3GPP TS 29.198-5 V4.5.0 (2002-09)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API);

Part 5: Generic User Interaction

(Release 4)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2002, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
7
4
Generic and Call User Interaction SCF
7
5
Sequence Diagrams
8
5.1
Alarm Call
8
5.2
Call Barring 1
10
5.3
Prepaid
11
5.4
Pre-Paid with Advice of Charge (AoC)
13
6
Class Diagrams
16
7
The Service Interface Specifications
17
7.1
Interface Specification Format
17
7.1.1
Interface Class
17
7.1.2
Method descriptions
17
7.1.3
Parameter descriptions
17
7.1.4
State Model
17
7.2
Base Interface
17
7.2.1
Interface Class IpInterface
17
7.3
Service Interfaces
18
7.3.1
Overview
18
7.4
Generic Service Interface
18
7.4.1
Interface Class IpService
18
8
Generic User Interaction Interface Classes
19
8.1
Interface Class IpUIManager
19
8.2
Interface Class IpAppUIManager
22
8.3
Interface Class IpUI
24
8.4
Interface Class IpAppUI
26
8.5
Interface Class IpUICall
29
8.6
Interface Class IpAppUICall
30
9
State Transition Diagrams
33
9.1
State Transition Diagrams for IpUIManager
33
9.1.1
Active State
33
9.1.2
Notification Terminated State
34
9.2
State Transition Diagrams for IpUI
34
9.2.1
Active State
34
9.2.2
Release Pending State
34
9.2.3
Finished State
35
9.3
State Transition Diagrams for IpUICall
35
9.3.1
Active State
35
9.3.2
Release Pending State
35
9.3.3
Finished State
36
10
Service Properties
36
10.1
User Interaction Service Properties
36
11
Data Definitions
36
11.1
TpUIFault
37
11.2
IpUI
37
11.3
IpUIRef
37
11.4
IpAppUI
37
11.5
IpAppUIRef
37
11.6
IpAppUIManager
37
11.7
IpAppUIManagerRef
37
11.8
TpUICallIdentifier
37
11.9
TpUICollectCriteria
38
11.10
TpUIError
39
11.11
TpUIEventCriteria
39
11.12
TpUIEventCriteriaResultSet
39
11.13
TpUIEventCriteriaResult
39
11.14
TpUIEventInfo
40
11.15
TpUIEventInfoDataType
40
11.16
TpUIIdentifier
40
11.17
TpUIInfo
40
11.18
TpUIInfoType
41
11.19
TpUIMessageCriteria
41
11.20
TpUIReport
41
11.21
TpUIResponseRequest
42
11.22
TpUITargetObjectType
42
11.23
TpUITargetObject
42
11.24
TpUIVariableInfo
42
11.25
TpUIVariableInfoSet
43
11.26
TpUIVariablePartType
43
12
Exception Classes
43
Annex A (normative):
OMG IDL Description of User Interaction SCF
44
Annex B (informative):
Change history
45

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 5 of a multi-part TS covering the 3rd Generation Partnership Project: Technical Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1:
Overview

Part 2:
Common Data Definitions

Part 3:
Framework

Part 4:
Call Control SCF

Part 5:
User Interaction SCF

Part 6:
Mobility SCF

Part 7:
Terminal Capabilities SCF

Part 8:
Data Session Control SCF

Part 9:
Generic Messaging SCF
(not part of 3GPP Release 4)

Part 10:
Connectivity Manager SCF
(not part of 3GPP Release 4)

Part 11:
Account Management SCF

Part 12:
Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above. A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

	OSA API specifications 29.198-family
	OSA API Mapping - 29.998-family

	29.198-1
	Part 1: Overview
	29.998-1
	Part 1: Overview

	29.198-2
	Part 2: Common Data Definitions
	29.998-2
	Not Applicable

	29.198-3
	Part 3: Framework
	29.998-3
	Not Applicable

	29.198-4
	Part 4: Call Control SCF
	29.998-4-1
	Subpart 1: Generic Call Control – CAP mapping

	
	
	29.998-4-2
	

	29.198-5
	Part 5: User Interaction SCF
	29.998-5-1
	Subpart 1: User Interaction – CAP mapping

	
	
	29.998-5-2
	

	
	
	29.998-5-3
	

	
	
	29.998-5-4
	Subpart 4: User Interaction – SMS mapping

	29.198-6
	Part 6: Mobility SCF
	29.998-6
	User Status and User Location – MAP mapping

	29.198-7
	Part 7: Terminal Capabilities SCF
	29.998-7
	Not Applicable

	29.198-8
	Part 8: Data Session Control SCF
	29.998-8
	Data Session Control – CAP mapping

	29.198-9
	Part 9: Generic Messaging SCF
	29.998-9
	Not Applicable

	29.198-10
	Part 10: Connectivity Manager SCF
	29.998-10
	Not Applicable

	29.198-11
	Part 11: Account Management SCF
	29.998-11
	Not Applicable

	29.198-12
	Part 12: Charging SCF
	29.998-12
	Not Applicable

1
Scope
This document is Part 5 of the Stage 3 specification for an Application Programming Interface (API) for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the User Interaction (UI) Service Capability Feature (SCF) aspects of the interface. All aspects of the User Interaction SCF are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

· IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, in co-operation with a number of JAIN™ Community member companies.

2
References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

[2]
3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3]
3GPP TS 23.127: "Virtual Home Environment (Release 4)".

3
Definitions and abbreviations
3.1
Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2
Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Generic and Call User Interaction SCF

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of two interfaces:

1)
User Interaction Manager, containing management functions for User Interaction related issues;

2)
Generic User Interaction, containing methods to interact with an end-user.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods belong.

Table 1: Overview of Generic User Interaction interfaces and their methods

	User Interaction Manager
	Generic User Interaction

	createUI
	sendInfoReq

	createUICall
	sendInfoRes

	createNotification
	sendInfoErr

	destroyUINotification
	sendInfoAndCollectReq

	reportNotification
	sendInfoAndCollectRes

	userInteractionAborted
	sendInfoAndCollectErr

	userInteractionNotificationInterrupted
	release

	userInteractionNotificationContinued
	UserInteractionFaultDetected

	changeNotification
	

	getNotification
	

The following table gives an overview of the Call User Interaction methods and to which interfaces these methods belong.

Table 2: Overview of Call User Interaction interfaces and their methods

	User Interaction Manager
	Call User Interaction

	As defined for the Generic User Interaction SCF
	Inherits from Generic User Interaction and adds:

	
	recordMessageReq

	
	recordMessageRes

	
	recordMessageErr

	
	deleteMessageReq

	
	deleteMessageRes

	
	deleteMessageErr

	
	abortActionReq

	
	abortActionRes

	
	abortActionErr

The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.

The following clauses describe each aspect of the Generic User Interaction Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the SCFs is implemented.

· The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part. This clause also includes Call User interaction.

· The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The Data Definitions clause show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification. .

5 Sequence Diagrams

5.1 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image2.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 : IpUIManager

 :

IpAppUICall

 : (Logical

View::IpAppLogic)

5: routeRes()

10: sendInfoRes()

1: new()

2: createCall()

3: new()

4: routeReq()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

11: 'forward event'

12: release()

13: release()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met it is created.

4:
This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'

5:
This message passes the result of the call being answered to its callback object.

6:
This message is used to forward the previous message to the IpAppLogic.

7:
The application requests a new UICall object that is associated with the call object.

8:
Assuming all criteria are met, a new UICall object is created by the service.

9:
This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10:
When the announcement ends this is reported to the call back interface.

11:
The event is forwarded to the application logic.

12:
The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played.

13:
The application releases the call and all associated parties.

5.2 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image3.wmf] : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

1: new()

13: routeRes()

14: 'forward event'

12: routeReq()

15: callEnded()

16: "forward event"

17: deassignCall()

8: sendInfoAndCollectReq()

11: release()

6: createUICall()

7: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

9: sendInfoAndCollectRes()

10: 'forward event'

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives, a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7:
Provided all the criteria are fulfilled, a new UICall object is created.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
This message releases the UICall object.

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party.

13:
This message passes the result of the call being answered to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly.

16:
The event is forwarded to the application.

17:
The application must free the call related resources in the gateway by calling deassignCall.

5.3 Prepaid

This sequence shows a Pre-paid application. The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image4.wmf]Prepaid : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

7: routeReq()

10: superviseCallReq()

13: superviseCallReq()

6: superviseCallReq()

21: superviseCallReq()

24: release()

17: sendInfoReq()

20: release()

16: createUICall()

18: sendInfoRes()

19: "forward event"

5: new()

8: superviseCallRes()

9: "forward event"

11: superviseCallRes()

12: "forward event"

14: superviseCallRes()

15: "forward event"

22: superviseCallRes()

23: "forward event:

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Generic Call object is created

6:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7:
Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8:
At the end of each supervision period the application is informed and a new period is started.

9:
The message is forwarded to the application.

10:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11:
At the end of each supervision period the application is informed and a new period is started.

12:
The message is forwarded to the application.

13:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14:
When the user is almost out of credit an announcement is played to inform about this. The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

15:
The message is forwarded to the application.

16:
A new UICall object is created and associated with the controlling leg.

17:
An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit. The B-subscriber will not hear the announcement.

18:
When the announcement is completed the application is informed.

19:
The message is forwarded to the application.

20:
The application releases the UICall object.

21:
The user does not terminate so the application terminates the call after the next supervision period.

22:
The supervision period ends

23:
The event is forwarded to the logic.

24:
The application terminates the call. Since the user interaction is already explicitly terminated no userInteractionFaultDetected is sent to the application.

5.4 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature. The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note that the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image5.wmf]Prepaid : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

6: setAdviceOfCharge()

21: sendInfoReq()

19: createUICall()

20: new()

22: sendInfoRes()

23: "forward event"

28: userInteractionFaultDetected()

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

18: new()

25: superviseCallRes()

26: "forward event:

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Call object is created

6:
The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).
During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8:
The application requests to route the call to the destination address.

9:
At the end of each supervision period the application is informed and a new period is started.

10:
The message is forwarded to the application.

11:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12:
At the end of each supervision period the application is informed and a new period is started.

13:
The message is forwarded to the application.

14:
Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again, at the tariff switch time, the network will send AoC information to the end-user.

15:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16:
When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17:
The message is forwarded to the application.

18:
The application creates a new call back interface for the User interaction messages.

19:
A new UI Call object that will handle playing of the announcement needs to be created

20:
The Gateway creates a new UI call object that will handle playing of the announcement.

21:
With this message the announcement is played to the calling party.

22:
The user indicates that the call should continue.

23:
The message is forwarded to the application.

24:
The user does not terminate so the application terminates the call after the next supervision period.

25:
The user is out of credit and the application is informed.

26:
The message is forwarded to the application.

27:
With this message the application requests to release the call.

28:
Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The UICall object is terminated in the gateway and no further communication is possible between the UICall and the application.

6 Class Diagrams

The application generic user interaction service package consists of one IpAppUIManager interface, zero or more IpAppUI interfaces and zero or more IpAppUICall interfaces.
The generic user interaction service package consists of one IpUIManager interface, zero or more IpUI interfaces and zero or more IpUICall interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user interaction service package and the generic user interaction service package. Communication between these packages is done via the <<uses>> relationships.
The IpUICall implements call related user interaction and it inherits from the non call related IpUI interface. The same holds for the corresponding application interfaces.

[image: image6.wmf]IpInterface

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppUIManager

userInteractionAborted()

reportNotification()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

<<Interface>>

IpUIManager

createUI()

createUICall()

createNotification()

destroyNotification()

changeNotification()

getNotification()

<<Interface>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<Interface>>

IpAppUICall

recordMessageRes()

recordMessageErr()

deleteMessageRes()

deleteMessageErr()

abortActionRes()

abortActionErr()

<<Interface>>

IpUICall

recordMessageReq()

deleteMessageReq()

abortActionReq()

<<Interface>>

<<uses>>

<<uses>>

<<uses>>

Figure: Generic User Interaction Package Overview
7 The Service Interface Specifications

7.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef
Specifies a reference to the application interface, which is used for callbacks
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef
Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE
8 Generic User Interaction Interface Classes

The Generic User Interaction Service interface (GUIS) is used by applications to interact with end users. The GUIS is represented by the IpUIManager, IpUI and IpUICall interfaces that interface to services provided by the network. To handle responses and reports, the developer must implement IpAppUIManager and IpAppUI interfaces to provide the callback mechanism.

8.1 Interface Class IpUIManager

Inherits from: IpService.
This interface is the 'service manager' interface for the Generic User Interaction Service and provides the management functions to the Generic User Interaction Service.

	<<Interface>>

IpUIManager

	

	createUI (appUI : in IpAppUIRef, userAddress : in TpAddress) : TpUIIdentifier

createUICall (appUI : in IpAppUICallRef, uiTargetObject : in TpUITargetObject) : TpUICallIdentifier

createNotification (appUIManager : in IpAppUIManagerRef, eventCriteria : in TpUIEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpUIEventCriteria) : void

getNotification () : TpUIEventCriteriaResultSet

Method

createUI()

This method is used to create a new user interaction object for non-call related purposes

Results: userInteraction

Specifies the interface and sessionID of the user interaction created.

Parameters

appUI : in IpAppUIRef
Specifies the application interface for callbacks from the user interaction created.
userAddress : in TpAddress
Indicates the end-user with whom to interact.
Returns

TpUIIdentifier
Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_INTERFACE_TYPE
Method

createUICall()

This method is used to create a new user interaction object for call related purposes.

The user interaction can take place to the specified party or to all parties in a call. Note that for certain implementation user interaction can only be performed towards the controlling call party, which shall be the only party in the call.

Returns: userInteraction

Specifies the interface and sessionID of the user interaction created.

Parameters

appUI : in IpAppUICallRef
Specifies the application interface for callbacks from the user interaction created.
uiTargetObject : in TpUITargetObject
Specifies the object on which to perform the user interaction. This can either be a Call, Multi-party Call or call leg object.
Returns

TpUICallIdentifier
Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_INTERFACE_TYPE
Method

createNotification()

This method is used by the application to install specified notification criteria, for which the reporting is implicitly activated. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same servicecode is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure).

Returns: assignmentID

Specifies the ID assigned by the generic user interaction manager interface for this newly installed notification criteria.

Parameters

appUIManager : in IpAppUIManagerRef
If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpUIEventCriteria
Specifies the event specific criteria used by the application to define the event required, like user address and service code.
Returns

TpAssignmentID
Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE
Method

destroyNotification()

This method is used by the application to destroy previously installed notification criteria via the createNotification method.

Parameters

assignmentID : in TpAssignmentID
Specifies the assignment ID given by the generic user interaction manager interface when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
Method

changeNotification()

This method is used by the application to change the event criteria introduced with createNotification method. Any stored notification request associated with the specified assignmentID will be replaced with the specified events requested.

Parameters

assignmentID : in TpAssignmentID
Specifies the ID assigned by the manager interface for the event notification.
eventCriteria : in TpUIEventCriteria
Specifies the new set of event criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA
Method

getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns: eventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.

Parameters

No Parameters were identified for this method

Returns

TpUIEventCriteriaResultSet
Raises

TpCommonExceptions, P_INVALID_CRITERIA
8.2 Interface Class IpAppUIManager

Inherits from: IpInterface.
The Generic User Interaction Service manager application interface provides the application callback functions to the Generic User Interaction Service.

	<<Interface>>

IpAppUIManager

	

	userInteractionAborted (userInteraction : in TpUIIdentifier) : void

reportNotification (userInteraction : in TpUIIdentifier, eventInfo : in TpUIEventInfo, assignmentID : in TpAssignmentID) : IpAppUIRef

userInteractionNotificationInterrupted () : void

userInteractionNotificationContinued () : void

Method

userInteractionAborted()

This method indicates to the application that the User Interaction service instance has terminated or closed abnormally. No further communication will be possible between the User Interaction service instance and application.

Parameters

userInteraction : in TpUIIdentifier
Specifies the interface and sessionID of the user interaction service that has terminated.
Method

reportNotification()

This method notifies the application of an occurred network event which matches the criteria installed by the createNotification method.

Returns: appUI

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

Parameters

userInteraction : in TpUIIdentifier
Specifies the reference to the interface and the sessionID to which the notification relates.
eventInfo : in TpUIEventInfo
Specifies data associated with this event.
assignmentID : in TpAssignmentID
Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Returns

IpAppUIRef
Method

userInteractionNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due to faults detected). Note that more permanent failures are reported via the Framework (integrity management).

Parameters

No Parameters were identified for this method

Method

userInteractionNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters

No Parameters were identified for this method

8.3 Interface Class IpUI

Inherits from: IpService.
The User Interaction Service Interface provides functions to send information to, or gather information from the user. An application can use the User Interaction Service Interface independently of other services.

	<<Interface>>

IpUI

	

	sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in TpUIResponseRequest) : TpAssignmentID

sendInfoAndCollectReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in TpUIVariableInfoSet, criteria : in TpUICollectCriteria, responseRequested : in TpUIResponseRequest) : TpAssignmentID

release (userInteractionSessionID : in TpSessionID) : void

Method

sendInfoReq()

This asynchronous method plays an announcement or sends other information to the user.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo
Specifies the information to send to the user. This information can be:
- an infoID, identifying pre-defined information to be send (announcement and/or text);
- a string, defining the text to be sent;
- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal.
language : in TpLanguage
Specifies the Language of the information to be send to the user.
variableInfo : in TpUIVariableInfoSet
 Defines the variable part of the information to send to the user.
repeatIndicator : in TpInt32
Defines how many times the information shall be sent to the end-user. A value of zero (0) indicates that the announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.
responseRequested : in TpUIResponseRequest
Specifies if a response is required from the call user interaction service, and any action the service should take.
Returns

TpAssignmentID
Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND
Method

sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and collects some information from the user. The announcement usually prompts for a number of characters (for example, these are digits or text strings such as "YES" if the user's terminal device is a phone).

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo
Specifies the ID of the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal
language : in TpLanguage
Specifies the Language of the information to be send to the user.
variableInfo : in TpUIVariableInfoSet
Defines the variable part of the information to send to the user.
criteria : in TpUICollectCriteria
Specifies additional properties for the collection of information, such as the maximum and minimum number of characters, end character, first character timeout and inter-character timeout.
responseRequested : in TpUIResponseRequest
Specifies if a response is required from the call user interaction service, and any action the service should take. For this case it can especially be used to indicate e.g. the final request.
Returns

TpAssignmentID
Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND,P_INVALID_CRITERIA,P_ILLEGAL_RANGE,P_INVALID_COLLECTION_CRITERIA
Method

release()

This method requests that the relationship between the application and the user interaction object be released. It causes the release of the used user interaction resources and interrupts any ongoing user interaction.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction created.
Raises

TpCommonExceptions,P_INVALID_SESSION_ID
8.4 Interface Class IpAppUI

Inherits from: IpInterface.
The User Interaction Application Interface is implemented by the client application developer and is used to handle generic user interaction request responses and reports.

	<<Interface>>

IpAppUI

	

	sendInfoRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport) : void

sendInfoErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

sendInfoAndCollectRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, collectedInfo : in TpString) : void

sendInfoAndCollectErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

userInteractionFaultDetected (userInteractionSessionID : in TpSessionID, fault : in TpUIFault) : void

Method

sendInfoRes()

This asynchronous method informs the application about the completion of a sendInfoReq(). This response is called only if the responseRequested parameter of the sendInfoReq() method was set to P_UICALL_RESPONSE_REQUIRED.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport
Specifies the type of response received from the user.
Method

sendInfoErr()

This asynchronous method indicates that the request to send information was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError
Specifies the error which led to the original request failing.
Method

sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport
Specifies the type of response received from the user.
collectedInfo : in TpString
Specifies the information collected from the user.
Method

sendInfoAndCollectErr()

This asynchronous method indicates that the request to send information and collect a response was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError
Specifies the error which led to the original request failing.
Method

userInteractionFaultDetected()

This method indicates to the application that a fault has been detected in the user interaction.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the interface and sessionID of the user interaction service in which the fault has been detected.
fault : in TpUIFault
Specifies the fault that has been detected.
8.5 Interface Class IpUICall

Inherits from: IpUI.
The Call User Interaction Service Interface provides functions to send information to, or gather information from the user (or call party) to which a call leg is connected. An application can use the Call User Interaction Service Interface only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability.

	<<Interface>>

IpUICall

	

	recordMessageReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, criteria : in TpUIMessageCriteria) : TpAssignmentID

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

abortActionReq (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

Method

recordMessageReq()

This asynchronous method allows the recording of a message. The recorded message can be played back at a later time with the sendInfoReq() method.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo
Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).
criteria : in TpUIMessageCriteria
 Defines the criteria for recording of messages
Returns

TpAssignmentID
Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND,P_INVALID_CRITERIA
Method

deleteMessageReq()

This asynchronous method allows to delete a recorded message.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

usrInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32
Specifies the message ID.
Returns

TpAssignmentID
Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_ILLEGAL_ID,P_ID_NOT_FOUND
Method

abortActionReq()

This asynchronous method aborts a user interaction operation, e.g. a sendInfoReq(), from the specified call leg. The call and call leg are otherwise unaffected. The user interaction call service interrupts the current action on the specified leg.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the user interaction request to be cancelled.
Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_ASSIGNMENT_ID
8.6 Interface Class IpAppUICall

Inherits from: IpAppUI.
The Call User Interaction Application Interface is implemented by the client application developer and is used to handle call user interaction request responses and reports.

	<<Interface>>

IpAppUICall

	

	recordMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, messageID : in TpInt32) : void

recordMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in TpAssignmentID) : void

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in TpAssignmentID) : void

abortActionRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

abortActionErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

Method

recordMessageRes()

This method returns whether the message is successfully recorded or not. In case the message is recorded, the ID of the message is returned.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
response : in TpUIReport
Specifies the type of response received from the device where the message is stored.
messageID : in TpInt32
Specifies the ID that was assigned to the message by the device where the message is stored.
Method

recordMessageErr()

This method indicates that the request for recording of a message was not successful.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
error : in TpUIError
Specifies the error which led to the original request failing.
Method

deleteMessageRes()

This method returns whether the message is successfully deleted or not.

Parameters

usrInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
response : in TpUIReport
Specifies the type of response received from the device where the message was stored.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
Method

deleteMessageErr()

This method indicates that the request for deleting a message was not successful.

Parameters

usrInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
error : in TpUIError
Specifies the error which led to the original request failing.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
Method

abortActionRes()

This asynchronous method confirms that the request to abort a user interaction operation on a call leg was successful.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
Method

abortActionErr()

This asynchronous method indicates that the request to abort a user interaction operation on a call leg resulted in an error.

Parameters

userInteractionSessionID : in TpSessionID
Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID
Specifies the ID assigned by the call user interaction interface for a user interaction request.
error : in TpUIError
Specifies the error which led to the original request failing.
9 State Transition Diagrams

9.1 State Transition Diagrams for IpUIManager

[image: image7.wmf]Active

exit/ release UI objects

"new"

createNotification

destroyNotification

Creation of UIManager

by Service Factory

Notification

Terminated

destroyNotification

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^userInteractionNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 ^userInteractionNotificationInterrupted

"arrival of user initiated request for user interaction"[notification active for this ui

event] / create a UI object ^IpAppUIManager.reportNotification

createUI / create UI object

createUICall / create UICall object

changeNotification

getNotification

Figure : Application view on the UI Manager

9.1.1 Active State

In this state a relation between the Application and a User Interaction Service Capability Feature (Generic User Interaction or Call User Interaction) has been established. The application is now able to request creation of UI and/or UICall objects.
9.1.2 Notification Terminated State

When the UI manager is in the Notification terminated state, events requested with createNotification() will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications than defined in the Service Level Agreement. Another example is that the SCS has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.
9.2 State Transition Diagrams for IpUI

The state transition diagram shows the application view on the User Interaction object.

[image: image8.wmf]Active

IpUIManager.createUI

IpAppUIManager.reportNotification

sendInfoReq

sendInfoAndCollectReq

Release

Pending

Finished

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

release

timeout ^userInteractionFaultDetected

"requested message has been sent"[not final request] ^sendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not final

request] ^sendInfoAndCollectErr

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[final

request] ^sendInfoErr

"request to send info and collect response unsuccessful"[

final request] ^sendInfoAndCollectErr

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

"request to send message unsuccessful" ^sendInfoErr

"request to send info and collect a response

unsuccessful" ^sendInfoAndCollectErr

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

Figure : Application view on the UI object

9.2.1 Active State

In this state the UI object is available for requesting messages to be send to the network.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.2.2 Release Pending State

A transition to this state is made when the Application has indicated that after a certain message no further messages need to be sent to the end-user. There are, however, still a number of messages that are not yet completed. When the last message is sent or when the last user interaction has been obtained, the UI object is destroyed.
In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.2.3 Finished State

In this state the user interaction has ended. The application can only release the UI object. Note that the application has to release the object itself as good Object Oriented practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
9.3 State Transition Diagrams for IpUICall

The state transition diagram shows the application view on the Call User Interaction object.

[image: image9.wmf]Active

Release

Pending

Finished

IpUIManager.createUICall

release

abortActionReq / cancel the user interaction

abortActionReq[not the final request] / cancel the

user interaction

Already requested announcements

will continue, even when

application releases the object.

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

timeout ^userInteractionFaultDetected

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error on all outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"request to send info and collect response unsuccessful"

 ^sendInfoAndCollectErr

"request to send message unsuccessful" ^sendInfoErr

"requested message has been sent"[not final request] ^sendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not final request]

^sendInfoAndCollectErr

"fault detected in the user interaction" / report error on outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollectReq

"request to send message unsuccessful"[

final request] ^sendInfoErr

"request to send info and collect response

unsuccessful"[final request] ^sendInfoAndCollectErr

abortActionReq[final request is cancelled]

/ cancel the user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

Already requested

announcements will

continue

Figure : Application view on the UICall object

9.3.1 Active State

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from the end-user.
When the application de-assigns the related Call or CallLeg object, a transition is made to the Finished state. However, all requested announcements will continue, even when the application releases the UICall object.
When the related call or call leg is terminated due to some reason, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.3.2 Release Pending State

A transition to this state is made when the Application has indicated that after a certain announcement no further announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object is destroyed. In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.
When the application de-assigns the related Call or CallLeg object, the UICall object is destroyed. However, all requested announcements will continue.
When the related call or call leg is terminated due to some reason, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.3.3 Finished State

In this state the user interaction has ended. The application can only release the UICall object. Note that the application has to release the object itself as good Object Oriented practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
10 Service Properties

10.1 User Interaction Service Properties

The following table lists properties relevant for the User Interaction API.

	Property
	Type
	Description

	P_INFO_TYPE
	INTEGER_SET
	Specifies whether the UI SCS supports text or URLs etc. Allowed value set:

{P_INFO_ID,

P_URL,

P_TEXT}

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the SCS.

	Property
	Type
	Description

	P_TRIGGERING_ADDRESSES
	ADDRESS_RANGE_SET
	Specifies which numbers the notification may be set

	P_SERVICE_CODE
	INTEGER_SET
	Specifies the service codes that may be used for notification requests.

11 Data Definitions

The following data types referenced in this clause are defined in 3GPP TS 29.198-4:

TpCallIdentifier
TpMultiPartyCallIdentifier
TpCallLegIdentifier

All other data types referenced but not defined in this clause are common data definitions which may be found in 3GPP TS 29.198-2.

11.1 TpUIFault

Defines the cause of the UI fault detected.

	Name
	Value
	Description

	P_UI_FAULT_UNDEFINED
	0
	Undefined

	P_UI_CALL_ENDED
	1
	The related Call object has been terminated. Therefore, the UICall object is also terminated. No further interaction is possible with this object.

11.2 IpUI

Defines the address of an IpUI Interface.

11.3 IpUIRef

Defines a Reference to type IpUI.

11.4 IpAppUI

Defines the address of an IpAppUI Interface.

11.5 IpAppUIRef

Defines a Reference to type IpAppUI.

11.6 IpAppUIManager

Defines the address of an IpAppUIManager Interface.

11.7 IpAppUIManagerRef

Defines a Reference to type IpAppUIManager.
11.8 TpUICallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UICall object.

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UICallRef
	IpUICallRef
	This element specifies the interface reference for the UICall object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the User Interaction session ID.

11.9 TpUICollectCriteria

Defines the Sequence of Data Elements that specify the additional properties for the collection of information, such as the end character, first character timeout, inter-character timeout, and maximum interaction time.

	Structure Element Name
	Structure Element Type

	MinLength
	TpInt32

	MaxLength
	TpInt32

	EndSequence
	TpString

	StartTimeout
	TpDuration

	InterCharTimeout
	TpDuration

The structure elements specify the following criteria:

MinLength:
Defines the minimum number of characters (e.g. digits) to collect.

MaxLength:
Defines the maximum number of characters (e.g. digits) to collect.

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phone numbers.

StartTimeout:
specifies the value for the first character time-out timer. The timer is started when the announcement has been completed or has been interrupted. The user should enter the start of the response (e.g. first digit) before the timer expires. If the start of the response is not entered before the timer expires, the input is regarded to be erroneous. After receipt of the start of the response, which may be valid or invalid, the timer is stopped.

InterCharTimeOut:
specifies the value for the inter-character time-out timer. The timer is started when a response (e.g. digit) is received, and is reset and restarted when a subsequent response is received. The responses may be valid or invalid. the announcement has been completed or has been interrupted.

Input is considered successful if the following applies:

If the EndSequence is not present (i.e. an empty string):

· when the InterCharTimeOut timer expires; or

· when the number of valid digits received equals the MaxLength.

If the EndSequence is present:

· when the InterCharTimeOut timer expires; or

· when the EndSequence is received; or

· when the number of valid digits received equals the MaxLength.

In the case the number of valid characters received is less than the MinLength when the InterCharTimeOut timer expires or when the EndSequence is received, the input is considered erroneous.

The collected characters (including the EndSequence) are sent to the client application when input has been successful.

11.10 TpUIError

Defines the UI error codes.

	Name
	Value
	Description

	P_UI_ERROR_UNDEFINED
	0
	Undefined error

	P_UI_ERROR_ILLEGAL_INFO
	1
	The specified information (InfoId, InfoData, or InfoAddress) is invalid

	P_UI_ERROR_ID_NOT_FOUND
	2
	A legal InfoId is not known to the User Interaction service

	P_UI_ERROR_RESOURCE_UNAVAILABLE
	3
	The information resources used by the User Interaction service are unavailable, e.g. due to an overload situation.

	P_UI_ERROR_ILLEGAL_RANGE
	4
	The values for minimum and maximum collection length are out of range

	P_UI_ERROR_IMPROPER_USER_RESPONSE
	5
	Improper user response

	P_UI_ERROR_ABANDON
	6
	The specified leg is disconnected before the send information completed

	P_UI_ERROR_NO_OPERATION_ACTIVE
	7
	There is no active User Interaction for the specified leg. Either the application did not start any User Interaction or the User Interaction was already finished when the abortActionReq() was called.

	P_UI_ERROR_NO_SPACE_AVAILABLE
	8
	There is no more storage capacity to record the message when the recordMessageReq() operation was called

	P_UI_ERROR_RESOURCE_TIMEOUT
	9
	The request has been accepted by the resource but it did not report a result.

The call User Interaction object will be automatically de-assigned if the error P_UI_ERROR_ABANDON is reported, as a corresponding call or call leg object no longer exists.

11.11 TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification

	Structure Element

Name
	Structure Element

Type
	Description

	OriginatingAddress
	TpAddressRange
	Defines the originating address for which the notification is requested.

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested.

	ServiceCode
	TpString
	Defines a 2-digit code indicating the UI to be triggered. The value is operator specific.

11.12 TpUIEventCriteriaResultSet

Defines a set of TpUIEventCriteriaResult.

11.13 TpUIEventCriteriaResult

Defines a sequence of data elements that specify a requested event notification criteria with the associated assignmentID.

	Structure Element Name
	Structure Element Type
	Structure Element Description

	EventCriteria
	TpUIEventCriteria
	The event criteria that were specified by the application.

	AssignmentID
	TpInt32
	The associated assignmentID. This can be used to disable the notification.

11.14 TpUIEventInfo

Defines the Sequence of Data Elements that specify a UI notification

	Structure Element

Name
	Structure Element

Type
	Structure Element

Description

	OriginatingAddress
	TpAddress
	Defines the originating address.

	DestinationAddress
	TpAddress
	Defines the destination address.

	ServiceCode
	TpString
	Defines a 2-digit code indicating the UI to be triggered.
The value is operator specific.

	DataTypeIndication
	TpUIEventInfoDataType
	Identifies the type of contents in DataString.

	DataString
	TpString
	Freely defined data string with a limited length e.g. 160 bytes according to the network policy.

11.15 TpUIEventInfoDataType

Defines the type of the dataString parameter in the method userInteractionEventNotify.

	Name
	Value
	Description

	P_UI_EVENT_DATA_TYPE_UNDEFINED
	0
	Undefined (e.g. binary data)

	P_UI_EVENT_DATA_TYPE_UNSPECIFIED
	1
	Unspecified data

	P_UI_EVENT_DATA_TYPE_TEXT
	2
	Text

	P_UI_EVENT_DATA_TYPE_USSD_DATA
	3
	USSD data starting with coding scheme

11.16 TpUIIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UI object

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UIRef
	IpUIRef
	This element specifies the interface reference for the UI object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the User Interaction session ID.

11.17 TpUIInfo

Defines the Tagged Choice of Data Elements that specify the information to send to the user.

	
	Tag Element Type
	

	
	TpUIInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_INFO_ID
	TpInt32
	InfoId

	P_UI_INFO_DATA
	TpString
	InfoData

	P_UI_INFO_ADDRESS
	TpURL
	InfoAddress

	P_UI_INFO_BIN_DATA
	TpOctetSet
	InfoBinData

The choice elements represent the following:

InfoID:
defines the ID of the user information script or stream to send to an end-user. The values of this data type are operator specific.

InfoData:
defines the data to be sent to an end-user’s terminal. The data is free-format and the encoding is depending on the resources being used..

InfoAddress:
defines the URL of the text or stream to be sent to an end-user’s terminal.

InfoBinData:
defines the binary data to be sent to an end-user’s terminal. The data is a free-format, 8-bit quantity that is guaranteed not to undergo any conversion when transmitted.

11.18 TpUIInfoType

Defines the type of the information to be sent to the user.

	Name
	Value
	Description

	P_UI_INFO_ID
	0
	The information to be send to an end-user consists of an ID

	P_UI_INFO_DATA
	1
	The information to be send to an end-user consists of a data string

	P_UI_INFO_ADDRESS
	2
	The information to be send to an end-user consists of a URL.

	P_UI_INFO_BIN_DATA
	3
	The information to be sent to an end-user consists of a 8 bit binary data set

11.19 TpUIMessageCriteria

Defines the Sequence of Data Elements that specify the additional properties for the recording of a message.

	Structure Element Name
	Structure Element Type

	EndSequence
	TpString

	MaxMessageTime
	TpDuration

	MaxMessageSize
	TpInt32

The structure elements specify the following criteria:

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phone numbers.

MaxMessageTime:
specifies the maximum duration in seconds of the message that is to be recorded.

MaxMessageSize:
If this parameter is non-zero, it specifies the maximum size in bytes of the message that is to be recorded.

11.20 TpUIReport

Defines the UI reports if a response was requested.

	Name
	Value
	Description

	P_UI_REPORT_UNDEFINED
	0
	Undefined report

	P_UI_REPORT_INFO_SENT
	1
	Confirmation that the information has been sent

	P_UI_REPORT_INFO_COLLECTED
	2
	Information collected., meeting the specified criteria.

	P_UI_REPORT_NO_INPUT
	3
	No information collected. The user immediately entered the delimiter character.
No valid information has been returned

	P_UI_REPORT_TIMEOUT

	4
	No information collected. The user did not input any response before the input timeout expired

	P_UI_REPORT_MESSAGE_STORED
	5
	A message has been stored successfully

	P_UI_REPORT_MESSAGE_NOT_STORED
	6
	The message has not been stored successfully

	P_UI_REPORT_MESSAGE_DELETED
	7
	A message has been deleted successfully

	P_UI_REPORT_MESSAGE_NOT_DELETED
	8
	A message has not been deleted successfully

11.21 TpUIResponseRequest

Defines the situations for which a response is expected following the User Interaction.

	Name
	Value
	Description

	P_UI_RESPONSE_REQUIRED
	1
	The User Interaction Call shall send a response when the request has completed.

	P_UI_LAST_ANNOUNCEMENT_IN_A_ROW
	2
	This is the final announcement within a sequence. It might, however, be that additional announcements will be requested at a later moment. The User Interaction Call service may release any used resources in the network. The UI object will not be released.

	P_UI_FINAL_REQUEST
	4
	This is the final request. The UI object will be released after the information has been presented to the user.

This parameter represents a so-called bitmask, i.e. the values can be added to derived the final meaning.

11.22 TpUITargetObjectType

Defines the type of object where User Interaction should be performed upon.

	Name
	Value
	Description

	P_UI_TARGET_OBJECT_CALL
	0
	User-interaction will be performed on a complete Call.

	P_UI_TARGET_OBJECT_MULTI_PARTY_CALL
	1
	User-interaction will be performed on a complete Multi-party Call.

	P_UI_TARGET_OBJECT_CALL_LEG
	2
	User-interaction will be performed on a single Call Leg.

11.23 TpUITargetObject

Defines the Tagged Choice of Data Elements that specify the object to perform User Interaction on.

	
	Tag Element Type
	

	
	TpUITargetObjectType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_TARGET_OBJECT_CALL
	TpCallIdentifier
	Call

	P_UI_TARGET_OBJECT_MULTI_PARTY_CALL
	TpMultiPartyCallIdentifier
	MultiPartyCall

	P_UI_TARGET_OBJECT_CALL_LEG
	TpCallLegIdentifier
	CallLeg

11.24 TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user.

	
	Tag Element Type
	

	
	TpUIVariablePartType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_VARIABLE_PART_INT
	TpInt32
	VariablePartInteger

	P_UI_VARIABLE_PART_ADDRESS
	TpString
	VariablePartAddress

	P_UI_VARIABLE_PART_TIME
	TpTime
	VariablePartTime

	P_UI_VARIABLE_PART_DATE
	TpDate
	VariablePartDate

	P_UI_VARIABLE_PART_PRICE
	TpPrice
	VariablePartPrice

11.25 TpUIVariableInfoSet

Defines a Numbered Set of Data Elements of TpUIVariableInfo.

11.26 TpUIVariablePartType

Defines the type of the variable parts in the information to send to the user.

	Name
	Value
	Description

	P_UI_VARIABLE_PART_INT
	0
	Variable part is of type integer

	P_UI_VARIABLE_PART_ADDRESS
	1
	Variable part is of type address

	P_UI_VARIABLE_PART_TIME
	2
	Variable part is of type time

	P_UI_VARIABLE_PART_DATE
	3
	Variable part is of type date

	P_UI_VARIABLE_PART_PRICE
	4
	Variable part is of type price

12 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ILLEGAL_ID
	Information id specified is invalid

	P_ID_NOT_FOUND
	A legal information id is not known to the User Interaction Service

	P_ILLEGAL_RANGE
	The values for minimum and maximum collection length are out of range.

	P_INVALID_COLLECTION_CRITERIA
	Invalid collection criteria specified

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

Annex A (normative):
OMG IDL Description of User Interaction SCF

The OMG IDL representation of this interface specification is contained in text files (ui_data.idl and ui_interfaces.idl contained in archive 2919805IDL.ZIP) which accompanies the present document.

Annex B (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010468
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010598
	003
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	004
	--
	Correction of description of sendInfoRes()
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	005
	--
	Correction to handling of deassign on related object
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	006
	--
	Correction to Exceptions Raised in UI
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	007
	--
	Correction to values of TpUIInfoType
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020107
	008
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Sep 2002
	CN_17
	NP-020425
	016
	--
	Correction on use of NULL in User Interaction API
	4.4.0
	4.5.0

	Sep 2002
	CN_17
	NP-020425
	017
	--
	Correction to TpUIInfo data type to support binary data for SMS services
	4.4.0
	4.5.0

	
	
	
	
	
	
	
	

