. location information, UE reachability information) of a specific resource owner, but fine granular authorization scopes on the level of individual resources are not in scope of this solution. An API invoker that is authorized to access the one resource (e.g. location information) of the UE could also access other resources of the same UE.
In the solution the identity of the UE is not disclosed to a third party.
NOTE:	 Including of authentication in a http request (like the token request) is very common practice, i.e. http basic or http digest authentication (see for example in clause 4.1.3 in RFC 6749 [4] or the definition of AKMA profile in B.1.2.2 of TS 33.535 [14]).
[bookmark: _Toc138840324]6.4	Solution #4: Authenticate and authorize UE in UE originated API invocation
[bookmark: _Toc138840325]6.4.1	Introduction
The solution addresses key issue #1. For originated UE API Invocation, the solution describes how UE (an API Invoker) can be provided with secure access to APIs (e.g. triggered by an application that is not visible to the 5G system), by authenticating and authorizing the UE.
[bookmark: _Toc138840326]6.4.2	Solution details

Figure 6.4.2-1: UE originated API Invoker authentication, authorization, and secure connection establishment process
The steps shown in Figure 6.4.2-1 is described as follows:
Precondition: The UE (i.e. an API invoker) can be registered to the network.
Steps 1-6 API Invoker Onboarding:
The UE is provisioned with a CAPIF Core Function (CCF) information such as CCF address/ID (e.g. after a successful primary authentication in any protected message). The UE and the network can derive the onboarding enrolment information such as CAPIF security credentials i.e. a CCF key (based on UE 5G security context e.g. AKMA key/AUSF key). The UE can derive a CCF key (Kccf) and key identifier (Kccf ID) which can be used to authenticate and establish a secure communication (e.g. TLS PSK based on CCF Key) with the CCF during the onboarding process.
NOTE 1: The 5G security key used to generate CAPIF security key and the input used are up to the normative work.
1. The API Invoker can send an Onboarding Service request to the CCF which can include Onboarding type (i.e. Subscriber Indication or UE service based), Kccf ID, UE ID (e.g. GPSI).
2.	Based on the received Onboarding type, the CCF determines to fetch security context related to the UE. The CCF can send a key request to the Core NF/AF which can include UE ID, and Kccf ID
Further the Core NF/AF provides the SUPI, and Kccf to the CCF in a Key Response message.
3.	The CCF stores the CCF key, Kccf ID and UE ID.
4.	The API Invoker and the CCF can perform mutual authentication and establish secure session (e.g. TLS PSK) based on Kccf shared between API Invoker and CCF.
5.	With a secure session established, the API Invoker sends an Onboard API Invoker Request message to the CCF which includes the UE ID (SUPI/GPSI).
6.	The CCF generates an API invoker's profile and onboard secret as specified in TS 23.222 [6]. The AEF Key can be used by the API Invoker to authenticate and establish secure session with the AEF as in TS 33.122 Clause 6.5.2.3 [5]. The AEF key can be derived from Kccf and other input parameters: API Invoker ID, CCF ID, Target AEF ID(s)/information, and Nonce.
The CCF on a successful authentication and authorization, it can locally store the API Invoker profile with API Invoker ID, Onboard Secret, AEF key along with Target AEF information.
	The CCF can respond with an Onboard API invoker response message same as TS 33.122 [5] which can include the CAPIF core function assigned API invoker ID, AEF Authentication, and authorization information, and/or Onboard Secret, along with other information such as nonce, AEF information (Target AEF ID).
The API Invoker stores information received from step 6 and the API invoker is onboarded.
API Invoker can perform CAPIF-1 authentication anytime with CCF based on TS 33.122 [5].
Steps 7-9 Access Token Request/Response:
7.	The API Invoker sends Oauth 2.0 based access token request as in TS 33.122 Clause 6.5.2.3 [5] (i.e. with grant_type client credentials if the API Invoker is the Resource Owner.)
[bookmark: _MCCTEMPBM_CRPT75120003___3]If the API Invoker is not a resource owner, for OAuth 2.0 access token request the grant_type may be Authorization Code Grant as described in RFC 6749 [4].
Similar to TS 33.122 Clause 6.5.2.3 [5], the API invoker may include the CAPIF core function assigned API invoker ID and the Onboard_Secret in the OAuth access token request message for the CAPIF core function to validate the access token request.
8. 	The CCF based on the local policy checks if there exists any related authorization or prior consent information managed in the network related to allowing the API invoker to consume any service API invocation related to the UE.
NOTE 2: The collection and management of user consent or authorization information related to a service exposure is outside the scope of this solution. It is assumed that the network manages such authorization information in any storage function outside the scope of this solution.
9. The CCF generates and sends an Oauth access token (based on OAuth 2.0) to be used as AEF Access token. The access token claims can include UE ID and CCF ID along with other claims in TS 33.122 Clause C.2.2 [59.
Steps 10-15 Service API Invocation:
10.	The API Invoker derives an AEF Key (Kaef) from CCF Key (Kccf) and respective input parameters similar to CCF on a successful CAPIF 1 authentication and authorization. The API Invoker can send Authentication Initiation Request to the AEF, which includes the CCF assigned API invoker ID, and UE ID.
11.	The AEF can send API Invoker ID, and UE ID to request the security information from the CCF. The CCF provides the security information related to the chosen security method (e.g. TLS-PSK: AEFPSK) along with AEF Key, Service API(s) authorization information (can be a list of Service APIs which can be invoked by the API Invoker related to the UE ID), and Oauth access token i.e. AEF Access token (to authorize the API invoker to request the service API invocation from AEF) to the AEF over CAPIF-3 reference point. The CCF can provide the remaining validity timer value for the AEF Key (i.e. AEFPSK) as in TS 33.122 Clause 6.5.2.1 [5].
	Alternatively, the service information and access token sending can be skipped as it can be bound to the access token as claims (later received in step 13a) from the API invoker.
12. After fetching the relevant AEF Key for the authentication, the AEF can send Authentication Initiation Response message to API invoker to initiate the TLS session establishment. The AEF starts the validity timer based on the value received from the CAPIF core function in step 11.
[bookmark: _MCCTEMPBM_CRPT75120004___3]The API Invoker and the AEF can perform mutual authentication using the AEF key and establish TLS session.
13a. The API invoker can send Invocation service request to the AEF which can include Requested Service API(s) information, API Invoker ID, UE ID, and AEF Access Token (received from CCF).
13b. The AEF can authorize the API invoker's service API invocation request based on authorization information (i.e. validating the claims in the Oauth based AEF Access Token) obtained from CAPIF core function as specified in subclause 8.16 of TS 23.222 [12].
14. On a successful access token validation, the AEF considers Invocation service request authorization as successful, execute API request and can send Invocation service response with success indication.
NOTE 3: According to TS 33.122, API provider domain provides Onboarding enrolment information to the API invoker as a prerequisite to the Onboarding procedure. Therefore, for the UE originated API Invocation case, the solution enables provision of onboarding enrolment information based on UE's established security context as described in steps 1.
NOTE 4: The user consent information collection and related management is outside the scope of this solution.
[bookmark: _Toc138840327]6.4.3	Evaluation
The solution addresses KI#1 and enables the following for the case where the API Invoker resides in a UE:
A CCF key need to be derived and provided to the CCF by a NF or an AF.
API Invoker UE and CAPIF Core Function (i.e. Authorization Function) performs mutual authentication based on a key derived from UE's 5G security context (i.e. AKMA based key or AUSF based Key) and so the AUSF impact applies.
TLS-PSK based mutual authentication and secure connection establishment between API Invoker UE and the AEF is enabled.
OAuth 2.0 token based authorization is used for access to service API.
[bookmark: _Toc138840328]6.5	Solution #5: Resource Owner based authorization for resource access
[bookmark: _Toc138840329]6.5.1	Introduction
The solution addresses Key Issue #2.
The solution describes the method to receive and revoke authorization as required from an authenticated Resource owner to control access to resource(s) of a resource owner. Figure 6.5.2-1 shows the resource authorization procedure to allow access to resources.
[bookmark: _Toc138840330]6.5.2	Solution details

Figure 6.5.2-1: Resource authorization procedure to allow access to resources
The steps shown in Figure 6.5.2-1 is described as follows:
1-2. During the primary authentication procedure, the UDM may also indicate to the AUSF whether CAPIF keys need to be generated for the UE (i.e., resource owner). If the CAPIF Indication is included, the UDM may also include GPSI and CAPIF Function information (i.e. ID/address).
3. 	If the AUSF receives the CAPIF indication from the UDM, the AUSF and UE following a successful primary authentication can generate CAPIF Key and CAPIF-UE ID (to identify the CAPIF Key for the UE) from the AKMA Key.
NOTE: 	The inputs used in the CAPIF key and ID generation can be up to the normative phase.
4a. The AUSF based on CAPIF Function information, sends resource owner authorization data notification request to the CAPIF function which can include the UE ID (i.e. GPSI), CAPIF key and the ID.
4b. The CAPIF Function stores the received information and sends a sends resource owner authorization data notification response to the AUSF.
5. 	The AUSF sends the CAPIF Function information and GPSI to the AMF and the AMF forwards the information to the UE over the NAS transport.
6a. The UE initiates a resource owner registration request with CAPIF-UE ID, GPSI and a freshness parameter to the CAPIF function.
	The CAPIF function verifies if the received CAPIF-UE ID matches with the resource owner authorization data received in step 4a. If the verification is successful, the CAPIF function considers the resource owner registration as successful and it assigns a Resource Owner Identity.
6b. The CAPIF Function can send a resource owner registration response with nonce. The UE and the CAPIF Function generates a key based on the CAPIF Key, nonce and GPSI, establish a secure session. The CAPIF Function then sends a resource owner ID and lifetime (for the resource owner registration) following a successful resource owner registration.
7a-c. An API Invoker (e.g. an AF originated API Invocation/ another UE originated API Invocation happens) performs onboarding, mutual authentication (e.g. as in 33.122 and these aspects are related to KI#1) with the CAPIF Function and if the service APIs needs additional resource owner authorization, the authorization code related to the resource owner can be issued to the API Invoker based on the Authorization Code Flow described in RFC 6749, where the CAPIF function authenticates the resource owner (i.e. end user) based on the Resource Owner ID and the associated resource owner key. The CAPIF function and the UE (resource owner) establishes secure connection using the resource owner key generated from the CAPIF Key, the freshness parameter (received in step 7b) and other inputs if required.
7d. The API Invoker requests access token from the CAPIF Function (i.e. authorization server can be part of the CAPIF Function) related to the resources with GPSI of the resource owner and the code (if step 7a-7c is performed).
8. 	Alternatively, based on operator implementation, the CAPIF Function can determine to check the resource owner authorization data (if available in the UDM/UDR, i.e. query the UDM/UDR to check the authorization data related to the GPSI for e.g. to check if the resource owner accepts to expose the data associated to it). The resource owner authorization data fetching, and handling can be up to operator implementation.
9. 	Based on the authorization data fetched, the CAPIF Function provides access token to the API Invoker. The claims used to generate access token are up to normative work.
For the case of revocation, the Resource owner can anytime revoke the authorization data issued earlier by establishing a secure connection with the CAPIF Function (e.g. steps 7b initiated by UE and step 7c is performed), else the operator based on implementation can manage the revocation of resource owner authorization data. If an authorization is revoked, the access token request and any related data sharing with AEF is rejected by the CAPIF Function.
[bookmark: _Toc138840331]6.5.3	Evaluation
The solution addresses Key Issue #2 and enables the following:
An application key derived from CAPIF Key related to the Resource Owner is used to establish secure application session with the CAPIF Function.Access to resource of resource owner is allowed based on resource owner specific authorization information (i.e. user consent data) verification by the network.
The solution assumes the resource owner as the subscriber. The solution has impacts to AUSF and UDM as it extends AKMA security for resource owner registration and security establishment. The solution requires access to 5G key hierarchy and will only work when the UE is authenticated to 5G network.
[bookmark: _Toc138840332]6.6	Solution #6: Authorization before allowing access to resources
[bookmark: _Toc138840333]6.6.1	Introduction
This solution addresses the security requirement about authorization by the resource owner before allowing access to resources of the resource owner, which is detailed in key issue #2.
It is assumed that authorization information by the resource owner has been received and stored in the authorization server with a method out of the scope of this solution.
Also, the consideration whether the resource owner is the subscription user or the subscription owner is out of scope of this solution.
The MNO learns the authorization information from the subscription user or from the subscription owner and stores the authorization information, which is bound to the UE identifier, in the PLMN trusted domain. How the MNO authenticates the resource owner and learns the authorization information is out of scope of this solution.
This solution covers the case that the API invoker is the AF accessing to resources related to a UE or the API invoker is the application in the UE accessing to resources related to that UE.
How the AF maps the target username in the application layer into the UE identifier is out of scope of this solution. The authentication and authorization behind the AF-CAPIF interaction for the triggering UE and user is out of scope.
This solution assumes that the authorization server is co-located with the CAPIF Core Function (CCF). This solution does not specify the place where the authorization information is stored. The CCF may store the authorization information in an external storage, and in this case it is assumed that there is a secure channel between the CCF and the external storage.
The storage is used to store dynamic authorization information received, from the resource owner, using MNO specific methods. This storage can be co-located with the CCF/authorization server.
This solution works as follow for the use case #1 defined in Annex A of TR 23.700-95 [3]. When the user starts a gaming application, the gaming application can check whether there is already a permission for the QoS changes via the gaming server which assumes the API invoker role. If there is no permission and if the gaming application wants to offer a better quality, the gaming application may ask permission for QoS changes. If the user wants to have a better quality, the user can give permission using operator specific mechanisms which can be a web portal or a mobile application of the operator.
Regarding use case #2 in Annex A of TR 23.700-95 [3], this solution proposes alternative to the flow defined in [3] addressing the following issues in [3], namely if the flow in [3] is applied, the MNO will need to authenticate the mobile application instance running in the UE Y and will also need to ensure that the end user in the UE Y triggers the location tracking. However, the MNO cannot ensure the correctness of the information about the end user of UE Y. Therefore, it seems that the best way to realize this use case is to have the authorization mechanism in the application layer by the application server, which is out of 3GPP scope. Following this motivation, the solution proposes that the UE should only be able to access its own resources. After learning its own location, UE X can share the location information with UE Y directly or via the application server. How this sharing is realized is out of 3GPP scope.
Alternatively, use case #1 can be used to realize use case #2, as follows: The application server (AF) accesses the location information of UE X on behalf of UE Y; for this to happen the resource owner of UE X needs to authorize the application server to access UE X's location, and the end user of UE X needs to give permission in the application layer for sharing the location information with the user of UE Y.
[bookmark: _Toc138840334]6.6.2	Solution details
Below describes the steps of the procedure for "authorization before allowing access to resources", which is shown in Figure 6.6.2-1.

Figure 6.6.2-1: Authorization before allowing access to resources
How the authentication is executed for the API invoker that runs in the UE is out of scope of this solution. In general, the solution does not focus on the authentication of the API invoker.
1)	The API invoker and the CCF execute authentication procedures and establish a secure channel as specified in TS 33.122 [5].
2)	The API invoker request OAuth access token as specified in TS 33.122 [5].
3)	The CCF verifies the request.
4)	Steps 4-6 is executed if resource owner authorization check is needed for the API invocation.
5)	The CCF fetches resource owner authorization information from the storage. If the storage is co-located with CCF, there is no need to execute steps 4 and 5, or handling them can be left to implementation.
6)	The storage sends the resource owner authorization information.
NOTE:	The resource owner authorization information stored in the storage can have expiration time (e.g., usual expiration time of a token)
7)	The CCF issues an access token that includes an indication for the resource owner authorization. The CCF sends the issued token to the API invoker.
8)	The API invoker and API exposing function establish a secure channel.
9)	The API invoker sends the token to the API Exposing Function.
10)	The API Exposing Function verifies the token and checks the resource owner authorization information before allowing access to the resources related to the subscription.
11)	The API Exposing Function returns the API invocation response to the API invoker.
For the UE originated API invocation case where the application on the UE triggers the API invocation by the application in the operating system in the UE or directly invokes the API, this solution assumes that an authorization in the granularity of application level is executed by a mechanism, like allowing users in the mobile phones to control the permission of application to access resources such as microphone of the mobile phone, provided by the operating system, which is out of scope of this solution. To give the access control power to the MNO considering the permission from the user or subscriber, the MNO needs to retrieve the permission/authorization information from the subscriber or user and store it in the authorization server/storage with an out of scope mechanism. This solution applies to the specific case where the application is accessing to the resources of the UE on which the application is running. The case of accessing resource of other UEs by the UE is not covered in this solution.
If near real time authorization is needed for two scenarios (AF originated and UE originated API invocation), some application layer procedures which are out of 3GPP scope can be applied. The following gives an example for such procedures. For the AF originated API invocation, when there is a need for authorization from the user or subscriber, the AF informs the application client (e.g., gaming application) on the UE by sending MNO backend server endpoint information. The application client redirects the user to the MNO backend server so that the user configures authorization information using the MNO backend server and then continue to use the application (e.g., gaming application). The above procedures are executed to invoke the API. For the UE originated API invocation, if the application knows the MNO backend server endpoint information, the application can redirect the user to the MNO backend server system. If there is no such information, the application informs the user for such an authorization need and the user can use one of the alternatives to access the MNO backend server, for example, by using the web portal or mobile application of the MNO.
The following procedure, depicted in Figure 6.6.2-2, shows how revocation of authorization by the resource owner can be handled.

Figure 6.6.2-2: Revocation of resource owner authorization
1)	Resource owner authorization is revoked.
2)	The CCF informs the AEF about the revocation by sending the revoked token identifier. (It is assumed that the AEF has subscribed to the CCF event exposure service).
3)	The API invoker and AEF executes some authentication and establish a secure channel using TLS.
4)	The API invoker sends the access token in the NB API call.
5)	The AEF verifies the access token, checks the resource owner authorization. Since the resource owner authorization has been revoked, the AEF rejects the request.
6)	The AEF sends the rejection response to the API invoker.
[bookmark: _Toc138840335]6.6.3	Evaluation
The solution addresses the following cases:
-	The AF accesses resources related to a UE
-	The application in the UE is accessing the resources related to that UE.
The solution assumes that there is a mechanism in the UE for authorization in the application-level granularity.
This solution is a future proof solution considering possible extension of the definition of resource owner to cover the subscribers in addition to the users.
This solution assumes that the API invoker application in the operating system of the UE is authenticated and authorized by a method out of scope.
This solution is very similar to the existing mechanism for the AF originated API invocation case where the AF is outside of the UE. In the existing mechanism, the CCF has the authorization information that indicates whether the AF is allowed to consume the service API. The enhancement in this solution is that the CCF also checks the authorization information that indicates whether the AF is allowed to access the resources of the UE.
Considering the legacy mechanisms, this solution introduces a new claim in the token to inform the AEF that the user authorization has been checked by the CCF.
This solution requires CCF to have storage capability to store resource owner authorization information. In the existing CAPIF mechanism, CCF has already storage capability for preconfiguration of authorization information. This solution proposes to use existing mechanism about storage. How the authorization information is received from and updated by the MNO backend system is out of scope of this solution.
[bookmark: _Toc138840336]6.7	Solution #7: Authorizing UE originated API invocation with PKCE flow
[bookmark: _Toc138840337]6.7.1	Introduction
In case the API invocation can be initiated by an application on the UE without making use of a unique CAPIF client agent per UE, the UE application might not be able to securely store a client credential. For this case, there is the Authorization Code Flow with Proof Key for Code Exchange defined in RFC 7636 [9].
[bookmark: _Toc138840338]6.7.2	Solution details
The solution uses the PKCE protocol flow with the following mapping: the client in RFC 7636 [9] is the application on the UE. The authorization server in RFC 7636 is the authorization function in the network.
The following figure gives an example PKCE flow to help understanding the concept of the PKCE flow. This flow could look different for a different authentication mechanism.

Figure 6.7.2-1: Example PKCE flow
NOTE:	The solution description does not detail which parts need to be specified in stage 2.
[bookmark: _Toc138840339]6.7.3	Evaluation
PKCE flow is a standard IETF flow to allow a resource owner to provide authorization to a resource consumer. There is user interaction required for the PKCE flow.
[bookmark: _Toc138840340]6.8	Solution #8: Validation of OAuth Token
[bookmark: _Toc138840341]6.8.1	Introduction
If an OAuth token used for authorization, the API exposing function needs to verify the validity of the token. In this solution, this is done by token introspection RFC 7662 [10]. The revocation procedure between authorization server and resource owner is out of scope of this solution.
[bookmark: _Toc138840342]6.8.2	Solution details

Figure 6.8.2-1: Validation of OAuth 2.0 token
All messages containing a tokens shall be protected using TLS. The API invoker shall authenticate the API exposing function by verifying the API exposing function's certificate. The API exposing function shall authenticate the authorization function by validating the authorization function's certificate.
Note: contents of the certificates and which CAs are acceptable are not defined in this solution. The oAuth access token shall contain:
-	a unique random string,
-	which API the token applies to (the scope),
-	who is the resource owner,
-	the API invoker ID, and
-	expiry time.
NOTE 1: 	How that information is encoded in the OAuth access token is for stage 3.
1. 	The API call shall contain the OAuth access token.
2.	The API exposing function shall verify that the access token is applicable to the desired API call and if yes, send the access token to the authorization function for validation. Otherwise the API call shall fail and a new authorization may be requested.
3.	The authorization function shall verify the validity of the access token and return whether the token is valid.
4. 	If the access token is valid, the API exposing function shall execute the API call.
The API exposing function may cache the result of validation. In that case, the API exposing function shall subscribe to receive a notification in case the token is revoked. This subscription may be included in step 2, e.g. by accessing a different endpoint for validate and subscribe than for validate only.
The authorization function shall offer a notification service to inform the API exposing function of revocation of a token. Subscription shall be on a per token basis.
The authorization function may store information about validity of tokens locally.
NOTE 2:	Whether caching is required is has not been studied in the present document.
[bookmark: _Toc138840343]6.8.3	Evaluation
This solution addresses Authz-4-Scope and Authz-5-Revoke. This solution deviates from the existing CAPIF solution in clause 6.5.2.3 in TS 33.122 [5]. It can avoid the impact of signature generation and verification and of relying on synchronized time and short lived tokens at the expense of backend communication between AEF and authorization function.
Determining the benefits of token introspection over signature verification will need to be done in deployment can be revisited at a later time.
[bookmark: _Toc138840344]6.9	Solution #9: OAuth 2.0 based API invocation procedure
[bookmark: _Toc138840345]6.9.1	Introduction
This solution addresses the key issue #1 and key issue #2 in terms of API invoker UE authorization.
-	In this solution, API invoker may request authorization for service API and resource. And only one access token is provided to the API invoker for service API and resource authorization. Resource owner can authorize API invoker for resources via the UE. The resource owner can authorize the API invoker to access its resources in synchronous and asynchronous manner.
-	CAPIF core function can authorize API invoker for services and service operations.
[bookmark: _Toc138840346]6.9.2	Solution details

Figure 6.9.2-1: OAuth 2.0 based API invocation.
1.API invoker and UE controlled by the resource owner do the mutual authentication. Resource owner agent is a part of the UE.
	For the case that API invoker is the UE, the mutual authentication can be realized based on certificates. For the case that API invoker is the AF, the mutual authentication can be realized based on GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism. A secure connection between API invoker and resource owner is established after the mutual authentication. The secure connection can be established via TLS.
NOTE 1: 	To ensure the authorization code is provided to the correct API invoker, this solution requires the UE and API invoker do mutual authentication.
2. The API invoker sends authorization request to the UE controlled by the resource owner.
	In case API invoker has obtain the authorization of service API and service operation, the request includes the identity (e.g. GPSI, IMPI or application layer ID) of the API invoker, the identity (e.g. GPSI, IMPI or application layer ID) of target UE, the target resource (e.g. location of UE, QoS of the UE).
	In case API invoker has not obtain the authorization of service API and service operation, the request includes the identity (e.g. GPSI, IMPI or application layer ID) of the API invoker, the identity (e.g. GPSI, IMPI or application layer ID) of target UE, the target resource (e.g. location of UE, QoS of the UE), human-readable operations (e.g. update the QoS of the resource owner). The service identifier/service operation identifier indicates the service/service operation that can be performed on the target resource.
NOTE 2:	In this solution, the API invoker will send the requested human-readable operations (e.g. update the QoS of the resource owner) to the CAPIF core function/authorization function via the UE controlled by the resource owner. Therefore, the CAPIF core function/authorization function can generate the access token containing 3GPP services/service operations.
3. CAPIF core function/authorization function and UE controlled by the resource owner should do the mutual authentication.
	For the case of CAPIF core function, resource owner can authenticate CAPIF core function via certificate. Then CAPIF core function can authenticate resource owner using GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism. And CAPIF core function may generate certificate and OAuth 2.0 token for the resource owner after the authentication.
	For the case of authorization function, resource owner can authenticate authorization function via certificate. Then authorization function can authenticate resource owner using TLS-PSK, OAuth token, GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism, in which the certificate can be assigned by the CAPIF core function.
	A secure connection between resource owner and CAPIF core function/authorization function is established after the mutual authentication. The secure connection can be established via TLS.
	CAPIF core function and resource owner should also do the mutual authentication. Details on the authentication procedure is out of scope of 3GPP.
4. The resource owner may timely and synchronously grant the authorization request for the resource via the UE. And the UE controlled by the resource owner sends the authorization request and grant information to the CAPIF core function/authorization function to request the authorization code.
	The resource owner may asynchronously grant the authorization request for the resource based on the local pre-generated profile. And the resource owner sends the authorization request and grant information to the CAPIF core function/authorization function to request the authorization code.
	If the resource owner previously sends the pre-generated profile to the CAPIF core function/authorization function, the resource owner sends the authorization request to the CAPIF core function/authorization function to request the authorization code. CAPIF core function/authorization function can authorize the authorization request for the resource based on the pre-generated profile.
	The authorization request in step 4 is identical to the one sent by the API invoker.
	If the API invoker has obtained the authorization of service API and service operation, the CAPIF core function/authorization function generates the authorization code for the API invoker when API invoker is authorized to request the resource.
	If the API invoker has not obtained the authorization of service API and service operation, the CAPIF core function/authorization function should translate the application level human-readable operation in authorization request to 3GPP level service/service operation identifiers. Then the CAPIF core function/authorization function checks if API invoker is authorized to invoke the 3GPP services/service operations based on pre-configured policies. If the API invoker is authorized to invoke the service API, service operation, and the resource, the CAPIF core function/authorization function generates authorization code for the API.
5. CAPIF core function/authorization server sends the authorization code to the UE controlled by the resource owner.
6. The UE controlled by the resource owner sends the authorization code to the API invoker.
7. CAPIF core function/authorization function and API invoker should do the mutual authentication.
 	For the case of CAPIF core function, API invoker can authenticate CAPIF core function via certificate. Then CAPIF core function can authenticate API invoker using GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism. And CAPIF core function may generate certificate and OAuth 2.0 token for the API invoker after the authentication.
	For the case of authorization function, API invoker can authenticate authorization function via certificate. Then authorization function can authenticate API invoker using TLS-PSK, GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism, in which the certificate can be assigned by the CAPIF core function.
	A secure connection between API invoker and CAPIF core function/authorization function is established after the mutual authentication. The secure connection can be established via TLS.
8. The API invoker sends the authorization code to the CAPIF core function/authorization function.
9. The CAPIF core function/authorization function sends the refresh token/access token to the API invoker. The API invoker can send the refresh token to CAPIF core function/authorization function to obtain access token.
	The access token includes CAPIF core function identity (e.g. NF instance ID, NF ID), authorization function identity (e.g. NF instance ID, NF ID), AEF identity (e.g. NF instance ID, NF ID), service identifier (optional), 3GPP service /service operation (optional), API invoker identity (e.g. GPSI, IMSI, application layer ID), resource owner identity (e.g. GPSI, IMSI), user resource identifier (e.g. location), expire time.
10. API Exposing function (AEF) and API invoker should do the mutual authentication.
	API invoker and API Exposing function can do mutual authentication based on TLS-PSK, OAuth token, GBA-based authentication mechanism, AKMA-based authentication mechanism, or certificate-based authentication mechanism.
	A secure connection between API invoker and API Exposing function is established after the mutual authentication. The secure connection can be established via TLS.
11. The API invoker sends service API invocation request to the AEF. The request includes the API invoker identity, the resource owner identity, the service API that needs to be invoked, the user resource identifier that the API invoker needs to access, and the access token.
12. The AEF authorize the request based on the token.
13. The AEF sends response to the API invoker.
[bookmark: _Toc138840347]6.9.3	Evaluation
Benefits:
-	In this solution, authorization code grant type of OAuth 2.0 is employed to authorize both the request for both the resources (KI#2) and the request for services/service operations (KI#1).
Impacts:
-	The CAPIF core function/authorization function should be able to generate tokens containing authorization information with resource owner identity (e.g. GPSI, IMSI), and user resource identifier (e.g. location).
[bookmark: _Toc138840348]6.10	Solution #10: UE credential based API invocation procedure
[bookmark: _Toc138840349]6.10.1	Introduction
This solution addresses the key issue key issue #1 and #2 in terms of API invoker UE authorization.
In this solution, CAPIF core function/authorization function can authorize API invoker UE to access resources based on the verified UE identity in step 1.
The API invoker UE credential can be certificate or secrets shared among API invoker UE and CAPIF core function/authorization function.
The shared secrets among UE and CAPIF core function can be shared keys related to AKMA and GBA methods.
The shared secrets among UE and authorization function can be shared keys related to AKMA method, GBA method, and CAPIF onboarding procedure.
[bookmark: _Toc138840350]6.10.2	Solution details
It is assumed that the API invoker is an UE in SNA scenarios.

Figure 6.10.2-1: UE credential based API invocation procedure.
1.	The API invoker and authorization function/CAPIF core function do the mutual authentication.
	For the case of CAPIF core function, the API invoker can authenticate CAPIF core function via a certificate. Then the CAPIF core function can authenticate the API invoker using GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism. And the CAPIF core function may generate a certificate for the API invoker after the API invoker onboarding procedure.
	For the case of authorization function, the API invoker can authenticate the authorization function via a certificate. Authorization function can authenticate the API invoker UE based on its credential (e.g. KAF). In specific, the authorization function can authenticate API invoker using GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism, in which the certificate can be assigned by the CAPIF core function. API invoker and authorization function may do the mutual authentication based on methods that are defined in clause 6.5.2 of TS 33.122 [5].
	A secure connection between the API invoker and authorization function/CAPIF core function is established after the mutual authentication. The secure connection can be established via TLS.
2. 	The API invoker sends a token request to the CAPIF core function/authorization function. The request includes the identity (e.g. IMPI, GPSI) of the API invoker, the identity (e.g. IMPI, GPSI) of the resource owner, the target resource (e.g. location of UE, QoS of the UE), and the target service API.
3. 	The CAPIF core function/authorization function sends the token to the API invoker if the verified identity of UE in step 1 is authorized to request the target resource of the resource owner.
The authorization can be realized based on policies provided by the resource owner. In some cases, the policies are application level policies.
To authorize the API invoker, the CAPIF core function function/authorization function may need to translate the application level policies (e.g. human-readable policies) into 3GPP level service/service operation identifiers.
	The type of token can be refresh token or access token. To access the service API via the API exposing function, the API invoker UE needs to send the refresh token to the CAPIF core function/authorization function to obtain the access token when the CAPIF core function/authorization function sends the refresh token to the API invoker UE. The token shall include the CAPIF core function/authorization function FQDN (issuer), API invoker identity (subject), expected service API (Scope), target resource (Scope), identity of resource owner (Scope), API exposing function FQDN (audience), expiration time (expiration). Details on token, refresh token, and access token are given in RFC 6749 [4].
4. 	The API invoker and API exposing function do the mutual authentication. The API invoker can authenticate the authorization function via certificate. Then the authorization function can authenticate the API invoker using GBA-based authentication mechanism, AKMA-based authentication mechanism or certificate-based authentication mechanism, in which the certificate can be assigned by the CAPIF core function. API invoker and API exposing function may do the mutual authentication based on methods that are defined in clause 6.5.2 of TS 33.122 [5].
	A secure connection between API invoker and API exposing function is established after the mutual authentication. The secure connection can be established via TLS.
5. 	The API invoker sends a service API request to the API exposing function along with the access token.
6. 	The API exposing function needs to reject the request when the API invoker sends the service API invocation request without the token. The API exposing function authorizes the request based on the token. The API exposing function can verify the integrity of the token using the public key of the CAPIF core function. The API exposing function can terminate the procedure if the token is modified. Otherwise, the API exposure can check the service API invocation request against the token. The API exposing function should reject the service API request if the request cannot fulfil the requirements of the token. The procedure goes to step 7 if the request fulfils the requirements of the token.
7. 	The API exposing function sends the service API invocation response to the API invoker.
[bookmark: _Toc138840351]6.10.3	Evaluation
Benefits:
-	This solution can authorize API invoker for both resources (KI#2) and services/service operations (KI#1).
-	The CAPIF core function/authorization function can authorize the API invoker based on policies provided by the resource owner.
-	Before offering the token to the API invoker, the identity of the API invoker is authenticated by the CAPIF core function/authorization function using the certificate or shared key related to AKMA/GBA/API invoker onboarding procedure.
Impacts:
-	This solution requires the resource owner to configure policies to the CAPIF core function/authorization function.
-	To authorize the API invoker, CAPIF core function function/authorization function may need to translate the application level policies (e.g. human-readable policies) to 3GPP level service/service operation identifiers.
[bookmark: _Toc138840352]6.11	Solution #11: Providing and Revoking Resource Owner Authorization using OAuth 2.0 Authorization Code Grant
[bookmark: _Toc138840353]6.11.1	Introduction
This solution addresses Key Issue #2 "Checking authorization before allowing access".
This solution proposes to use OAuth 2.0 Authorization Code Grant as specified in clause 4.1 of RFC 6749 [4], in which the resource owner can be authenticated by the resource owner's 3GPP credentials.
UE, API Invoker, and Authorization Function in this solution performs the role of User-Agent, Client, and Authorization server in RFC 6749 [4], respectively.
[bookmark: _Toc138840354]6.11.2	Solution details
[bookmark: _Toc138840355]6.11.2.1	Architecture

Figure 6.11.2.1-1: Architecture for CAPIF with SNA enhancement
This solution uses an architecture proposed in solution #2 of TR 23.700-95 [3]. As defined in TR 23.700-95 [3], the Resource owner client is an application client used by end-user or subscriber of the API provider domain's service provider.
[bookmark: _Toc138840356]6.11.2.2	Procedure
Pre-requisite:
1.	During the primary authentication, AUSF receives SNAAPPY Indication from UDM, which indicates that the AUSF and the UE need to generate the following pre-requisite 2.
2.	After the primary authentication, UE and AUSF generate SNAAPPY Key Identifier (S-KID) and KSNAAPPY from KAUSF as detailed in 6.11.2.3 and 6.11.2.4 of the present document, respectively. After the S-KID and KSNAAPPY are generated, AUSF sends the KSNAAPPY, S-KID, and SUPI to Authorization Function. The Authorization Function stores this information sent by the AUSF. If there were KSNAAPPY and S-KID corresponding to the same SUPI, they are overridden by the new KSNAAPPY and S-KID.

Figure 6.11.2.2-1: Procedure for resource owner authorization based API invocation
1.	After API Invoker performs onboarding procedure to CAPIF core function as specified in clause 6.1 of TS 33.122 [5], the API Invoker mutually authenticates with the CAPIF core function as specified in clause 6.3 of TS 33.122 [5].
2.	API Invoker performs mutual authentication with API exposing function and gets an authorization to invoke a service API using one of three methods specified in clause 6.5 of TS 33.122 [5].
3.	For a service API which needs a resource owner's authorization, the API Invoker shall get an authorization from the resource owner in addition to the authorization that was obtained in step 2.
4.	The API Invoker obtains Authorization Code via OAuth 2.0 Authorization Code Grant as specified in RFC 6749 [4]. While the API Invoker redirects the UE to the Authorization Function, the API Invoker includes requested scope (e.g. modify QoS, location etc.) and the UE sends a challenge_UE, S-KID, and SNAAPPY indicator, which indicates that the UE supports the resource owner authentication with KSNAAPPY, to the Authorization Function. If the Authorization Function decides to authenticate the resource owner using KSNAAPPY, the Authorization Function generates authentication material (e.g. MAC generated using the challenge_UE and KSNAAPPY which the Authorization Function can find based on the S-KID), and sends a challenge_AF and the authentication material to the UE. After UE verifies the authentication material the Authorization Function sent, UE responds with authentication material (e.g. MAC generated using the challenge_AF and KSNAAPPY). The Authorization Function verifies the authentication material using KSNAAPPY. In addition to the authentication, the Authorization Function obtains authorization from the resource owner by showing the requested scope that the API Invoker sent and API Invoker information (e.g. API Invoker identity) before sending Authorization Code to the API Invoker.
NOTE 1:	Although the Authorization Function is illustrated as a separate entity from CAPIF core function in Figure 6.11.2.2-1, it may be deployed within the CAPIF core function according to the decision in SA3.
NOTE 2: 	Other authentication method between the resource owner and the Authorization Function can be additionally performed before the Authorization Function obtains authorization from the resource owner.
NOTE 3: Which entity in the UE executes step 4 is not specified in the present document.
1.	The Authorization Function generates an OAuth 2.0 token, TokenSNAAPPY. The TokenSNAAPPY conveys the S-KID or GPSI which is not MSISDN and the generated time of the TokenSNAAPPY, in addition to the token claims specified in Annex C.2.2 of TS 33.122 [5].
2.	The API Invoker requests the TokenSNAAPPY from the Authorization Function by presenting the Authorization Code sent by the Authorization Function in step 4.
3.	The Authorization Function sends the TokenSNAAPPY to the API Invoker.
4.	The API Invoker performs the service API invocation by presenting the TokenSNAAPPY.
5.	API exposing function checks whether the API Invoker is authorized to invoke the service API based on the selected authorization method in step 2. If the API Invoker requested a service API that needs resource owner's authorization, API exposing function shall check whether the API Invoker presented a TokenSNAAPPY. If the API Invoker performed the service API invocation without TokenSNAAPPY in step 8, the API exposing function shall reject the request. If the verification of the TokenSNAAPPY is successful, API exposing function identifies the UE using the S-KID or GPSI which is included in the TokenSNAAPPY, possibly by communicating with the Authorization Function that stored the S-KID and SUPI.
6.	API Invoker receives the service API invocation response from the API exposing function.
7.	If the resource owner does not want for the API Invoker to invoke the service API, the resource owner can revoke the TokenSNAAPPY at anytime even before the validity time of the TokenSNAAPPY.
8.	The UE requests the API Invoker to revoke the TokenSNAAPPY for the service API. This step is performed when e.g. the resource owner uninstalls the application on the UE or logouts from the application as described in RFC 7009 [7], or the resource owner clicks a revocation button on the application.
9.	The API Invoker requests the Authorization Function to revoke the TokenSNAAPPY for the service API as specified in RFC 7009 [7].
10.	If the Authorization Function receives a revocation request for TokenSNAAPPY,
a)	The Authorization Function responds to the revocation request. The response includes revocation time and the TokenSNAAPPY with MAC which the Authorization Function generates using the TokenSNAAPPY, revocation time, and KSNAAPPY; and
b)	The Authorization Function notifies the API exposing function of the revocation of the TokenSNAAPPY, with the revocation time. After the API exposing function receives the revocation notification of the TokenSNAAPPY, the API exposing function shall reject the API invocation from the API Invoker if the API Invoker invokes the service API with TokenSNAAPPY of which the generated time is prior to the revocation time.
11.	 The UE verifies the MAC using KSNAAPPY. The UE may inform the resource owner of the revocation result based on the verification.
[bookmark: _Toc138840357]6.11.2.3	S-KID
S-KID is in NAI format as specified in clause 2.2 of IETF RFC 7542 [11], i.e. username@realm. The username part includes SNAAPPY Temporary UE Identifier (S-TID), and the realm part includes Home Network Identifier or Authorization Function Address.
When deriving S-TID from KAUSF, the following parameters shall be used to form the input S to the KDF:
-	FC = 0xXX;
-	P0 = "S-TID";
-	L0 = length of "S-TID";
-	P1 = SUPI;
-	L1 = length of SUPI.
The input key KEY shall be KAUSF.
NOTE:	FC value to be determined during normative phase.
[bookmark: _Toc138840358]6.11.2.4	KSNAAPPY derivation function
When deriving KSNAAPPY from KAUSF, the following parameters shall be used to form the input S to the KDF:
-	FC = 0xYY;
-	P0 = "Authorization";
-	L0 = length of "Authorization";
The input key KEY shall be the KAUSF.
NOTE:	FC value to be determined during normative phase.
[bookmark: _Toc138840359]6.11.3	Evaluation
This solution addresses KI#2.
This solution uses OAuth 2.0 Authorization Code Grant model where mutual authentication between UE and Authorization Function is performed using the key derived from 3GPP credential after API Invoker redirects the UE to the Authorization Function.
This solution introduces a new mechanism for the revocation check of OAuth 2.0 token by including the token generation time in the OAuth 2.0 token and sending the token revocation time from Authorization Function to API exposing function.
This solution prevents the API Invoker from acting like the token, which the resource owner requested to revoke, is revoked by sending the revoked token with MAC, which is generated using KSNAAPPY, from Authorization Function to the UE via API Invoker.
This solution requires access to the 5G key hierarchy and will only work with a 5G authenticated UE.
Impact on AUSF exists, i.e. AUSF generates a new key (KSNAAPPY) with corresponding identifier (S-KID) and sends them to Authorization Function.
The resource owner cannot enforce a malicious API invoker to actually revoke a token.
[bookmark: _Toc138840360]6.12	Solution #12: Providing and Revoking Resource Owner Authorization
[bookmark: _Toc138840361]6.12.1	Introduction
This solution addresses Key Issue #2 "Checking authorization before allowing access".
This solution proposes to use a resource owner's 3GPP credentials for UE to generate a token, which is used to validate an API Invoker accessing the resource owner's resources.
A resource owner in this solution is an end-user who is using the UE.
[bookmark: _Toc138840362]6.12.2	Solution details
[bookmark: _Toc138840363]6.12.2.1	Architecture

Figure 6.12.2.1-1: Architecture for CAPIF with SNA enhancement
This solution uses an architecture proposed in solution #2 of TR 23.700-95 [3]. As defined in TR 23.700-95 [3], the Resource owner client is an application client used by end-user or subscriber of the API provider domain's service provider.
[bookmark: _Toc138840364]6.12.2.2	Procedure
Pre-requisite:
-	During the primary authentication, AUSF receives Routing Indicator for Authorization Function from UDM.
-	After the primary authentication, UE and AUSF generate S-KID (SNAAPPY Key Identifier) and KAuz from KAUSF as detailed in clauses 6.12.2.3 and 6.12.2.4 of the present document, respectively. After the key material is generated, AUSF selects the Authorization Function based on the Routing Indicator and sends the KAuz, S-KID, and SUPI to the Authorization Function. The Authorization Function stores the latest information sent by the AUSF.
-	Information on Authorization Function (e.g. address, Routing Indicator, etc.) which holds the KAuz is provisioned to the UE (e.g. during registration procedure).
-	API Invoker knows which APIs require a resource owner's authorization.

Figure 6.12.2.2-1: Procedure for resource owner authorization based API invocation
1.	If API Invoker does not have TokenAuz for service API invocation which requires the resource owner's authorization, API Invoker needs to request resource owner's authorization for the API invocation even if the API invocation is authorized from API exposing function as defined in TS 33.122 [5].
2.	API Invoker requests resource owner's authorization for the API invocation. The request message includes Service API name (e.g. QoS API, location API, etc.) and API Invoker Information (e.g. API Invoker identity which is provided from CAPIF Core Function).
3.	When the resource owner decides to give an authorization on the Service API name to the API Invoker (e.g. using GUI), UE generates an authorization token (TokenAuz). The claims of the TokenAuz include service API name, S-KID (SNAAPPY Key Identifier), API Invoker Information, "Authorized", generated time, and validity time. TokenAuz contains the claims (TokenAuz, claim) and the verification information (TokenAuz, verify). Details of S-KID and the corresponding key KAuz are specified in clauses 6.12.2.3 and 6.12.2.4 of the present document, respectively. TokenAuz, verify is generated as detailed in clause 6.12.2.5 by using the claims and the key KAuz.
NOTE: 	Which entity in the UE executes step 3 is not addressed in the present document.
4.	If the resource owner gives the authorization for the API invocation, UE responds with the TokenAuz. Upon receiving the response, the API Invoker stores the TokenAuz with UE ID (e.g. application layer ID or GPSI or SUPI). The API Invoker can use the TokenAuz for the API invocation until the TokenAuz is expired by an expiration time or revoked by the resource owner, even when there is no online connection between the API Invoker and the UE.
5.	API Invoker performs the service API invocation with the TokenAuz.
6.	API exposing function requests token verification to Authorization Function, via CAPIF-9 interface.
7.	Authorization Function finds KAuz matched to S-KID which is included in TokenAuz, claim and verifies the TokenAuz using KAuz.
8.	Authorization Function responds with the verification result and UE ID (SUPI or GPSI).
9.	If the verification result of the TokenAuz is successful, API exposing function stores the TokenAuz with UE ID (SUPI or GPSI). Until API exposing function receives a revocation notification for the service API invocation or the TokenAuz is expired by an expiration time, API exposing function uses the stored TokenAuz for authorizing the API Invoker without performing token verification request to Authorization Function.
10.	API Invoker receives the service API invocation response.
11.	If the resource owner does not want for the API Invoker to invoke the service API, the resource owner can revoke the TokenAuz anytime before the validity time of the TokenAuz by using resource owner client. When the resource owner decides to revoke the TokenAuz for the service API, UE generates a revocation token (TokenRev). The claims of TokenRev include service API name, A-KID, API Invoker information, "Not authorized", generated time. TokenRev contains the claims (TokenRev, claim) and the verification information (TokenRev, verify). TokenRev, verify is generated as detailed in clause 6.12.2.5 by using the claims and the key KAuz.
12.	UE and Authorization function perform mutual authentication based on TLS-PSK as specified in clause 6.5.2.1 in TS 33.122, where PSK can be derived from KAuz. The TokenRev is transmitted to Authorization Function via CAPIF-8 interface with revocation request message.
13.	Authorization Function finds KAuz by using S-KID which is included in the TokenRev, claim. Authorization Function verifies the TokenRev using KAuz.
14.	Authorization Function notifies the revocation on the API Invoker's service API invocation. The revocation notification includes the TokenRev and UE ID.
15.	For the same UE ID stored at step 9 and received at step 14, API exposing function finds the TokenAuz which has same service API name and API Invoker information as the TokenRev. If the generated time of the TokenAuz is prior to that of the TokenRev, API exposing function revokes the TokenAuz and stores the TokenRev. After this, if the API Invoker performs service API invocation using the revoked TokenAuz, API exposing function shall reject the API invocation request by noticing that the generation time in the TokenAuz is prior to the generation time in the TokenRev.
16.	API exposing function notifies the revocation of the token.
[bookmark: _Toc138840365]6.12.2.3	S-KID
S-KID is in NAI format as specified in clause 2.2 of IETF RFC 7542 [11], i.e. username@realm. The username part includes the Routing Indicator for Authorization Function and S-TID (SNAAPPY Temporary UE Identifier), and the realm part includes Home Network Identifier.
When deriving S-TID from KAUSF, the following parameters shall be used to form the input S to the KDF:
-	FC = 0xXX;
-	P0 = "S-TID";
-	L0 = length of "S-TID";
-	P1 = SUPI;
-	L1 = length of SUPI.
The input key KEY shall be KAUSF.
NOTE:	FC value to be determined during normative phase.
[bookmark: _Toc138840366]6.12.2.4	KAuz derivation function
When deriving KAuz from KAUSF, the following parameters shall be used to form the input S to the KDF:
-	FC = 0xYY;
-	P0 = "Authorization";
-	L0 = length of "Authorization";
The input key KEY shall be the KAUSF.
NOTE:	FC value to be determined during normative phase.
[bookmark: _Toc138840367]6.12.2.5	Verification information derivation
When deriving the verification information (TokenAuz, verify or TokenRev, verify) from KAuz, the following parameters shall be used to form the input S to the KDF.
-	FC = 0xZZ;
-	P0 = TokenAuz, claim or TokenRev, claim;
-	L0 = length of TokenAuz, claim or TokenRev, claim;
The input key KEY shall be KAuz.
The verification information is identified with the 128 least significant bits of the output of the KDF.
NOTE:	FC value to be determined during normative phase.
[bookmark: _Toc138840368]6.12.3	Evaluation
This solution addresses KI#2.
This solution uses similar mechanism as users of mobile phone giving a permission to application for access to resources such as phonebook, microphone, camera, etc. When the resource owner authorizes an API Invoker, UE uses KAuz, which the API Invoker cannot obtain, to generate an authorization token (TokenAuz) sends the token to API Invoker. After verifying the token that API Invoker presented, API exposing function responds to API invocation request from API Invoker.
This solution does not use OAuth 2.0 procedure.
This solution introduces a new mechanism for the revocation check of a token by including the token generation time in an authorization token and the token revocation time in a revocation token.
Impact on AUSF exists, i.e. AUSF generates a new key (KAUZ) with corresponding identifier (S-KID) and sends them to Authorization Function.
The solution requires the UE to be authenticated to a 5G core.
[bookmark: _Toc138840369]6.13	Solution #13: Resource owner policies based authorization mechanism
[bookmark: _Toc138840370]6.13.1	Introduction
This solution addresses the key issue #1 and key issue #2 in terms of API invocation authorization.
In this solution, authorization mechanisms in TS 33.122 [5] are reused.
The API invoker can be authorized by the AEF without using the OAuth 2.0 token.
[bookmark: _Toc138840371]6.13.2	Solution details
The resource owner provisions policies to the CAPIF core function/authorization function via the UE.
The authentication and authorization to resource owner (i.e. the human who uses the UE) is left to implementation.
By reusing the authorization mechanism in clauses 6.5.2.1 and 6.5.2.2 of TS 33.122 [5], the AEF can obtain resource owner related policies from the CAPIF core function/authorization function and authorize the API invoker to request resources belonging to the owner.
[bookmark: _Toc138840372]6.13.3	Evaluation
This solution requires no additional specification.
This solution does not detail how the resource owner is authenticated.
This solution does not detail how the resource owner provides authorization.
Authorization needs to be provided in advance of calling the API.
[bookmark: _Toc138840373]6.14	Solution #14: Reusing CAPIF core function initiated revocation procedure to enable user authorization revocation
[bookmark: _Toc138840374]6.14.1	Introduction
This solution addresses the key issue #2 in terms of authorization revocation.
The CAPIF core function/authorization function reuses clause 8.23.4 of TS 23.222 [12] to complete the revocation procedure.
[bookmark: _Toc138840375]6.14.2	Solution details
It is assumed that the API invoker is an UE/AF in SNA scenarios.

Figure 6.14.2-1: User authorization revocation for API invocation procedure.
0.	The API invoker obtains the service API invocation authorization from the resource owner. Specifically, the resource indicates the location information, QoS information, etc. And the API invoker is an UE/AF.
1.	It is assumed that the authorization is revoked.
	According to clause 8.23.3 of TS 23.222 [12], the CAPIF core function can run Revoke_Authorization.
	The UE/resource owner client can reuse the Revoke_Authorization API to provide revocation information to the CAPIF core function/authorization function.
	Then the CAPIF core function/Authorization function contains the revocation information.
	The revocation information includes the identity (e.g. GPSI, IMPI) of the API invoker, the identity (e.g. GPSI, IMPI) of the resource owner, the target resource identifier (e.g. location, QoS), and the target service API.
2.	The CAPIF core function/authorization function reuses the procedures in clause 8.23.4 of TS 23.222 [12] to complete the authorization revocation.
	The CAPIF core function should send revocation information, which is received from the resource owner, to the AEF.
	The AEF invalidates the authorization based on the revocation information.
[bookmark: _Toc138840376]6.14.3	Evaluation
This solution reuses the authorization revocation mechanism defined in clause 8.23.4 of TS 23.222 [12].
The impacts of the solution are given as follows.
The authorization revocation mechanism defined in clause 8.23.4 of TS 23.222 [12] is reused with the following modifications:
-	The revocation information/polices stored in CAPIF core function/Authorization function include the identity (e.g. GPSI, IMPI) of the resource owner and the target resource identifier (e.g. location, QoS).
-	Revocation information/polices received by the AEF include the identity (e.g. GPSI, IMPI) of the resource owner and the target resource identifier (e.g. location, QoS).
[bookmark: _Toc138840377]6.15	Solution #15: Authorization revocation to undo API invocation
[bookmark: _Toc138840378]6.15.1	Introduction
The oAuth view of authorization revocation and the user's view of authorization revocation may differ. Revocation of an oAuth token will ensure no unauthorized calls to an API after the authorization has been revoked. However, a user may expect that the effects of a previous API call would also be reverted.
For example: if a user gives permission to a game to upgrade the QoS of the game's bearer (potentially incurring additional cost), the user would expect that after revocation of the authorization, the game's bearer stop incurring additional cost (and fall back to the regular QoS).
[bookmark: _Toc138840379]6.15.2	Solution details
When an authorization is revoked, the authorization function shall notify the API exposing function. The API exposing function then shall revert the resources inside the network according to the content of the notification (e.g. reverting the QoS).

Figure 6.15.2-1: Resource reversal after token revocation
1.	The API exposing function shall subscribe at the authorization function to token revocation. This could be for all tokens relating to a particular authorization, or for specific tokens after they are encountered first.
2.	At some time, the resource owner decides to revoke authorization. The procedure to do this is out of scope of this solution (and could be left to implementation).
3.	The authorization function shall notify the subscribed API exposing function of the token revocation.
4.	The API exposing function shall determine whether resources need to be reverted, e.g. QoS, subscription to network events, etc.) Subsequently, the API exposing function shall revert the resources in the network.
[bookmark: _Toc138840380]6.15.3	Evaluation
This solution allows the AEF to ensure that persistent changes can be undone after authorization revocation. It partly addresses Authz-5-revoke.
[bookmark: _Toc138840381]6.16	Solution #16: Token Revocation using Short-lived Token
[bookmark: _Toc138840382]6.16.1	Introduction
This solution addresses the requirement Authz-5-Revoke in KI#2.
This solution proposes to use a short-lived token for an issued token. The authorization can be revoked automatically if an API invoker does not refresh the issued token. There is no impact on the AEF.
[bookmark: _Toc138840383]6.16.2	Solution details

Figure 6.16.2-1: Procedure of Revocation of OAuth Authorization
0. It is assumed that requirement for revocation is received in CCF.
1. The API Invoker sends the Token Request to the CCF to retrieve a token to access the discovered API.
2. The CCF issues a token with a short expiry time when receiving the requirement for revocation, e.g. 1 hour.
3. The CCF sends the Token Response to the API Invoker. The message includes the issued token. Once revocation is required by the resource owner, e.g. to log out, the API invoker stops refreshing the token, which will be revoked within the short expiry time.
[bookmark: _Toc138840384]6.16.3	Evaluation
This solution partially addresses the requirement Authz-5-Revoke in KI#2, i.e. using a short-lived token instead of revoking explicitly at any time.
The solution has impact on CCF/authorization function.
The authorization is revoked implicitly and has less impact for the network system, i.e. the solution has no impact on the AEF.
The solution does not detail how to revoke effects of previous API calls.
[bookmark: _Toc138840385]7	Conclusions
[bookmark: _Toc138840386]7.0	High level conclusions
This conclusions are for enhancing CAPIF regarding resource owner awareness. Existing mechanisms without resource owner awareness are still available.
-	Authorization function is part of CCF.
-	https is used as protocol between OAuth client and authorization server on the CCF.
Use case A: AF outside of UE is API invoker
-	For mutual authentication of API invoker AF and API exposing function in this use case, TS 33.122 [5] is reused.
-	For mutual authentication of API invoker AF and CCF in this use case, TS 33.122 [5] is reused.
-	For authorization, the OAuth2.0 Framework is used. The API invoker has the role of the OAuth client.
-	The SNA token can contain the resource owner identity claim and other claims. AEF should do the authorization check to the API invocation request containing the token against the claims including the resource owner identity.
-	Authorization code flow, PKCE flow and client credential flow provide a different user experience and support different application needs. Thus these three flows are candidates to be considered as options for normative work.
-	The claim in the token includes resource owner identity, thus there is no need for additional UE authentication in API invocation.
-	For Authorization Code Flow and PKCE, authentication between CCF/AUF and UE should be performed after API Invoker redirects the UE to CCF/AUF.
- 	Based on the operator's policy, mutual authentication between resource owner and CCF/AUF can be performed.
-	the authentication method is up to operator policy (e.g. an already deployed mechanism, or AKMA, or GBA) and therefore no additional specification is foreseen for the authentication method.
Use case B: API invoker residing on UE accessing its own resources
Conclusions applicable to both Subcase B.i) and B.ii) below:
The conclusions for case A also apply to Subcases B.i) and B.ii) with the following differences:
-	whether API invoker onboarding needs to be specified is left to the normative phase
-	whether and howAPI invoker needs to be authenticated is left to the normative phaseSubcase B.i) API invoker part of third party application (e.g. single page application)
Subcase B.ii) API invoker part of UE accessing its own resources
General open issues:
UE A accessing resource of UE B is out of scope of the present document.
Subscriber vs UE as resource owner:
-	Regulatory requirements can affect whether UE user or subscriber is considered resource owner. Therefore, it is left to configuration or implementation in the authorization function (i.e. CCF) whose authentication (subscriber or UE) is required for authorizing access to a specific resource.
-	Within the token, GPSI is used as identifier. GPSI needs to be different from MSISDN, SUPI etc. How to identify the resources is left for stage 3 work. The token should be able to restrict the API invoker to a specific resource (e.g., location, QoS, PDN connectivity status).
Conclusion for revocation:
-	One or multiple revocation mechanisms are required.
-	API Exposing Function needs to be informed about revocation if this is necessary to ensure correct handling of revocation. Details how to minimize AEF impacts will be handled in the normative phase.
[bookmark: tsgNames][bookmark: _Toc138840387]

Annex A:
Change history
[bookmark: historyclause]
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	07-2022
	SA3#108e
	S3-221597
	
	
	
	Implements S3-221314, 1359, 1660
	0.1.0

	10-2022
	SA3#108ah-e
	S3-222980
	
	
	
	Implements S3-222963, 2966, 3098, 3055, 3004
	0.2.0

	11-2022
	SA3#109
	S3-224106
	
	
	
	Implements S3-224101, 3290, 4038, 4039, 4040, 4041, 4042
	0.3.0

	01-2023
	SA3#109ah-e
	S3-230519
	
	
	
	Implements S3-230515, 0074, 0075, 0076, 0520, 0522, 0451, 0452, 0486, 0534, 0535, 0517, 0518, 0475, 0476, 0477, 0543, 0544, 0545
	0.4.0

	02-2023
	SA3#110
	S3-231608
	
	
	
	Implements S3-231545, S3-231381
	0.5.0

	2023-03
	SA#99
	SP-230133
	
	
	
	Presented for information
	1.0.0

	2023-04
	SA3#110ah-e
	S3-232200
	
	
	
	Implements S3-231912, 2119, 2095, 2121, 2120, 2122, 2106, 2107, 2153, 2144, 2145, 2154, 2078, 2074, 2075, 2161, 2162, 2205, 2222, 2224, 2160
	1.1.0

	2023-05
	SA3#110ah-e
	
	
	
	
	EditHelp review
	1.1.1

	2023-05
	SA3#111
	S3-233382
	
	
	
	Implements 3356, 3304, 2991, 2992, 3274, 3427, 3324
	1.2.0

	2023-05
	SA#100
	SP-230568
	
	
	
	Presented for approval
	2.0.0

	2023-06
	SA#100
	
	
	
	
	Upgrade to change control version
	18.0.0

	2023-06
	SA#100
	
	
	
	
	EditHelp review
	18.0.1

3GPP
image2.png

image3.emf
API invokerCAPIF-1eCAPIF core functionAPI exposing functionService APIsService APIsService APIsCAPIF-3CAPIF-2eAPI invokerCAPIF-1CAPIF-2PLMN Trust DomainCAPIF-4API publishing functionCAPIF APIsCAPIF-5API management functionTriggerersCAPIF-8Authorization functionAuthorization APIsAPI provider domainCAPIF-X

Microsoft_Visio_2003-2010_Drawing.vsd
�

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

image4.emf
API InvokerResource OwnerTriggererCCF(authorization function)AEFUDM1. API invoker Onboarding and obtain Authentication and authorization method3. API invoker obtain tokenCAPIF via OAuth 2.0 with authorization code grant model based on resource owner's authorization if user authorization is needed for the invocated API4. API Invocation(tokenCAPIF)5. Verify tokenCAPIF for both user authorization and NF authorization6. AEF may update subscription data in UDM for user consent2. API invoker discovers service APIs

Microsoft_Visio_Drawing.vsdx
API Invoker
Resource Owner
Triggerer
CCF
(authorization function)
AEF
UDM
1. API invoker Onboarding and obtain Authentication and authorization method
3. API invoker obtain tokenCAPIF via OAuth 2.0 with authorization code grant model based on resource owner's authorization if user authorization is needed for the invocated API
4. API Invocation
(tokenCAPIF)
5. Verify tokenCAPIF for both user authorization and NF authorization
6. AEF may update subscription data in UDM for user consent
2. API invoker discovers service APIs

image5.png

image6.wmf
U

E

A

Z

F

A

N

F

1

:

e

n

r

o

l

l

2

:

(

u

n

a

u

t

h

e

n

t

i

c

a

t

e

d

)

3

:

r

e

d

i

r

e

c

t

t

o

A

N

F

_

U

R

I

(

r

e

s

p

o

n

s

e

_

t

y

p

e

=

c

o

d

e

s

c

o

p

e

=

o

p

e

n

i

d

c

l

i

e

n

t

_

i

d

=

A

Z

F

_

I

D

r

e

d

i

r

e

c

t

_

u

r

i

=

A

Z

F

_

U

R

I

s

t

a

t

e

=

s

o

m

e

S

t

a

t

e

)

4

:

G

E

T

A

N

F

_

U

R

I

5

:

a

u

t

h

e

n

t

i

c

a

t

e

u

s

i

n

g

G

B

A

,

A

K

M

A

,

o

r

p

r

o

p

r

i

e

t

a

r

y

6

:

a

u

t

h

o

r

i

z

a

t

i

o

n

f

r

o

m

u

s

e

r

t

o

r

e

l

e

a

s

e

p

e

r

s

o

n

a

l

i

n

f

o

t

o

A

Z

F

7

:

r

e

d

i

r

e

c

t

t

o

A

Z

F

_

U

R

I

(

c

o

d

e

=

s

i

n

g

l

e

U

s

e

T

o

k

e

n

s

t

a

t

e

=

s

o

m

e

S

t

a

t

e

)

8

:

G

E

T

A

Z

F

_

U

R

I

(

c

o

d

e

=

s

i

n

g

l

e

U

s

e

T

o

k

e

n

s

t

a

t

e

=

s

o

m

e

S

t

a

t

e

)

9

:

P

O

S

T

A

N

F

/

t

o

k

e

n

/

e

n

d

p

o

i

n

t

1

0

:

2

0

0

I

D

t

o

k

e

n

1

1

:

v

a

l

i

d

a

t

e

I

D

t

o

k

e

n

i

f

v

a

l

i

d

,

U

E

a

u

t

h

e

n

t

i

c

a

t

e

d

oleObject1.bin

image7.emf
AEFAuthorizationServerAPI InvokerApplicationUE

Microsoft_Visio_Drawing1.vsdx
AEF
Authorization
Server
API Invoker
Application
UE

image8.emf
AEFAuthzServerAPI InvokerApplication1. Request2. Token Request(scope)3. Authorize Request4. Token Response(token)5. API Request(token)6. Validate Request7. Execute Request8. API Response(result)9. Response

Microsoft_Visio_Drawing2.vsdx
AEF
Authz
Server
API
Invoker
Application
1. Request
2. Token Request (scope)
3. Authorize Request
4. Token Response (token)
5. API Request(token)
6. Validate Request
7. Execute Request
8. API Response(result)
9. Response

image9.emf
API invoker / UECore NF/AFCAPIF Core FunctionAEFUE is registered with the network1. Onboard Service Request4. Secure connection using CCF Key5. Onboard API Invoker Request6. Onboard API Invoker Response10. Authentication Initiation Request11. Security Information Request/Response12. Secure connection establishment based on TLS-PSK using AEF Key13a. Invocation Service Request (OAuth Access Token)14. Invocation Service Response13b. Verify access token, authorization Information 3. Store CCF Key7. OAuth 2.0 access token Request9. Oauth 2.0 access token Response8. Authorization Verification

Microsoft_Visio_Drawing3.vsdx
API invoker / UE
Core NF/AF
CAPIF Core Function
AEF
UE is registered with the network
1. Onboard Service Request
4. Secure connection using CCF Key
5. Onboard API Invoker Request
6. Onboard API Invoker Response
10. Authentication Initiation Request
11. Security Information Request/
Response
12. Secure connection establishment based on TLS-PSK using AEF Key
13a. Invocation Service Request (OAuth Access Token)
14. Invocation Service Response
13b. Verify access token, authorization Information
3. Store CCF Key
2. Key Request/
Response
7. OAuth 2.0 access token Request
9. Oauth 2.0 access token Response
8. Authorization Verification

image10.emf
4a. Resource owner Authorization data notification Request(SUPI, CAPIF-UE ID, GPSI, KCAPIF)4b. Resource owner Authorization data notification ResponseAUSF/any CNF UE (Resource Owner)(Subscriber)AMF3a. Based on AKMA key generate KCAPIF and CAPIF-UE IDUDM/UDR3a. Based on AKMA key generate KCAPIF and CAPIF-UE IDCAPIF Function2. Nudm_UEAuthentication_Get Response (AV, [CAPIF Ind], GPSI, CAPIF Function ID/address)5. CAPIF Function information, GPSI6a. Resource owner Registration Request (CAPIF-UE ID, GPSI)7c. Secure Session Using a Key derived from KCAPIF API Invoker (AF/UE)Verify CAPIF-UE ID. Generate Resource owner ID. 7d. Access Token Request (GPSI, code (if any))8. Authorization data check7a. API Invoker may obtain authorization code with Oauth 2.0 Authorization Code Grant

Microsoft_Visio_Drawing4.vsdx
4a. Resource owner Authorization data notification Request
(SUPI, CAPIF-UE ID, GPSI, KCAPIF)
4b. Resource owner Authorization data notification Response
AUSF/any CNF
UE (Resource Owner)
(Subscriber)
AMF
1. Primary authentication
3a. Based on AKMA key generate KCAPIF and CAPIF-UE ID
UDM/UDR

3a. Based on AKMA key generate KCAPIF and CAPIF-UE ID
CAPIF Function

2. Nudm_UEAuthentication_Get Response
(AV, [CAPIF Ind], GPSI, CAPIF Function ID/address)

5. CAPIF Function information, GPSI

6a. Resource owner Registration Request (CAPIF-UE ID, GPSI)

7c. Secure Session Using a Key derived from KCAPIF
API Invoker
(AF/UE)
6b. Resource owner Registration Response
Verify CAPIF-UE ID.
Generate Resource owner ID.
7d. Access Token Request (GPSI, code (if any))
7b. Authorization data Trigger (Resource Owner ID)
8. Authorization data check
9. Access Token
7a. API Invoker may obtain authorization code with Oauth 2.0 Authorization Code Grant

image11.emf
API invokerCAPIF core function / authorization serverAPI exposing function1. CAPIF-1e Authentication and secure session establishment3. Verify access token request 2. OAuth 2.0 based access token request6. Respond with Oauth 2.0 Access Token that includes an indication for resource owner authorization Storage4. Retrieve resource owner authorization information5. Resource owner authorization information9. Verify access token and check the indication for resource owner authorization in the token8. Oauth 2.0 Access Token that includes an indication for resource owner authorization 10. API invocation response7. TLS connection established

Microsoft_Visio_2003-2010_Drawing1.vsd

image12.emf
API invokerCAPIF core function / authorization serverAPI exposing functionStorage2. Notification about the revocation3. TLS connection established4. Invoke Northbound API with Oauth 2.0 Access Token5. Verify Access Token, authorization claims in token, and resource owner authorization information. Since resource owner authorization has been revoked, reject the API call request6. Rejection response1. Authorization is revoked.

Microsoft_Visio_2003-2010_Drawing2.vsd

image13.wmf
R

e

s

o

u

r

c

e

O

w

n

e

r

A

Z

F

B

r

o

w

s

e

r

A

p

p

l

i

c

a

t

i

o

n

1

:

A

c

c

e

s

s

2

:

c

r

e

a

t

e

r

a

n

d

r

h

a

s

h

_

r

=

h

a

s

h

(

r

)

3

:

r

e

d

i

r

e

c

t

t

o

A

Z

F

h

a

s

h

_

r

4

:

G

e

t

l

o

g

i

n

h

a

s

h

_

r

5

:

s

t

o

r

e

h

a

s

h

_

r

6

:

l

o

g

i

n

f

o

r

m

7

:

c

r

e

d

e

n

t

i

a

l

s

8

:

a

u

t

h

e

n

t

i

c

a

t

e

u

s

e

r

9

:

r

e

d

i

r

e

c

t

t

o

A

p

p

w

i

t

h

c

o

d

e

c

1

0

:

a

c

c

e

s

s

c

o

d

e

c

1

1

:

r

e

q

u

e

s

t

t

o

k

e

n

C

l

i

e

n

t

I

D

,

r

,

c

o

d

e

c

1

2

:

c

h

e

c

k

:

C

l

i

e

n

t

I

D

h

a

s

h

(

r

)

=

h

a

s

h

_

r

c

o

d

e

c

1

3

:

r

e

t

u

r

n

t

o

k

e

n

oleObject2.bin

image14.wmf
A

p

p

l

i

c

a

t

i

o

n

e

x

p

o

s

i

n

g

f

u

n

c

t

i

o

n

A

u

t

h

o

r

i

z

a

t

i

o

n

f

u

n

c

t

i

o

n

1

:

A

P

I

c

a

l

l

2

:

r

e

q

u

e

s

t

V

a

l

i

d

i

t

y

(

O

A

u

t

h

2

.

0

t

o

k

e

n

)

3

:

r

e

s

p

o

n

s

e

V

a

l

i

d

i

t

y

4

:

A

P

I

c

a

l

l

r

e

s

p

o

n

s

e

oleObject3.bin

image15.emf
9. Token response2. Resource authorization request8. Token request11. Service API invocation request4.Authorization code request13. Service API invocation responseAPI invokerCAPIF core function/ authorization functionUE controlled by resource owner API exposureFunction12. Decide whether to continue the process of service API execution1. Mutual authentication10. Mutual authentication3. Mutual authentication5.Authorization code response6.Resource authorization response7. Mutual authentication

Microsoft_Visio_Drawing5.vsdx
9. Token response
2. Resource authorization request
8. Token request
11. Service API invocation request
4.Authorization code request
13. Service API invocation response
API invoker
CAPIF core function/ authorization function
UE controlled by resource owner
API exposure
Function
12. Decide whether to continue the process of service API execution
1. Mutual authentication
10. Mutual authentication
3. Mutual authentication
5.Authorization code response
6.Resource authorization response
7. Mutual authentication

image16.emf
2. Access token request3. Access token response5. Service API invocation request7. Service API invocation responseAPI invokerCAPIF core function/ authorization functionAPI exposingFunction6. Decide whether to continue the process of service API execution and store the resource owner consent1. Mutual authentication4. Mutual authentication

Microsoft_Visio_Drawing6.vsdx
2. Access token request
3. Access token response
5. Service API invocation request
7. Service API invocation response
API invoker
CAPIF core function/ authorization function
API exposing
Function
6. Decide whether to continue the process of service API execution and store the resource owner consent
1. Mutual authentication
4. Mutual authentication

image17.emf
API invokerCAPIF-1eCAPIF core functionAPI exposing functionService APIsService APIsService APIsCAPIF-3CAPIF-2eAPI invokerCAPIF-1CAPIF-2PLMN Trust DomainCAPIF-4API publishing functionAPI provider domainCAPIF APIsCAPIF-5API management functionResource owner client(s)CAPIF-8Authorization functionCAPIF-9CAPIF-10CAPIF-10eAuthorization APIs

Microsoft_Visio_2003-2010_Drawing3.vsd
�

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

image18.emf
API InvokerCAPIF core function1. Onboarding procedure and mutual authenticationUEAPI exposing functionAuthorization Function2. Authentication and authorization 5. Generate TokenSNAAPPY.7. TokenSNAAPPY response 8. API invocation request(TokenSNAAPPY)9. Verify the TokenSNAAPPY.10. API invocation responseResource owner4. If an API invocation needs resource owner's authorization, the API Invoker obtains an authorization code via OAuth 2.0 authorization code grant. 6. TokenSNAAPPY request(Authorization Code)12. Revocation request11. Decide to revoke the authorization.13. Revocation request14a. Revocation response(Revocation time)15. Revocation response(Revocation time)14b. Revocation notification(Revocation time)3. Need an authorization from the resource owner for a service API.

Microsoft_Visio_Drawing7.vsdx
API Invoker
CAPIF core function
1. Onboarding procedure and mutual authentication
UE
API exposing function
Authorization Function
2. Authentication and authorization
5. Generate TokenSNAAPPY.
7. TokenSNAAPPY response
8. API invocation request
(TokenSNAAPPY)
9. Verify the TokenSNAAPPY.
10. API invocation response
Resource owner
4. If an API invocation needs resource owner's authorization, the API Invoker obtains an authorization code via OAuth 2.0 authorization code grant.
6. TokenSNAAPPY request
(Authorization Code)
12. Revocation request
11. Decide to revoke the authorization.
13. Revocation request
14a. Revocation response
(Revocation time)
15. Revocation response
(Revocation time)
14b. Revocation notification
(Revocation time)
3. Need an authorization from the resource owner for a service API.

Microsoft_Visio_2003-2010_Drawing4.vsd
�

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

image19.emf
API InvokerAPI exposing function5. Service API invocation request(Token_Auz)1. Need Token_Auz for service API invocation.10. Service API invocation responseUE2. Resource owner authorization request for the API invocation(Service API name, API Invoker Information)3. Generate a token (Token_Auz) using K_Auz for authorization on API invocation.4. Resource owner authorization response(Token_Auz)7. Verify Token_Auz using K_Auz.Authorization Function12. Revocation Request using resource owner client via CAPIF-8(Token_Rev)14. Revocation Notification(Token_Rev, UE ID)16. Revocation Notification via CAPIF-2(Token_Rev)11. Generate a token (Token_Rev) using K_Auz to revoke the Token_Auz.13. Verify Token_Rev using K_Auz.6. Token verification request(Token_Auz)8. Token verification response(verification result, UE ID)15. Revoke Token_Auz.9. Store Token_Auz with UE ID.

Microsoft_Visio_Drawing8.vsdx
API Invoker
API exposing function
5. Service API invocation request
(Token_Auz)
1. Need Token_Auz for service API invocation.
10. Service API invocation response
UE
2. Resource owner authorization request
for the API invocation
(Service API name, API Invoker Information)
3. Generate a token (Token_Auz) using K_Auz for authorization on API invocation.
4. Resource owner authorization response
(Token_Auz)
7. Verify Token_Auz using K_Auz.
Authorization Function
12. Revocation Request using resource owner client via CAPIF-8
(Token_Rev)
14. Revocation Notification
(Token_Rev, UE ID)
16. Revocation Notification via CAPIF-2
(Token_Rev)
11. Generate a token (Token_Rev) using K_Auz to revoke the Token_Auz.
13. Verify Token_Rev using K_Auz.
6. Token verification request
(Token_Auz)
8. Token verification response
(verification result, UE ID)
15. Revoke Token_Auz.
9. Store Token_Auz with UE ID.

image20.emf
CAPIF core function/ authorization functionAPI ExposingFunctionAPI invoker2. Authorization revocation procedure1. It is assumed that the authorization is revoked.

Microsoft_Visio_Drawing9.vsdx
CAPIF core function/ authorization function
API Exposing
Function
API invoker
2. Authorization revocation procedure
1. It is assumed that the authorization is revoked.

image21.wmf
R

e

s

o

u

r

c

e

o

w

n

e

r

A

u

t

h

o

r

i

z

a

t

i

o

n

f

u

n

c

t

i

o

n

A

P

I

e

x

p

o

s

i

n

g

f

u

n

c

t

i

o

n

3

G

P

P

c

o

r

e

n

e

t

w

o

r

k

1

:

s

u

b

s

c

r

i

b

e

t

o

k

e

n

r

e

v

o

k

a

t

i

o

n

n

o

t

i

f

i

c

a

t

i

o

n

2

:

r

e

v

o

k

e

a

u

t

h

o

r

i

z

a

t

i

o

n

3

:

n

o

t

i

f

y

t

o

k

e

n

r

e

v

o

k

a

t

i

o

n

4

:

r

e

v

e

r

t

r

e

s

o

u

r

c

e

s

image22.emf
CCF (Authorization Function)1. Token Request3. Token Response(Access_token (short exp))2. Assign short expired timer for token based on Revocation requirementRO client/API invoker

Microsoft_Visio_Drawing10.vsdx
CCF (Authorization Function)
1. Token Request
3. Token Response
(Access_token (short exp))
2. Assign short expired timer for token based on Revocation requirement
RO client/
API invoker

image1.png

