

3GPP TS 26.445 V15.4.2 (2022-09)
193
Release 15

[bookmark: _Toc392593055][bookmark: _Toc394393137]5.2	LP-based Coding
In general terms, speech dominated content is encoded using Analysis-by-Synthesis Linear Prediction (LP) paradigm. At some low bitrates configurations, the LP-based coding is used also for generic audio. On the other hand, LP prediction is not used above 64 kb/s. The LP-based coding consists in encoding the LP excitation signal and the speech spectral envelope, represented by the LP filter coefficients. Depending on the particular characteristics of a speech frames, different flavours of the excitation coding are used to encode voiced or unvoiced speech frames, audio frames, inactive frames etc.
The internal sampling rate of the LP-based coding is rather independent of the input signal sampling rate. Instead, it depends on the encoded bitrate to optimize coding efficiency. In the EVS, there are two different internal sampling rates used – 12.8 kHz is used up to 13.2 kb/s inclusively, and 16 kHz sampling rate is used for higher bitrates. It means that up to 13.2 kb/s, the LP-based encoding covers first 6.4 kHz of the input signal while from 16.4 kb/s and up the LP-based encoding covers 8 kHz of the input. For NB signals, the sampling rate is always 12.8 kHz.
For other than NB signals, the upper bandwidth (not covered with the LP-based coding) is then encoded using bandwidth extension (BWE) technologies, ranging from blind BWE at the lowest bitrates, parametric BWEs optimized to different content at higher bitrates, up to full encoding of the upper bandwidth spectrum at the highest bitrate (64 kb/s).
The basic block for the LP excitation coding is a subframe. The size of the subframe in samples is independent of the internal sampling rate. It equals to 64 samples. It means that at 12.8 kHz internal sampling rate, EVS uses 4 subframes of 5 ms while at 16 kHz internal sampling rate, EVS uses 5 subframes of 4 ms.
[bookmark: _Toc394393138]5.2.1	Perceptual weighting
The encoding parameters, such as adaptive codebook delay and gain, algebraic codebook index and gain are searched by minimizing the error between the input signal and the synthesized signal in a perceptually weighted domain. Perceptual weighting is performed by filtering the signal through a perceptual weighting filter, derived from the LP filter coefficients. The perceptually is similar to the weighting also used in open-loop pitch analysis. However, an adaptive perceptual weighting is used in case of LP-based excitation coding.

The traditional perceptual weighting filter has inherent limitations in modelling the formant structure and the required spectral tilt concurrently. The spectral tilt is more pronounced in wideband signals due to the wide dynamic range between low and high frequencies. A solution to this problem is to introduce a pre-emphasis filter at the input and enhance the high frequency content in case of wideband signals. The LP filter coefficients are then found by means of LP analysis on the pre-emphasized signal. Subsequently, they are used to form a perceptual weighting filter. Its transfer function is the same as the LP filter transfer function but with the denominator having fixed coefficients (similar to the pre-emphasis filter). In this way, the weighting in formant regions is decoupled from the spectral tilt as shown below. Finally, the pre emphasized signal is filtered through the perceptual filter to obtain a perceptually weighted signal, which is used further.
The perceptual weighting filter has the following form

		(470)
where

		(471)

and is equal to 0.68.

Because is computed based on the pre-emphasized signal , the tilt of the filter is less pronounced compared to the case when is computed based on the original signal (as the pre-emphasized signal itself exhibits less spectral tilt than the original wideband signal). Since de-emphasis is performed in the decoder, it can be shown that the quantization error spectrum is shaped by a filter having a transfer function . Thus, the spectrum of the quantization error is shaped by a filter whose transfer function is , with computed based on the pre-emphasized signal. The perceptual weighting is performed on a frame basis while the LP filter coefficients are calculated on a subframe basis using the principle of LSP interpolation, described in subclause 5.1.9.6. For a subframe of size = 64, the weighted speech is given by

[bookmark: percep_sh_n]		(472)
[bookmark: _Toc394393139]5.2.2	LP filter coding and interpolation
[bookmark: _Toc394393140]5.2.2.1	LSF quantization
[bookmark: _Toc394393141]5.2.2.1.1	LSF weighting function
For frame-end LSF quantization, the weighting given by equation (481) is defined by combining the magnitude weighting, frequency weighting, IHM and squared IHM.
As shown in figure 19, since the spectral analysis and LP analysis use similar temporal sections, the FFT spectrum of the second analysis window can be reused to find the best weighting function for the frame-end LSF quantizer.

[bookmark: LSF_weighting_FFT_spect]Figure 19: LSF weighting computation with FFT spectrum
Figure 20 is a block diagram of a spectral analysis module that determines a weighting function. The spectral analysis computation is performed by a pre-processing module and the output is a linear scale spectrum magnitude which is obtained by FFT.

[bookmark: LSF_weighting_computation]Figure 20: Block diagram of LSF weighting computation

In the Normalization block, the LSFs are normalized to a range of 0 to -1. The LSFs generally span the range of 0 to . For a 12.8 kHz internal sampling frequency, is 128 and for a 16 kHz internal sampling frequency, is 160.

The Find magnitude weighting for each normalized LSF block determines the magnitude weighting function using the spectrum analysis information and the normalized LSF.
The magnitude weighting function is determined using the magnitude of the spectral bins corresponding to the frequency of the normalized LSFs and the additional two magnitudes of the neighbouring spectral bins (+1 and -1 of the spectral bin corresponding to the frequency of the normalized LSFs) around the spectral bin.
The spectral magnitude is obtained by a 128-point FFT and its bandwidth corresponds to the range of 0 to 6400 Hz. If the internal sampling frequency is16 kHz, the number of spectral magnitudes is extended to 160. Because the spectrum magnitude for the range of 6400 to 8000 Hz is missing, the spectrum magnitude for this range will be generated by the input spectrum. More specifically, the average value of the last 32 spectrum magnitudes which correspond to the bandwidth of 4800 to 6400 Hz are repeated to fill in the missing spectrum.
The final magnitude function determines the weighting function of each magnitude associated with a spectral envelope by extracting the maximum magnitude among the three spectral bins.

	,for n=0,…,M-1	(473)

where Min is the minimum value of and

	, for n=0,…,M-1	(474)

where =16 and the is the maximum magnitude among the three spectral bins for each LSF.

In the Find frequency weighting for each normalized LSF block, the frequency weighting function is determined by using frequency information from the normalized LSF.
The function determines the weighting function of each frequency using the predetermined weighting graph which is selected by using the input bandwidth and coding mode. There are two predetermined weighting graphs, as shown in figure 21, which are determined by perceptual characteristics such as Bark scale and a formant distribution of the input signal.	
The function corresponding to graph (a) in figure 21 is as follows.

		(475)
The function corresponding to graph (b) in figure 21 is as follows.

		(476)

[bookmark: Frequency_weighting_functions][bookmark: Figure_frequency_weighting_functions]Figure 21: Frequency weighting functions

Next, the FFT weighting function is determined by combining the magnitude weighting function and the frequency weighting function. Computing the FFT weighting function for frame-end LSF quantization is performed as follows:

	, n=0,…,M-1	(477)
The FFT weighting function uses different types of frequency and magnitude weighting functions depending on frequency bandwidth (NB, WB or WB16 kHz) and coding modes (UC or others such as VC, GC, AC, IC and TC).

Along with the FFT weightings , another weighting function called the inverse harmonic mean (IHM) is computed and defined as:

	, n=0,…,M-1	(478)

The LSFs are normalized between 0 and , where the first and the last weighting coefficients are calculated with this pseudo LSFs and . M is the order 16 of the LP model.
IHM approximates the spectral sensitivity of LSFs by measuring how close adjacent LSFs come. If two LSF parameters are close together the signal spectrum has a peak near that frequency. Hence a LSF that is close to one of its neighbours has a high scalar sensitivity and should be given a high weight. The sensitivity of close neighbours LSF is even enhanced by computing the squared of IHM:

	, n=0,…,M-1	(479)

The three set of weightings, , , and are gathered into an M by 4 matrix as follows:

		(480)
The set of weightings are combined linearly by multiplying the matrix E by a constant column vector P of dimension M:

[bookmark: equation_weighting]		(481)
The vector P is different for NB, WB/SWB at internal sampling rate 12.8 kHz and WB/SWB at internal sampling rate 16 kHz. The vectors P are derived off-line over a training data by minimizing the distance of the linear combination W and the weightings derived mathematically based on Gardner and Rao method, weightings near-optimal but too complex for being computed on-line compared to an heuristic approach.
[bookmark: _Toc394302848][bookmark: _Toc394393142]5.2.2.1.2	Bit allocation
The frame-end LSF quantization codebooks and bit allocations depend on the selected coding mode. In addition, different codebooks are used for NB, WB and WB 16kHz modes. This means there is a separate, optimized codebook for each coding mode and for each input bandwidth. In NB mode the LSF vectors are in the range of 0-6400Hz although the input signal has content only up to 4kHz. The WB mode corresponds to the mode where the LSF parameters are estimated in the 0-6400Hz range. The WB2 mode corresponds to the mode where the LSF parameters are estimated in the 0-8000Hz range and it is used in general for the higher bitrates.
Table 23 shows the bit allocation for frame-end LSF quantization for each coding mode.
[bookmark: Table_bit_allocation_for_LSF_vectors]Table 23: Bit allocation for LSF vectors
	ACELP core
bitrate (kbps)
	Inactive
	Unvoiced
	Voiced
	Generic
	Transition
	Audio
	

	3.6
	0
	27
	16
	22
	0
	0
	

	7.2
	22
	37
	31
	29
	31
	22
	

	8.0
	22
	40
	36
	33
	34
	22
	

	
	
	
	
	
	
	
	

	9.6
	31
	31
	31
	31
	0
	0
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	13.20
	31
	0
	38
	38
	40
	31
	

	
	
	
	
	
	
	
	

	16.40
	31
	0
	31
	31
	0
	31
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	24.40
	31
	0
	31
	31
	0
	31
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	32.00
	41
	0
	0
	41
	41
	0
	

	
	
	
	
	
	
	
	

	64.00
	41
	0
	0
	41
	41
	0
	

[bookmark: _Toc394302849][bookmark: _Toc394393143]5.2.2.1.3	Predictor allocation
There are three possible cases. In safety net only the mean removed LSF vectors are quantized with the multi stage quantizer. In MA predictive quantization the MA prediction error is quantized with the MSVQ. In switched safety net /AR predictive there is a selection between quantizing the mean removed LSF vector and the AR prediction error. Table 24 specifies for each coding type and each bandwidth which quantization scheme is used. The values in the table indicate safety net (0), MA prediction (1), and AR prediction combined with safety net (2). The value “-1“ indicates that the corresponding mode is not used. The coding modes that employ switched safety net/ AR prediction use one bit to signal which one of the two variants is used.
[bookmark: Table_predictive_mode_type_LSF_quantizer]Table 24: Predictive mode type for LSF quantizer
	
	Inactive
	Unvoiced
	Voiced
	Generic
	Transition
	Audio

	Narrowband
	1
	1
	2
	2
	0
	2

	Wideband <9.6kbps
	1
	1
	2
	2
	0
	2

	Wideband 16kHz
	1
	-1
	2
	1
	0
	1

	Wideband >=9.6kbps
	1
	1
	2
	1
	0
	1

The predictor values are optimized for all quantizer modes. For a given coding mode and bandwidth, all bitrates use the same predictor values. In general LSF values for voiced speech are considered quite stable over several consecutive frames. Consequently the corresponding AR predictor has the highest coefficient values. Other AR predictor coefficients are slightly lower. For the MA predictor the same value of 1/3 is used everywhere. The value is significantly lower than for AR coefficients since the quantization error starts oscillating over time if the MA coefficient is too large. The value is experimentally chosen to provide reasonable prediction efficiency, stability and good error recovery.
[bookmark: _Toc394302850][bookmark: _Toc394393144]5.2.2.1.4	LSF quantizer structure
A safety net, predictive or switched safety-net predictive multi-stage vector quantizer (MSVQ) is used to quantize the full length frame-end LSF vector for all modes except voiced mode at 16 kHz internal sampling frequency. The last stage of the MSVQ is a multiple scale lattice vector quantizer (MSLVQ) [22]. For each coding mode number of 1 to 4 unstructured VQ stages are used followed by a MSLVQ stage. The number of stages, number of bits per each stage and the codebook names for each coding mode are detailed in table 25. The codebook names are mentioned to illustrate how some of the codebooks are reused between modes.
[bookmark: Table_opt_CB_and_bit_allocation_LSF_qua]Table 25: Optimized codebooks and their bit allocation for LSF quantizers
	Coding mode
	Bits VQ safety net
	Bits in VQ stages – safety net
	Codebooks
	Bits VQ predictive mode
	Bits in VQ stages predictive mode
	Codebooks

	Inactive NB
	-
	-
	-
	5
	5
	IAA_MA1

	Unvoiced NB
	-
	-
	-
	8
	4+4
	UVD_MA1
UVD_MA2

	Voiced NB
	8
	4+4
	SVNB_SN1
SVNB_SN2
	6
	3+3
	GESVNB_AR1
GESVNB_AR2

	Generic NB
	9
	5+4
	GETRNB_SN1
GETRNB_SN2
	6
	3+3
	GESVNB_AR1
GESVNB_AR2

	Transition NB
	9
	5+4
	GETRNB_SN1
GETRNB_SN2
	-
	-
	-

	Audio NB
	4
	4
	AUNB_SN1
	0
	0
	-

	Inactive WB
	-
	-
	-
	5
	5
	IAA_MA1

	Unvoiced WB
	-
	-
	-
	12
	4+4+4
	UVD_MA1
UVD_MA2
UVWB_MA3

	Voiced WB
	8
	4+4
	SVWB_SN1
SVWB_SN2
	6
	3+3
	GESVWB_AR1
GESVWB_AR2

	Generic WB
	9
	5+4
	GETRWB_SN1
GETRWB_SN2
	6
	3+3
	GESVWB_AR1
GESVWB_AR2

	Transition WB
	9
	5+4
	GETRWB_SN1
GETRWB_SN2
	-
	-
	-

	Audio WB
	4
	4
	AUWB_SN1
	0
	0
	-

	Inactive WB2
	-
	-
	-
	5
	5
	IAA_MA1

	Unvoiced WB2
	-
	-
	-
	-
	-
	-

	Voiced WB2
	-
	-
	BC-TCVQ
	-
	-
	BC-TCVQ

	Generic WB2
	-
	-
	-
	5
	5
	GEWB2_MA1

	Transition WB2
	8
	4+4
	TRWB2_SN1
TRWB2_SN2
	-
	-
	-

	Audio WB2
	-
	-
	-
	5
	5
	AUWB2_MA1

	CNG
	4
	4
	CNG_SN1
	-
	-
	-

	Generic WB >= 9.6kbps
	-
	-
	-
	5
	5
	GEWB_MA1

The WB2 voiced mode is using BC-TCVQ technology detailed in subclause 5.2.2.1.5.
Overall the optimized VQ codebooks use 14,368 kBytes and the MSLVQ parameters use 9.304 kBytes, including CNG mode.
The remaining LSF quantizer bits are used for the MSLVQ stage. The quantization in all the stages is done such that it minimizes a weighted Euclidean distortion. The calculation of the weights is detailed in subclause 5.2.2.2.1. The search in the multi-stage quantizer is done such that at most 2 candidates are kept per stage. For each candidate obtained in the search in the unstructured optimized VQ, a residual LSF vector is formed by subtracting from the LSF vector the codevectors obtained in each unstructured VQ stage. If there is one optimized VQ stage two residual LSF vectors are obtained, if there are two optimized VQ stages, 4 candidates are obtained and so on.
Each residual LSF vector is split into two 8-dimensional sub vectors. Each sub vector is coded as follows. The lattice codebook obtained through the reunion of three D8+ lattice truncations differently scaled. Each lattice truncation has a different number of leader classes. The leader classes contained in the lattice truncations are given in table 26.
[bookmark: Table_lattice_leader_class_vector]Table 26: Lattice leader class vectors
	Leader class index
	Leader class vector
	Leader class index
	Leader class vector

	0
	1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
	25
	3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0

	1
	0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
	26
	3.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0

	2
	1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,
	27
	1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 0.5, 0.5

	3
	2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
	28
	2.5, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5, 0.5

	4
	1.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
	29
	2.5, 2.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

	5
	1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0
	30
	3.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

	6
	2.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0
	31
	2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 0.0

	7
	1.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
	32
	2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0

	8
	1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
	33
	3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

	9
	2.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0
	34
	3.0, 2.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0

	10
	2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
	35
	4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

	11
	1.5, 1.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5
	36
	1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 0.5

	12
	2.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
	37
	2.5, 1.5, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5

	13
	2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0
	38
	2.5, 2.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5

	14
	2.0, 2.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0
	39
	3.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

	15
	3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
	40
	2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 0.0, 0.0

	16
	1.5, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5, 0.5
	41
	3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0

	17
	2.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
	42
	3.0, 2.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0

	18
	2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0
	43
	3.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

	19
	2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0
	44
	4.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0

	20
	3.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0
	45
	1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5

	21
	1.5, 1.5, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5
	46
	2.5, 1.5, 1.5, 1.5, 1.5, 1.5, 0.5, 0.5

	22
	2.5, 1.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5
	47
	2.5, 2.5, 1.5, 1.5, 0.5, 0.5, 0.5, 0.5

	23
	2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
	48
	3.5, 1.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5

	24
	2.0, 2.0, 2.0, 1.0, 1.0, 0.0, 0.0, 0.0
	49
	

Given the bitrate available for the lattice codebook, the codebook is thus defined by a set of three integers representing the number of leader vectors for each truncation and three positive real number representing the scale for each lattice truncation. For instance a multiple scale lattice structure is defined by the number of leaders (20, 14, 5, 16, 10, 0) and the scales (1.057, 1.794, 2.896, 1.154, 1.860, 0.0). It means that the first subvector is quantized with a structure having three lattice truncations having 20, 14, and 5 leader classes respectively, which are scaled with the scales 1.057, 1.794, 2.896, respectively. The second subvector has only two truncations having 16 and 10 leader classes respectively. The truncations are ordered such that, for each subvector, their number of leader classes is descendingly ordered.
The difference in number of bits between the total number of bits for LSF end encoding, the prediction bit if needed and the number of bits used for unstructured VQ is used for the MSLVQ stage. The quantization in all the stages is done such that it minimizes a weighted Euclidean distortion. The calculation of the weights is detailed in subclause 5.2.2.1.1.

Suppose is the current LSF 8-dimensional sub vector and w its corresponding weight vector. The vector is normalized, i.e. component wise multiplied with the inverse of the off line estimated standard deviation. The resulting vector is further sorted in descending order based on the absolute value of its components and the weights vector is arranged following the same order. Let be the vector of descendingly sorted absolute values of and the correspondingly sorted weights vector. The weighted distance to the best codevector of each leader class corresponds to:

[bookmark: equation_weighted_distance]		(482)

where is the leader vector corresponding to class and is the scale of the truncation . Each lattice codebook has at most 3 truncations with their corresponding scales. Each truncation has a given number of leader vector classes. The sum of cardinalities of the classes for the truncations forming the codebook for the first LSF subvector and for the second subvector are within the number of bits for the considered operating point given by the overall bitrate and bandwidth. Computing in the transformed input space the second and the third terms from equation (482) directly gives a relative measure of goodness for the best codevector from the leader class and truncation which may be considered as a potential codevector for the truncation and the leader class .

[bookmark: equation_dkj]		(483)

The part of equation (483) that is independent of the scale is calculated only once for all the leader classes from the first truncation, which is the one having the highest number of leader classes. When adding the last term to the first sum of equation (483) the product is considered with negative sign if the parity constraint of the leader is not obeyed by the signs of the vector . The contribution of the scale values is considered only afterwards in order to obtain the value . The leader class vector and the truncation j having the smallest correspond to the codevector of the current input vector. The inverse permutation of the sorting operation on the input vector applied on the winning leader vector gives the lattice codevector after applying also the corresponding signs. If the parity of leader vector is 0 the signs are identical to the signs of the input vector. If the parity is 1 the signs are similar to the signs of the input vector with the constraint that the number of negative components is even. If the parity is -1 the signs are similar with signs of the input vector with the constraint that the number of negative components is odd. The final codevector is obtained after multiplication with the scale and with the inverse of the component-wise off-line computed standard deviation. The standard deviations are individually estimated for each coding mode and bandwidth.
The candidate quantized LSF vectors are obtained by adding each lattice quantized residual to the corresponding candidates from the upper stages. The obtained candidates are increasingly sorted. For each sorted candidate the weighted Euclidean distortion with respect to the original LSF vector is calculated. The candidate that minimizes this distortion is selected as codevector to be encoded. The indexes corresponding to the first unstructured optimized VQ codebooks together with the index in the lattice codebook are written in the bitstream. The index for the lattice codebook is obtained as described in subclause 5.2.2.1.4.2.

For the CNG mode, using a total of 29 bits for the LSF quantization, the multiple scale lattice codebook structure is specific to each of the 16 codevectors obtained in the first stage. In addition based on the value of the last component of the 16 dimensional LSF vector only part of the first stage codebook is searched. If the last component of is larger than 6350 then the search is done only for the first 6 codevectors of the first stage and the LSF vector corresponds to internal sampling frequency of 16kHz, otherwise the search is performed within the last 10 codevectors of the first stage.
[bookmark: _Toc394302851][bookmark: _Toc394393145]5.2.2.1.4.1	Selection between safety net and predictive mode

For the modes where switched safety-net prediction is allowed the selection between the two is done as follows. For frame error concealment reasons safety net is imposed, and variable set to 1, under the following conditions:
	- first three ACELP frames after an HQ frame
	- in voiced class signals, if the frame erasure mode LSF estimate of the next frame based on the current frame is at a distance from the current frame LSF vector larger than 0.25. The distance, or stability factor, is calculated as:

		(484)

where frame_len is the frame length of the current frame and D is the Euclidean distance between the current frame LSF vector and the FER estimate for the next frame. In this case calculated at the current frame is stored in memory for use at the subsequent frame, thereby forcing the safety net decision for the subsequent frame when is equal to 1.
	- some cases of rate switching
Safety net usage is decided by the following code line:
 if (force_sf || Err[0] < abs_threshold || Err[0]*(*streaklimit) < 1.05 * Err[1])
Thus the safety net mode is selected if force_sf is enabled or if for the quantized safety net codevector the quantization distortion (weighted Euclidean distance) is smaller than abs_threshold of 41000 for NB or 45000 for WB frames. For these relatively low error values the quantization is already transparent to original LSF values and it makes sense from the error recovery point of view to use safety-net as often as possible. Finally the safety net quantized error is compared to the predictively quantized error, with scaling of 1.05 to prefer safety net usage as well using *streaklimit multiplying factor that is adaptive to the number of consecutive predictive frames. The *streaklimit factor gets smaller, when the streak of continuous predictive frames gets longer. This is done in order to restrict the very long usage streaks of predictive frames for frame-erasure concealment reasons. For voiced speech longer predictive streaks are allowed than for other speech types. In voiced mode streak limiting starts after 6 frames, in other modes after 3 frames.
[bookmark: _Toc394302852][bookmark: _Toc394393146]5.2.2.1.4.2	Indexing of the lattice codevector
The indexes of each one of the two multiple scale lattice codevectors is composed of the following entities:

	- scale indexes for the two 8-dimensional subvectors

	- leader class index, for the two 8-dimensional subvectors

	- leader permutation index, unsigned permutation index

	- sign index with parity constraint,

	- scale offset the number of codevectors corresponding to the truncations with smaller scale indexes

	- leader offset the number of codevectors corresponding to leader classes with smaller leader indexes

	- , i=1,2 cardinality of unsigned leader class, i.e. number of unsigned permutations in the class, shown in table 27.

	- is the number of codevectors for the second subvector
The index for each subvector is calculated using

		(485)
	The indexes Ili and Isi are obtained using the position encoding based on counting the binomial coefficients and the sign encoding described in [26].
[bookmark: Table_cardinality_unsigned_leader_vec]Table 27: Cardinality of unsigned leader vector permutations
	Leader vector index
	

	Leader vector index
	

	Leader vector index
	

	0
	28
	17
	56
	34
	1120

	1
	1
	18
	420
	35
	8

	2
	70
	19
	56
	36
	8

	3
	8
	20
	280
	37
	280

	4
	8
	21
	56
	38
	168

	5
	28
	22
	168
	39
	56

	6
	168
	23
	28
	40
	420

	7
	28
	24
	560
	41
	336

	8
	1
	25
	168
	42
	840

	9
	280
	26
	336
	43
	28

	10
	28
	27
	28
	44
	168

	11
	56
	28
	280
	45
	1

	12
	8
	29
	28
	46
	168

	13
	56
	30
	8
	47
	420

	14
	420
	31
	280
	48
	168

	15
	56
	32
	70
	
	

	16
	70
	33
	8
	
	

The binomial encoding used for calculating Il1 and Il2 uses the fact that the cardinality of an unsigned leader class with distinct values v0,…,vn-1, each having the number of occurrences k0,…,kn-1 is given by:

	.	(486)
The distinct values for each leader class vector and the number of each value in each leader class vector are given in the following table:
Table 28: Leader vector distinct values, their number of occurrences, and leader vector parities
	Leader class index
	Distinct values
	Number of occurrences
	Parity
	Leader class index
	Distinct values
	Number of occurrences
	Parity

	0
	1, 0,
	2,6
	0
	25
	3.0, 1.0, 0.0
	1,5,2
	0

	1
	0.5
	8
	1
	26
	3.0, 2.0, 1.0, 0.0
	1,1,1,5
	0

	2
	1, 0
	4,4
	0
	27
	1.5, 0.5
	6,2
	1

	3
	2, 0
	1,7
	0
	28
	2.5, 1.5, 0.5,
	1,3,4
	-1

	4
	1.5, 0.5
	1,7
	-1
	29
	2.5, 0.5
	2,6
	1

	5
	1.0, 0.0
	6,2
	0
	30
	3.5, 0.5,
	1,7
	-1

	6
	2.0, 1.0, 0.0,
	1,2,5
	0
	31
	2.0, 1.0, 0.0
	3,4,1
	0

	7
	1.5, 0.5
	2,6
	1
	32
	2.0, 0.0
	4,4
	0

	8
	1.0
	8
	0
	33
	3.0, 1.0
	1,7
	0

	9
	2.0, 1.0, 0.0
	1,4,3
	0
	34
	3.0, 2.0, 1.0, 0.0
	1,1,3,3
	0

	10
	2.0, 0.0
	2,6
	0
	35
	4.0, 0.0,
	1,7
	0

	11
	1.5, 0.5
	3,5
	-1
	36
	1.5, 0.5
	7,1
	-1

	12
	2.5, 0.5
	1,7
	1
	37
	2.5, 1.5, 0.5
	1,4,3
	1

	13
	2.0, 1.0, 0.0
	1,6,1
	0
	38
	2.5, 1.5, 0.5
	2,1,5
	-1

	14
	2.0, 1.0, 0.0
	2,2,4
	0
	39
	3.5, 1.5, 0.5
	1,1,6
	1

	15
	3.0, 1.0, 0.0
	1,1,6
	0
	40
	2.0, 1.0, 0.0
	4,2,2
	0

	16
	1.5, 0.5
	4,4
	1
	41
	3.0, 2.0, 1.0, 0.0
	1,1,5,1
	0

	17
	2.5, 1.5, 0.5
	1,1,6
	-1
	42
	3.0, 2.0, 1.0, 0.0
	1,2,1,4
	0

	18
	2.0, 1.0, 0
	2,4,2
	0
	43
	3.0, 0.0
	2,6
	0

	19
	2.0, 0.0
	3,5
	0
	44
	4.0, 1.0, 0.0
	1,2,5
	0

	20
	3.0, 1.0, 0.0,
	1,3,4
	0
	45
	1.5
	8
	1

	21
	1.5, 0.5
	5,3
	-1
	46
	2.5, 1.5, 0.5
	1,5,2
	-1

	22
	2.5, 1.5, 0.5
	1,2,5
	1
	47
	2.5, 1.5, 0.5
	2,2,4
	1

	23
	2.0, 1.0
	2,6
	0
	48
	3.5, 1.5, 0.5
	1,2,5
	-1

	24
	2.0, 1.0, 0.0
	3,2,3
	0
	49
	
	
	

The index for the two multiple scale lattice codevectors corresponding to the two residual LSF subvectors are combined in a single index, I, which is written in the bitstream.

	.	(487)

[bookmark: _Toc394393147]5.2.2.1.5	LSFQ for voiced coding mode at 16 kHz internal sampling frequency : BC-TCVQ
[bookmark: _Toc394341602][bookmark: _Toc394393148]5.2.2.1.5.1	Block-constrained trellis coded vector quantization (BC-TCVQ)
The VC mode operating at 16 kHz internal sampling frequency has two decoding rates: 31 bits per frame and 40 bits per frame. The VC mode is quantized by a 16-state and 8 stage block-constrained trellis coded vector quantization (BC-TCVQ) scheme.

Trellis coded vector quantization (TCVQ) [42] generalizes trellis coded quantization (TCQ) to allow vector codebooks and branch labels. The main feature of TCVQ is the partitioning of an expanded set of VQ symbols into subsets and the labelling of the trellis branches with these subsets. TCVQ is based on a rate-1/2 convolutional code, which has trellis states and two branches entering/leaving each trellis state. Given a block of m source vectors, the Viterbi algorithm (VA) is used to find the minimum distortion path. This encoding procedure allows the best trellis path to begin in any of N initial states and end in any of N terminal states. In TCVQ, the codebook has vector codewords. is referred to as “codebook expansion factor” (in bits per dimension) since the codebook has times as many codewords as a nominal rate- VQ. The encoding is accomplished in the following two steps.
Step 1. For each input vector, find the closest codeword and corresponding distortion in each subset.
Step 2. Let the branch metric for a branch labelled with subset S be the distortion found in step 1 and use the VA to find the minimum distortion path through the trellis.

BC-TCVQ is a low-complexity approach that requires exactly one bit per source sample to specify the trellis path. Figure 22 shows the concept of ‘block constrained’ and illustrates the search process of the Viterbi algorithm with a 4-state and 8 stages trellis structure, which selects ‘00’ and ‘10’ as initial states. When the initial state is ‘00’, the terminal state is selected to be one of ‘00’ or ‘01’ and when the initial state is ‘10’, the terminal state is selected to be one of ‘10’ or ‘11’. As an example, the survival path from the initial stage with state ‘00’ to the stages with state ‘00’ is shown by a dotted line. In this case, the only two possible trellis paths for the last two stages are toward states ‘00’ and ‘01’. This example uses one bit for the initial state and one bit for the terminal state. If the terminal state is decided, the path information for the last two stages is not needed.

[bookmark: block_constrained_concept_figure]Figure 22: Block constrained concept in 4-state and 8 stages trellis structure for BC-TCVQ encoding

For any , consider a BC-TCVQ structure that allows initial trellis states and exactly terminal trellis states for each allowed initial trellis state. A single VA encoding, starting from the allowed initial trellis states, proceeds in the normal way up to the vector stage . It takes k bits to specify the initial state, and bits to specify the path to vector stage . A unique terminating path, possibly dependent on the initial trellis state, is pre-specified for each trellis state at vector stage through vector stage . Regardless of the value of , the encoding complexity is only a single VA search of the trellis, and exactly m bits are required to specify an initial trellis state and a path through the trellis.

The BC-TCVQ for VC mode at a 16kHz internal sampling frequency utilizes 16-state (=16) and 8-stage (=8) TCVQ with 2-dimensional (=2) vector. LSF subvectors with two elements are allocated to each stage. Table 29 shows the initial states and terminal states for 16-state BC-TCVQ. In this case the parameters and are 2 and 4, respectively. Four bits are used for both the initial state and terminal state.
[bookmark: scaling_function_coeffs][bookmark: Initial_and_terminal][bookmark: Table_initial_state_and_terminal_state]Table 29: Initial state and terminal state for 16-state BC-TCVQ
	Initial state
	Terminal state

	0
	0, 1, 2, 3

	4
	4, 5, 6, 7

	8
	8, 9, 10, 11

	12
	12, 13, 14, 15

[bookmark: _Toc394393149]5.2.2.1.5.2	Bit Allocations and codebook size for BC-TCVQ
The bit allocations for the LSF quantizer at 31 and 40 bits/frame are summarized in tables 30 and 31.
[bookmark: Bit_allocation]Table 30: Bit allocation for the LSF quantizer at 31 bits/frame
	Parameters
	Bit allocation

	BC-TCVQ
	Path information
(Initial states + path + final states)
	2+4+2

	
	Subset codewords
	
4 bits 2 (Stages 1 to 2)

3 bits 2 (Stages 3 to 4)

2 bits 4 (Stages 5 to 8)

	Scheme selection
	1

	Total
	31

[bookmark: Bit_allocation_41]Table 31: Bit allocation for the LSF quantizer at 40 bits/frame
	Parameters
	Bit allocations

	BC-TCVQ
	Path information
(Initial states + path + final states)
	2+4+2

	
	Subset codewords
	
4 bits 2 (Stages 1 to 2)

3 bits 2 (Stages 3 to 4)

2 bits 4 (Stages 5 to 8)

	SVQ
	Subset codewords
	5 (1st vector with dim.=8)
4 (2nd vector with dim.=8)

	Scheme selection
	1

	Total
	40

Figures 23 and 24 show the LSF quantizer at 31 and 40 bits/frame, respectively. The 1st and 2nd BC-TCVQ use the same bit allocation but different codebook entries. The 3rd and 4th SVQ use the same bit allocation and codebooks. The 31 bit LSF quantizer uses BC-TCVQ and the 40 bit LSF quantizer uses both BC-TCVQ and SVQ.
The following table summarizes the codebook size for BC-TCVQ and SVQ. The overall codebook size is 2,432 words. In addition, there are several tables for BC-TCVQ such as intra-prediction coefficients (56 words), scale information (32 words) and branch information (192 words). The total codebook size is 2,712 words.
Table 32: Codebook size for BC-TCVQ and SVQ
	
	1st stage
	2nd stage
	3rd stage
	4th stage
	5th stage
	6th stage
	7th stage
	8th stage
	Total per frame

	Bits for BC-TCVQ subcodebook
	4
	4
	3
	3
	2
	2
	2
	2
	

	Scalars for Predictive
	256
	256
	128
	128
	64
	64
	64
	64
	1,024

	Scalars for Safety-net
	256
	256
	128
	128
	64
	64
	64
	64
	1,024

	Bits for SVQ subcodebook
	5
	4
	

	Scalars
	256
	128
	384

	Total
	
	2,432

[bookmark: _Toc394393150]5.2.2.1.5.3	Quantization scheme selection
The quantization scheme for the VC mode consists of Safety-net and Predictive schemes. The quantization scheme is selected in an open-loop manner as shown in the figures 23 and 24. The scheme selection is done by calculating the prediction error of unquantized LSFs.

The prediction error () of the th frame is obtained from the inter-frame prediction contribution, the weighting function, and a mean-removed unquantized LSF as

		(488)
where	

	, for i=0,…,M	(489)

and is the selected AR prediction coefficients for VC mode and is the mean-removed quantized LSF of the previous frame and is the LPC order.

When is bigger than a threshold, it implies the tendency of the current frame to be non-stationary. Then the safety-net scheme is a better choice. Otherwise the predictive scheme is selected. In addition, the streak limit (streaklimit) prevents the consecutive selection of the predictive scheme.
The quantization scheme selection is shown by the following pseudo-code.

If > streaklimit * op_loop_thr
 safety_net = 1;
else
 safety_net = 0;

where is the prediction error of the kth frame and the open-loop threshold (op_loop_thr) is 3,784,536.3.
If the safety-net flag (safety_net) is set to 1, the safety-net scheme is selected, and if the safety-net flag (safety_net) is set to 0, the predictive scheme is selected. The scheme selection is encoded using a single bit.
[bookmark: _Toc394393151]5.2.2.1.5.4	31 bit LSF quantization by the predictive BC-TCVQ with safety-net
Figure 23 shows the predictive BC-TCVQ with safety-net for an encoding rate of 31 bits.

[bookmark: BC_TCVQ_and_SVQ]Figure 23: Block diagram of the predictive BC-TCVQ with safety-net for an encoding rate of 31bits/frame

The operation of the 31 bit LSF quantizer is described as follows. If the safety-net scheme is selected, the mean-removed LSF vector, , is quantized by the 1st BC-TCVQ and 1st intra-frame prediction with 30 bits. If the predictive scheme is selected, the prediction error, , which is the difference between the mean-removed LSF vector and the prediction vector is quantized by the 2nd BC-TCVQ and 2nd intra-frame prediction with 30 bits.

An optimal index for each stage of BC-TCVQ is obtained by searching for an index which minimizes of equation (490).

[bookmark: EQUtion_E_werr]	, for =1,…, and =1,…, /2	(490)

where is the number of codevectors in the th sub-codebook, is the pth codevector of th the subcodebook, is a weighting function, and .

Intra-frame correlation typically remains in the inter-frame AR prediction error vectors. The presence of significant intra-frame correlation motivates the introduction of an intra-predictive coding scheme for the AR prediction error vector, as shown in figure 23, in order to increase the coding gain. The intra-frame prediction uses the quantized elements of the previous stage. The difference between and its prediction is then quantized. The prediction is formed for each trellis node using the output codevectors specified by the survivor path associated with the particular node.

The prediction coefficients used for the intra-frame prediction is predefined by the codebook training process. The prediction coefficients are two-by-two matrices for the 2-dimensional vector. The intra-frame prediction process of BC-TCVQ is as follows. The prediction residual vector, , which is the input of the 1st BC-TCVQ, is computed as

	

	, for =1,…, /2-1	(491)
where

	, for =1,…, /2-1	(492)

where is the estimation of , is the quantized vector of , and is the prediction matrix with 22 which is computed as

	, for =1,…, /2-1,	(493)
where

	and 	(494)

and is the LPC order.
Then

	, for =0,…, /2-1.	(495)

The prediction residual, , is quantized by the 1st BC-TCVQ. The 1st BC-TCVQ and the 1st intra-frame prediction are repeated to quantize . Table 33 represents the designed prediction coefficients for the BC-TCVQ in the safety-net scheme.
[bookmark: prediction_coefficients_safetynet]Table 33: Intra-frame prediction coefficients for the BC-TCVQ in the safety-net scheme
	Coefficient Number
	Coefficient Value

	

	

	

	

	

	

	

	

	

	

	

	

	

	

For the predictive scheme, is quantized by the 2nd BC-TCVQ and the 2nd intra-frame prediction. An optimal index for each stage of BC-TCVQ is obtained by searching for an index which minimizes in equation (490).
The intra-frame prediction uses the same process with different prediction coefficients as that of the safety-net scheme. Then

	, for i=0,…,M/2-1.	(496)

The prediction residual, , is quantized by the 2nd BC-TCVQ. The 2nd BC-TCVQ and the 2nd intra-frame prediction are repeated to quantize. Table 34 represents the designed prediction coefficients for the BC-TCVQ in the predictive scheme.
[bookmark: prediction_coefficients_predictive]Table 34: Intra-frame prediction coefficients for the BC-TCVQ in the predictive scheme
	Coefficient Number
	Coefficient Value

	

	

	

	

	

	

	

	

	

	

	

	

	

	

[bookmark: _Toc394393152]5.2.2.1.5.5	40 bit LSF quantization using the predictive BC-TCVQ/SVQ with safety-net
Figure 24 shows the predictive BC-TCVQ/split-VQ(SVQ) with safety-net for an encoding rate of 40 bits. Both 31 bit LSF quantizer and 40 bit LSF quantizer use the same codebook for BC-TCVQ.

[bookmark: BC_TCVQ_and_SVQ_41]Figure 24: Block diagram of the predictive BC-TCVQ/SVQ with safety-net for an encoding rate of 40 bits/frame
In the LSF quantization for an encoding rate of 40 bit/frame, the difference between the mean-removed LSF and its BC-TCVQ output is quantized by the 3rd and 4th SVQ, as shown in figure 24. The scheme selection, 1st and 2nd BC-TCVQ, and 1st and 2nd intra-frame prediction blocks of the 40 bit LSF quantizer are exactly same as those of the 31 bit LSF quantizer. Both LSF quantizers use same codebooks for the BC-TCVQ.

If the current coding mode in the scheme selection block is selected as the predictive scheme, the prediction error is derived by subtracting from the mean-removed LSF . It is quantized by the 2nd BC-TCVQ and the 2nd intra-frame prediction. The residual signal is obtained by subtracting from . The residual signal is then split into two sub-vectors of dimensions 8 and 8, and is quantized using the 4th SVQ. Since the low band is perceptually more important than the high band, five bits are allocated to the 1st 8-dimensional VQ and four bits are allocated to the 2nd 8-dimensional VQ. is quantized by the 4th SVQ to produce . is then obtained by adding to . Finally the predictive scheme output is derived by adding to .

If the current coding mode is selected as the safety-net scheme, the mean-removed LSF is quantized by the 1st BC-TCVQ and the 1st intra-frame prediction. The residual signal is extracted by subtracting from , and it is quantized by the 3rd SVQ to produce . The 3rd SVQ is exactly same as the 4th SVQ. That is, both SVQ quantizers use same codebooks. Because the input distribution of the 3rd SVQ is different from that of the 4th SVQ, scaling factors are used to compensate the difference. Scaling factors are computed by considering the distribution of both residual signals and . To minimize the computational complexity in in an actual implementation, the input signal of the 3rd SVQ is divided by the scaling factor, and the resulting signal is quantized by the 3rd SVQ. The quantized signal of the 3rd SVQ is obtained by multiplying the quantized output with the scaling factor. Table 35 shows the scaling factors for the quantization and de-quantization. Finally, the quantized mean-removed LSF is derived by adding to .
[bookmark: Scale_factor_SVQ]Table 35: Scaling factor for the SVQ
	Dimension
	0
	1
	2
	3
	4
	5
	6
	7

	Inverse scale factor for quantization
	0.5462
	0.5434
	0.5553
	0.5742
	0.5800
	0.5725
	0.6209
	0.6062

	Scale factor for de-quantization
	1.8307
	1.8404
	1.8009
	1.7416
	1.7240
	1.7467
	1.6106
	1.6497

	Dimension
	8
	9
	10
	11
	12
	13
	14
	15

	Inverse scale factor for quantization
	0.6369
	0.6432
	0.6351
	0.6173
	0.6397
	0.6562
	0.6331
	0.6404

	Scale factor for de-quantization
	1.5702
	1.5548
	1.5745
	1.6199
	1.5633
	1.5239
	1.5796
	1.5615

5.2.2.1.6	Mid-frame LSF quantizer
For a more accurate representation of the spectral envelope during signal transitions, the encoder quantizes mid-frame LSF coefficients. In contrast to the frame-end LSF vector, the mid-frame LSF vector is not quantized directly. Instead, a weighting factor is searched in a codebook to calculate a weighted average between the quantized LSF vectors of the current and the previous frames. Only 2-6 bits are required depending on the bitrate and the coding mode (see Table 35a).
Table 35a: Bit allocation in mid-frame LSF quantization
	Bitrate [bps]
	IC
	UC
	VC
	GC
	TC
	AC

	7200
	2
	5
	4
	5
	5
	2

	8000
	2
	5
	4
	5
	5
	2

	9600
	2
	5
	4
	5
	0
	0

	13200
	2
	0
	5
	5
	5
	2

	16400
	4
	0
	5
	5
	0
	0

	24400
	5
	0
	5
	5
	0
	0

	32000
	5
	0
	0
	5
	5
	5

	64000
	5
	0
	0
	5
	5
	5

Before searching the codebook, the unquantized mid-frame LSF vector is weighted with the LSF weighting function defined in Equation (481). For simplicity, the following description will be provided by using LSP vectors instead of LSF vectors. These two vectors are related by the following simple relation where q(k) is the kth LSP coefficient and ω(k) is kth LSF coefficient. The mid-frame LSP weighting can be expressed using the following formula

	, for k=0,…,M-1.	(496a)

where is the kth unquantized LSP coefficient and is kth weighting factor of the function defined in Equation (481). Note, that this is not the weighting factor which is quantized. This weighting is based on the FFT spectrum where more weight is put on perceptually important part of the spectrum and less weight elsewhere.
The weighting factor to be quantized is a vector of size M that is searched in a closed-loop fashion such that the error between the quantized mid-frame LSP coefficients and this weighted representation is minimized in a mean-square sense. That is

		(496b)

where is kth quantized weighted end-frame LSP coefficient and is the mid-frame weighting vector taken from the codebook. To save computation complexity, both operations are combined. That is

		(496c)
Once the winning weighting factor is found, the quantized LSP vector is reordered to maintain a stable LP filter. After the quantization, the end-frame and the mid-frame LSF vectors are used to determine the quantized LP parameters in each subframe. This is done in the same way as for unquantized LP parameters (see Equation (58) in Clause 5.1.96).
[bookmark: _Toc394307913]5.2.3	Excitation coding
The excitation signal coding depends on the coding mode. In general it can be stated that in the absence of DTX/CNG operation, the excitation signal is coded per subframes of 64 samples. This means that it is encoded four times per frame in case of 12.8 kHz internal sampling rate and five times per frame in case of 16 kHz internal sampling rate. The exception is the GSC coding where longer subframes can be used to encode some components of the excitation signal, especially at lower bitrates.
The excitation coding will be described in the following subclauses, separately for each coding mode. The description of excitation coding starts with the GC and VC modes. For the UC, TC, and GSC modes, it will be described in subsequent subclauses with references to this subclause.
[bookmark: _Toc392593058][bookmark: _Toc394307914]5.2.3.1	Excitation coding in the GC, VC and high rate IC/UC modes
The GC,VC and high rate IC/UC modes are very similar and are described together. The VC mode is used in stable voiced segments where the pitch is evolving smoothly within an allowed range as described in subclause 5.1.13.2. Thus, the major difference between the VC and GC modes is that more bits are assigned to the algebraic codebook and less to the adaptive codebook in case of the VC mode as the pitch is not allowed to evolve rapidly in the VC mode. The high-rate IC and UC modes are similar and are used for signalling inactive frames where only a background noise is detected, and unvoiced frames, respectively. The two modes differ from GC mode mainly by their specific gain coding codebook. The GC mode is then used in frames not assigned to a specific coding mode during the signal classification procedure and is aimed at coding generic speech and audio frames. The principle of excitation coding is shown in a schematic diagram in figure 25. The individual blocks and operations are described in detail in the following subclauses.

[bookmark: schematic_diag_exc_GC_VC]Figure 25: Schematic diagram of the excitation coding in GC and VC mode
[bookmark: _Toc392593059][bookmark: _Toc394307915]5.2.3.1.1	Computation of the LP residual signal
To keep the processing flow similar for all coding modes, the LP residual signal is computed for the whole frame in the first processed subframe of each frame, as this is needed in the TC mode. For each subframe, the LP residual is given by

[bookmark: _Toc392593060][bookmark: rofn_lp_residual_signal]		(497)

where is the pre-emphasized input signal, defined in subclause 5.1.4 and are the quantized LP filter coefficients, described in subclause 5.2.2.1.

In DTX operation the computed LP residual signal is attenuated by multiplying an attenuation factor for all input bandwidths except NB. The attenuation factor is calculated as

		(497a)

where as determined in subclause 5.6.2.1.1 is upper limited by , if the bandwidth is not WB or the latest bitrate used for actively encoded frames is larger than 16.4 kbps. Otherwise is determined from a hangover attenuation table as defined in Table 35b. is only updated in the first SID frame after an active signal period if two criteria are both fulfilled. The first criterion is satisfied if AMR-WB IO mode is used or the bandwidth=WB. The second criterion is met if the number of consecutive active frames in the latest active signal segment was at least number of frames or if the current SID is the very first encoded SID frame. The attenuation factor is finally lower limited to.
[bookmark: _Ref399165039]Table 35b: Attenuation floor
	
Latest active bitrate [kbps]
	

	

	0.5370318

	

	0.6165950

	

	0.6839116

	

	0.7079458

	

	0.7079458

[bookmark: _Toc394307916]5.2.3.1.2	Target signal computation

[bookmark: _Toc392593061]The target signal for adaptive codebook search is usually computed by subtracting a zero-input response of the weighted synthesis filter from the weighted pre-emphasized input signal. This is performed on a subframe basis. An equivalent procedure for computing the target signal, which is used in this codec, is filtering of the residual signal, , through the combination of the synthesis filter and the weighting filter. After determining the excitation signal for a given subframe, the initial states of these filters are updated by filtering the difference between the LP residual signal and the excitation signal. The memory update of these filters is explained in subclause 5.2.3.1.8. The residual signal, , which is needed for finding the target vector, is also used in the adaptive codebook search to extend the past excitation buffer. This simplifies the adaptive codebook search procedure for delays less than the subframe size of 64 as will be explained in the next subclause. The target signal in a given subframe is denoted as .
[bookmark: _Toc394307917]5.2.3.1.3	Impulse response computation

The impulse response, , of the weighted synthesis filter

		(498)

is computed for each subframe. Note that is not the impulse response of the filter, but of the filter . In the equation above,, is the quantized LP filter, the coefficients of which are (see subclause 5.2.2.1). This impulse response is needed for the search of adaptive and algebraic codebooks. The impulse responseis computed by filtering the vector of coefficients of the filter, extended by zeros, through the two filters: and.
[bookmark: _Toc392593062][bookmark: _Toc394307918]5.2.3.1.4	Adaptive codebook
[bookmark: _Toc392593063][bookmark: _Toc394307919]5.2.3.1.4.1	Adaptive codebook search

The adaptive codebook search consists of performing a closed-loop pitch search, and then computing the adaptive codevector, , by interpolating the past excitation at the selected fractional pitch lag. The adaptive codebook parameters (or pitch parameters) are the closed-loop pitch, , and the pitch gain, (adaptive codebook gain), calculated for each subframe. In the search stage, the excitation signal is extended by the LP residual signal to simplify the closed-loop search. The adaptive codebook search is performed on a subframe basis. The bit allocation is different for the different modes.

In the first and third subframes of a GC, UC or IC frame, the fractional pitch lag is searched with a resolution in the range [34, 91½], and with integer sample resolution in the range [92, 231]depending on the bit-rate and coding mode. Closed-loop pitch analysis is performed around the open-loop pitch estimates. Always bounded by the minimum and maximum pitch period limits, the range [–8, +7] is searched in the first subframe, while the range [–8, +7] is searched in the third subframe. The pitch period quantization limits are summarized in table 36.
[bookmark: pitch_Q_limits]Table 36: Pitch period quantization limits
	Rates (kbps)
	Sampling rate of the limits (kHz)
	IC/UC
	VC
	GC

	7.2
	12.8
	n.a.
	[17; 231]
	[34; 231]

	8.0
	12.8
	n.a.
	[17; 231]
	[20; 231]

	9.6
	12.8
	n.a.
	[29; 231]
	[29; 231]

	13.2
	12.8
	n.a.
	[17; 231]
	[20; 231]

	16.4
	16
	n.a.
	[36; 289]
	[36; 289]

	24.4
	16
	n.a.
	[36; 289]
	[36; 289]

	32
	16
	[21; 289]
	n.a.
	[21; 289]

	64
	16
	[21; 289]
	n.a.
	[21; 289]

For the second and fourth subframes, a pitch resolution depending on the bit-rate and coding mode is used and the closed-loop pitch analysis is performed around the closed-loop pitch estimates, selected in the preceding (first or third) subframe. If the closed-loop pitch fraction in the preceding subframe is 0, the pitch is searched in the range [–8, +7½], whereis the integer part of the fractional pitch lag of the preceding subframe (p is either 0, to denote the first subframe, or 3 to denote the third subframe). If the fraction of the pitch in the previous subframe is , the pitch is searched in the range [–7, +8½]. The pitch delay is encoded as follows. In the first and third subframe, absolute values of the closed-loop pitch lags are encoded. In the third and fourth subframe, only relative values with respect to the absolute ones are encoded.

In the VC mode, the closed-loop pitch lag is encoded absolutely in the first subframe and relatively in the following 3 subframes. If the fraction of the closed-loop pitch of the preceding subframe is 0, the pitch is searched in the interval [–4, +3½]. If the fraction of the closed-loop pitch lag in the preceding subframe is , the pitch is searched in the range [–3, +4½].

The closed-loop pitch search is performed by minimizing a mean-squared weighted error between the target signal and the past filtered excitation (past excitation, convolved with). This is achieved by maximizing the following correlation

[bookmark: closed_loop_pitch_correlation]		(499)

where is the target signal andis the past filtered excitation at delay k. Note that negative indices refer to the past signal. Note also that the search range is limited around the open loop pitch lags, as explained earlier. The convolution of the past excitation signal withis computed only for the first delay in the searched range. For other delays, it is updated using the recursive relation

[bookmark: yk_n_recursion]		(500)

where , , is the excitation buffer. Note that in the search stage, the samples, , are unknown and they are needed for pitch delays less than 64. To simplify the search, the LP residual signal, , is copied tofor , in order to make the relation in equation (500) valid for all delays. If the optimum integer pitch lag is in the range [34, 91], the fractions around that integer value are tested. The fractional pitch search is performed by interpolating the normalized correlation of equation (499) and searching for its maximum. The interpolation is performed using an FIR filter for interpolating the term in equation (499) using a Hamming windowed sinc function truncated at. The filter has its cut off frequency (–3 dB) at 5050 Hz and –6 dB at 5760 Hz in the down-sampled domain, which means that the interpolation filter exhibits low-pass frequency response. Note that the fraction is not searched if the selected best integer pitch coincides with the lower end of the searched interval.

Once the fraction is determined, the initial adaptive codevector, , is computed by interpolating the past excitation signal at the given phase (fraction). In the following text, the fractional pitch lags (not the fractions) in all subframes will be denoted as, where the index denotes the subframe.

In order to enhance the coding performance, a low-pass filter can be applied to the adaptive codevector. This is important since the periodicity doesn’t necessarily extend over the whole spectrum. The low pass filter is of the form . Thus, the adaptive codevector is given by

[bookmark: v_n_adaptive_cv]		(501)

where for for rates at and above 32kbps and otherwise.

An adaptive selection is possible by sending 1 bit per sub-frame. There are then two possibilities to generate the excitation, the adaptive codebook , in the first path, or its low pass-filtered version as described above in the second path. The path which results in minimum energy of the target signal is selected for the filtered adaptive codebook vector.
Alternatively, the first or the second path can be used without any adaptive selection. Table 37 summarizes the strategy for the different combinations.
[bookmark: acb_filtering_cfg_table]Table 37: Adaptive codebook filtering configuration
	Rates (kbps)
	IC/UC
	VC
	GC

	7.2
	n.a.
	Non-filtered
	LP filtered

	8.0
	n.a.
	Non-filtered
	LP filtered

	9.6
	n.a.
	Non-filtered
	LP filtered

	13.2
	n.a.
	Adaptive selection
	Adaptive selection

	16.4
	LP-filtered
	Adaptive selection
	LP filtered

	24.4
	LP-filtered
	Adaptive selection
	 LP filtered

	32
	n.a.
	n.a.
	Adaptive selection

	64
	n.a.
	n.a.
	Adaptive selection

[bookmark: _Toc392593064][bookmark: _Toc394307920]5.2.3.1.4.2	Computation of adaptive codevector gain
[bookmark: _Toc392593065]The adaptive codevector gain (pitch gain) is then found by

[bookmark: acb_gain_g_p]		(502)

where is the filtered adaptive codevector (zero-state response of to).

To avoid instability in case of channel errors, is limited by 0.95, if the pitch gains of the previous subframes have been close to 1 and the LP filters of the previous subframes have been close to being unstable (highly resonant).
The instability elimination method tests two conditions: resonance condition using the LP spectral parameters (minimum distance between adjacent LSFs), and gain condition by testing for high valued pitch gains in the previous frames. The method works as follows. First, a minimum distance between adjacent LSFs is computed as…
At 9.6, 16.4 and 24.4 kbps, the gain is further constrained. It is done for helping the recovery after the loss of a previous frame.

		(503)
[bookmark: _Toc394307921]5.2.3.1.5	Algebraic codebook
[bookmark: _Toc392593066][bookmark: _Toc394307922]5.2.3.1.5.1	Adaptive pre-filter

[bookmark: _Toc392593067]An important feature of this codebook is that it is a dynamic codebook, whereby the algebraic codevectors are filtered through an adaptive pre-filter. The transfer function of the adaptive pre-filter varies in time in relation to parameters representative of spectral characteristics of the signal. The pre-filter is used to shape the frequency characteristics of the excitation signal to damp frequencies perceptually annoying to the human ear. Here, a pre-filter relevant to WB signals is used which consists of two parts: a periodicity enhancement part and a tilt part . That is,

[bookmark: f_of_z_adaptive_pre_filter_tilt_part]		(504)

The periodicity enhancement part of the filter colours the spectrum by damping inter-harmonic frequencies, which are annoying to the human ear in case of voiced signals. T is the integer part of the closed-loop pitch lag in a given subframe (representing the fine spectral structure of the speech signal) rounded to the ceiling, i.e.,, where i denotes the subframe.

The factorof the tilt part of the pre-filter is related to the voicing of the previous subframe. At 16.4 and 24.4 kbps it is bounded by [0.28, 0.56] and it computed as

[bookmark: beta_1]		(505)

Otherwise it is bounded by [0.0, 0.5] and is given by

		(506)

whereand are the energies of the scaled pitch codevector and the scaled algebraic codevector of the previous subframe, respectively. The role of the tilt part is to reduce the excitation energy at low frequencies in case of voiced frames.

Depending on bitrates, coding mode and the estimated level of background noise, the adaptive pre-filter also includes a filter based on the spectral envelope, which colours the spectrum by damping frequencies between the formant regions. The final form of the adaptive pre filter is given by

[bookmark: f_of_z_adaptive_pre_filter]		(507)

where and if Hz and and if Hz.

The codebook search is performed in the algebraic domain by combining the pre-filter, , with the weighted synthesis filter prior to the codebook search. Thus, the impulse response of the weighted synthesis filter must be modified to include the pre-filter . That is, , where is the impulse response of the pre-filter.
[bookmark: _Toc394307923]5.2.3.1.5.2	Overview of Algebraic codebooks used in EVS
Depending on the bitrate and rendered bandwidth, algebraic codebooks of different sizes are used in the EVS codec. The following tables summarize the codebooks used in each subframe at different bitrates of the EVS codec
Table 38: NB Algebraic codebook configurations (bits/subframe)
	Rate (kbps)
	IC
	UC
	VC
	GC

	7.2
	n.a.
	n.a.
	12/12/12/20
	12/12/12/20

	8.0
	n.a.
	n.a.
	12/20/12/20
	12/20/12/20

	9.6
	30/32/32/32
	30/32/32/32
	28/28/28/28
	24/26/24/26

	13.2
	n.a.
	n.a.
	36/43/36/43
	36/36/36/43

	16.4
	56/58/56/58
	56/58/56/58
	56/56/56/58
	55/56/55/56

	24.4
	96/98/96/98
	96/98/96/98
	96/96/96/98
	94/96/96/96

Table 39: WB Algebraic codebook configurations (bits/subframe)
	Rate (kbps)
	IC
	UC
	VC
	GC
	VC-FEC
	GC-FEC
	GSC

	7.2
	n.a.
	n.a.
	12/12/12/20
	12/12/12/20
	n.a.
	n.a.
	n.a.

	8.0
	n.a.
	n.a.
	12/20/12/20
	12/20/12/20
	n.a.
	n.a.
	n.a.

	9.6
	28/28/28/28
	28/28/28/28
	26/26/26/28
	20/26/24/24
	n.a.
	n.a.
	n.a.

	13.2
	n.a.
	n.a.
	28/36/36/36
(TD BWE)
36/36/36/43
(FD BWE)

	28/36/28/36
(TD BWE)
36/36/36/36
(FD BWE)

	n.a.
	n.a.
	n.a.

	16.4
	43/43/43/43/43
	43/43/43/43/43
	40/43/43/43/43
	40/43/40/43/43
	n.a.
	n.a.
	n.a.

	24.4
	75/75/75/75/75
	75/75/75/75/75
	73/75/73/75/75
	73/73/73/75/73
	73/73/73/73/75
	70/75/73/73/73
	n.a.

	32
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.
	n.a.

	64
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.
	n.a.

Table 40: SWB Algebraic codebook configurations (bits/subframe)
	Rate (kbps)
	IC
	UC
	VC
	GC
	VC-FEC
	GC-FEC
	GSC

	9.6
	24/26/24/26
	24/26/24/26
	20/26/24/24
	20/20/20/20
	n.a.
	n.a.
	n.a.

	13.2
	n.a.
	n.a.
	28/36/28/36
	28/28/28/36
	n.a.
	n.a.
	n.a.

	16.4
	36/36/36/36/36
	36/36/36/36/36
	34/36/36/36/36
	34/36/34/36/36
	n.a.
	n.a.
	n.a.

	24.4
	62/65/62/65/62
	62/65/62/65/62
	62/62/62/65/62
	62/62/62/62/62
	62/62/62/62/62
	61/61/62/61/62
	n.a.

	32
	12/12/12/12/12
	n.a.
	n.a.
	36/28/28/36/36
	n.a.
	n.a.
	n.a.

	64
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.
	n.a.

Table 41: FB Algebraic codebook configurations (bits/subframe)
	Rate (kbps)
	IC
	UC
	VC
	GC
	VC-FEC
	GC-FEC

	16.4
	36/36/36/36/36
	36/36/36/36/36
	34/36/36/34/36
	34/34/36/34/36
	n.a.
	n.a.

	24.4
	62/62/65/62/65
	62/62/65/62/65
	62/62/62/62/62
	62/62/62/62/62
	61/62/61/62/62
	61/61/61/61/61

	32
	12/12/12/12/12
	n.a.
	n.a.
	36/28/28/36/36
	n.a.
	n.a.

	64
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.

VC-FEC and GC-FEC are specific configurations for which 4 bits are reserved to transmit LPC-based information exploited by the decoder in case of error of the previous frame.
[bookmark: _Toc392593068][bookmark: _Toc394307924]5.2.3.1.5.3	Codebook structure and pulse indexing of the 7-bit codebook
In the 7-bit codebook, the algebraic vector contains only 1 non-zero pulse at one of 64 positions. The pulse position is encoded with 6 bits and the sign of the pulse is encoded with 1 bit. This gives a total of 7 bits for the algebraic code. The sign index here is set to 1 for positive signs and 0 for negative signs.
[bookmark: _Toc394307925]5.2.3.1.5.4	Codebook structure and pulse indexing of the 12-bit codebook
In the 12-bit codebook, the algebraic vector contains only 2 non-zero pulses. The 64 positions in a subframe are divided into 2 tracks, where each track contains one pulse, as shown in table 42.
[bookmark: bit_12_track_positions_table]Table 42: Potential positions of individual pulses in the 12-bit algebraic codebook
	Track
	Pulse
	Positions

	1
	0
	0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62

	2
	1
	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63

Each pulse position in one track is encoded with 5 bits and the sign of the pulse in the track is encoded with 1 bit. This gives a total of 12 bits for the algebraic code. The sign index here is set to 0 for positive signs and 1 for negative signs.
The index of the signed pulse is given by

[bookmark: index_signed_pulse]		(508)

where is the position index, is the sign index, and is the number of bits per track. For example, a pulse at position 31 has a position index of 31/2 = 15 and it belongs to the track with index 1 (second track).
[bookmark: _Toc394307926]5.2.3.1.5.5	Codebook structure and pulse indexing of the 20-bit and larger codebooks
In the 20-bit or larger codebooks, the codevector contains 4 non-zero pulses. All pulses can have the amplitudes +1 or –1. The 64 positions in a subframe are divided into 4 tracks, where each track contains one pulse, as shown in table 43.
[bookmark: positions_20bit_FCB][bookmark: bit_20_track_positions_table]Table 43: Potential positions of individual pulses in the 20-bit algebraic codebook
	Track
	Pulse
	Positions

	1
	0
	0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60

	2
	1
	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61

	3
	2
	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62

	4
	3
	3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

Each pulse position in one track is encoded with 4 bits and the sign of the pulse in the track is encoded with 1 bit. This gives a total of 20 bits for the algebraic code.
[bookmark: _Toc394307927]5.2.3.1.5.6	Pulse indexing of the algebraic codebook

The objective is to enumerate all possible constellations of pulses in a vector which corresponds to one track of length within a sub-frame. That is, vector has signed integer values such that its norm-1 is , whereby we say that contains pulses.

We can then partition the vector into two parts, such that the partitions are of length and and contain and pulses respectively. The number of different constellations for the original vector can then be determined by the recursive formulae:

		(509)
For computational efficiency, the values of this function can be pre-calculated and placed in a table.

Above equation gives the number of possible states for given and . We can then enumerate a specific state, where and have and pulses respectively. The number of states that have less pulses than in partition is

		(510)

We can then define that overall state has , whereby the overall state can be encoded with the recursion

		(511)
where the boundary conditions are

		(512)
The state can be decoded by the algorithm
1.

Set and choose partitioning length and .
2.

Calculate with .
3.

If then . Otherwise, set and go to 2.

The states of the partitions and can then be calculated from the integer and reminder parts of the fraction We can then recursively determine the state of each position in the vector until a partition has , whereby

		(513)

Observe that both the number of states as well as the state are integer numbers which can become larger than 32 bits. We must therefore employ arithmetic operations which support long integers throughout the algorithm.
[bookmark: _Toc394307928]5.2.3.1.5.7	Pulse indexing of the 43-bit codebook
The joint indexing encoding procedure of three pulses on two tracks is described as follows:
For 3 pulses on a track, the occurrence probability of 3 different pulse positions on a track is the highest, and the occurrence probability of 2 different pulse positions on a track is the second highest, and even the pulses have a higher occurrence probability on the left position of the track than on the right position of the track because the algebraic codebooks need to compensate for the boundary leap of adaptive codebooks between two neighbour sub-frame. So the case of the first pulse with lower position order will be encoded with a smaller index value and the case of more different pulse positions with higher occurrence probability will also be encoded with a smaller index value. The rule is same in case of more than 3 pulses on a track. This rule can be used to save bit in the multi-track joint indexing encoding.
1.

Firstly, the pulse information for each track is indexed as follows: (here we suppose that pulses are assigned for each track, and the total quantity of positions on the track is)
1)

Analyse the statistics about the positions of the pulses to be encoded on a track and obtain pulse distribution on the track, it includes: quantity (namely) of pulse positions with pulses in it, the pulse position distribution which includes pulse position vector: , is the quantity of pulse positions , is the ith pulse positions with pulse in it on the track, and quantity of pulses in each pulse position with pulse in it which includes pulse number vector , , where is the number of pulses per track, is the number of pulses in position , and pulse sign vector , is the ith sign in position . If there are pulses having the same positions (pulses with the same positions have the same signs), they are merged into one pulse and the number of pulses for each pulse position as well as the pulse sign is saved. Pulse position are sorted in ascend order, the pulse sign is also adjusted based on the order of pulse position.
2)

Compute the offset index according to the quantity of pulse positions, the offset index is saved in a table and used in both encoder and decoder sides. Each offset index in the table indicate a unique number of pulse positions in the track, in case , the offset index only indicate a pulse distribution of pulse positions on the track , in case , the offset index indicate many which have a same pulse distribution of pulse positions on the track .
3)

Compute the pulse- position index according to the pulse distribution of pulse positions on the track (). The only indicate a pulse distribution of pulse positions on the track among all the pulse distribution of . Permuting serial numbers of the positions and all possible values of are ordered from a smaller value to a greater value , refers to the quantity of positions with pulses in it, is the total quantity of positions on the track. Compute by using the permutation method as follows:

		(514)

wherein represents a position serial number of an nth position that has pulses on it, , , , . For 43bit mode, 3 pulses on a track, , .

		(515)

Compute the pulse-number index according to the quantity of pulses in each pulse position as follows:

 is determined according to which represents the quantity of pulses in each position with pulses. In order to determine correspondence between and through algebraic calculation, a calculation method of the third index is provided below:

For a track, situations that a track with pulse positions and pulses are mapped to situations that a positions track have pulses, where represents the total number of pulses that are required to be encoded and on the track. For example, in the condition of 6-pulse 4-position (=6, =4) situations, is {1, 2, 1, 2}, 1 is subtracted from the number of pulses in each position (because each position has at least one pulse) to obtain {0, 1, 0, 1}, that is, information of is mapped to a 2-pulse 4-position (=2, =4) encoding situation. Figure 26 gives an example of the mapping for .

[bookmark: Example_of_mapping]Figure 26: Example of mapping for

According to set order, all possible distribution situations of pulses on positions are arrayed, and an arrayed serial number is used as the index indicating the number of pulses on a position that has pulse.
A calculation formula reflecting the foregoing calculation method is:

		(516)

wherein , represents a position serial number of an (h + 1)th pulse, , , , and ∑ indicates summation.

Compute the pulse-sign index based on the pulse sign information.

The pulse sign represented by may be a positive value or a negative value. A simple coding mode is generally applied, represents a positive pulse and represents a negative pulse.

Generate the global index . Combine the indices , , and to get the global index as follows :

		(517)

		(518)

Here is the upper range of which is also the number of total permutations of pulses.

2. Combine the index of the two 3-pulse tracks together which is encoded as in step 1, suppose the indexes of the two tracks are and respectively, and , then the is as below:

		(519)

3. Encode the joint index . (Suppose encode with 25 bits). In order to reduce the number of bits used for pulse indexing, a threshold is set at 3611648 for 3-pulses, according to the the pulse number, combination of the occurrence probability and the number of bits that may be saved. If the joint index is smaller than , 24 bits will be used to encode the joint index . If the joint index is bigger than or equal to , will be added into the joint index and 25 bits will be used to encode the joint index . This procedure is described as below:

If (<)
{

 is encoded with 24 bits.
}
Else
{

 is encoded with 25 bits.
}

For two pulses on the other track, the index for each track is encoded just as pulse indexing of the 20-bit codebook, but there is no joint indexing procedure, then the index for each track is transmitted one by one.
5.2.3.1.5.8	Multi-track joint coding of pulse indexing
The codebook for more than three pulses on a track have idle space in difference ratio, joint encoding for more than two tracks may enable idle codebook spaces in single-track encoding to be combined, and once combined idle spaces are sufficient, one actual encoding bit may be reduced. If several encoding indexes are directly combined, the final encoding length may be very large, or even may exceed the bit width (such as 64 bits) generally used for operating, so a general solution is to split each encoding index into two part and only all the high part is combined together in order to avoid directly combining.

The method is described as follows: the value range of the original index is divided into several intervals by a factor , correspondingly the original index is split into two indexes and by the factor , the length of each interval is not greater than , is a positive integer, denotes a serial number of an interval to which belongs, and denotes a serial number of in the interval to which belongs (apparently,), and: ;
The most economical case of splitting is performed as following:

, where denotes rounding down to an integer, and

, where denotes taking a remainder.

If a combined index needs to achieve better effect of saving encoding bits, it is needed to select a split index that retains the space characteristics of as much as possible, and therefore, for the track t providing a split index to participate in combination,

if , it is appropriate to select Indt0 to participate in combination, and

if , it is appropriate to select Indt1 to participate in combination.

Figure 27: The split factor selection and the corresponding codebook space section

Each track may adopt different , according to the pulse number on it
[bookmark: the_parameters_for_multi_track]Table 44: the parameters for multi-track joint coding
	pulse
	bits
	Codebook space
	Hi Bit
	effective ratio
	re-back bits

	
	
	Dec
	Hex
	value
	bits
	range
	
	8bit
	16bit
	24bit

	1
	5
	32
	
	
	
	
	
	
	
	

	2
	9
	512
	200
	1
	1
	2
	1.00
	0
	
	

	3
	13
	5472
	1560
	A8
	8
	172
	0.6875
	3
	
	

	4
	16
	44032
	AC00
	AC
	9
	345
	0.67578125
	1
	9
	

	5
	19
	285088
	459A0
	8B
	8
	140
	0.546875
	
	5
	

	6
	21
	1549824
	17A600
	BD
	8
	190
	0.7421875
	
	3
	

	7
	23
	7288544
	6F36E0
	DE
	8
	223
	0.875
	
	1
	9

	8
	25
	30316544
	1CE9800
	1CE
	9
	463
	0.904297
	
	
	8

	9
	27
	113461024
	6C34720
	6C3
	11
	1732
	0.845704
	
	
	8

Multi-track joint coding processing is described as following:

Calculate an encoding index of each track, (subscript t denotes the tth track), split into two split indexes and according to a set factor combine a split index of each track to generate a combined index . The combined index is split into recombined indexes according to the re-back bits length, and each recombined index and an un-combined split index of a corresponding track are respectively combined, then obtain the final recombined index with fixed length 8,16 or 24 bits.
For 4 track in a sub-frame, the algebraic codebook 94bit(8777)~108bit(9999) use 24 bits mode joint en/decoding，the algebraic codebook 62bit(4444)~92bit(7777) use 16 bits mode joint en/decoding，the algebraic codebook 40bit(3222)~61bit(4443) use 8 bits mode joint en/decoding.
All the encoding steps are described as following:
1)

Get the parameter from table 44 according to the pulse number of each track, include the index , , , . And get the 8/16/24 mode also according to the pulse number of all track.
2)

The index of is split into and , the is , and length of is , length of is ,
3)

Combine the and into as following:

		(520)
4)

Split the low part of and get the , and the length of is ,which get from table 44 in step 1, the and are combine into a with the length of 8,16 or 24 bits.
5)

The high part of continue combining with the next as following:

		(521)
6)

Split the low part of and get the , and the length of is ,which get from table 44 in step 1, the and are combine into a with the length of 8,16 or 24 bits.
7)

The high part of continue combining with the next as following:

		(522)
8)

Split the low part of and get the , and the length of is ,which get from table 44 in step 1, the and are combine into a with the length of 8,16 or 24 bits.
9)

The high part of is split into two parts. The low part of is used as the , and the length of is which is obtained from table 44 in step 1, the and are combined into a with the length of 8,16 or 24 bits.
10)

Finally, the high part of together with, , and are the outputs of multi-track joint coding and stored into the stream in 16 bits unit.

Figure 28: Schematic diagram of 4-track joint coding
[bookmark: _Toc394307929]5.2.3.1.5.9	The search criterion at lower bitrates
[bookmark: _Toc392593069][bookmark: _Toc392593070]The algebraic codebook is searched by minimizing the error between an updated target signal and a scaled filtered algebraic codevector. The updated target signal is given by

		(523)

where is the filtered adaptive codevector and is the unquantized adaptive codebook gain. Thus, the updated target signal is obtained by subtracting the adaptive contribution from the initial target signal, .

Let a matrix be defined as a lower triangular Toeplitz convolution matrix with the main diagonal and lower diagonals , and (also known as the backward filtered target vector) be the correlation between the updated signal and the impulse response . Furthermore, let be the matrix of correlations of . Here, is the impulse response of the combination of the synthesis filter, the weighting filter and the pre-filter which includes a long-term filter.

The elements of the vector are computed by

		(524)

and the elements of the symmetric matrix are computed by

		(525)

Let the k-th algebraic codevector. The algebraic codebook is searched by maximizing the following criterion:

[bookmark: qk_maximization_criterion]		(526)

The vector and the matrix are usually computed prior to the codebook search.

The algebraic structure of the codebooks allows for very fast search procedures since the algebraic codevector, The algebraic structure of the codebooks allows for very fast search procedures since the algebraic codevector, , contains only a few non-zero pulses. The correlation in the numerator of equation (526) is given by

		(527)

where is the position of the i-th pulse, is its amplitude (sign), and is the number of pulses. The energy in the denominator of equation (526) is given by

		(528)

For saving the search load along with a better search result in the 12-bit codebook, the pulse amplitudes are predetermined based on a high-pass filtered . The high-pass filter is a three-tap MA (moving-average)-type filter, and its filter coefficients are { -0.35, 1.0, -0.35 }. The sign of a pulse in a position is set to negative when the high-pass filtered is negative, otherwise the sign is set to positive. To simplify the search, and are modified to incorporate the predetermined signs.
[bookmark: _Toc394307930]5.2.3.1.5.10	The search criterion at higher bitrates
The following search criterion is used for bit rates at and above 16.4 kbps. It allows limiting the increase of complexity for high number of pulses.

Let be the sub-frame length, and let matrices and , respectively, denote the lower triangular Toeplitz convolution matrix and the full-size convolution matrix, both defined for the filter . Here, is the length impulse response of the combination of the synthesis filter, the weighting filter and the pre-filter which includes a long-term filter. The target residual is and is the autocorrelation matrix of filter .
The elements of the autocorrelation matrix can be calculated by

		(529)
and the target residual by

		(530)

The final target is then which can be calculated by

		(531)

Let be the kth algebraic codevector. The algebraic codebook is searched by maximizing the following criterion:

		(532)
5.2.3.1.6	Combined algebraic codebook
In general the computational complexity of the algebraic codebook increases with the codebook size. In order to keep the complexity reasonable while providing better performance and scalability at high EVS ACELP bit-rates, an efficient combined algebraic codebook structure is employed. The combined algebraic codebook combines usually a frequency-domain coding in a first stage followed by a time-domain ACELP codebook in a second stage.
The frequency-domain coding of the first stage, denoted as a pre-quantizer in figure 29, uses a Discrete Cosine Transform (DCT) as the frequency representation and an Algebraic Vector Quantizer (AVQ) (see subclause 5.2.3.1.6.9) to quantize the frequency-domain coefficients of the DCT. The pre-quantizer parameters are set at the encoder in such a way that the ACELP codebook (second stage of the combined algebraic codebook) is applied to an excitation residual with more regular spectral dynamics than the pitch residual.

[bookmark: schematic_diag_exc_GC_AVQ]Figure 29: Schematic diagram of the ACELP encoder using a combined algebraic codebook in GC mode at high bit-rates

At the encoder, the first stage, or pre-quantizer, operates as follows. In a given subframe (aligned to the subframe of the ACELP codebook in the second stage) the excitation residual after applying the adaptive codebook is computed as

		(533)
where r(n) is the target vector in residual domain. Further, v(n) is the adaptive codevector and gp the adaptive codevector gain.

The excitation residual after applying the adaptive codebook is de-emphasized with a filter . A difference equation for such a de-emphasis filter is given by

[bookmark: avq_deemph_filter_Fp_z]		(534)

where is the de-emphasized residual and coefficient controls the level of de-emphasis.

Further a DCT is applied to the de-emphasized excitation residual using a rectangular non-overlapping window. Depending on the bit rate, all blocks or only some blocks of DCT coefficients usually corresponding to lower frequencies are quantized using the AVQ encoder. The other (not quantized) DCT coefficients are set to 0 (not quantized). To obtain the excitation residual for the second (ACELP) stage of the combined algebraic codebook, the quantized DCT coefficients are inverse transformed, and then a pre-emphasis filter is applied to obtain the time-domain contribution from the pre-quantizer . The pre-emphasis filter has the inverse transfer function of the de-emphasis filter .
5.2.3.1.6.1	Quantization

The AVQ encoder produces quantized transform-domain DCT coefficients . The indices of the quantized and coded DCT coefficients from the AVQ encoder are transmitted as a pre-quantizer parameters to the decoder.
In every sub-frame, a bit-budget allocated to the AVQ is composed as a sum of a fixed bit-budget and a floating number of bits. Depending on the used AVQ sub-quantizers of the encoder, the AVQ usually does not consume all of the allocated bits, leaving a variable number of bits available in each sub-frame. These bits are floating bits employed in the following sub-frame. The floating number of bits is equal to 0 in the first sub-frame and the floating bits resulting from the AVQ in the last sub-frame in a given frame remain unused when coding WB signals or are re-used in coding of upper band (see subclause 5.2.6.3).
5.2.3.1.6.2	Computation of pre-quantizer gain
Once the pre-quantizer contribution is computed, the pre-quantizer gain is obtained as

		(535)

where are the AVQ input frequency coefficients and the AVQ output (quantized) frequency coefficients where is the transform-domain coefficient index and being the number of DCT transform coefficients.
5.2.3.1.6.3	Quantization of pre-quantizer gain

The pre-quantizer gain is quantized as follows. First, the gain is normalized by the predicted innovation energy as follows:
		(536)

where the predicted innovation energy is obtained as described in subclause 5.2.3.1.7.1.

Then the normalized gain is quantized by a scalar quantizer in a logarithmic domain and finally de-normalized resulting in a quantized pre-quantizer gain. Specifically 6-bit scalar quantizer is used whereby the quantization levels are uniformly distributed in the log domain. The index of the quantized pre-quantizer gain is transmitted as a pre-quantizer parameter to the decoder.
5.2.3.1.6.4	Refinement of target vector

The pre-quantizer contribution is used to refine the original target vector for adaptive codebook search as

	,	(537)

and to refine the adaptive codebook gain using equation (502) with used instead of . When the pre-quantizer is used, the computation of the target vector for algebraic codebook search is done using

		(538)

where is the filtered pre-quantizer contribution, i.e. the zero-state response of the weighted synthesis filter to the pre-quantizer contribution , and is the refined adaptive codebook gain.

Similarly, the target vector in residual domain is updated for the algebraic codebook search (the second-stage of the combined algebraic codebook) as

	.	(539)
5.2.3.1.6.5	Combined algebraic codebook in GC mode
In the EVS codec, the combined algebraic codebook structure as from figure 29 is used at bit-rates of 32 kbps and 64 kbps. In both cases the algebraic codebook search uses 36-bit codebooks and the rest of the bit-budget is employed by the AVQ to quantize the pre-quantizer coefficients.

At 32 kbps, the available fixed bit-budget for the AVQ (116, 115, 115, 115, 155 bits for every of five subframes) is sometimes too low to properly encode all input signal frames. Consequently in GC mode at 32kbps, the DCT and iDCT stages of pre-quantizer computation are omitted when the input signal is not classified as a harmonic one. The classification is based on a harmonicity counter updated every frame in the pre-processing module. If in a given frame the harmonicity counter the frame is classified as non-harmonic and the AVQ is applied directly on the time-domain signal and similarly producing directly the time-domain signal in figure 29.
5.2.3.1.6.6	Combined algebraic codebook in TC mode
The combined algebraic codebook structure is used also in TC mode at 32kbps and 64kbps. In this mode the algebraic codebook from figure 29 is replaced by glottal shape codebook but the structure of the pre-quantizer remains the same as in the GC mode. In TC mode @32kbps, the DCT and iDCT stages of the pre-quantizer are always employed.

[bookmark: schematic_diag_exc_IC_AVQ]Figure 30: Schematic diagram of the ACELP encoder using a combined algebraic codebook in IC mode at high bit-rates
5.2.3.1.6.7	Combined algebraic codebook in IC mode
Depending on the input signal characteristics, the ACELP encoder using a combined algebraic codebook from figure 29 is further adaptively changed. Specifically in coding of inactive speech segments, the order of the combined algebraic codebook stages is changed. I.e. the modified combined algebraic codebook combines a time-domain ACELP codebook in a first stage followed by a frequency-domain de-quantizer coding in a second stage as shown in figure 30. The first stage algebraic codebook employs very small codebooks, specifically 12 bits per subframe.

At the encoder, the de-quantizer in IC mode operates as follows. In a given subframe, the target signal after subtracting the scaled filtered adaptive excitation and the scaled filtered algebraic excitation is computed as

	.	(540)

The target signal in speech domain is filtered through the inverse of the weighted synthesis filter with zero states resulting in the target in residual domain .

Similarly to the combined algebraic codebook in GC mode, the signal is first de-emphasized with a filter to enhance the low frequencies. A DCT is applied to the de-emphasized signal using rectangular non-overlapping window. Usually all blocks of DCT coefficients are quantized using the AVQ encoder. The quantized DCT coefficients in some bands can be however set to zero.

The quantized DCT coefficients are further inverse transformed using iDCT, and then a pre-emphasis filter is applied to obtain the time-domain contribution from the frequency-domain quantizer where the pre-emphasis filter has the inverse transfer function of the de-emphasis filter .
[bookmark: _Toc394307931]5.2.3.1.6.8	Computation and quantization of de-quantizer gain
Once the de-quantizer contribution is computed, the de-quantizer gain is obtained as

		(541)

where are the AVQ input transform-domain coefficients and are the AVQ output (quantized) transform-domain coefficients.

The de-quantizer gain is quantized using the normalization by the algebraic codebook gain . Specifically a 6-bit scalar quantizer is used whereby the quantization levels are uniformly distributed in the linear domain. The indice of the quantized de-quantizer gain is transmitted as a de-quantizer parameter to the decoder.

When coding the inactive signal segments the adaptive codebook excitation contribution is limited to avoid a strong periodicity in the synthesis. In practice a limiter is applied in the adaptive codebook search to constrain the adaptive codebook gain by .
[bookmark: _Toc394307932][bookmark: _Ref271630864][bookmark: _Toc274815486]5.2.3.1.6.9	AVQ quantization with split multi-rate lattice VQ

Prior to the AVQ quantization, the time domain or transform-domain 64 coefficients, here denoted as , are split into 8 consecutive sub‑bands of 8 coefficients each. The sub-bands are quantized with an 8-dimensional multi-rate algebraic vector quantizer. The AVQ codebooks are subsets of the Gosset lattice, referred to as the RE8 lattice.
[bookmark: _Toc394307933]5.2.3.1.6.9.1	Multi-rate AVQ with the Gosset Lattice RE8
[bookmark: _Toc394307934]5.2.3.1.6.9.1.1	Gosset Lattice RE8
The Gosset lattice RE8 is defined as the following union:

		(542)

where is the 8-dimensional lattice composed of all points with integers components with the constraint that the sum of the 8 components is even. The lattice is simply the lattice scaled by 2. This implies that the sum of the components of a lattice point in is an integer multiple of 4. Therefore, the 8 components of a lattice point have the same parity (either all even or all odd) and their sum is a multiple of 4.

All points in the lattice RE8 lie on concentric spheres of radius , being the codebook number in sub-band . Each lattice point on a given sphere can be generated by permuting the coordinates of reference points called “leaders”. There are very few leaders on a sphere compared to the total number of lattice points which lie on the sphere.
[bookmark: _Toc394307935]5.2.3.1.6.9.1.2	Multi-rate codebooks in Gosset Lattice RE8
To form a vector codebook at a given rate, only lattice points inside a sphere in 8 dimensions of a given radius are taken. Codebooks of different bit rates can be constructed by including only spheres up to a given radius. Multi-rate codebooks are formed by taking subsets of lattice points inside spheres of different radii.
[bookmark: _Toc394307936]5.2.3.1.6.9.1.2.1	Base codebooks

First, base codebooks are designed. A base codebook contains all lattice points from a given set of spheres up to a number . Four base codebooks , noted , , , and , are used. There are 36 non-null absolute leaders plus the zero leader (the origin): Table 46 gives the list of these leaders and indicates to which codebook a leader belongs. , , , and are constructed with respectively 0, 8, 12, and 16 bits. Hence codebook requires bits to index any point in that codebook.
[bookmark: _Toc394307937]5.2.3.1.6.9.1.2.2	Voronoi extensions

From a base codebook (i.e. a codebook containing all lattice points from a given set of spheres up to a number), an extended codebook can be generated by multiplying the elements of by a factor , and adding a second-stage codebook called the Voronoi extension. This construction is given by

[bookmark: avq_eq_cj]		(543)

where is the scaling factor, is a point in a base codebook and is a point in the Voronoi extension. The extension is computed in such a way that any point from equation (543) is also a lattice point in . The scaling factor is a power of 2 (), where is called the Voronoi extension order.

Such extended codebooks include lattice points that extend further out from the origin than the base codebook. When a given lattice point is not included in a base codebook (, , or), the so-called Voronoi extension is applied, using the or base codebook part.

Giving the available bit-budget in particular layers, the maximum Voronoi extension order is . Therefore, for or , two extension orders are used: ().

When , there is no Voronoi extension, and only a base codebook is used.
[bookmark: _Toc394307938]5.2.3.1.6.9.1.2.3	Codebook rates

There are 8 codebooks: the first 4 are base codebooks without Voronoi extension and the last four with Voronoi extension. The codebook number is encoded as a unary code with "1" bits and a terminating "0". Table 45 gives for each of the 8 codebooks, its base codebook, its Voronoi extension order (indicates that there is not Voronoi extension), and its unary code.
[bookmark: avq_tab_codebooks]Table 45: Multi-rate codebooks in RE8 lattice
	
Codebook
number
	Base Codebook
	
Voronoi extension order
	
Unary code for

	0
	Q0
	0
	0

	2
	Q2
	0
	10

	3
	Q3
	0
	110

	4
	Q4
	0
	1110

	5
	Q3
	1
	11110

	6
	Q4
	1
	111110

	7
	Q3
	2
	1111110

	8
	Q4
	2
	11111110

For the base codebook , (), there is only one point in the codebook and 1 bit is used to transmit the unary code corresponding to .

For the other three base codebooks () without Voronoi extension:
·

 bits are used to transmit the unary code corresponding to ,,
·

 bits are required to index a point in
·
thus bits are used in total.

For codebooks with Voronoi extension ():
·

 bits are used to transmit the unary code corresponding to the base codebook number (respectively) if is even (respectively odd) and the Voronoi extension order is 1 if , or 2 otherwise),
·

12 bits (respectively 16 bits) are required to index the point in the base codebook (respectively)
·

 bits are required to index the 8-dimensional point in the Voronoi extension of order
·
thus, bits are used in total.

In the codebook number encoding, a simple bit overflow check is performed: in case when the last AVQ coded sub-band of the spectrum is quantized, and only bits are available for the quantization, the terminating "0" in the codebook number coding is not encoded. At the decoder, the same bit overflow check enables the right decoding of the codebook number in this sub-band.
[bookmark: _Toc394307939]5.2.3.1.6.9.2	Quantization with RE8 lattice

In lattice quantization, the operation of finding the nearest neighbour of the input spectrum among all codebook points is reduced to a few simple operations, involving rounding the components of spectrum and verifying a few constraints. Hence, no exhaustive search is carried out as in stochastic quantization, which uses stored tables. Once the best lattice codebook point is determined, further calculations are also necessary to compute the index that will be sent to the decoder. The larger the components of the input spectrum , the more bits will be required to encode the index of its nearest neighbour in the lattice codebook. Hence, to remain within a pre-defined bit-budget, a gain-shape approach has to be used, where the input spectrum is first scaled down by the AVQ gain, then each 8-dimensional block of spectrum coefficients is quantized in the lattice and finally scaled up again to produce the quantized spectrum.
5.2.3.1.6.9.2.1	AVQ gain estimation
Prior to the quantization (nearest neighbour search and indexation of the nearest neighbour), the input spectrum has to be scaled down to ensure that the total bit consumption will remain within the available bit-budget.

A first estimation of the total bit-budget without scaling (i.e. with an AVQ gain equals to 1) is performed:

		(544)

where is a first estimate of the bit budget to encode the sub-band given by:

		(545)

with being the energy (with a lower limit set to 2) of each sub-band :

		(546)
This gain estimation is performed in an iterative procedure described below.
Let NB_BITS be the number of bits available for the quantization process and NB_SBANDS the number of 8-dimensional sub-bands to be quantized:
	Initialization:
fac = 128,
offset = 0,
nbitsmax = 0.95 (NB_BITS – NB_SBANDS)
for i = 1:10
	offset = offset + fac

	
	if nbits ≤ nbitsmax, then
	offset = offset – fac
	fac = fac / 2
	

After the 10th iteration, the AVQ gain is equal to and is used to obtain the scaled spectrum :

		(547)
[bookmark: _Ref269841397][bookmark: section_Nearest_neighbour_search][bookmark: _Toc394307940]5.2.3.1.6.9.2.2	Nearest neighbour search

The search of the nearest neighbour in the lattice RE8 is equivalent to searching for the nearest neighbour in the lattice and for the nearest neighbour in the lattice , and finally selecting among those two lattice points the closest to) as its quantized version .

Based on the definition of , the following fast algorithm is used to search the nearest neighbour of an 8-dimensional sub-band among all lattice points in :
	

Search of the nearest neighbour y1j in of :

Compute .

Round each component of to the nearest integer to generate .

Compute .

Calculate the sum of the 8 components of .

if is not an integer multiple of 4, then modify its component as follows:

where

Search of the nearest neighbour in of :

Compute where denotes an 8-dimensional vector with all ones.

Round each component of to the nearest integer to generate .

Compute .

Calculate the sum S of the 8 components of .
if S is not an integer multiple of 4 then modify its Ith component as follows:

where

Compute .

Select between and as the closest point in to :

where and .
	

[bookmark: _Toc394307941]5.2.3.1.6.9.3	Indexation

The quantized scaled sub-band of) is a point in a RE8 lattice codebook, an index for each has to be computed and later inserted into the bitstream.
This index is actually composed of three parts:
1)
a codebook number ;
2)

a vector index , which uniquely identifies a lattice vector in a base codebook ;
3)

and if , an 8-dimensional Voronoi extension index that is used to extend the base codebook when the selected point in the lattice is not in a base codebook .

The calculation of an index for a given point in the lattice is performed as follows:

First, it is verified whether is in a base codebook by identifying its sphere and its leader:
·

if is in a base codebook, the index used to encode is thus the codebook number plus the index of the lattice point in .

Otherwise, the parameters of the Voronoi extension (see equation (543)) have to determined: the scaling factor Mv, the base codebook (or), the point in this base codebook, and the point in the Voronoi extension. Then, the index used to encode is composed of the codebook number () plus the index of the lattice point in the base codebook (or), and the index of . in the Voronoi extension.
[bookmark: _Toc394307942]5.2.3.1.6.9.3.1	Indexing a codebook number

As explained in subclause 5.2.3.1.6.9.1.2.3 – Codebook rates, the codebook index is unary encoded with bits except for that is coded with one bit (see table 45).
[bookmark: _Toc394307943]5.2.3.1.6.9.3.2	Indexing of codevector in base codebook

The index Ij indicates the rank of codevector in j-th sub-band, i.e., the permutation to be applied to a specific leader to obtain . The index computation is done in several steps, as follows:

1)	The input codevector is decomposed into a sign vector s0 and an absolute vector y0 following a two‑path procedure.

2)	The sign vector is encoded, the associated index and the number of non-zero components in are obtained. More details are given in subsequent subclauses.
3)	The absolute vector is encoded using a multi-level permutation-based index encoding method, and the associated index rank(y0) is obtained.

4)	The absolute vector index and the sign index are added together in order to obtain the input vector rank: .

		(548)

5)	Finally, the offset is added to the rank. The index is obtained by

		(549)

The indexing of codevector in base codebook is done in two steps. First the sign vector is encoded.

The number of bits required for encoding the sign vector elements is equal to the number of non‑zero elements in the codevector. "1" represents a negative sign and "0" a positive sign. As lattice quantization is used, the sum of all the elements in a codevector is an integer multiple of 4. If there is any change of sign in the non-zero element, the sum may not be a multiple of 4 anymore, in that case, the last element sign in the sign vector will be omitted. For example, the sign vector of the input vector (–1, –1, 1, 1, 1, 1, –1, –1) in leader 1 (see table 46) has seven bits and its value is 0x1100001.
In the second step the absolute vector and its position vector is encoded

The encoding method for the absolute vector works as follows. The absolute vector is first decomposed into MLmax levels. The highest-level vector is the original absolute vector. The value for is initialized to zero. Then:

1)	First the intermediate absolute value vector of is obtained by removing the most frequent element as given in the decomposition order column of table 46 from the original absolute vector of. Sequentially the remaining elements are built into a new absolute vector for; it has a position order related to the level original absolute vector. All position values of the remainder elements are used to build a position vector of.

The relationship between the original absolute vector ofand the new absolute vector ofis that: the original absolute vector ofis the upper-level vector of the new absolute vector of, and the new absolute vector ofis the lower-level vector of the original absolute vector of.The relationship between any two neighbour level absolute vector is the same. The detail relationship is described as following:

Figure 31: Example processing of first level for.

2)	Then the position vector of the new absolute vector of related to the original absolute vector of is indexed based on a permutation and combination function, the indexing result being called the middle index . For the new absolute vector in, the position vector indexing is computed as follows:

		(550)

		(551)

where is initialized to zero before the first step at the beginning of the procedure, is the dimension of the original absolute vector of, is the dimension of the new absolute vector of.
If there is more than one type of element in the new absolute vector, the new absolute vector, named the upper-level vector, will be encoded using the multi-level permutation-based index encoding method as following step:

3)	Increment the n value. At level , , the intermediate absolute value vector is obtained by removing the most frequent element as given in the decomposition order column of table 46 from the upper-level vector. Sequentially the remaining elements are built into a new absolute vector for the current level; it has a position order related to the level absolute vector. All position values of the remainder elements are used to build a position vector.

4)	The position vector of the current lower-level vector related to its upper-level vector is indexed based on a permutation and combination function, the indexing result being called the middle index . For the absolute vector in the current lower level, the position vector indexing is computed as follows:

		(552)

		(553)

The elements are the element values in the level position vector ranged from left to right according to their level, is the dimension of the upper-level absolute vector, is the dimension of the current-level absolute vector, represents the permutation and combination formula , , and . All the values forcan be stored in a simple table in order to avoid calculation of factorials. The level final-index, , is multiplied by the possible index value number, , in the current level and is added to the index, , in the current level, to obtain the final index, , of the current level.

5)	Repeat steps 3 and 4 until there is only one type of element left in the current absolute vector. The for the lowest level is the rank of the absolute vector called . Table 46 is a sample extracted from the 36 leader table case. The leaders are indexed by . The decomposition order corresponds to the level order. The decomposition order column gives the order in which the element will be removed from the higher level. The last column gives the three class parameters, the first one is the number of sign bits, , the second one is the number of decomposition levels and equals the number of element types in the leader, , from the third one to the last one they represent the absolute vector dimension in each lower level except the highest level, (note that the dimension for the highest level is eight, but is not listed in table 46).

[bookmark: avq_tab_leaders]Table 46: List of leaders in base codebooks with their decomposition order and set parameter of multi-level permutation-based encoding
	

	Leader
	Decomposition order
	

, ,
	Q0
	Q2
	Q3
	Q4

	
	{0,0,0,0,0,0,0,0}
	
	
	X
	
	
	

	0
	{1,1,1,1,1,1,1,1}
	{1}
	{7,1}
	
	X
	X
	

	1
	{2,2,0,0,0,0,0,0}
	{0,2}
	{2,2,2}
	
	X
	X
	

	2
	{2,2,2,2,0,0,0,0}
	{0,2}
	{4,2,4}
	
	
	X
	

	3
	{3,1,1,1,1,1,1,1}
	{1,3}
	{7,2,1}
	
	
	X
	

	4
	{4,0,0,0,0,0,0,0}
	{0,4}
	{1,2,1}
	
	X
	X
	

	5
	{2,2,2,2,2,2,0,0}
	{2,0}
	{6,2,2}
	
	
	
	X

	6
	{3,3,1,1,1,1,1,1}
	{1,3}
	{7,2,2}
	
	
	
	X

	7
	{4,2,2,0,0,0,0,0}
	{0,2,4}
	{3,3,3,1}
	
	
	X
	

	8
	{2,2,2,2,2,2,2,2}
	{2}
	{8,1}
	
	
	
	X

	9
	{3,3,3,1,1,1,1,1}
	{1,3}
	{7,2,3}
	
	
	
	X

	10
	{4,2,2,2,2,0,0,0}
	{2,0,4}
	{5,3,4,1}
	
	
	
	X

	11
	{4,4,0,0,0,0,0,0}
	{0,4}
	{2,2,2}
	
	
	X
	

	12
	{5,1,1,1,1,1,1,1}
	{1,5}
	{7,2,1}
	
	
	
	X

	13
	{3,3,3,3,1,1,1,1}
	{1,3}
	{7,2,4}
	
	
	
	X

	14
	{4,2,2,2,2,2,2,0}
	{2,0,4}
	{7,3,2,1}
	
	
	
	X

	15
	{4,4,2,2,0,0,0,0}
	{0,2,4}
	{4,3,4,2}
	
	
	
	X

	16
	{5,3,1,1,1,1,1,1}
	{1,3,5}
	{7,3,2,1}
	
	
	
	X

	17
	{ 6,2,0,0,0,0,0,0}
	{0,2,6}
	{2,3,2,1}
	
	
	X
	

	18
	{ 4,4,4,0,0,0,0,0}
	{0,4}
	{3,2,3}
	
	
	
	X

	19
	{ 6,2,2,2,0,0,0,0}
	{0,2,6}
	{4,3,4,1}
	
	
	
	X

	20
	{ 6,4,2,0,0,0,0,0}
	{0,2,4,6}
	{3,4,3,2,1}
	
	
	
	X

	21
	{ 7,1,1,1,1,1,1,1}
	{1,7}
	{7,2,1}
	
	
	
	X

	22
	{ 8,0,0,0,0,0,0,0}
	{0,8}
	{1,2,1}
	
	
	
	X

	23
	{6,6,0,0,0,0,0,0}
	{0,6}
	{2,2,2}
	
	
	
	X

	24
	{8,2,2,0,0,0,0,0}
	{0,2,8}
	{3,3,3,1}
	
	
	
	X

	25
	{8,4,0,0,0,0,0,0}
	{0,4, 8}
	{2,3,2,1}
	
	
	
	X

	26
	{9,1,1,1,1,1,1,1}
	{1,9}
	{7,2,1}
	
	
	
	X

	27
	{10,2,0,0,0,0,0,0}
	{0,2,10}
	{2,3,2,1}
	
	
	
	X

	28
	{8,8,0,0,0,0,0,0}
	{0,8}
	{2,2,2}
	
	
	
	X

	29
	{10,6,0,0,0,0,0,0}
	{0,6,10}
	{2,3,2,1}
	
	
	
	X

	30
	{12,0,0,0,0,0,0,0}
	{0,12}
	{1,2,1}
	
	
	
	X

	31
	{12,4,0,0,0,0,0,0}
	{0,4,12}
	{2,3,2,1}
	
	
	
	X

	32
	{10,10,0,0,0,0,0,0}
	{0,10}
	{2,2,2}
	
	
	
	X

	33
	{14,2,0,0,0,0,0,0}
	{0,2,14}
	{2,3,2,1}
	
	
	
	X

	34
	{12,8,0,0,0,0,0,0}
	{0,8,12}
	{2,3,2,1}
	
	
	
	X

	35
	{16,0,0,0,0,0,0,0}
	{0,16}
	{1,2,1}
	
	
	
	X

The last value of the decomposition order for the leader is stored separately because this leader is the only one with 4 different values, the second dimension of the decomposition order being thus reduced from 4 to 3.

Figure 32 gives an encoding example for the leader .

	

[bookmark: avq_fig_Ka20]Figure 32: Example processing for .

For example, in case the input vector is {0,–2,0,0,4,0,6,0}, the absolute input vector will be {0,2,0,0,4,0,6,0}, its associated leader can be found for Ka. The set of decomposition order is {0,2,4,6}. For the highest level L0, element "0" is removed first from the absolute vector. The first level absolute vector is {2,4,6}, its position vector is {1,4,6}. The second element which will be removed is "2", the second level absolute vector is {4,6}, its position vector is {1,2}. The third element which will be removed is "4", the third level absolute vector is {6}, its position vector is {1}.
The absolute vectors that have only two different values, out of which the most frequent is zero, are treated separately in a less complex procedure combining the encoding of the position vector with the sign encoding. These vectors have generally higher probability of occurrence. Example of such vectors are those derived for instance from the leaders: (2,2,0,0,0,0,0,0), (2,2,2,2,0,0,0,0). For these vectors there is a single level for the creation of the index and the first level remaining elements are the non-null components which are the significant elements for the sign encoding. The determination of the remaining elements and the creation of the sign index can be done thus in a single loop.
[bookmark: _Toc394307944]5.2.3.1.6.9.4	Voronoi extension determination and indexing

If the nearest neighbour is not in the base codebook, then the Voronoi extension has to be determined through the following steps.

(a)	Set the Voronoi extension order and the scaling factor .

(b)	Compute the Voronoi index of the lattice point that depends on the extension order and the scaling factor . The Voronoi index is computed via component-wise modulo operations such that depends only on the relative position of in a scaled and translated Voronoi region:

		(554)

where is the generator matrix. Hence, the Voronoi index is a vector of integers with each component in .

(c)	Compute the Voronoi codevector from the Voronoi index . The Voronoi codevector is obtained as

		(555)

where is the nearest neighbour of in infinite (see subclause 5.2.3.1.6.9.2.2 for search details) and and are defined as

		(556)
and

		(557)

 (d)	Compute the difference vector . This difference vector always belongs to the scaled lattice . Compute , i.e. apply the inverse scaling to the difference vector . The codevector belongs to the lattice since belongs to lattice.

(e)	Verify whether is in the base codebook (i.e. in or).

If is not in C, increment the extension order by 1, multiply the scaling factor by 2, and go back to sub-step (b).

Otherwise, if is in C, then the Voronoi extension order has been found and the scaling factor is sufficiently large to encode the index of .
[bookmark: _Toc394307945]5.2.3.1.6.9.3	Insertion of AVQ parameters into the bitstream

The parameters of the AVQ in each sub-band j consist of the codebook number , the vector index in base codebook and the 8-dimensional Voronoi index . The codebook numbers are in the set of integers {0, 2, 3, 4, 5, 6, 7, 8} and the size of its unary code representation is bits with the exception of that requires 1 bit and a possible overflow in the last AVQ coded sub-band. The size of each index and is given by 4nj bits and bits, respectively.

The AVQ parameters , , , are written sequentially in groups corresponding to the same sub‑band into the corresponding bitstream as

	.	(558)

Note that if the lattice point in the block is in the base codebook , the Voronoi extension is not searched and consequently the index is not written into the bitstream in this group.
The actual bit-budget needed to encode AVQ parameters in current frame varies from sub-frame to sub-frame. The difference of bits between the allocated bits and actually spent bits are unused bits that can be employed in the subsequent sub-frame or high-rate higher band coding.
[bookmark: _Toc394396854]5.2.3.1.7	Gain quantization
[bookmark: _Toc394396855]5.2.3.1.7.1	Memory-less quantization of the gains
The adaptive codebook gain (pitch gain) and the algebraic codebook gain are quantized jointly in each subframe, using a 5-bit vector quantizer. While the adaptive codebook gain is quantized directly, the algebraic codebook gain is quantized indirectly, using a predicted energy of algebraic codevector. Note that, in this case, the prediction does not use any past information which limits the effect of frame-erasure propagation.
First, energy of residual signal in dB is calculated in each subframe as

[bookmark: E_r_energy_residual_signal]		(559)

where denotes the subframe and is the residual signal, defined in subclause 5.2.3.1.1. Then, average residual signal energy is calculated for the whole frame as

[bookmark: E_r_energy_whole_frame]		(560)
which is further modified by subtracting an estimate of the adaptive codebook contribution. That is

[bookmark: ei_energy_residual_4_gains]		(561)

where and , are as defined in subclause 5.1.10.4, are the normalized correlations of the first and the second half-frames, respectively. The result of equation (561), , serves as a prediction of the algebraic codevector energy and is quantized with 3 bits once per frame. The quantized value of the predicted algebraic codevector energy is defined as

		(562)

where is the n-bit codebook for the predicted algebraic codevector energy and is the index minimizing the criterion above. The bit allocation is bit-rate and mode dependant and is given in Table 47
[bookmark: pred_energy_codebook_bit_alloc_tab]Table 47: Predictor energy codebook bit allocation
	Rate (kbps)
	VC
	GC
	TC
	IC/UC

	7.2
	 n.a.
	 n.a.
	4
	n.a.

	8
	 n.a.
	n.a.
	4
	n.a.

	9.6
	3
	3
	n.a.
	n.a.

	13.2
	5
	4
	4
	n.a.

	16.4
	3
	3
	n.a.
	3

	24.4
	3
	3
	n.a.
	3

	32
	 n.a.
	5
	5
	5

	64
	 n.a.
	5
	5
	5

Now, let denote the algebraic codebook excitation energy in dB in a given subframe, which is given by

[bookmark: E_c_innovation_energy]		(563)

In the equation above, is the filtered algebraic codevector, found in subclause 5.2.3.1.5.
Using the predicted algebraic codevector energy and the calculated algebraic codebook excitation energy, we may estimate the algebraic codebook gain as

[bookmark: g_c_tick_acb_gain]		(564)

A correction factor between the true algebraic codebook gain, , and the estimated one, , is given by

[bookmark: g_c_tick_acb_gain_gamma]		(565)

The pitch gain,, and correction factor are jointly vector-quantized using a n-bit codebook, where n is dependent on the bit-rate and coding mode as shown in Table 48
[bookmark: gain_codebook_bit_alloc_per_sbf_tab]Table 48: Gain codebook bit allocation per subframe
	Rate (kbps)
	VC
	GC
	UC/IC

	7.2
	7/6/6/6
	6/6/6/6
	n.a.

	8
	8/7/6/6
	8/7/6/6
	n.a.

	9.6
	5/5/5/5
	5/5/5/5
	n.a.

	13.2
	6/6/6/6
	6/6/6/6
	n.a.

	16.4
	7/7/7/7/7
	7/7/7/7/7
	6/6/6/6/6

	24.4
	7/7/7/7/7
	7/7/7/7/7
	6/6/6/6/6

	32
	6/6/6/6/6
	6/6/6/6/6
	6/6/6/6/6

	64
	12/12/12/12/12
	12/12/12/12/12
	6/6/6/6/6

The gain codebook search is performed by minimizing a mean-squared weighted error between the original and the reconstructed signal, which is given by

		(566)

where is the target vector, is the filtered adaptive codevector, and is the filtered algebraic codevector. The quantized value of the pitch gain is denoted asand the quantized value of the algebraic codebook gain is denoted as , where is the quantized value of the factor .
Furthermore, if pitch gain clipping is detected (as described in subclause 5.2.3.1.4.2), the last 13 entries in the codebook are skipped in the quantization procedure since the pitch gain in these entries is higher than 1.
[bookmark: _Toc394396856]5.2.3.1.7.2	Memory-less joint gain coding at lowest bit-rates
For the lowest bitrates of 7.2 and 8.0 kbps, slightly different memory-less joint gain coding scheme is used. This is due to the fact that there are not enough bits to cover the dynamic range of the target vector for algebraic search.
In the first subframe of the current frame, the estimated (predicted) gain of algebraic codebook is given by

		(567)

where CT is a signal classification parameter (the coding mode), selected for the current frame in the pre-processing part, and is the energy of the filtered algebraic codevector, calculated in equation (563). The inner term inside the logarithm corresponds to the gain of innovation vector. The constants a0 and a1 are found by means of MSE minimization on a large signal database. The only parameter in the equation above is the coding mode CT which is constant for all subframes of the current frame. The superscript [0] denotes the first subframe of the current frame. The estimation process for the first subframe is schematically depicted in the figure below.

[bookmark: OLE_LINK7][bookmark: OLE_LINK8]Figure 33: Schematic description of the calculation process of algebraic gain in the first subframe
All subframes following the first subframes use slightly different estimation scheme. The difference is in the fact that in these subframes, the quantized gains of both the adaptive and the algebraic codebook from previous subframe(s) are used as auxiliary estimation parameters to increase the efficiency. The estimated value of the algebraic codebook gain in kth subframe, k>0 is given by

		(568)

where k=1,2,3. Note, that the terms in the first and in the second sum of the exponent, there are quantized gains of algebraic and adaptive excitation of previous subframes, respectively. Note that the term including the gain of innovation vector is not subtracted. The reason is in the use of the quantized values of past algebraic codebook gains which are already close enough to the optimal gain and thus it is not necessary to subtract this gain again. The estimation constants b0,…,b2k+1 are found again through MSE minimization on a large signal database. The gain estimation process for the second and the following subframes is schematically depicted in the figure below.

Figure 34: Schematic description of the calculation process of algebraic gain in the following subframes
The gain quantization is done both at the encoder and at the decoder by searching the gain codebook and evaluating the MMSE between the target signal and the filtered adaptive codeword. In each subframe, the codebook is searched completely, i.e. for q=0,..,Q-1 where Q is the number of codebook entries. It is possible to limit the searching range in case ĝp is mandated to lie below certain threshold. To allow reducing the search range, the codebook entries are sorted in ascending order according to the value of ĝp.
The gain quantization is performed by calculating the following MMSE criterion for each codebook entry

		(569)
where the constants c0, c1, c2, c3, c4 and c5 are calculated as

		(570)
in which x(i) is the target signal, y(i) is the filtered adaptive excitation signal and z(i) is the filtered algebraic excitation signal. The codevector leading to the lowest energy is chosen as the winning codevector and its entries correspond to the quantized values of gp and .

Before the gain quantization process it is assumed that both the filtered adaptive and innovation codewords are already known. The gain quantization at the encoder is performed by searching the designed gain codebook in the MMSE sense. Each entry in the gain codebook consists of two values: the quantized gain of the adaptive part and the correction factor for the algebraic part of the excitation. The estimation of the algebraic gain excitation is done beforehand and the resulting gc0 is used to multiply the correction factor selected from the codebook. In each subframe the gain codebook is searched completely, i.e. for q=0,..,Q-1. It is possible to limit the search range if the quantized gain of the adaptive part of the excitation is mandated to be below certain threshold. To allow for reducing the search range, the codebook entries are sorted in ascending order according to the value of gp. The gain quantization process is schematically depicted in the figure below.

Figure 35: Schematic diagram of the gain quantization process in the encoder
The gain quantization is performed by minimizing the energy of the error signal e(i) The error energy is given by

		(571)

By replacing by we obtain

		(572)

The constants c0, c1, c2, c3, c4 and c5 and the estimated gain are computed before the search of the gain codebook. The error energy E is calculated for each codebook entry. The codevector [;] leading to the lowest error energy is selected as the winning codevector and its entries correspond to the quantized values of gp and . The quantized value of the fixed codebook gain is then calculated as

		(573)
In the decoder, the received index is used to retrieve the values of the quantized gain of the adaptive excitation and the quantized correction factor of the estimated gain of the algebraic excitation. The estimated gain for the algebraic part of the excitation is done in the same way as in the encoder.
[bookmark: _Toc394396857]5.2.3.1.7.3	Scalar gain coding at highest bit-rates

At the bit-rate of 64kbps and at the last subframe of TC7 and TC165 (see later in subclause 5.2.3.2.2), the adaptive codebook gain (pitch gain) and the algebraic codebook gain are quantized using a scalar quantizers. The adaptive codebook gain is quantized using a uniform scalar quantizer according to MMSE criterion in the range between [0; 1.22]. In contrast the quantized algebraic codebook gain is obtained as a product of a correction factor and the estimated algebraic codebook gain , see equation 565, where the correction factor is quantized in log domain in the range between [0.02; 5.0].
At 64 kbps, both the adaptive codebook gain and the algebraic codebook gain are quantized by means of 6 bits each. In the last subframe of TC configurations TC7 and TC165, they are quantized by means of 6-8 bits depending on the bit-rate.

[bookmark: _Toc392593072]5.2.3.1.8	Update of filter memories
An update of the states of the synthesis and weighting filters is needed in order to compute the target signal in the next subframe.

After the two gains have been quantized, the excitation signal,, in the present subframe is found by

[bookmark: u_tick_n_subframe_excitation]		(574)

where andare the quantized adaptive and algebraic codebook gains, respectively, is the adaptive codevector (interpolated, low-pass filtered past excitation), and is the algebraic codevector (including pre-filtering). The states of the filters can be updated by filtering the signal (difference between the residual signal and the excitation signal) through the filters and and saving the states of the filters. This would require 3 stages of filtering. A simpler approach, which requires only one filtering, is as follows. The local synthesis signal (without excitation post-processing) from layer is computed by filtering the excitation signal through. The output of the filter due to the input is equivalent to. So, the states of the synthesis filterare given by .

The updating of the states of the filtercan be done by filtering the error signal through this filter to find the perceptually weighted error . However, the signal can be equivalently found by

[bookmark: x1w_of_n_percep_weighted_error]		(575)

where is the adaptive codebook search target signal, is the filtered adaptive codebook vector, and is the filtered algebraic codebook vector. Since the signals , , and are available, the states of the weighting filter are updated by computing as in equation 575 for . This saves two stages of filtering.
[bookmark: _Toc392593073][bookmark: _Toc394396858]5.2.3.2	Excitation coding in TC mode
The principle of excitation coding in TC mode is shown on a schematic diagram in Figure 36. The individual blocks and operations are described in detail in the following clauses.
[bookmark: _Toc392593074][bookmark: _Toc394396859]5.2.3.2.1	Glottal pulse codebook search
The TC mode improves the robustness of the codec to frame erasures. It also encodes frames with an outdated past excitation buffer, e.g. after switching from HQ core frame.
The TC mode in the current frame is selected based on the classification algorithm described in subclause 5.1.13. The increased robustness, or the excitation building when the past excitation is outdated, is achieved by replacing the adaptive codebook (inter-frame long-term prediction) with a codebook of glottal impulse shapes (glottal-shape codebook) [19], which is independent from past excitation. The glottal-shape codebook consists of quantized normalized shapes of the truncated glottal impulses placed at specific positions. The codebook search consists of both the selection of the best shape and the best position.

To select the best codevector, the mean-squared error between the target signal, (the same target signal as used for the adaptive codebook search described in subclause 5.2.3.1.2), and the contribution signal, , is minimized for all candidate glottal-shape codevectors. The glottal-shape codebook search has been designed in a similar way as the algebraic codebook search, described in subclause 5.2.3.1.5.9. In this approach, each glottal shape is represented as an impulse response of a shaping filter. This impulse response can be integrated in the impulse response of the weighted synthesis filter prior to the search of the optimum impulse position. The searched codevectors can then be represented by vectors containing only one non-zero element corresponding to candidate impulse positions, and they can be searched very efficiently. Once selected, the position codevector is convolved with the impulse response of the shaping filter. This procedure needs to be repeated for all the candidate shapes and the best shape-position combination will form the excitation signal.

[bookmark: schematic_diag_exc_TC]Figure 36: Schematic diagram of the excitation coding in TC mode

In the following, all vectors are supposed to be column vectors. Let be a position codevector with one non-zero element at a position, and the corresponding glottal-shape codevector with index representing the centre of the glottal shape. Index is chosen from the range [0, 63], where 64 is the subframe length. Note that, due to the non-causal nature of the shaping filter, its impulse response is truncated for positions in the beginning and at the end of the subframe. The glottal shape codevector can be expressed in a matrix form as , where is a Toeplitz matrix representing the glottal impulse shape. Similarly to the algebraic codebook search, we can write

[bookmark: big_tau_k_tick_algeb_cbk_search]		(576)

where is a lower triangular Toeplitz convolution matrix of the weighted synthesis filter. The rows of a convolution matrix correspond to the filtered shifted version of the glottal impulse shape or its truncated representation.

Because of the fact that the position codevector has only one non-zero sample, the computation of the criterion (576) is very simple and can be expressed as

[bookmark: big_tau_k_tick_algeb_cbk_search_simplifd]		(577)

As it can be seen from criterion (577), only the diagonal of the correlation matrix from criterion (576) needs to be computed.

The codebook consists of 8 prototype glottal impulse shapes of length samples placed at all subframe positions. Note that, since is shorter than the subframe length, the remaining samples in the subframe are set to zero.
In general, the coding efficiency of the glottal-shape codebook is lower than the efficiency of the long-term prediction, and more bits are generally needed to assure good synthesized speech quality.

However, the glottal-shape codebook does not need to be used in all subframes. First, there is no reason to use this codebook in subframes that do not contain any significant glottal impulse in the residual signal. Second, the glottal-shape codebook search is important only in the first pitch period in a frame. The following pitch periods can be encoded using the more efficient standard adaptive codebook search as it does not use the excitation of the past frame anymore. To satisfy the constant bit-rate requirement, the glottal-shape codebook is used in the EVS codec only in one of the four subframes in a frame. This leads to a highly structured coding mode where the bit allocation is dependent on the position of the first glottal impulse and the pitch period. The subframe where the glottal-shape codebook is used is chosen as the subframe with the maximum sample in the residual signal in the range , where is the open-loop pitch period estimated over the first half of the frame. The other subframes are processed as described in subclause 5.2.3.2.2.

Criterion (577) is typically used in the algebraic codebook search by pre-computing the backward filtered target vector and the correlation matrix . Given the non-causal nature of the filter , the matrix is not triangular and Toeplitz anymore, and this approach cannot be efficiently applied for the first positions in the glottal-shape codebook search.

Let be the th row of the matrix , where is computed in two steps to minimize the computational complexity. In the first step, the first rows of this matrix are calculated that correspond to the positions from the range . In the second step, the criterion (577) is used in a similar way as in the algebraic codebook search for the remaining part of (the last rows of the matrix).

In the first step, the convolution between the glottal-shape codebook entry for position and the impulse response is first computed using

		(578)

where we take advantage of the fact that the filter has only non-zero coefficients.

Next, the convolution between the glottal-shape codebook entry for the position and the impulse response is computed, reusing the values of . For the following rows, the recursion is reused, resulting in

[bookmark: z_k_tick_of_n_recursion]		(579)

The recursion (579) is repeated for all.

Now, the criterion (577) can be computed for all positions from the range in the form

		(580)

In the second step, we take advantage of the fact that rows of the matrix are built using the coefficients of the convolution that are already computed as described by recursion (579) for . That is, each row corresponds to the previous row shifted to the right by 1 with a zero added at the beginning

		(581)

and this is repeated for from the range .

Next, the target vector and the diagonal of the matrix need to be computed. First, we evaluate the numerator and the denominator of the criterion (577) for the last position

[bookmark: dg_63_target_summation]		(582)
and

		(583)

For the remaining positions, the numerator is computed using equation (582), but with the summation index changed. In the computation of the denominator, some of the previously computed values can be reused. For example, for the position , the denominator of criterion (577) is computed using

		(584)

Similarly, we can continue to compute the numerator and the denominator of criterion (577) for all positions .
The search continues using the previously described procedure for all other glottal impulse shapes and the codevector corresponding to the best combination of glottal-shape and position is selected. To maintain the complexity low, the computation described above is further reduced by limiting the position search to ±4 samples around the maximum absolute value of the residual signal.

The last parameter to be determined is the gain of the glottal-shape codebook excitation. The gain is quantized in two steps. First, a roughly quantized gain of the glottal-shape codevector, , is found. Then, after both the first-stage contribution (glottal-shape codevector) and the second-stage contribution (algebraic codevector) of the excitation signal are found, the gain of the first-stage contribution signal is jointly quantized with the second-stage contribution gain, . This is done using the memory-less gain vector quantization, as described in subclause 5.2.3.1.7.1. The found glottal shape codevector is thus the position codevector filtered through the shaping filter that represents the best found glottal shape. When scaling the glottal-shape codevector with the signed quantized gain, we finally obtain the first stage excitation codevector, .

The glottal-shape gain is quantized using a quantization table as follows. First, an unquantized gain in the current glottal-shape subframe is found as

		(585)

where is the subframe length, is the target signal and is the glottal-shape codevector filtered through the weighted synthesis filter. Further, the sign of the glottal-shape gain is set to 0 if and 1 otherwise, and written to the bitstream. Finally, the glottal-shape gain quantization index is found as the maximum value of that satisfies , where is the glottal-shape gain quantization table of dimension 8. The signed quantized glottal-shape gainis thus found as and its value is quantized using 4 bits (1 bit for sign, 3 bits for the value).

It should be noted that the closed-loop pitch period, , does not need to be transmitted anymore in a subframe which uses the glottal-shape codebook search with the exception of subframes containing more than one glottal impulse, i.e., when. There are situations where the pitch period of the input signal is shorter than the subframe length and, in this case, we have to transmit its value. Given the pitch period length limitations and the subframe length, a subframe cannot contain more than two impulses. In the situation that the glottal-shape codevector contains two impulses, an adaptive codebook search is used in a part of the subframe. The first samples of the glottal-shape codevector are built using the glottal-shape codebook search and then the other samples in the subframe are built using the adaptive search as shown in Figure 37.

[bookmark: glottal_shape_codevector_2_imps_fig]Figure 37: Glottal-shape codevector with two impulses construction

The described procedure is used even if the second glottal impulse appears in one of the first positions of the next subframe. In this situation, only a few samples (less than) of the glottal shape are used at the end of the current subframe. This approach has a limitation because the pitch period value transmitted in these situations is limited to , if it is bigger, it is not transmitted.

In order to enhance the coding performance, a low-pass filter is applied to the first stage excitation signal . In all subframes after the glottal-shape codebook subframe, the low-pass filtered first stage excitation is found as described in subclause 5.2.3.1.4.2.
[bookmark: _Toc392593075][bookmark: _Toc394396860]5.2.3.2.2	TC frame configurations
[bookmark: _Toc394396861]5.2.3.2.2.1	TC frame configurations at 12.8 kHz internal sampling
At bit-rates with 12.8 kHz internal sampling rate the glottal-shape codebook is used in one out of four subframes. The other subframes in a TC frame (not encoded with the use of the glottal-shape codebook) are processed as follows. If the subframe with glottal-shape codebook search is not the first subframe in the frame, the excitation signal in preceding subframes is encoded using the algebraic CELP codebook only, this means that the first stage contribution signal is zero. If the glottal-shape codebook subframe is not the last subframe in the frame, the following subframes are processed by the standard CELP coding (i.e., using the adaptive and the algebraic codebook search). Thus, the first stage excitation signal is the scaled glottal-shape codevector, the adaptive codevector or the zero codevector.
In order to further increase encoding efficiency and to optimize bit allocation, different processing is used in particular subframes of a TC frame dependent on the pitch period. When the first subframe is chosen as a TC subframe, the subframe with the 2nd glottal impulse in the LP residual signal is determined. This determination is based on the pitch period value and the following four situations then can appear. In the first situation, the 2nd glottal impulse is in the 1st subframe, and the 2nd, 3rd and 4th subframes are processed using the standard CELP coding (adaptive and algebraic codebook search). In the second situation, the 2nd glottal impulse is in the 2nd subframe, and the 2nd, 3rd and 4th subframes are processed using the standard CELP coding again. In the third case, the 2nd glottal impulse is in the 3rd subframe. The 2nd subframe is processed using algebraic codebook search only as there is no glottal impulse in the 2nd subframe of the LP residual signal to be searched for using the adaptive codebook. The 3rd and 4th subframes are processed using the standard CELP coding. In the last (fourth) case, the 2nd glottal impulse is in the 4th subframe (or in the next frame), the 2nd and 3rd subframes are processed using the algebraic codebook search only, and the 4th subframe is processed using the standard CELP coding. Table 49 shows all possible coding configurations in the EVS codec at 12.8 kHz internal sampling rate.
The TC configuration is transmitted in the bit-stream using a Huffman-style coding and its bit sequence is show in the Table 49 in the column bitstream.
[bookmark: tc_configs_table]Table 49: TC configurations used in the EVS codec at 12.8 kHz internal sampling rate
	Coding configuration
	Bitstream
	Positions of the first (and the second, if relevant) glottal impulse(s) in the frame
	Type of codebook used (GS = glottal-shape,
Ada = adaptive, Alg = algebraic)

	
	
	
	1st subfr.
	2nd subfr.
	3rd subfr.
	4th subfr.

	TC1
	1
	

	GS + Alg
	Ada + Alg
	Ada + Alg
	Ada + Alg

	TC2
	0101
	

	GS + Alg
	Ada + Alg
	Ada + Alg
	Ada + Alg

	TC3
	0100
	

	GS + Alg
	Alg
	Ada + Alg
	Ada + Alg

	TC4
	011
	

	GS + Alg
	Alg
	Alg
	Ada + Alg

	TC5
	001
	

	Alg
	GS + Alg
	Ada + Alg
	Ada + Alg

	TC6
	0001
	

	Alg
	Alg
	GS + Alg
	Ada + Alg

	TC7
	0000
	

	Alg
	Alg
	Alg
	GS + Alg

[bookmark: _Toc394396862]5.2.3.2.2.2	TC frame configurations at 16 kHz internal sampling
At bit-rates with 16 kHz internal sampling rate the glottal-shape codebook is used in one out of five subframes. If the subframe with glottal-shape codebook search is not the first subframe in the frame, the excitation signal in preceding subframes is encoded using the algebraic CELP codebook only. If the glottal-shape codebook subframe is not the last subframe in the frame, the following subframes are processed by the standard CELP coding.
As the bit-rates with 16 kHz internal sampling rate are with high bit-budget, the number of TC configurations is reduced compared to the 12.8 kHz internal sampling rate. Table 50 shows all possible coding configurations in the EVS codec at 16 kHz internal sampling rate
[bookmark: tc_configs_table_16kHz]Table 50: TC configurations used in the EVS codec at 16 kHz internal sampling rate
	Coding configuration
	Bitstream
	Positions of the first glottal impulse in the frame
	Type of codebook used
(GS = glottal-shape,
Ada = adaptive, Alg = algebraic)

	
	
	
	1st subfr.
	2nd subfr.
	3rd subfr.
	4th subfr.
	5th subfr.

	TC161
	00
	

	GS + Alg
	Ada + Alg
	Ada + Alg
	Ada + Alg
	Ada + Alg

	TC162
	01
	

	Alg
	GS + Alg
	Ada + Alg
	Ada + Alg
	Ada + Alg

	TC163
	10
	

	Alg
	Alg
	GS + Alg
	Ada + Alg
	Ada + Alg

	TC164
	110
	

	Alg
	Alg
	Alg
	GS + Alg
	Ada + Alg

	TC165
	111
	

	Alg
	Alg
	Alg
	Alg
	GS + Alg

[bookmark: _Toc392593077][bookmark: _Toc394396863]5.2.3.2.2.3	Pitch period and gain coding in the TC mode

When using the TC, it is not necessary to transmit the pitch period for certain subframes. Further, it is not necessary to transmit both pitch gain, , and the algebraic codebook gain, , for subframes where there is no important glottal impulse, and only the algebraic codebook contribution is computed (the first stage excitation is the zero vector).

In subframes, where the glottal-shape, or adaptive, search is used, the first stage excitation gain (pitch gain), , and the second stage excitation gain (algebraic gain), , are quantized at bit-rates ≤ 32 kbps using the memory-less vector gain quantization described in subclause 5.2.3.1.7.1. At 64 kbps bit-rate, gains are scalar quantized as described in subclause 5.2.3.1.7.3. In glottal-shape subframes, the first stage gain, , is found in the same manner as described in subclause 5.2.3.1.4.2.
When only an algebraic gain is quantized in the current frame (the first stage excitation is the zero vector), the following scalar quantization process is used. First, an optimal algebraic gain in the current subframe is found as

		(586)

[bookmark: _Toc392593079]where is the subframe length, is the target signal and is the algebraic codevector filtered through the weighted synthesis filterwith the pre-filter . The predictive algebraic energy calculated once per frame is employed as described in subclause 5.2.3.1.7. Further the algebraic codebook gain, , and the correction factor, , are given by equations (564) and (565), respectively. Finally, the correction factor quantization index, , is found as the maximum value of that satisfies

		(587)

where is the algebraic gain quantization table of dimension 8. The correction factor is quantized with 3 bits using the quantization tableand the quantized algebraic gain is obtained by

		(588)
The following is a list of all TC configurations corresponding to Table 49 and Table 50.
Configuration TC1

In this configuration, two first glottal impulses appear in the first subframe that is processed using the glottal-shape codebook search. This means that the pitch period value in the 1st subframe can have the maximum value less than the subframe length, i.e., . Here, is the closed-loop pitch period and the subframe length. With the ½ sample resolution it can be coded with 6 bits. The pitch periods in the next subframes are found using – depending on the bit-rate – a 5- or 6-bit delta search with a fractional resolution.
Configuration TC2

When configuration TC2 is used, the first subframe is processed using the glottal-shape codebook search. The pitch period is not needed and all following subframes are processed using the adaptive codebook search. Because we know that the 2nd subframe contains the second glottal impulse, the pitch period maximum value holds . This maximum value can be further reduced thanks to the knowledge of the glottal impulse position value . The pitch period value in the 2nd subframe is then coded using 7 bits with a fractional resolution in the whole range of . In the 3rd and 4th subframes, a delta search using 6 bits is used with a fractional resolution.
Configuration TC3

When configuration TC3 is used, the first subframe is processed using the glottal-shape codebook search with no use of the pitch value again. But because the 2nd subframe of the LP residual signal contains no glottal impulse and the adaptive search is useless, the first stage contribution signal is replaced by zeros in the 2nd subframe. The adaptive codebook parameters (and) are not transmitted in the 2nd subframe. The first stage contribution signal in the 3rd subframe is constructed using the adaptive codebook search with the pitch period maximum value and the minimum value , thus only a 7-bit coding of the pitch value with fractional resolution in all range is needed. The 4th subframe is processed using the adaptive search with – depending on the bit-rate – a 5- or 6-bit delta search coding of the pitch period value.
In the 2nd subframe, only the algebraic codebook gain, gc, is transmitted. Consequently, only 3 bits are needed for gain quantization in this subframe as described at the beginning of this subclause.
Configuration TC4

When configuration TC4 is used, the first subframe is processed using the glottal-shape codebook search. Again, the pitch period does not need to be transmitted. But because the LP residual signal contains no glottal impulse in the 2nd and also in the 3rd subframe, the adaptive search is useless for both these subframes. Again, the first stage excitation signal in these subframes is replaced by zeros. The pitch period value is transmitted only in the 4th subframe by means of 7 bits and its minimum value is .The maximum value of the pitch period is limited by the value only. It does not matter if the second glottal impulse will appear in the 4th subframe or not (the second glottal impulse can be present in the next frame if).

Note that the absolute value of the pitch period is necessary at the decoder for the frame concealment; therefore, it is transmitted also in the situation when the second glottal impulse appears in the next frame. When a frame preceding the TC frame is missing, the correct knowledge of the pitch period value from the frames and helps to reconstruct the missing part of the synthesis signal in the frame successfully.

The algebraic codebook gain,, is quantized with 3 bits in the 2nd subframe and 3rd subframe.
Configuration TC5

When the first glottal impulse appears in the 2nd subframe, the pitch period is transmitted only for the 3rd and 4th subframe. 3rd subframe, the pitch value is coded using 9-bit absolute search while in the 4th subframe using – depending on the bit-rate – 5- or 6- bits delta search. In this case, only algebraic codebook parameters are transmitted in the 1st subframe (with the algebraic codebook gain, , quantized with 3 bits).
Configuration TC6

When the first glottal impulse appears in the 3rd subframe, the pitch period does not need to be transmitted for the TC technique. In this case, only algebraic codebook parameters are transmitted in the 1st and 2nd subframe with the algebraic codebook gain,, quantized with 3 bits in both subframes. Nevertheless, the pitch period is transmitted in the 4th subframe by means of 9 bit absolute search coding for the reason of better frame erasure concealment in the frame after the TC frame. Also, the pitch period is transmitted for the 3rd subframe by means of 5 bit absolute search coding although it is not usually necessary.
Configuration TC7

When the first glottal impulse appears in the 4th subframe, the pitch period value information is not usually used in this subframe. However, its value is necessary for the frame concealment at the decoder (this value is used for the missing frame reconstruction when the frame preceding or following the TC frame is missing) or in case of strong onsets at the frame-end and very short pitch period. Thus, the pitch value is transmitted only in the 4th subframe by means of 9-bit absolute search coding and only algebraic codebook parameters are transmitted in the first three subframes (the gain pitch, , is not essential). The algebraic codebook gain, , is quantized with 3 bits in the 1st, 2nd and 3rd subframes. The scalar gain quantization is employed only at the 4th subframe in this configuration to encode the gain pitch and the algebraic codebook gain.
Configuration TC161

In this configuration, one or two first glottal impulses appear in the first subframe that is processed using the glottal-shape codebook search. This means that the pitch period value in the 1st subframe can have the maximum value less than the subframe length , i.e., and it is coded with 6 bits. Then the pitch period in the 2nd subframe is found using 8-bit absolute search on the interval . Finally the pitch period in the 3rd subframe is coded using 10-bit absolute search and in the 4th and 5th subframe using 6-bit delta search.
The gain pitch and the algebraic codebook gain are coded in all subframes using 6-bit VQ at 32 kbps resp. 12-bit SQ at 64 kbps.
Configuration TC162
The first glottal impulse appears in the 2nd subframe and the pitch period is transmitted for the 3rd, 4th and 5th subframe. In the 3rd subframe, the pitch value is coded using 10-bit absolute search while in the 4th and 5th subframe using 6- bits delta search. The pitch period is transmitted also in the 2nd subframe by means of 6 bits and serves in case when two first glottal impulses appears in the second subframe.

The gain pitch and the algebraic codebook gain are coded in the 2nd, 3rd, 4th and 5th subframe using 6-bit VQ at 32 kbps resp. 12-bit SQ at 64 kbps. The algebraic codebook gain,, is quantized in the 1st subframe with 3 bits at 32 kbps resp. 6 bits at 64 kbps
Configuration TC163

The first glottal impulse appears in the 3rd subframe. In this case, only algebraic codebook parameters are transmitted in the 1st and 2nd subframe with the algebraic codebook gain,, quantized in both subframes with 3 bits at 32 kbps resp. 6 bits at 64 kbps. Then the pitch period is coded by means of 10-bit absolute search in the 3rd subframe and by means of 6-bit delta search in the 4th and 5th subframe.
The gain pitch and the algebraic codebook gain are coded in the 3rd, 4th and 5th subframe using 6-bit VQ at 32 kbps resp. 12-bit SQ at 64 kbps.
Configuration TC164

The first glottal impulse appears in the 4th subframe. In this case, only algebraic codebook parameters are transmitted in the 1st, 2nd and 3rd subframe with the algebraic codebook gain,, quantized in all these subframes with 3 bits at 32kbps resp. 6 bits at 64kbps. Then the pitch period is coded by means of 10-bit absolute search in the 4th subframe and by means of 6-bit delta search in the 5th subframe.
The gain pitch and the algebraic codebook gain are coded in the 4th and 5th subframe using 6-bit VQ at 32 kbps resp. 12-bit SQ at 64 kbps.
Configuration TC165

[bookmark: _Toc392593078]When the first glottal impulse appears in the 5th subframe, the pitch period value information is not usually used in this subframe. However, its value is necessary for the frame concealment at the decoder (this value is used for the missing frame reconstruction when the frame preceding or following the TC frame is missing) or in case of strong onsets at the frame-end and very short pitch period. Thus, the pitch value is transmitted only in the 5th subframe by means of 10-bit absolute search coding and only algebraic codebook parameters are transmitted in the first four subframes. The algebraic codebook gain, , is quantized in the 1st, 2nd and 3rd subframes with 3 bits at 32kbps and 6 bits at 64 kbps. The gain pitch and the algebraic codebook gain are coded only in 5th subframe using a scalar gain quantizer.
[bookmark: _Toc394396864]5.2.3.2.2.4	Update of filter memories

In TC mode, the memories of the synthesis and weighting filter are updated as described in subclause 5.2.3.1.8. Note that signals in equation (574) are the first stage excitation signal (i.e., the glottal-shape codevector, the low-pass filtered adaptive codevector, or the zero codevector) and the algebraic codevector (including pre-filtering).
[bookmark: _Toc394396865]5.2.3.3	Excitation coding in UC mode at low rates
The principle of excitation coding in UC mode is shown in a schematic diagram in Figure 38. The individual operations are described in detail in the following clauses.

[bookmark: schematic_diag_exc_UC]Figure 38: Schematic diagram of the excitation coding in UC mode
[bookmark: _Toc392593080][bookmark: _Toc394396866]5.2.3.3.1	Structure of the Gaussian codebook

[bookmark: _Toc392593083]In UC mode, a Gaussian codebook is used for representing the excitation. To simplify the search and reduce the codebook memory requirement, an efficient structure is used whereby the excitation codevector is derived by the addition of 2 signed vectors taken from a table containing 64 Gaussian vectors of dimension 64 (the subframe size). Let denote the th 64-dimensional Gaussian vector in the table. Then, a codevector is constructed by

[bookmark: gaussian_codevector_structure_c]		(589)

where and are the signs, equal to –1 or 1, and and are the indices of the Gaussian vectors from the table. In order to reduce the table memory, a shift-by-2 table is used, thus only 64 + 63 × 2 = 190 values are needed to represent the 64 vectors of dimension 64.

To encode the codebook index, one has to encode 2 signs, and , and two indices, and . The values of and are in the range , so they need 6 bits each, and the signs need 1 bit each. However, 1 bit can be saved since the order of the vectors and is not important. For example, choosing as the first vector and as the second vector is equivalent to choosing as the first vector and as the second vector. Thus, similar to the case of encoding two pulses in a track, only one bit is needed for both signs. The ordering of the vector indices is such that the other sign information can be easily deduced. This gives a total of 13 bits. To better explain this procedure, let us assume that the two vectors have the indices and with sign indices and , respectively (if the sign is positive and if the sign is negative). The codevector index is given by

		(590)

If then ; otherwise is different from . Thus, when constructing the codeword (index of codevector), if the two signs are equal then the smaller index is assigned to and the larger index to , otherwise the larger index is assigned to and the smaller index to .
[bookmark: _Toc392593081][bookmark: _Toc394396867]5.2.3.3.2	Correction of the Gaussian codebook spectral tilt

In UC mode, the Gaussian codebook spectral tilt is corrected by a modification factor, which is encoded using 3 bits per subframe. First, the tilt of the target vector is computed as

		(591)

and the tilt of the filtered Gaussian codebook is computed as

		(592)

The filtered Gaussian codebook, , is the initial Gaussian codebook, , convolved with the weighted filter, . Note that vector represents the whole codebook, i.e., .
The spectral tilt modification factor is found by

		(593)
and the integer quantization index is found by

		(594)

where the operator returns the integer part of a floating point number. The integer quantization index is limited to [0, 7].
Finally, the quantized spectral tilt modification factor is used to adapt the tilt of the initial Gaussian codebook. That is

[bookmark: t_tick_of_n_quant_spect_tilt_mod_factor]		(595)
where the quantized spectral tilt modification factor is found as

		(596)

In the following, the adapted Gaussian codebook , is searched to obtain the best two codevectors and signs which form the final codevector, , of dimension 64. In the following, we assume .
[bookmark: _Toc392593082][bookmark: _Toc394396868]5.2.3.3.3	Search of the Gaussian codebook

The goal of the search procedure is to find the indices and of the two best random vectors and their corresponding signs, and . This is achieved by maximizing the following search criterion

[bookmark: q_gaussian_max_criterion]		(597)

where is the target vector and is the filtered final codevector. Note that in the numerator of the search criterion, the dot product between and , , is equivalent to the dot product between and , where is the backward filtered target vector which is also the correlation between and the impulse response . The elements of the vector are found by

		(598)

Since is independent of the codevector , it is computed only once, which simplifies the computation of the numerator for different codevectors.

After computing the vector , a predetermination process is used to identify out of the 64 random vectors in the random table, so that the search process is then confined to those vectors. The predetermination is performed by testing the numerator of the search criterion for the vectors which have the largest absolute dot product (or squared dot product) between and , . That is, the dot productsthat are given by

		(599)

are computed for all random vectors and the indices of the vectors which result in the largest values of are retained. These indices are stored in the index vector , . To further simplify the search, the sign information corresponding to each predetermined vector is also preset. The sign corresponding to each predetermined vector is given by the sign of for that vector. These preset signs are stored in the sign vector , .

The codebook search is now confined to the pre-determined vectors with their corresponding signs. Here, the value is used, thus the search is reduced to finding the best 2 vectors among 8 random vectors instead of finding them among 64 random vectors. This reduces the number of tested vector combinations from to .

Once the most promising vectors and their corresponding signs are predetermined, the search proceeds with the selection of 2 vectors among those vectors which maximize the search criterion .

We first start by computing and storing the filtered vectors , corresponding to the predetermined vectors. This can be performed by convolving the predetermined vectors with the impulse response of the weighted synthesis filter, . The sign information is also included in the filtered vectors. That is

		(600)
We then compute the energy of each filtered pre-determined vector as

		(601)
and its dot product with the target vector

		(602)

Note that and correspond to the numerator and denominator of the search criterion due to each predetermined vector. The search proceeds now with the selection of 2 vectors among the predetermined vectors by maximizing the search criterion . Note that the final codevector is given in equation (589).

The filtered codevector is given by

		(603)

Note that the predetermined signs are included in the filtered predetermined vectors . The search criterion in equation (597) can be expressed as

		(604)

The vectors and the values ofand are computed before starting the codebook search. The search is performed in two nested loops for all possible positions and that maximize the search criterion . Only the dot products between the different vectors need to be computed inside the loop.

At the end of the two nested loops, the optimum vector indices and will be known. The two indices and the corresponding signs are then encoded as described above. The gain of the final Gaussian codevector is computed based on a combination of waveform matching and energy matching. The gain is given by

		(605)

where is the gain that matches the waveforms of the vectors and and is given byand is the gain that matches the energies of the vectors and and is given by . Here, is the target vector and is the filtered codevector , .
[bookmark: _Toc394396869]5.2.3.3.4	Quantization of the Gaussian codevector gain
[bookmark: _Toc392593084]In UC mode, the adaptive codebook is not used and only the Gaussian codevector gain needs to be quantized. The Gaussian codevector gain in dB is given by

[bookmark: g_c_dB_gaussian_codevector_gain]		(606)

is uniformly quantized betweenandwith the step size given by

[bookmark: delta_gaussian_codevector_gain_stepsize]		(607)

where is the number of quantization levels. The quantization index is given by the integer part of

		(608)
Finally, the quantized gain in dB is given by

		(609)
and the quantized gain is given by

[bookmark: g_cap_c_quant_gaussian_codevector_gain]		(610)

In every subframe, 7 bits are used to quantize the gain. Thus, and the quantization step is dB with the quantization boundariesand. The quantized gain, , is finally used to form the total excitation in the UC mode by multiplying each sample of the codevector, , by.
[bookmark: _Toc394396870]5.2.3.3.5	Other parameters in UC mode
[bookmark: _Toc392593085]In UC mode, the SAD and noisiness parameters are encoded to modify the excitation vector in stationary inactive segments. The noisiness parameter is required for an anti-swirling technique used in the decoder for enhancing the background noise representation during inactive speech.
The noisiness parameter is defined as the ratio between low- and high-order LP residual variances:

		(611)

where and denote the LP residual variances for second-order and 16th-order LP filters, respectively. The LP residual variances are readily obtained as a by-product of the Levinson-Durbin procedure, described in subclause 5.1.9.4.
The noisiness parameter is normalized to the interval [0, 1] within which it is linearly quantized with 32 levels. That is

		(612)

where is a normalization factor, which is different for WB and NB signals. For WB signals, , otherwise .
5.2.3.3.6	Update of filter memories

In UC mode, the memories of the synthesis and weighting filter are updated as described in subclause 5.2.3.1.8. Note that the excitation component is missing in equation (574) for UC mode.
[bookmark: _Toc394216908]5.2.3.4	Excitation coding in IC and UC modes at 9.6 kbps
At 9.6 kbps, the IC and UC modes are coded with a hybrid coding embedding two stages of innovative codebooks, the algebraic pulse codebook and a Gaussian noise-like excitation. Since the long term prediction gain is expected to be very low for such frames, the adaptive codebook is not used. The principle is depicted in figure 39.

[bookmark: schematic_diag_exc_UC_IC_9_6]Figure 39: Schematic diagram of the excitation coding in UC and IC modes at 9.6 kbps
5.2.3.4.1	Algebraic codebook
5.2.3.4.1.1	Adaptive pre-filter

For UC mode, the adaptive pre-filter is performed similarly as in subclause 5.2.3.1.5.1. Additional the pre-filter is amended with a phase scrambling filter as follows:

		(613)
For NB IC mode, the filter is designed as follows:

		(614)

where is defined in subclause 5.2.3.1.5.1 with , is also defined in subclause 5.2.3.1.5.1, and and .

For WB IC mode, is defined as:

		(615)

where , , and represents the tilt of following filter:

[bookmark: F_1_z]		(616)
The tilt is computed as:

		(617)

 is bounded by [0.25 0.5] and given is by:

		(618)

whereand are the energies of the scaled pitch codevector and the scaled algebraic codevector of the previous subframe, respectively.
[bookmark: _Toc394216909]5.2.3.4.2	Gaussian noise generation
The Gaussian noise excitation is a second excitation added to the first innovative excitation from the algebraic codebook. This second contribution is only computed and added in WB.
The Gaussian noise excitation is produced by calling three times a random generator with a uniform distribution between -1 and +1. It follows the Central Limit Theorem.

		(619)

The Gaussian noisy excitation is spectrally shaped by applying the pre-filter defined in subclause 5.2.3.4.1.1.
[bookmark: _Toc394216910]5.2.3.4.3	Gain coding

For NB only one gain has to be quantized, the gain of the algebraic codebook . It is quantized using a 6-bit quantizer.

For WB, the two gains and are quantized jointly in each subframe, using a 7-bit vector quantizer.
In both cases the optimal algebraic codeword gain is computed as follows:

		(620)

In the equation above, is the algebraic codevector filtered through the weighted synthesis filter with the pre-filter .is the filtered algebraic codevector.

The algebraic codebook excitation energy in dB, , is also computed as follows:

		(621)
[bookmark: _Toc394216911]5.2.3.4.3.1	Innovative codebook gain coding (NB)
The algebraic codevector gain in dB is given by

		(622)

is uniformly quantized between -30 dB and 90dB with the step size of 1.9dB. The quantization index is given by the integer part of

		(623)
Finally, the quantized gain in dB is given by

		(624)
and the quantized gain is given by

		(625)
[bookmark: _Toc394216912]5.2.3.4.3.2	Joint gain coding (WB)
The algebraic codebook gain is quantized indirectly, using a predicted energy of algebraic codevector. The energy of residual signal in dB is calculated.
Then, average residual signal energy is calculated for the whole frame and serves as a prediction of the algebraic codevector energy. It is quantized on 4 bits once per frame. The quantized value of the predicted algebraic codevector energy is defined as

		(626)

where is the 4-bit codebook for the predicted algebraic codevector energy and is the index minimizing the criterion above.
Using the predicted algebraic codevector energy, we may estimate the algebraic codebook gain as

		(627)

A correction factor between the true algebraic codebook gain, , and the estimated one, , is given by

		(628)

The correction factor is uniformly quantized on 5 bits between -20 dB and 20dB with the step size of 1.25dB. The quantization index is given by the integer part of

		(629)
Finally, the quantized gain in dB is given by

		(630)
and the quantized gain is given by

		(631)
The gain of Gaussian noise excitation is quantized on 2 bits. Unlike the algebraic codeword gain, the Gaussian noise excitation gain is optimized in order to minimize the energy mismatch between the target signal and reconstructed signal. The following criterion is minimized:

		(632)

where is an attenuation factor set to 1 for clean speech, where high dynamic of energy is perceptually important and set to 0.8 for noisy speech where the noise excitation is made more conservative for avoiding fluctuation in the output energy between unvoiced and non-unvoiced frames

The quantized gain is expressed as follows where the index of the optimal gain is sent on 2 bits:

		(633)
[bookmark: _Toc394216913]5.2.3.4.4	Memory update
The update of the filter memories is performed as described in subclause 5.2.3.1.8 except that there is no adaptive codebook contribution. The Gaussian noise excitation is not taken into account for the update and for computing the next subframe signal target.
[bookmark: _Toc394216914]5.2.3.5	Excitation coding in GSC mode
In the GSC mode, the excitation is encoded using mixed time-domain/frequency-domain coding technique. This mode is aimed at encoding generic audio signals at low bit rates without introducing more delay than the ACELP structure requires. The GSC mode is used only at 12.8 kHz internal sampling rate, and the excitation could be encoded with 4 subframes, 2 subframes, or 1 subframe per frame depending on the bit rate or the signal type.
Figure 40 is a schematic block diagram showing the general concept of coding the excitation in the GSC mode. The speech/music selector is used to choose between coding the excitation signal in the GSC mode or the other ACELP modes described above. The selector mainly consists of the speech music classification (as described in subclause 5.1.13.5), where GSC is used in case music signals are detected. A further detector (as described in subclause 5.1.13.5.3) is used to verify if a detected music contains a temporal attack. In such a case the time domain transient coding mode is used to code only the attack.
When encoding in the GSC mode, the time-domain excitation contribution is first computed. In case of 4 subframes, the time-domain excitation consists of both adaptive codebook and fixed codebook as in ordinary ACELP. In case 1 or 2 subframes are used, the time-domain excitation consists only of the adaptive codebook contribution. Then the time-domain contribution and residual signal are both converted to the transform domain (using DCT). The transform-domain signals are used to determine a cut-off frequency (the upper band still containing significant pitch contribution). The time-domain excitation contribution is then filtered by removing the frequency content above the cut-off frequency. The filtered time-domain contribution in the frequency domain is subtracted from the frequency-domain residual signal, and difference signal is quantized in the frequency domain using PVQ. The quantized difference signal is then added to the filtered transformed time-domain excitation contribution, and the resulting signal is converted back to the time domain to obtain the total excitation signal.
The GSC mode is used for encoding audio signals at 7.2, and 13.2 kbit/s for WB inputs. It is also used to encode unvoiced active speech and some audio signal at 13.2 kbit/s in case of SWB inputs. Further, the GSC mode is used to encode inactive signals in case of NB, WB, SWB, and FB signals (in case DTX is off) at 7.2, 8 and 13.2kbit/s.
[bookmark: _Toc394216915]

[bookmark: encoder_overview_figure]Figure 40: GSC encoder overview
5.2.3.5.1	Determining the subframe length

The subframe length, or number of subframes per frame, is determined depending on the bit rate and nature of encoded signal. In case of SWB unvoiced mode at 13.2 kbit.s, 4 subframes are used. For NB and WB signals at 13.2 kbit/s, 2 subframes are used in case of inactive signals or when the high frequency dynamic range flag is 0, where is an indicator when set to 1 is indicates the presence of high frequency spectral correlation and is computed in subclause 5.1.11.2.6. Otherwise 1 subframe is used (audio signal where long-time support is needed to get better frequency resolution).
For the bit rates of 7.2 and 8 kbit/s, 1 subframe is always used (NB, WB, and SWB audio signals and inactive speech signals). The number of subframe information is encoded at 13.2 kbps with 1 bit.
[bookmark: _Toc394216916]5.2.3.5.2	Computing time-domain excitation contribution
For the SWB unvoiced mode at 13.2 kbit/s, 4 subframes are used and the excitation is computed similar to ACELP Generic coding mode using both adaptive and fixed codebooks (see subclause 5.2.3.1). The signal is encoded using GENERIC coding type at 7.2 kbit/s, and the remaining bits are used to encode the frequency domain contribution. The target signal for FCB search is computed without low-pass filtering of ACB excitation.
In other modes where 1 or 2 subframes are used the time-domain excitation contributions consists only of the adaptive codebook contribution. This is determined using ordinary closed-loop pitch search as in subclause 5.2.3.1.4.1.
When only 1 or 2 subframe are used, for example at 7.2 and 8 kbit/s rates, the adaptive codebook excitation and pitch gain quantization use the AUDIO coding type. The pitch found is quantized using 10 bits for the first subframe and 6 bit for the following subframe, if any. In these case, he pitch gain is quantized using a 4 bits vector quantizer.
The total excitation is finally constructed based on both ACB and FCB at 13.2 UC mode or only ACB contribution for other modes using a total between 14 and 24 bits in case of 1 or 2 subframe up to 106 bits for the 4 subframe case..
[bookmark: _Toc394216917]5.2.3.5.3	Frequency transform of residual and time-domain excitation contribution
In the frequency-domain coding of the mixed time-domain / frequency-domain GSC mode, the residual signal and the time-domain excitation contribution are transformed to frequency domain. The time-to-frequency transform is performed using a 256-point Type IV discrete cosine transform (DCTIV) giving a resolution of 25 Hz at the internal sampling frequency of 12.8 kHz.

The DCTIV, , of a signal of length is defined by the following equation:

		(634)

Here and refers to either residual signal or time-domain excitation contribution with DCT output corresponding to frequency transformed signals and , respectively.
[bookmark: _Toc394330702]5.2.3.5.3.1	eDCT for DCTIV
The efficient eDCT is built upon a discrete cosine transform type IV (DCTIV) but the eDCT requires less storage and has lower complexity.
The DCTIV formula in above subclause can be rewritten as:

		(635)

where the values are given by

		(636)

and , , and .

Hence, the eDCT is computed using a Fast Fourier Transform (FFT) of points on the pre-rotated data :

A complex DFT with length is applied to the rotated data :

		(637)

Here, when , a simple power-2 DFT is not suitable, so it is implemented with the following low complexity 2-dimensional () DFT, where and are coprime factors.
To reduce complexity, an address table is introduced. It can be calculated by:

		(638)

where , are coprime and satisfy the condition .

Here, . The address table is stored for low complexity 2-dimentional DFT, and is used to indicate which samples are used for -point DFT or -point DFT following:

a)	Applying -point DFT to for times based on the address table .

	The input data to the i-th ()-point DFT is found by seeking their addresses stored in the address table . For the i-th -point DFT, the addresses of the input data are the continuous elements starting from the element in table . For every time of -point DFT, the resulting data need to be applied a circular shift with a step of , where is the re‑ordered index, which satisfies .
	The output of step a) is:

		(639)

	For the i-th ()-point DFT, the addresses of the input data are the continuous elements starting from , and the results are circular shifted with . Here is an example of circular shift, the original vector is , the new vector with 2 circular shift is .

b)	Applying -point DFT to for times based on the address table .

	The input data to the i-th ()-point DFT is found by seeking their addresses stored in the address table . For the i-th -point DFT, the addresses of the input data are the elements starting from the i-th element in table , each of which separated by a step of . For every time of -point DFT, the resulting data need to be applied a circular shift with a step of . is the re-ordered index, which satisfies .
	The output of step b) is:

		(640)

[bookmark: _Toc394216918]For the i-th ()-point DFT, the addresses of the input data are the continuous elements starting from , each of which is separated by a step of , and the results are circular shifted with . Finally, the coefficients are output according to the stored address corresponding to the address table .
5.2.3.5.4	Computing energy dynamics of transformed residual and quantization of noise level

The DCT of the residual is divided into 16 bands (0 to 15) of length 16 bins. For bands 7 to 14, the energy dynamic per band is computed as the square of the maximum value divided by the average value per band, scaled by a factor 10. Then the average value over the 8 band (from 7 to 14) is computed.

A long-term dynamic is updated as

		(641)

 is quantized with 8 levels in the rage 50-82 (50, 54, 58, 62, 66, 70, 74, 78) with quantization index from 0 to 7.

The noise level is computed as

For the bit rates of 7.2 and 8 kbit/s, the noise level is low limited to 12. Thus only values 12, 13, 14, 15 are permitted and is quantized with 2 bits). For UC SWB mode at 13.2 kbit/s is set to 15, otherwise is quantized with 3 bits (values 8 to 15).

[bookmark: _Toc394216919]5.2.3.5.6	Find and encode the cut-off frequency

The cut-off frequency consists of the last band with significant pitch contribution (the frequency after which coding improvement brought by the time-domain excitation contribution becomes too low to be valuable). Finding the cut-off frequency starts by computing the normalized cross-correlation for each frequency band between the frequency-transformed LP residual and the frequency-transformed time-domain excitation contribution . The 256-sample DCT spectrum is divided into the 16 bands with the following number of frequency bins per band

		(642)
with cumulative frequency bins per band

		(643)

The last frequency included in each of the 16 frequency bands are defined in Hz as:

		(644)
The normalized correlation per band is defined as

		(645)

Where and .
The cross-correlation vector is then smoothed between the different frequency bands using the following relation

		(646)

where , and
The average of the smoothed cross-correlation vector is computed over the first 13 bands (representing 5575 Hz). It is then limited to a minimum value of 0.5 normalised between 0 and 1.

A first estimate of the cut-off frequency is obtained by finding the last frequency of a frequency band which minimizes the difference between the last frequency of a frequency band and the normalized average of the smoothed cross-correlation vector multiplied by the width of the spectrum of the input sound signal. That is

		(647)
and the first estimate of the cut-off frequency is given by

		(648)

where Hz.

At 7.2 and 8 kbit/s, where the normalized average is never really high, or to artificially increase the value of to give a little more weight to the time domain contribution, the value of is upscaled with a factor of 2.

The 8th pitch harmonic is computed from the minimum or lowest pitch lag value of the time-domain excitation contribution of all sub-frames, and the frequency band containing the 8th harmonic is determined. The final cut-off frequency is given by the higher value between the first estimate of the cut-off frequency and the last frequency of the frequency band in which the 8th harmonic is located .
The cut-off frequency is quantized with a maximum of 4 bits using the values {0, 1175, 1575, 1975, 2775, 3175, 3575, 3975, 4375, 4775, 5175, 5575, 6375}.

Some hangover is added to stabilize the decision and prevent the cut-off frequency to switch between 0 (meaning no temporal contribution) and something else too often. First for the temporal contribution to be allowed, the average normalized correlation and the long-term correlation as computed in subclause 5.1.13.5.3, the long term average pitch gain of the GSC temporal contribution and the last value of the cut-off frequency are compared to some threshold to decide if it is allowed to remove all the temporal contribution (cut-off frequency would be 0). In addition a hangover logic is used to diminish any undesired switching to a complete frequency model where the cut-off frequency would be 0.
For the lowest bitrate, 7.2 and 8.0 kbit/s, only 1 bit is used to send the cut-off frequency information when the coding mode is INACTIVE otherwise, the cut-off frequency is considered as greater than 0 (meaning the temporal contribution is used) and the length of the contribution is deduced from the pitch information. At 13 kbps, 4 bits are used to send the cut-off frequency allowing all the possible cut-off frequency values.

Once the cut-off frequency is determined, the transform of the time-domain excitation contribution is filtered in the frequency domain by zeroing the frequency bins situated above the cut-off frequency supplemented with a smooth transition region. The transition region is situated above the cut-off frequency and below the zeroed bins, and it allows for a smooth spectral transition between the unchanged spectrum below and the zeroed bins in higher frequencies.
[bookmark: _Toc394216920]5.2.3.5.7	Band energy computation and quantization

The filtered time-domain contribution in the frequency domain is subtracted from the frequency-domain residual signal , and the resulting difference signal in the frequency domainis quantized with the PVQ. Before the quantization is done, some gains per frequency band , as defined above, are computed and quantized using a split VQ. First the gain per band on the difference signal is computed as :

		(649)

where and are defined in subclause 5.2.3.5.6.
In case of NB content, only the first 10 bands are quantized using a split VQ. For other bandwidth, the number of band quantized depends on the bitrate. At low bit rate only 12 bands are quantized, being the band 0 to 8 plus the bands 10, 12 and 14. The band 9, 11, 13 and 15 being interpolated based on the quantized bands 8, 10, 12, and 14. The codebook used for the vector quantization are different depending of the bitrate and the bandwidth of the input signal giving a total 4 different set of codebooks.

In all cases, prior to the vector quantitation of the bands, the average gain of all the bands is subtract from the bands and vector quantized as well using 6 bits. In total between 21 and 26 bits are used to get the gain per band quantized depending of the bitrate.
[bookmark: _Toc394216921]5.2.3.5.8	PVQ Bit allocation

The PVQ is a coding technic that is flexible in its bit allocation. To decide where bits should be allocated inside the difference spectrum to quantize, some parameters are analyse as the bitrate, the cut-off frequency, the noise level, the coding mode (INACTIVE, AUDIO or active UC), the bit budget available and the bandwidth.

First, only a subset of bands will be sent to the PVQ for quantization. The minimum number of band is 5 out of 16. To determine the number of band, a first criteria is the bit rate, a second criteria is the cut-off frequency and another criteria is noise level. When the number of band is decided, a minimum amount of bit is spread over the number of band decided with an emphasis on the low frequencies. If some bits remain after the minimum bit allocation, then the remaining bits are split among the bands. When the number of bands and its bit allocation are found, the bands are picked from the initial spectrum of the difference signal based on the quantized gain of this band. The 5 first bands are always sent to the PVQ, the choice of the other bands on the energy associated to that band and the high frequency flag indicator.
[bookmark: _Toc394216922]5.2.3.5.9	Quantization of difference signal

Once the bit allocation the number of band to quantize and their position in the spectrum is defined, a new vector is concatenated containing all the chosen bands. The values are then passed to the PVQ for quantization to obtain the quantized difference spectrum. The PVQ quantization scheme is described in subclause 5.3.4.2.7.
[bookmark: _Toc394216923]5.2.3.5.10	Spectral dynamic and noise filling
After the quantization by the PVQ, some band are empty and many more bins are zeroed due to the low inherent to the GSC technology available. To make the frequency model as robust as possible on speech like content, the spectral dynamic is revised and some noise filling is added to the difference spectrum.

For INACTIVE content below 13.2 kbit/s, the quantized spectrum above 1.6kHz is multiplied by a factor of 0.15. For INACTIVE content at 13.2 kHz, the quantized spectrum above 2.0kHz is multiplied by a factor of 0.25. Otherwise the scaling factor for the spectral dynamic and the frequency bin where the scaling of the spectral dynamic is applied is computed as follow:

		(650)
and

		(651)
Furthermore, for frequencies above 3.2 kHz, the spectral dynamic is limited to an amplitude of ±1 for bitrate below 13.2 kbit/s and to ± 1.5 otherwise.

This scaling is then applied to the quantized difference spectrum, to obtain its scaled version.

A noise filling is then applied to the whole difference spectrum. The noise level added is based on the bitrate, the coding mode and the spectral dynamic to obtain the scaled difference spectrum with noiseon which the gain will be applied on.
[bookmark: _Toc394216924]5.2.3.5.11	Quantized gain addition, temporal and frequency contributions combination

Once dynamic of the quantized difference spectrum has been scaled and the noise fill has be performed, the gain of each bands is computed exactly as in subclause 5.2.3.5.7 to get gain of the quantized spectrum. The gain per band to apply consists as:

		(652)

This gain is applied to both the scaled difference spectrum with noise and the scaled difference spectrumand both vectors are added to the temporal contribution to get two different spectral representation of the quantized excitation in the frequency domain, one with noise fill and the other without as shown below.

		(653)
and

		(654)
5.2.3.5.12	Specifics for wideband 8kbps

The available bits are allocated to the bands of the frequency excitation signal according to the bit allocation algorithm as described in subclause 5.2.3.5.8, where the frequency excitation signal is the output of DCTIV as described in subclause 5.2.3.5.3. If the index of the highest frequency band with bit allocation is more than a given threshold, the bit allocation for the frequency excitation bands will be adjusted: Decrease the number of the allocated bits of the bands with more bits, and increase the number of the allocated bits of the band and the bands near to . And then, encode the frequency excitation signal with the allocated bits, where the given threshold is determined by the available bits and the resolution of the frequency excitation signal.
The details are described as follows:
1) Allocate most of the available bits to the 5 lower frequency bands by the pre-determined bit allocation table;
2) Allocate the remaining bits to those bands excluding the lower frequency 5 bands which have the largest band energy, if there are remaining bits after the first step;
3)
Search the index of the highest frequency band with bit allocation.

If the index of the highest frequency band with bit allocation is more than a given threshold, the bit allocation for the frequency excitation bands will be adjusted:
1)

Allocate bits to some more bands whose index is above . The number of the newly bit allocated bands is determined by the noise leveland the coding mode.
2)

For the newly bit allocated bands, allocate 5 bits to each band. If the number of the newly bit allocated bands, allocate 1 more bit to each band whose index starts from 4 to .
3)

The total number of newly allocated bits is . is obtained by decreasing the number of the bits allocated to the 4 lower frequency bands.
Otherwise, the original number of allocated bits to each band is not changed.
Finally, quantize and encode the frequency excitation signal according to the allocated bits.
Then, reconstruct the frequency excitation signal based on the quantized parameters. The reconstructed frequency excitation signal is corresponding to the decoded frequency excitation signal in decoder.

For the reconstructed frequency excitation signal, if the index of the highest frequency band with bit allocation is more than a given threshold, or there is the temporal contribution in the reconstructed frequency excitation signal, the frequency excitation signal above will be reconstructed by the reconstructed frequency excitation signal; otherwise, the frequency excitation signal above will be reconstructed by noise filling.
The detailed descriptions are as follows:

When the coding mode of previous frame is AC mode, if the last sub-band index of bit allocation is larger than or there is the temporal contribution in the reconstructed frequency excitation signal, the BWE flag is set to 1. It should be noted that the BWE flag is initialized to 0 and calculated for every frame. is then refined by:

		(655)

If , the frequency excitation signal below will be reconstructed as described in subclause 5.2.3.5.11, and the frequency excitation signal above will be reconstructed as follows:

		(656)

And then the frequency excitation signal is scaled by the quantized gains to obtain the scaled frequency excitation signal .
When the energy ratio between the current frame and the previous frame is in the range (0.5, 2), for any band with index range is [4, 9], if the band is bit allocated in the current frame or in the previous frame, the coefficients in the band are smoothed by weighting the coefficients of the current frame and the previous frame.

For the scaled frequency excitation signal above , estimate the position of the formant by LSF parameters. If the magnitudes of the coefficients near to the formant are larger than a threshold, the magnitudes are decreased to improve the perceptual quality.

Otherwise, If , the un-quantized coefficients, i.e. un-decoded coefficients at the decoder side will be reconstructed by noise filling as described in subclause 5.2.3.5.10.
[bookmark: _Toc394216925]5.2.3.5.13	Inverse DCT

After the gain has been applied and the combination in the frequency domain done, both frequency representations of the coded excitation are convert back to time domain using the exact same DCT as in subclause 5.2.3.5.3. The inverse transform is performed to get the quantized excitation which is the temporal representation of and which is the temporal representation of. will be used to update the TDBWE while is used to update the internal CELP state as the adaptive codebook memory.
[bookmark: _Toc394216926]5.2.3.5.14	Remove pre-echo in case of onset detection

Compute the energy of the excitation over each 4 samples using a 4-sample sliding window, and find the more energetic section to determine a possible attack (onset). If the attack is larger than the previous frame energy plus 6 dB, the algorithm finds the energy before the attack (excluding the section where the attack has been detected) and it scales it to the level of the previous frame energy plus 6dB.

3GPP
oleObject1.bin

image46.wmf
'

w

oleObject545.bin

image447.wmf
t

bits

Bit

Hi

_

_

oleObject546.bin

oleObject547.bin

image448.wmf
)

_

_

(

t

t

bits

Bit

Hi

bits

-

oleObject548.bin

image449.wmf
0

hi

oleObject549.bin

image450.wmf
1

hi

oleObject550.bin

oleObject47.bin

image451.wmf
0

SLP

hi

oleObject551.bin

image452.wmf
1

1

0

0

_

_

hi

range

Bit

Hi

hi

hi

SLP

+

´

=

oleObject552.bin

image453.wmf
0

SLP

hi

oleObject553.bin

image454.wmf
0

h

oleObject554.bin

image455.wmf
0

h

oleObject555.bin

image47.wmf
å

å

å

=

=

=

+

-

=

-

8

1

2

8

1

8

1

2

2

2

'

)

(

)

(

'

)

(

)

(

'

)

(

'

2

)

(

'

)

(

'

'

i

k

i

i

j

k

j

w

k

j

i

l

i

w

s

i

l

i

x

i

w

s

i

w

i

x

l

s

x

image456.wmf
0

_

bits

back

re

-

oleObject556.bin

image457.wmf
0

h

oleObject557.bin

image458.wmf
low

track

_

0

oleObject558.bin

image459.wmf
0

_

index

final

oleObject559.bin

image460.wmf
H

SLP

hi

0

oleObject560.bin

oleObject48.bin

image461.wmf
0

SLP

hi

oleObject561.bin

image462.wmf
2

hi

oleObject562.bin

image463.wmf
2

2

0

1

_

_

hi

range

Bit

Hi

hi

hi

H

SLP

SLP

+

´

=

oleObject563.bin

image464.wmf
1

SLP

hi

oleObject564.bin

image465.wmf
1

h

oleObject565.bin

image48.wmf
k

l

image466.wmf
1

h

oleObject566.bin

image467.wmf
1

_

bits

back

re

-

oleObject567.bin

image468.wmf
1

h

oleObject568.bin

image469.wmf
low

track

_

1

oleObject569.bin

image470.wmf
1

_

index

final

oleObject570.bin

oleObject49.bin

image471.wmf
H

SLP

hi

1

oleObject571.bin

image472.wmf
1

SLP

hi

oleObject572.bin

image473.wmf
3

hi

oleObject573.bin

image474.wmf
3

3

1

2

_

_

hi

range

Bit

Hi

hi

hi

H

SLP

SLP

+

´

=

oleObject574.bin

image475.wmf
2

SLP

hi

oleObject575.bin

image49.wmf
k

image476.wmf
2

h

oleObject576.bin

image477.wmf
2

h

oleObject577.bin

image478.wmf
2

_

bits

back

re

-

oleObject578.bin

image479.wmf
2

h

oleObject579.bin

image480.wmf
low

track

_

2

oleObject580.bin

oleObject50.bin

image481.wmf
2

_

index

final

oleObject581.bin

image482.wmf
H

SLP

hi

2

oleObject582.bin

oleObject583.bin

image483.wmf
H

SLP

hi

2

oleObject584.bin

image484.wmf
3

h

oleObject585.bin

image485.wmf
3

h

image50.wmf
j

s

oleObject586.bin

image486.wmf
3

_

bits

back

re

-

oleObject587.bin

image487.wmf
3

h

oleObject588.bin

image488.wmf
low

track

_

3

oleObject589.bin

image489.wmf
3

_

index

final

oleObject590.bin

image490.wmf
hi

track

_

oleObject51.bin

oleObject591.bin

oleObject592.bin

image491.wmf
0

_

index

final

oleObject593.bin

image492.wmf
1

_

index

final

oleObject594.bin

image493.wmf
2

_

index

final

oleObject595.bin

image494.wmf
3

_

index

final

oleObject596.bin

image2.wmf
(

)

(

)

(

)

(

)

(

)

1

1

1

emph

de

1

1

-

-

-

=

=

z

z

A

z

H

z

A

z

W

b

g

g

image51.wmf
j

image495.emf

Microsoft_Word_Document.docx
[image:]

image1.emf

image496.wmf
(

)

(

)

(

)

63

,

,

0

,

11

K

=

-

=

n

n

y

g

n

x

n

x

p

oleObject597.bin

oleObject598.bin

image497.wmf
p

g

oleObject599.bin

image498.wmf
(

)

n

x

oleObject600.bin

image499.wmf
H

oleObject52.bin

oleObject601.bin

image500.wmf
(

)

0

h

oleObject602.bin

image501.wmf
(

)

(

)

63

,

,

1

h

h

K

oleObject603.bin

image502.wmf
11

x

H

d

T

=

oleObject604.bin

image503.wmf
(

)

n

x

11

oleObject605.bin

image504.wmf
(

)

n

h

image52.wmf
k

oleObject606.bin

image505.wmf
H

H

Φ

T

=

oleObject607.bin

image506.wmf
(

)

n

h

oleObject608.bin

oleObject609.bin

image507.wmf
(

)

z

F

oleObject610.bin

image508.wmf
(

)

n

d

oleObject611.bin

oleObject53.bin

image509.wmf
(

)

(

)

(

)

63

,

,

0

,

63

11

K

=

-

=

å

=

n

n

i

h

i

x

n

d

n

i

oleObject612.bin

image510.wmf
Φ

oleObject613.bin

image511.wmf
(

)

(

)

(

)

63

,

,

,

63

,

,

0

,

,

63

K

K

i

j

i

j

n

h

i

n

h

j

i

j

n

=

=

-

-

=

å

=

j

oleObject614.bin

image512.wmf
k

c

oleObject615.bin

image513.wmf
(

)

(

)

(

)

k

k

k

T

k

k

T

k

T

T

k

k

T

k

E

R

Q

2

2

2

11

=

=

=

Φc

c

c

d

Hc

H

c

Hc

x

oleObject616.bin

image53.wmf
j

oleObject617.bin

image514.wmf
Φ

oleObject618.bin

image515.wmf
(

)

n

c

k

oleObject619.bin

image516.wmf
(

)

i

N

i

i

m

d

s

R

p

å

-

=

=

1

0

oleObject620.bin

image517.wmf
i

m

oleObject621.bin

image518.wmf
i

s

oleObject54.bin

oleObject622.bin

image519.wmf
p

N

oleObject623.bin

image520.wmf
(

)

(

)

j

i

j

N

i

N

i

j

i

N

i

i

i

m

m

s

s

m

m

E

p

p

p

,

2

,

1

0

1

1

1

0

j

j

å

å

å

-

=

-

+

=

-

=

+

=

oleObject624.bin

image521.wmf
(

)

n

d

oleObject625.bin

image522.wmf
n

oleObject626.bin

image523.wmf
(

)

n

d

oleObject55.bin

oleObject627.bin

image524.wmf
(

)

n

d

oleObject628.bin

image525.wmf
(

)

h

k

,

F

oleObject629.bin

image526.wmf
N

oleObject630.bin

image527.wmf
H

oleObject631.bin

image528.wmf
C

oleObject56.bin

oleObject632.bin

image529.wmf
N

N

´

oleObject633.bin

image530.wmf
(

)

N

K

N

´

-

+

1

oleObject634.bin

image531.wmf
)

(

n

h

oleObject635.bin

image532.wmf
)

(

n

h

oleObject636.bin

image533.wmf
K

image54.wmf
å

å

=

=

+

-

=

8

1

2

8

1

2

)

(

)

(

'

)

(

)

(

'

)

(

'

2

i

k

i

j

k

j

kj

i

l

i

w

s

i

l

i

x

i

w

s

d

oleObject637.bin

image534.wmf
)

(

z

F

oleObject638.bin

image535.wmf
11

1

H

=

q

x

-

oleObject639.bin

image536.wmf
C

C

Φ

T

=

oleObject640.bin

image537.wmf
)

(

n

h

oleObject641.bin

image538.wmf
(

)

(

)

(

)

(

)

1

,

,

0

,

,

0

-

¼

=

+

-

=

-

=

å

=

N

n

h

k

n

h

n

h

h

k

h

k

K

n

f

Φ

oleObject57.bin

oleObject642.bin

image539.wmf
(

)

(

)

(

)

(

)

.

1

,

,

0

,

1

11

-

¼

=

-

-

=

å

=

N

n

k

n

q

k

h

n

x

n

q

n

k

oleObject643.bin

image540.wmf
Rq

d

=

oleObject644.bin

image541.wmf
(

)

(

)

(

)

.

1

,

,

0

,

1

0

-

¼

=

-

=

å

-

=

N

n

k

q

k

n

n

d

N

k

f

oleObject645.bin

image542.wmf
k

c

oleObject646.bin

image543.wmf
(

)

(

)

k

k

k

E

R

Q

2

2

2

=

=

=

k

T

k

k

T

k

T

k

k

T

Φc

c

c

d

Φc

c

Φc

q

oleObject2.bin

image55.wmf
)

8

(

)

8

(

'

k

l

x

oleObject647.bin

image544.emf
 g

p

past excitation

t

 g

c

dgh

 hvh

 bnb

 nbb

 vbn|

 bnb

 bnv

 vbn

 fbn

 |hj

k

min{|error(n)|

2

}

W(z)

pre-emphasised

input signal

s(n)

x(n)

x

11

(n)

y(n)

z(n)

v(n)

s

w

(n)

c(n)

w(n)

iDCT

q(n)

g

q

DCT

AVQ

enc

q

in

(n)

F

p

(z)

1/F

p

(z)

q

in,d

(n)

q

d

(n)

Q

in,d

(k)

Q

d

(k)

F(z)W(z)

0-state

W(z)

0-input

W(z)

W(z)

algebraic

codebook

pre-quantizer

Microsoft_Visio_2003-2010_Drawing.vsd
qin,d(n)

qd(n)

Qin,d(k)

Qd(k)

 gp

image545.wmf
)

(

n

q

in

oleObject648.bin

image546.wmf
)

(

)

(

)

(

n

v

g

n

r

n

q

p

in

×

-

=

oleObject649.bin

image547.wmf
)

(

n

q

in

oleObject650.bin

image548.wmf
)

(

z

F

p

oleObject58.bin

oleObject651.bin

image549.wmf
)

(

z

F

p

oleObject652.bin

image550.wmf
)

1

(

)

(

)

(

,

,

-

×

+

=

n

q

n

q

n

q

d

in

in

d

in

a

oleObject653.bin

image551.wmf
)

(

,

n

q

d

in

oleObject654.bin

image552.wmf
3

.

0

=

a

oleObject655.bin

oleObject656.bin

image56.wmf
k

image553.wmf
)

(

,

k

Q

d

in

oleObject657.bin

image554.wmf
)

(

k

Q

d

oleObject658.bin

image555.wmf
)

(

k

Q

d

oleObject659.bin

image556.wmf
)

(

/

1

z

F

p

oleObject660.bin

image557.wmf
)

(

n

q

oleObject661.bin

oleObject59.bin

oleObject662.bin

oleObject663.bin

image558.wmf
å

å

-

=

-

=

=

1

0

1

0

,

)

(

)

(

)

(

)

(

N

k

d

d

N

k

d

d

in

q

k

Q

k

Q

k

Q

k

Q

g

oleObject664.bin

oleObject665.bin

image559.wmf
)

(

k

Q

d

oleObject666.bin

image560.wmf
1

,...,

0

-

=

K

k

oleObject667.bin

image561.wmf
64

=

K

oleObject60.bin

oleObject668.bin

image562.wmf
q

g

oleObject669.bin

image563.wmf
pred

E

oleObject670.bin

image564.wmf
,

q

qnorm

pred

g

g

E

=

image565.wmf
pred

E

oleObject671.bin

image566.wmf
norm

q

g

,

oleObject672.bin

image57.wmf
kj

d

image567.wmf
)

(

n

q

oleObject673.bin

image568.wmf
)

(

n

x

oleObject674.bin

image569.wmf
)

(

)

(

)

(

n

w

g

n

x

n

x

q

updt

×

-

=

oleObject675.bin

image570.wmf
)

(

n

x

updt

oleObject676.bin

oleObject677.bin

image571.wmf
)

(

11

n

x

oleObject61.bin

oleObject678.bin

image572.wmf
)

(

)

(

)

(

)

(

,

11

n

y

g

n

w

g

n

x

n

x

updt

p

q

×

-

×

-

=

oleObject679.bin

image573.wmf
)

(

n

w

oleObject680.bin

image574.wmf
)

(

n

q

oleObject681.bin

image575.wmf
updt

p

g

,

oleObject682.bin

image576.wmf
)

(

n

r

oleObject62.bin

oleObject683.bin

image577.wmf
)

(

)

(

)

(

)

(

,

n

v

g

n

q

g

n

r

n

r

updt

p

q

updt

×

-

×

-

=

oleObject684.bin

image578.wmf
acelp

harm

_

oleObject685.bin

image579.wmf
2

_

£

acelp

harm

oleObject686.bin

image580.wmf
)

(

,

n

q

d

in

oleObject687.bin

image581.wmf
)

(

n

q

d

image58.wmf
kj

d

oleObject688.bin

image582.emf
 g

p

past excitation

t

 g

c

dgh

 hvh

 bnb

 nbb

 vbn|

 bnb

 bnv

 vbn

 fbn

 |hj

k

min{|error(n)|

2

}

W(z)

x(n)

x

11

(n)

y(n)

z(n)

v(n)

c(n)

w(n)

iDCT

u(n)

g

q

DCT

AVQ

enc

u

in

(n)

F

p

(z)

1/F

p

(z)

u

in,d

(n)

u

d

(n)

U

in,d

(k)

U

d

(k)

x

3

(n)

pre-emphasised

input signal

W(z)

0-input

algebraic

codebook

W(z)

W(z)

W(z)

de-quantizer

Microsoft_Visio_2003-2010_Drawing1.vsd
 gp

image583.wmf
)

(

3

n

x

oleObject689.bin

image584.wmf
)

(

)

(

)

(

)

(

3

n

z

g

n

y

g

n

x

n

x

c

p

×

-

×

-

=

oleObject690.bin

oleObject691.bin

image585.wmf
)

(

n

u

in

oleObject692.bin

oleObject63.bin

image586.wmf
)

(

n

u

in

oleObject693.bin

image587.wmf
)

(

z

F

p

oleObject694.bin

image588.wmf
)

(

,

n

u

d

in

oleObject695.bin

image589.wmf
)

(

,

k

U

d

in

oleObject696.bin

image590.wmf
)

(

k

U

d

oleObject697.bin

image3.wmf
)

1

(

1

)

(

1

1

emph

de

-

-

-

=

z

z

H

b

image59.wmf
k

l

image591.wmf
)

(

k

U

d

oleObject698.bin

oleObject699.bin

image592.wmf
)

(

n

u

oleObject700.bin

oleObject701.bin

image593.wmf
å

å

-

=

-

=

=

1

0

1

0

,

)

(

)

(

)

(

)

(

N

k

d

d

N

k

d

d

in

q

k

U

k

U

k

U

k

U

g

oleObject702.bin

image594.wmf
)

(

,

k

U

d

in

oleObject703.bin

oleObject64.bin

oleObject704.bin

image595.wmf
q

g

oleObject705.bin

image596.wmf
c

g

oleObject706.bin

oleObject707.bin

image597.wmf
65

.

0

0

£

£

p

g

oleObject708.bin

image598.wmf
)

(

k

S

¢

oleObject709.bin

image60.wmf
k

l

image599.wmf
(

)

{

}

1

,

1

,

1

,

1

,

1

,

1

,

1

,

1

2

2

8

8

8

+

È

=

D

D

RE

oleObject710.bin

image600.wmf
8

D

oleObject711.bin

image601.wmf
8

2

D

oleObject712.bin

image602.wmf
8

D

oleObject713.bin

image603.wmf
8

2

D

oleObject714.bin

oleObject65.bin

image604.wmf
8

RE

oleObject715.bin

image605.wmf
j

n

8

oleObject716.bin

image606.wmf
j

n

oleObject717.bin

image607.wmf
j

oleObject718.bin

image608.wmf
j

n

oleObject719.bin

image61.wmf
j

s

image609.wmf
0

Q

oleObject720.bin

image610.wmf
2

Q

oleObject721.bin

image611.wmf
3

Q

oleObject722.bin

image612.wmf
4

Q

oleObject723.bin

image613.wmf
0

Q

oleObject724.bin

oleObject66.bin

oleObject725.bin

image614.wmf
3

Q

oleObject726.bin

image615.wmf
4

Q

oleObject727.bin

image616.wmf
j

n

Q

oleObject728.bin

image617.wmf
j

n

4

oleObject729.bin

image618.wmf
AVQ

C

image62.wmf
x

oleObject730.bin

oleObject731.bin

image619.wmf
AVQ

C

oleObject732.bin

image620.wmf
v

j

M

oleObject733.bin

image621.wmf
j

j

v

j

j

M

v

z

c

+

×

=

oleObject734.bin

image622.wmf
v

j

M

oleObject735.bin

oleObject67.bin

image623.wmf
j

z

oleObject736.bin

image624.wmf
AVQ

C

oleObject737.bin

image625.wmf
j

v

oleObject738.bin

image626.wmf
j

c

oleObject739.bin

oleObject740.bin

image627.wmf
v

j

M

image63.wmf
sf

force

_

oleObject741.bin

image628.wmf
v

j

r

v

j

M

2

=

oleObject742.bin

image629.wmf
v

j

r

oleObject743.bin

image630.wmf
j

c

oleObject744.bin

oleObject745.bin

oleObject746.bin

image631.wmf
2

Q

oleObject68.bin

oleObject747.bin

image632.wmf
3

Q

oleObject748.bin

image633.wmf
4

Q

oleObject749.bin

image634.wmf
3

Q

oleObject750.bin

image635.wmf
4

Q

oleObject751.bin

image636.wmf
2

=

v

j

r

oleObject3.bin

image64.wmf
len

frame

D

sf

_

400000

256

25

.

1

-

=

oleObject752.bin

oleObject753.bin

oleObject754.bin

image637.wmf
2

or

1

=

v

j

r

oleObject755.bin

image638.wmf
4

or

2

=

v

j

M

oleObject756.bin

image639.wmf
0

=

v

j

r

oleObject757.bin

oleObject758.bin

oleObject69.bin

oleObject759.bin

image640.wmf
0

=

v

j

r

oleObject760.bin

oleObject761.bin

image641.wmf
v

j

r

oleObject762.bin

oleObject763.bin

oleObject764.bin

image642.wmf
0

=

j

n

oleObject765.bin

image65.wmf
sf

force

_

oleObject766.bin

image643.wmf
j

n

Q

oleObject767.bin

image644.wmf
4

or

,

3

,

2

=

j

n

oleObject768.bin

oleObject769.bin

oleObject770.bin

image645.wmf
j

n

4

oleObject771.bin

image646.wmf
j

n

Q

oleObject70.bin

oleObject772.bin

image647.wmf
j

n

5

oleObject773.bin

image648.wmf
4

>

j

n

oleObject774.bin

oleObject775.bin

oleObject776.bin

image649.wmf
4

Q

oleObject777.bin

oleObject778.bin

oleObject71.bin

image650.wmf
v

j

r

oleObject779.bin

image651.wmf
7

<

j

n

oleObject780.bin

oleObject781.bin

oleObject782.bin

image652.wmf
4

Q

oleObject783.bin

image653.wmf
v

j

r

8

oleObject784.bin

image66.wmf
2

1

,

j

j

image654.wmf
j

v

oleObject785.bin

image655.wmf
v

j

r

oleObject786.bin

oleObject787.bin

oleObject788.bin

image656.wmf
0

>

j

n

oleObject789.bin

image657.wmf
1

5

-

j

n

oleObject790.bin

oleObject72.bin

oleObject791.bin

image658.wmf
)

(

k

S

¢

oleObject792.bin

oleObject793.bin

image659.wmf
nbits

oleObject794.bin

image660.wmf
å

=

j

j

R

nbits

oleObject795.bin

image661.wmf
j

R

oleObject796.bin

image67.wmf
2

1

,

k

k

image662.wmf
j

oleObject797.bin

image663.wmf
÷

÷

ø

ö

ç

ç

è

æ

=

2

log

5

2

j

j

E

R

oleObject798.bin

image664.wmf
i

E

oleObject799.bin

image665.wmf
)

8

(

j

S

¢

oleObject800.bin

image666.wmf
[

]

÷

÷

ø

ö

ç

ç

è

æ

+

¢

=

å

=

7

0

2

)

8

(

,

2

max

i

j

i

j

S

E

oleObject801.bin

oleObject73.bin

image667.wmf
(

)

å

=

-

=

NB_SBANDS

1

,

0

max

j

j

offset

R

nbits

oleObject802.bin

image668.wmf
(

)

(

)

2

log

1

.

0

exp

10

10

×

offset

oleObject803.bin

image669.wmf
)

(

k

S

norm

¢

oleObject804.bin

image670.wmf
(

)

(

)

(

)

(

)

[

]

2

log

1

.

0

exp

10

10

×

×

¢

=

¢

offset

k

S

k

S

norm

oleObject805.bin

image671.wmf
8

2

D

oleObject806.bin

image68.wmf
2

1

,

l

l

I

I

image672.wmf
)

1

,

1

,

1

,

1

,

1

,

1

,

1

,

1

(

2

8

+

D

oleObject807.bin

image673.wmf
)

8

(

j

norm

S

¢

oleObject808.bin

image674.wmf
)

8

(

ˆ

j

S

¢

oleObject809.bin

image675.wmf
8

RE

oleObject810.bin

image676.wmf
)

8

(

j

norm

S

¢

oleObject811.bin

image4.wmf
1

b

oleObject74.bin

image677.wmf
8

RE

oleObject812.bin

image678.wmf
8

2

D

oleObject813.bin

image679.wmf
)

8

(

j

norm

S

¢

oleObject814.bin

image680.wmf
)

8

(

5

.

0

j

norm

j

S

z

¢

×

=

oleObject815.bin

image681.wmf
j

z

oleObject816.bin

image69.wmf
2

1

,

s

s

I

I

image682.wmf
j

z

¢

oleObject817.bin

image683.wmf
j

j

z

y

¢

=

2

1

oleObject818.bin

image684.wmf
S

oleObject819.bin

image685.wmf
j

1

y

oleObject820.bin

image686.wmf
S

oleObject821.bin

oleObject75.bin

image687.wmf
th

I

oleObject822.bin

image688.wmf
(

)

(

)

(

)

(

)

(

)

î

í

ì

<

-

=

otherwise.

,

2

+

,

0

–

if

,

2

1

1

1

1

I

y

I

y

I

z

I

y

I

y

j

j

j

j

j

oleObject823.bin

image689.wmf
(

)

(

)

)

(

)

(

max

arg

1

i

y

i

z

I

j

j

-

=

oleObject824.bin

image690.wmf
j

2

y

oleObject825.bin

oleObject826.bin

image691.wmf
)

8

(

j

norm

S

¢

image70.wmf
2

,

1

),

(

=

i

j

O

i

s

oleObject827.bin

image692.wmf
(

)

1.0

S

z

-

¢

×

=

)

8

(

5

.

0

j

norm

j

oleObject828.bin

image693.wmf
1.0

oleObject829.bin

image694.wmf
j

z

oleObject830.bin

oleObject831.bin

image695.wmf
j

j

z

y

¢

=

2

2

oleObject832.bin

oleObject76.bin

image696.wmf
j

2

y

oleObject833.bin

image697.wmf
(

)

(

)

(

)

(

)

(

)

î

í

ì

<

-

=

otherwise.

,

2

+

,

0

–

if

,

2

2

2

2

2

I

y

I

y

I

z

I

y

I

y

j

j

j

j

j

oleObject834.bin

image698.wmf
(

)

(

)

)

(

)

(

max

arg

2

i

y

i

z

I

j

j

-

=

oleObject835.bin

image699.wmf
1.0

y

y

+

=

j

j

2

2

oleObject836.bin

image700.wmf
j

1

y

oleObject837.bin

image71.wmf
2

,

1

),

(

=

i

k

O

i

l

image701.wmf
j

2

y

oleObject838.bin

image702.wmf
)

8

(

ˆ

j

S

¢

oleObject839.bin

image703.wmf
8

RE

oleObject840.bin

image704.wmf
)

8

(

j

norm

S

¢

oleObject841.bin

image705.wmf
î

í

ì

>

=

¢

otherwise.

,

,

if

,

)

8

(

ˆ

2

2

1

1

j

j

j

j

e

e

j

y

y

S

oleObject842.bin

oleObject77.bin

image706.wmf
(

)

2

1

1

)

8

(

j

norm

j

j

e

y

S

-

¢

=

oleObject843.bin

image707.wmf
(

)

2

2

2

)

8

(

j

norm

j

j

e

y

S

-

¢

=

oleObject844.bin

image708.wmf
)

8

(

ˆ

j

S

¢

oleObject845.bin

image709.wmf
)

8

(

j

norm

S

¢

oleObject846.bin

image710.wmf
j

c

oleObject847.bin

image72.wmf
)

(

0

i

k

p

image711.wmf
j

c

oleObject848.bin

image712.wmf
j

n

oleObject849.bin

image713.wmf
j

I

oleObject850.bin

image714.wmf
AVQ

C

oleObject851.bin

image715.wmf
4

>

j

n

oleObject852.bin

oleObject78.bin

image716.wmf
v

j

I

oleObject853.bin

image717.wmf
AVQ

C

oleObject854.bin

oleObject855.bin

image718.wmf
8

RE

oleObject856.bin

oleObject857.bin

oleObject858.bin

oleObject859.bin

image73.wmf
2

N

oleObject860.bin

image719.wmf
j

n

oleObject861.bin

image720.wmf
j

I

oleObject862.bin

oleObject863.bin

image721.wmf
j

n

Q

oleObject864.bin

oleObject865.bin

image722.wmf
3

Q

oleObject4.bin

oleObject79.bin

oleObject866.bin

image723.wmf
4

Q

oleObject867.bin

image724.wmf
j

z

oleObject868.bin

image725.wmf
j

v

oleObject869.bin

image726.wmf
j

n

oleObject870.bin

oleObject871.bin

image74.wmf
2

,

1

)

)

(

(

)

(

)

(

0

=

+

+

+

=

i

for

I

k

I

k

O

j

O

I

li

i

si

i

l

i

s

i

p

oleObject872.bin

oleObject873.bin

oleObject874.bin

image727.wmf
3

Q

oleObject875.bin

image728.wmf
4

Q

oleObject876.bin

oleObject877.bin

image729.wmf
j

v

oleObject878.bin

oleObject80.bin

image730.wmf
j

n

oleObject879.bin

oleObject880.bin

image731.wmf
0

=

j

n

oleObject881.bin

oleObject882.bin

oleObject883.bin

oleObject884.bin

image732.wmf
)

(

0

s

sign

bits

oleObject885.bin

image75.wmf
0

p

image733.wmf
j

z

oleObject886.bin

image734.wmf
)

(

0

y

rank

oleObject887.bin

image735.wmf
)

(

0

s

sign

bits

oleObject888.bin

image736.wmf
)

(

j

rank

z

oleObject889.bin

image737.wmf
)

(

2

)

(

)

(

0

)

(

0

0

s

y

z

s

sign

sign

j

bits

rank

rank

nb

+

×

=

oleObject890.bin

oleObject81.bin

image738.wmf
)

(

j

offset

lead

z

oleObject891.bin

image739.wmf
j

I

oleObject892.bin

image740.wmf
)

(

)

(

j

j

offset

j

rank

lead

I

z

z

+

=

oleObject893.bin

oleObject894.bin

image741.wmf
0

L

oleObject895.bin

image742.wmf
n

oleObject82.bin

oleObject896.bin

image743.wmf
n

L

oleObject897.bin

image744.wmf
1

L

oleObject898.bin

oleObject899.bin

oleObject900.bin

image745.wmf
0

L

oleObject901.bin

image746.wmf
i

q

image76.wmf
0

p

oleObject902.bin

image747.wmf
)

,...,

,

,

(

1

2

1

0

1

-

m

q

q

q

q

oleObject903.bin

image748.wmf
1

L

oleObject904.bin

oleObject905.bin

oleObject906.bin

oleObject907.bin

oleObject908.bin

oleObject909.bin

oleObject83.bin

oleObject910.bin

image749.emf
(1, 4, 6)

↑ ↑ ↑

0 1 2 3 4 5 6 7

(0 2, 0, 0, 4, 0, 6, 0)

The position vector

The element position

The original absolute vector of

(upper level vector)

(0 2, 0, 0, 4, 0, 6, 0)

↓ ↓ ↓

(2, 4, 6)

One type of the element “0” is removed

The new absolute vector of

(lower level vector)

image750.wmf
20

=

a

K

oleObject911.bin

oleObject912.bin

oleObject913.bin

oleObject914.bin

image751.wmf
1

,

mid

I

oleObject915.bin

oleObject916.bin

image77.wmf
÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

-

å

1

2

0

1

0

0

1

0

...

...

n

n

i

i

n

k

k

S

k

k

S

k

S

k

k

S

image752.wmf
(

)

å

<

=

-

-

-

-

-

-

+

-

=

-

1

1

0

1

1

0

1

0

0

1

0

1

1

,

m

i

i

i

m

q

m

i

m

q

m

m

q

m

m

m

mid

i

i

C

C

C

C

I

oleObject917.bin

image753.wmf
1

,

1

0

mid

m

m

final

final

I

C

I

I

+

×

=

oleObject918.bin

image754.wmf
final

I

oleObject919.bin

image755.wmf
0

m

oleObject920.bin

oleObject921.bin

image756.wmf
1

m

oleObject84.bin

oleObject922.bin

oleObject923.bin

image757.wmf
n

L

oleObject924.bin

image758.wmf
max

n

ML

L

<

<

0

oleObject925.bin

image759.wmf
1

-

n

L

oleObject926.bin

image760.wmf
n

mid

I

,

oleObject927.bin

image5.wmf
(

)

z

A

image78.wmf
2

1

2

I

I

N

I

+

=

image761.wmf
(

)

å

<

=

-

-

-

-

-

-

-

-

-

-

-

+

-

=

n

n

i

n

n

i

n

n

n

n

n

m

i

i

i

m

q

m

i

m

q

m

m

q

m

m

m

n

mid

C

C

C

C

I

1

,

1

1

1

0

1

1

oleObject928.bin

image762.wmf
n

mid

m

m

final

final

I

C

I

I

n

n

,

1

+

×

=

-

oleObject929.bin

image763.wmf
...

,

,

2

1

0

q

q

q

oleObject930.bin

oleObject931.bin

image764.wmf
1

-

n

m

oleObject932.bin

image765.wmf
n

m

oleObject85.bin

oleObject933.bin

image766.wmf
m

q

C

oleObject934.bin

image767.wmf
)!

(

!

!

q

p

m

q

C

m

q

-

=

oleObject935.bin

image768.wmf
{

}

8

,

4

,

3

,

2

,

1

,

=

m

q

oleObject936.bin

image769.wmf
m

q

>

oleObject937.bin

image770.wmf
m

q

C

image79.wmf
v

N

2

=

oleObject938.bin

oleObject939.bin

oleObject940.bin

image771.wmf
n

n

m

m

C

1

-

oleObject941.bin

oleObject942.bin

oleObject943.bin

oleObject944.bin

image772.wmf
)

(

0

y

rank

oleObject945.bin

oleObject86.bin

image773.wmf
a

K

oleObject946.bin

image774.wmf
n

S

oleObject947.bin

image775.wmf
c

V

oleObject948.bin

image776.wmf
3

2

1

,

,

m

m

m

oleObject949.bin

image777.wmf
j

n

Q

oleObject950.bin

image80.wmf
L

R

R

)

~

(

2

+

image778.wmf
a

K

oleObject951.bin

image779.wmf
n

S

oleObject952.bin

image780.wmf
c

V

oleObject953.bin

image781.wmf
3

2

1

,

,

m

m

m

oleObject954.bin

oleObject955.bin

oleObject956.bin

oleObject87.bin

image782.emf
Lead

20: (0,-2,0,0,4,0,6,0)

(0,-1,0,0,1,0,1,0)

Lead

20: (0,2,0,0,4,0,6,0)

(0,x,0,0,x,0,x,0)

3 from 8

：（

1,4,6

(2,4,6)

(2,x,x)

2 from 3

：

(1,2

(4,6)

(4,x)

1 from 2

：

(1

(6)

I

final

+31=31

I

final

·

3=93

I

final

+2=95

I

final

·

2=190

I

final

+1=191

(o,x,o,o,x,o,x,o)

(o,x,x)

(o,x)

sign=4

rank=191*8+4=1532

I

p

=rank+offset=59260

(-1,1,1)

1,0,0

final_index =0

I

final

·

56=0

Microsoft_Visio_2003-2010_Drawing2.vsd
Lead20: (0,-2,0,0,4,0,6,0)

(0,-1,0,0,1,0,1,0)

Lead20: (0,2,0,0,4,0,6,0)

(0,x,0,0,x,0,x,0)

3 from 8：（1,4,6

(2,4,6)

(2,x,x)

2 from 3：(1,2

(4,6)

(4,x)

1 from 2：(1

(6)

Ifinal+31=31

Ifinal·3=93

Ifinal+2=95

Ifinal·2=190

Ifinal+1=191

(o,x,o,o,x,o,x,o)

(o,x,x)

(o,x)

sign=4

rank=191*8+4=1532

Ip=rank+offset=59260

(-1,1,1)

1,0,0

final_index =0

Ifinal·56=0

oleObject957.bin

image783.wmf
1

L

oleObject958.bin

image784.wmf
2

L

oleObject959.bin

image785.wmf
3

L

oleObject960.bin

oleObject961.bin

image81.wmf
R

~

image786.wmf
1

=

v

j

r

oleObject962.bin

image787.wmf
v

j

r

v

j

M

2

=

oleObject963.bin

image788.wmf
v

j

I

oleObject964.bin

oleObject965.bin

image789.wmf
v

j

r

oleObject966.bin

image790.wmf
v

j

M

oleObject88.bin

oleObject967.bin

image791.wmf
v

j

I

oleObject968.bin

oleObject969.bin

image792.wmf
)

(

mod

1

-

=

G

c

I

j

M

v

j

v

j

oleObject970.bin

image793.wmf
G

oleObject971.bin

image794.wmf
8

RE

oleObject972.bin

image82.wmf
L

R

~

2

image795.wmf
v

j

I

oleObject973.bin

image796.wmf
]

1

,

0

[

-

v

j

M

oleObject974.bin

image797.wmf
j

v

oleObject975.bin

image798.wmf
v

j

I

oleObject976.bin

image799.wmf
j

v

j

j

j

M

2

1

ˆ

y

y

v

×

-

=

oleObject977.bin

oleObject89.bin

image800.wmf
j

2

ˆ

y

oleObject978.bin

image801.wmf
j

2

y

oleObject979.bin

oleObject980.bin

image802.wmf
j

1

y

oleObject981.bin

image803.wmf
j

2

y

oleObject982.bin

image804.wmf
ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

1

1

1

1

1

1

1

1

0

2

0

0

0

0

0

2

0

0

2

0

0

0

0

2

0

0

0

2

0

0

0

2

0

0

0

0

2

0

0

2

0

0

0

0

0

2

0

2

0

0

0

0

0

0

2

2

0

0

0

0

0

0

0

4

1

v

j

j

I

y

oleObject5.bin

image83.wmf
R

oleObject983.bin

image805.wmf
(

)

v

j

j

j

M

]

0

,

0

,

0

,

0

,

0

,

0

,

0

,

2

[

1

2

-

=

y

y

oleObject984.bin

image806.wmf
j

j

j

v

c

w

-

=

oleObject985.bin

image807.wmf
j

w

oleObject986.bin

image808.wmf
8

RE

M

v

j

×

oleObject987.bin

image809.wmf
v

j

j

j

M

w

z

=

oleObject90.bin

oleObject988.bin

oleObject989.bin

image810.wmf
j

z

oleObject990.bin

image811.wmf
8

RE

oleObject991.bin

oleObject992.bin

image812.wmf
8

RE

M

v

j

×

oleObject993.bin

image813.wmf
j

z

image84.wmf
)

4

log

(

2

-

NS

oleObject994.bin

image814.wmf
AVQ

C

oleObject995.bin

image815.wmf
3

Q

oleObject996.bin

image816.wmf
4

Q

oleObject997.bin

oleObject998.bin

image817.wmf
v

j

r

oleObject999.bin

oleObject91.bin

image818.wmf
v

j

M

oleObject1000.bin

oleObject1001.bin

image819.wmf
v

j

r

oleObject1002.bin

image820.wmf
v

j

r

v

j

M

2

=

oleObject1003.bin

image821.wmf
j

c

oleObject1004.bin

image822.wmf
j

n

image85.emf
00

01

10

11

00

01

10

11

m -log

2

4 m

4

-

s

t

a

t

e

8 stages

1

oleObject1005.bin

image823.wmf
j

I

oleObject1006.bin

image824.wmf
v

j

I

oleObject1007.bin

image825.wmf
j

n

oleObject1008.bin

image826.wmf
j

n

oleObject1009.bin

image827.wmf
0

Q

image86.wmf
u

£

£

k

0

oleObject1010.bin

image828.wmf
j

I

oleObject1011.bin

image829.wmf
v

j

I

oleObject1012.bin

image830.wmf
v

j

r

8

oleObject1013.bin

oleObject1014.bin

image831.wmf
j

I

oleObject1015.bin

oleObject92.bin

image832.wmf
v

j

I

oleObject1016.bin

image833.wmf
)...]

)(

[(

1

1

1

0

0

0

v

v

I

n

I

n

I

I

oleObject1017.bin

image834.wmf
j

oleObject1018.bin

image835.wmf
C

oleObject1019.bin

image836.wmf
v

j

I

oleObject1020.bin

image87.wmf
k

2

image837.wmf
[

]

(

)

,

3

,

2

,

1

,

0

,

64

1

log

10

63

0

2

=

÷

÷

ø

ö

ç

ç

è

æ

=

å

=

i

for

i

r

E

i

i

r

oleObject1021.bin

image838.wmf
i

oleObject1022.bin

image839.wmf
(

)

n

r

oleObject1023.bin

image840.wmf
[

]

å

=

=

3

0

25

.

0

i

i

r

r

E

E

oleObject1024.bin

image841.wmf
[

]

[

]

(

)

1

0

5

.

0

norm

norm

r

i

C

C

E

E

+

-

=

oleObject1025.bin

oleObject93.bin

image842.wmf
[

]

0

norm

C

oleObject1026.bin

image843.wmf
[

]

1

norm

C

oleObject1027.bin

image844.wmf
i

E

oleObject1028.bin

image845.wmf
(

)

(

)

ind

book

i

book

i

k

ind

k

E

E

k

E

E

k

=

-

=

=

ˆ

min

7

0

oleObject1029.bin

image846.wmf

oleObject1030.bin

image88.wmf
k

v

-

2

image847.wmf
(

)

n

book

k

k

E

2

,

,

0

,

K

=

oleObject1031.bin

image848.wmf
ind

k

oleObject1032.bin

image849.wmf
n

oleObject1033.bin

image850.wmf
c

E

oleObject1034.bin

image851.wmf
(

)

÷

÷

ø

ö

ç

ç

è

æ

=

å

=

63

0

2

64

1

log

10

n

c

n

c

E

oleObject1035.bin

image6.wmf
(

)

n

s

pre

oleObject94.bin

image852.wmf
(

)

n

c

oleObject1036.bin

image853.wmf
(

)

c

i

E

E

c

g

-

=

¢

ˆ

05

.

0

10

oleObject1037.bin

image854.wmf
c

g

oleObject1038.bin

image855.wmf
c

g

¢

oleObject1039.bin

image856.wmf
c

c

g

g

¢

=

g

oleObject1040.bin

image89.wmf
k

m

-

image857.wmf
p

g

oleObject1041.bin

image858.wmf
g

oleObject1042.bin

image859.wmf
z

y

z

x

y

x

z

z

y

y

x

x

T

c

p

T

c

T

p

T

c

T

p

T

g

g

g

g

g

g

E

2

2

2

2

2

+

-

-

+

+

=

oleObject1043.bin

image860.wmf
x

oleObject1044.bin

image861.wmf
y

oleObject1045.bin

oleObject95.bin

image862.wmf
z

oleObject1046.bin

image863.wmf
p

g

ˆ

oleObject1047.bin

image864.wmf
c

c

g

g

¢

=

g

ˆ

ˆ

oleObject1048.bin

image865.wmf
g

ˆ

oleObject1049.bin

oleObject1050.bin

image866.wmf
)

(

log

]

0

[

0

10

1

0

10

c

E

CT

a

a

c

g

-

+

=

oleObject96.bin

oleObject1051.bin

image867.wmf
c

E

oleObject1052.bin

image868.emf
_

+

linear estimation

a

0

+a

1

.CT

estimated gain g

c

0

[0]

coder type CT

correction factor

(from gain codebook)

gain of alg. exc.

log(.)

10^(.)

E

c

√(.)

g

Σ(.)

2

filtered alg. excitation

(from alg.codebook)

gain of adaptive exc.

(from gain codebook)

g

p

[0]

filtered adaptive exc.

(from adaptive codebook)

+

total filtered excitation

g

c

[0]

energy of

alg. exc.

Microsoft_Visio_2003-2010_Drawing3.vsd
gc[0]

energy of
alg. exc.

_

+

linear estimation
a0+a1.CT

estimated gain gc0[0]

coder type CT

correction factor
(from gain codebook)

gain of alg. exc.

log(.)

10^(.)

Ec

√(.)

g

filtered adaptive exc.
(from adaptive codebook)

Σ(.)2

filtered alg. excitation
(from alg. codebook)

gain of adaptive exc.
(from gain codebook)

gp[0]

+

total filtered excitation

image869.wmf
å

å

=

-

+

+

=

-

+

+

+

+

=

k

i

i

p

i

k

k

i

i

c

i

g

b

g

b

CT

b

b

k

c

g

1

]

1

[

1

1

]

1

[

10

1

1

0

)

(

log

]

[

0

10

oleObject1053.bin

image870.wmf
)

(

10

log

c

E

oleObject1054.bin

image871.emf
linear estimation

quantized gains of previous subframes

coder type CT

log(.)

g

p

[0]

,g

p

[1]

, ... g

c

[0]

,g

c

[1]

, ...

estimated gain g

c

0

[

k

]

correction factor

(from gain codebook)

gain of alg. exc.

10^(.)

g

filtered alg. exc.

(from alg. codebook)

gain of adaptive exc.

(from gain codebook)

g

p

(

k

)

filtered adaptive exc.

(from adaptive codebook)

+

total filtered excitation

g

c

[k]

 





 







  

k

i

i

p i k

k

i

i

c i

g b g b CT b b

1

]1 [

1

1

]1 [

10 1

1 0

) (log

oleObject97.bin

Microsoft_Visio_2003-2010_Drawing4.vsd
linear estimation

quantized gains of previous subframes

coder type CT

log(.)

gp[0],gp[1], ...

gc[0],gc[1], ...

estimated gain gc0[k]

correction factor
(from gain codebook)

gain of alg. exc.

10^(.)

g

filtered alg. exc.
(from alg. codebook)

gain of adaptive exc.
(from gain codebook)

gp(k)

filtered adaptive exc.
(from adaptive codebook)

+

total filtered excitation

gc[k]

image872.wmf
5

0

4

0

3

2

0

2

1

2

0

ˆ

ˆ

ˆ

]

ˆ

[

ˆ

ˆ

c

g

g

c

g

c

g

c

g

c

g

c

E

c

p

c

c

p

p

+

+

+

+

+

=

g

g

g

oleObject1055.bin

image873.wmf
x

x

z

y

z

x

z

z

y

x

y

y

T

T

T

T

T

T

c

c

c

c

c

c

=

=

=

=

=

=

5

4

3

2

1

0

,

,

,

,

,

oleObject1056.bin

image874.wmf
g

oleObject1057.bin

image875.emf
g

p

g

g

p

g

g

p

g

1.

2.

Q.

gain codebook

g

c

0

x

i

_

target signal

Σ(.)

2

estimated gain

correction

factor

+ +

error signal

e

i

quantized gain

of the fixed part

quantized gain of

the adaptive part

energy of

error signal

filtered innovation

filtered adapt. exc.

Microsoft_Visio_2003-2010_Drawing5.vsd
gp

gp

g

g

gp

g

1.

2.

Q.

gain codebook

gc0

Σ(.)2

xi

_

estimated gain

target signal

correction factor

+

+

error signal

ei

quantized gain of the fixed part

quantized gain of the adaptive part

energy of error signal

filtered innovation

filtered adapt. exc.

image876.wmf
)

(

)

(

z

y

x

z

y

x

e

e

c

p

T

c

p

T

g

g

g

g

E

-

-

-

-

=

=

oleObject98.bin

oleObject1058.bin

image877.wmf
c

g

oleObject1059.bin

image878.wmf
0

c

g

g

oleObject1060.bin

image879.wmf
4

0

3

0

2

2

0

2

1

0

2

5

2

2

2

c

g

g

c

g

c

g

c

g

c

g

c

E

c

p

c

c

p

p

g

g

g

+

-

+

-

+

=

oleObject1061.bin

image880.wmf
0

c

g

oleObject1062.bin

image881.wmf
p

g

image90.wmf
m

oleObject1063.bin

image882.wmf
g

oleObject1064.bin

image883.wmf
g

.

0

c

c

g

g

=

oleObject1065.bin

image884.wmf
g

oleObject1066.bin

image885.wmf
c

g

¢

oleObject1067.bin

image886.wmf
(

)

n

u

¢

oleObject99.bin

oleObject1068.bin

image887.wmf
(

)

(

)

(

)

63

,

,

0

,

ˆ

ˆ

K

=

+

=

¢

n

n

c

g

n

v

g

n

u

c

p

oleObject1069.bin

oleObject1070.bin

image888.wmf
c

g

ˆ

oleObject1071.bin

image889.wmf
(

)

n

v

oleObject1072.bin

image890.wmf
(

)

n

c

oleObject1073.bin

image91.wmf
k

image891.wmf
(

)

(

)

n

u

n

r

¢

-

oleObject1074.bin

image892.wmf
(

)

z

A

ˆ

1

oleObject1075.bin

image893.wmf
(

)

(

)

z

H

z

A

emph

de

-

1

g

oleObject1076.bin

image894.wmf
(

)

n

s

1

ˆ

,

1

oleObject1077.bin

oleObject1078.bin

oleObject1079.bin

oleObject100.bin

image895.wmf
(

)

(

)

(

)

n

s

n

s

n

x

1

1

ˆ

-

=

oleObject1080.bin

oleObject1081.bin

image896.wmf
(

)

63

,

,

48

,

1

K

=

n

n

x

oleObject1082.bin

oleObject1083.bin

image897.wmf
(

)

n

x

1

oleObject1084.bin

image898.wmf
(

)

n

x

w

,

1

oleObject1085.bin

oleObject6.bin

image92.wmf
N

image899.wmf
(

)

n

x

w

,

1

oleObject1086.bin

image900.wmf
(

)

(

)

(

)

(

)

n

z

g

n

y

g

n

x

n

x

c

p

w

ˆ

ˆ

,

1

-

-

=

oleObject1087.bin

image901.wmf
(

)

n

x

oleObject1088.bin

image902.wmf
(

)

n

y

oleObject1089.bin

image903.wmf
(

)

n

z

oleObject1090.bin

oleObject101.bin

image904.wmf
(

)

n

x

oleObject1091.bin

image905.wmf
(

)

n

y

oleObject1092.bin

image906.wmf
(

)

n

z

oleObject1093.bin

oleObject1094.bin

image907.wmf
63

,

,

48

K

=

n

oleObject1095.bin

image908.wmf
(

)

n

x

image93.wmf
NS

oleObject1096.bin

image909.wmf
(

)

n

y

oleObject1097.bin

image910.wmf
(

)

z

G

oleObject1098.bin

image911.wmf
(

)

(

)

z

H

z

W

oleObject1099.bin

image912.emf
adaptive

codebook

W(z)

pre-emphasized

input signal

W(z)

ˆ

() Az

target

signal

0-input

x(n)

W(z)

ˆ

() Az

g

p

F(z)W(z)

ˆ

() Az

g

c

algebraic

codebook

k

0-state

0-state

x

11

(n)

c(n)

Σ

+

–

Σ

+

–

Σ

+

–

updated

target

signal

y(n)

z(n)

x

1,w

(n)

G(z)

|

|

|

|

|

|

|

|

|

|

|

|

|

g

m

q

k′

(n)

p

k′

(n) k

′

position

shape

zero excitation

glottal-shape codebook

d

v(n)

image913.wmf
k

¢

p

oleObject102.bin

oleObject1101.bin

image914.wmf
k

¢

oleObject1102.bin

image915.wmf
k

¢

q

oleObject1103.bin

image916.wmf
k

¢

oleObject1104.bin

oleObject1105.bin

image917.wmf
k

¢

q

oleObject1106.bin

image94.wmf
L

image918.wmf
k

k

¢

¢

=

Gp

q

oleObject1107.bin

image919.wmf
G

oleObject1108.bin

image920.wmf
(

)

(

)

(

)

(

)

(

)

k

g

T

k

k

T

g

k

T

T

k

k

T

k

T

T

T

k

k

T

k

T

T

k

k

T

T

T

k

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

=

=

=

=

=

Á

p

Φ

p

p

d

Zp

Z

p

Zp

x

HGp

H

G

p

HGp

x

Hq

H

q

Hq

x

y

y

y

x

2

2

2

2

2

oleObject1109.bin

image921.wmf
H

oleObject1110.bin

image922.wmf
T

Z

oleObject1111.bin

oleObject103.bin

image923.wmf
k

¢

p

oleObject1112.bin

image924.wmf
(

)

(

)

(

)

k

k

Φ

k

d

g

g

k

¢

¢

¢

=

Á

¢

,

2

oleObject1113.bin

image925.wmf
g

Φ

oleObject1114.bin

image926.wmf
17

=

L

oleObject1115.bin

image927.wmf
L

oleObject1116.bin

image95.wmf
k

image928.wmf
[

]

2

,

0

+

op

T

oleObject1117.bin

image929.wmf
op

T

oleObject1118.bin

image930.wmf
g

d

oleObject1119.bin

image931.wmf
g

Φ

oleObject1120.bin

image932.wmf
(

)

z

G

oleObject1121.bin

oleObject104.bin

image933.wmf
Z

oleObject1122.bin

image934.wmf
8

2

1

=

L

oleObject1123.bin

image935.wmf
k

¢

z

oleObject1124.bin

image936.wmf
(

)

1

+

¢

k

oleObject1125.bin

image937.wmf
T

Z

oleObject1126.bin

image96.wmf
v

image938.wmf
T

T

T

H

G

Z

=

oleObject1127.bin

image939.wmf
1

2

1

+

L

oleObject1128.bin

oleObject1129.bin

image940.wmf
k

¢

oleObject1130.bin

image941.wmf
[

]

2

1

,

0

L

oleObject1131.bin

oleObject1132.bin

oleObject105.bin

image942.wmf
1

64

2

1

-

-

L

oleObject1133.bin

image943.wmf
T

Z

oleObject1134.bin

image944.wmf
0

=

¢

k

oleObject1135.bin

image945.wmf
(

)

n

h

oleObject1136.bin

image946.wmf
(

)

(

)

(

)

63

,

,

0

0

0

K

=

-

=

å

=

n

for

i

h

i

n

g

n

z

n

i

oleObject1137.bin

image7.wmf
(

)

1

1

g

z

A

image97.wmf
´

oleObject1138.bin

oleObject1139.bin

image947.wmf
(

)

n

z

1

oleObject1140.bin

image948.wmf
1

=

¢

k

oleObject1141.bin

oleObject1142.bin

image949.wmf
(

)

n

z

0

oleObject1143.bin

image950.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

63

,

,

1

1

,

0

0

1

K

=

¢

-

+

-

=

¢

-

=

-

¢

¢

¢

n

for

n

h

k

g

n

z

n

z

h

k

g

z

k

k

k

oleObject106.bin

oleObject1144.bin

image951.wmf
2

1

L

k

£

¢

oleObject1145.bin

image952.wmf
k

¢

oleObject1146.bin

oleObject1147.bin

image953.wmf
(

)

(

)

(

)

(

)

å

å

=

¢

¢

=

¢

¢

÷

÷

ø

ö

ç

ç

è

æ

=

Á

63

0

2

63

0

1

.

.

i

k

k

i

k

k

i

z

i

z

i

x

i

z

oleObject1148.bin

image954.wmf
63

,

,

1

2

1

K

+

L

oleObject1149.bin

image98.wmf
´

oleObject1150.bin

image955.wmf
2

1

L

k

=

¢

oleObject1151.bin

image956.wmf
(

)

(

)

(

)

63

,

,

1

1

,

0

0

1

K

=

-

=

=

-

¢

¢

¢

n

for

n

z

n

z

z

k

k

k

oleObject1152.bin

image957.wmf
k

¢

oleObject1153.bin

image958.wmf
[

]

63

,

,

1

2

1

K

+

L

oleObject1154.bin

oleObject1155.bin

oleObject107.bin

oleObject1156.bin

image959.wmf
63

=

¢

k

oleObject1157.bin

image960.wmf
(

)

(

)

(

)

å

=

+

-

=

2

1

2

1

0

2

1

63

63

L

i

L

g

i

z

i

L

x

d

oleObject1158.bin

image961.wmf
(

)

(

)

(

)

i

z

i

z

Φ

L

L

i

L

g

2

1

2

1

2

1

0

63

,

63

å

=

=

oleObject1159.bin

image962.wmf
62

=

¢

k

oleObject1160.bin

image963.wmf
(

)

(

)

(

)

(

)

1

1

63

,

63

62

,

62

2

1

2

1

2

1

2

1

+

+

+

=

L

z

L

z

Φ

Φ

L

L

g

g

oleObject108.bin

oleObject1161.bin

image964.wmf
2

1

L

k

>

¢

oleObject1162.bin

image965.wmf
m

g

oleObject1163.bin

image966.wmf
p

g

oleObject1164.bin

image967.wmf
c

g

oleObject1165.bin

image968.wmf
(

)

n

q

k

¢

oleObject109.bin

oleObject1166.bin

image969.wmf
(

)

n

p

k

¢

oleObject1167.bin

image970.wmf
(

)

z

G

oleObject1168.bin

image971.wmf
(

)

n

q

k

¢

oleObject1169.bin

image972.wmf
m

g

ˆ

oleObject1170.bin

image973.wmf
(

)

n

v

oleObject110.bin

oleObject1171.bin

oleObject1172.bin

image974.wmf
(

)

(

)

(

)

(

)

å

å

-

=

-

=

+

=

1

0

1

0

.

01

.

0

.

N

n

N

n

m

n

y

n

y

n

y

n

x

g

oleObject1173.bin

image975.wmf
N

oleObject1174.bin

image976.wmf
(

)

n

x

oleObject1175.bin

image977.wmf
(

)

n

y

oleObject1176.bin

oleObject111.bin

oleObject1177.bin

image978.wmf
(

)

(

)

z

A

z

W

ˆ

oleObject1178.bin

image979.wmf
0

<

m

g

oleObject1179.bin

image980.wmf
gm

I

oleObject1180.bin

oleObject1181.bin

image981.wmf
(

)

m

gm

g

I

<

t

oleObject1182.bin

image99.wmf
k

E

image982.wmf
t

oleObject1183.bin

image983.wmf
m

g

ˆ

oleObject1184.bin

image984.wmf
(

)

gm

m

I

g

t

=

ˆ

oleObject1185.bin

image985.wmf
0

T

oleObject1186.bin

image986.wmf
(

)

2

1

0

64

L

T

k

+

<

+

¢

oleObject1187.bin

oleObject112.bin

oleObject1188.bin

oleObject1189.bin

image987.emf
1000

-500

0

N-1

n

0

500

T

0

k'

glottal-shape

codebook search

adaptive search

1500

T

0

image988.wmf
2

1

L

oleObject1191.bin

image989.wmf
1

2

1

+

L

oleObject1192.bin

image990.wmf
N

T

<

0

oleObject1193.bin

oleObject7.bin

image100.wmf
k

image991.wmf
(

)

n

v

oleObject1194.bin

image992.emf

image993.emf

image994.emf

image995.emf

oleObject113.bin

image996.emf

image997.emf

image998.emf

image999.emf

Microsoft_Visio_Drawing.vsdx

image1000.emf

Microsoft_Visio_Drawing1.vsdx

image101.wmf
(

)

i

p

k

image1001.emf

Microsoft_Visio_Drawing2.vsdx

image1002.emf

Microsoft_Visio_Drawing3.vsdx

image1003.emf

Microsoft_Visio_Drawing4.vsdx

oleObject1202.bin

image1004.wmf
c

g

oleObject1203.bin

oleObject1204.bin

oleObject114.bin

image1005.wmf
c

g

oleObject1205.bin

image1006.wmf
p

g

oleObject1206.bin

image1007.wmf
(

)

(

)

(

)

(

)

å

å

-

=

-

=

+

=

1

0

1

0

.

01

.

0

.

N

n

N

n

c

n

z

n

z

n

z

n

x

g

oleObject1207.bin

image1008.wmf
N

oleObject1208.bin

image1009.wmf
(

)

n

x

oleObject1209.bin

image102.wmf
(

)

i

w

end

image1010.wmf
(

)

n

z

oleObject1210.bin

image1011.wmf
(

)

n

c

oleObject1211.bin

oleObject1212.bin

image1012.wmf
(

)

z

F

oleObject1213.bin

image1013.wmf
c

g

¢

oleObject1214.bin

image1014.wmf
g

oleObject115.bin

oleObject1215.bin

image1015.wmf
g

I

oleObject1216.bin

image1016.wmf
g

I

oleObject1217.bin

image1017.wmf
(

)

(

)

c

c

g

I

I

g

¢

÷

÷

ø

ö

ç

ç

è

æ

+

+

<

.

2

1

ˆ

g

g

t

t

oleObject1218.bin

image1018.wmf
t

oleObject1219.bin

oleObject1220.bin

image103.wmf
(

)

i

z

k

image1019.wmf
t

oleObject1221.bin

image1020.wmf
(

)

c

c

g

I

g

¢

=

.

ˆ

g

t

oleObject1222.bin

image1021.wmf
N

T

<

<

0

34

oleObject1223.bin

image1022.wmf
0

T

oleObject1224.bin

image1023.wmf
N

oleObject1225.bin

oleObject116.bin

image1024.wmf
1

.

2

0

-

<

N

T

oleObject1226.bin

image1025.wmf
k

¢

oleObject1227.bin

image1026.wmf
(

)

[

]

k

N

k

N

¢

-

-

¢

-

1

.

2

,

34

,

min

oleObject1228.bin

oleObject1229.bin

image1027.wmf
p

g

oleObject1230.bin

image1028.wmf
(

)

k

N

¢

-

-

1

.

3

image104.wmf
(

)

å

-

=

-

=

1

0

2

)

(

)

(

)

(

M

i

k

k

end

k

i

p

i

z

i

w

E

oleObject1231.bin

image1029.wmf
(

)

k

N

¢

-

-

1

.

2

oleObject1232.bin

image1030.wmf
(

)

k

N

¢

-

.

3

oleObject1233.bin

image1031.wmf
231

max

=

T

oleObject1234.bin

image1032.wmf
N

T

k

³

+

¢

max

oleObject1235.bin

image1033.wmf
m

oleObject117.bin

oleObject1236.bin

image1034.wmf
1

+

m

oleObject1237.bin

image1035.wmf
1

-

m

oleObject1238.bin

image1036.wmf
1

+

m

oleObject1239.bin

image1037.wmf
m

oleObject1240.bin

image1038.wmf
c

g

image8.wmf
(

)

z

A

image105.wmf
)

(

ˆ

)

(

)

(

1

i

z

i

ρ

i

p

k

k

-

=

oleObject1241.bin

oleObject1242.bin

image1039.wmf
c

g

oleObject1243.bin

image1040.wmf
p

g

oleObject1244.bin

oleObject1245.bin

image1041.wmf
N

oleObject1246.bin

image1042.wmf
N

T

<

<

0

42

oleObject118.bin

oleObject1247.bin

image1043.wmf
N

T

*

2

42

0

<

<

oleObject1248.bin

oleObject1249.bin

oleObject1250.bin

oleObject1251.bin

oleObject1252.bin

image1044.wmf
(

)

n

v

oleObject1253.bin

image1045.wmf
(

)

n

c

image106.wmf
(

)

i

r

oleObject1254.bin

image1046.emf
W(z)

pre-emphasized

input signal

W(z)

ˆ

() Az

target signal

0-input

x(n)

W(z)

ˆ

() Az

g

c

0-state

Σ

+

–

Σ

+

–

z(n)

x

1,w

(n)

p

1

p

2

±1

±1

s

1

s

2

c(n)

t

p1

(n)

t

p2

(n)

Gaussian

codebook Σ

image1047.wmf
i

t

oleObject1256.bin

image1048.wmf
i

oleObject1257.bin

image1049.wmf
2

1

2

1

p

p

s

s

c

t

t

+

=

oleObject1258.bin

image1050.wmf
1

s

oleObject119.bin

oleObject1259.bin

image1051.wmf
2

s

oleObject1260.bin

image1052.wmf
1

p

oleObject1261.bin

image1053.wmf
2

p

oleObject1262.bin

image1054.wmf
1

s

oleObject1263.bin

image1055.wmf
2

s

image107.wmf
(

)

i

z

k

1

ˆ

-

oleObject1264.bin

image1056.wmf
1

p

oleObject1265.bin

image1057.wmf
2

p

oleObject1266.bin

oleObject1267.bin

oleObject1268.bin

image1058.wmf
[

]

63

,

0

oleObject1269.bin

image1059.wmf
i

v

oleObject120.bin

oleObject1270.bin

image1060.wmf
j

v

oleObject1271.bin

image1061.wmf
16

v

oleObject1272.bin

image1062.wmf
25

v

oleObject1273.bin

image1063.wmf
25

v

oleObject1274.bin

image1064.wmf
16

v

image108.wmf
M

oleObject1275.bin

oleObject1276.bin

oleObject1277.bin

image1065.wmf
1

s

oleObject1278.bin

image1066.wmf
2

s

oleObject1279.bin

image1067.wmf
0

=

s

oleObject1280.bin

image1068.wmf
1

=

s

oleObject121.bin

oleObject1281.bin

image1069.wmf
(

)

2

1

1

6

2

p

p

I

+

´

´

+

=

s

oleObject1282.bin

image1070.wmf
2

1

p

p

£

oleObject1283.bin

image1071.wmf
2

1

s

s

=

oleObject1284.bin

oleObject1285.bin

oleObject1286.bin

oleObject1287.bin

image109.wmf
k

E

oleObject1288.bin

oleObject1289.bin

oleObject1290.bin

image1072.wmf
(

)

n

x

oleObject1291.bin

image1073.wmf
(

)

(

)

(

)

[

]

å

å

=

=

-

=

63

1

2

63

1

1

i

i

xx

tilt

i

x

i

x

i

x

e

oleObject1292.bin

image1074.wmf
(

)

n

y

oleObject1293.bin

image1075.wmf
(

)

(

)

(

)

[

]

å

å

=

=

-

=

189

1

2

189

1

1

i

i

yy

tilt

i

y

i

y

i

y

e

oleObject122.bin

oleObject1294.bin

oleObject1295.bin

image1076.wmf
(

)

n

t

oleObject1296.bin

image1077.wmf
(

)

n

h

oleObject1297.bin

image1078.wmf
(

)

n

t

oleObject1298.bin

image1079.wmf
189

,

,

0

K

=

n

oleObject1299.bin

oleObject8.bin

oleObject123.bin

image1080.wmf
xx

tilt

yy

tilt

xx

tilt

yy

tilt

e

e

e

e

+

-

=

.

2

.

1

d

oleObject1300.bin

image1081.wmf
ë

û

d

d

16

=

I

oleObject1301.bin

image1082.wmf
ë

û

.

oleObject1302.bin

image1083.wmf
(

)

(

)

(

)

(

)

(

)

189

,

,

1

ˆ

1

1

.

ˆ

,

0

2

K

=

+

-

-

=

¢

=

=

¢

n

for

n

t

n

t

n

t

n

for

n

t

n

t

d

d

oleObject1303.bin

image1084.wmf
16

ˆ

d

d

I

=

oleObject1304.bin

image110.wmf
k

E

image1085.wmf
(

)

189

,

,

0

,

K

=

¢

n

n

t

oleObject1305.bin

image1086.wmf
(

)

n

c

oleObject1306.bin

image1087.wmf
(

)

(

)

n

t

n

t

¢

¬

oleObject1307.bin

oleObject1308.bin

oleObject1309.bin

image1088.wmf
1

s

oleObject1310.bin

oleObject124.bin

image1089.wmf
2

s

oleObject1311.bin

image1090.wmf
(

)

(

)

(

)

z

z

c

d

z

z

c

H

x

z

z

z

x

T

T

T

T

T

T

Q

2

2

2

=

=

=

oleObject1312.bin

image1091.wmf
(

)

n

x

oleObject1313.bin

image1092.wmf
Hc

z

=

oleObject1314.bin

image1093.wmf
(

)

n

x

oleObject1315.bin

image111.emf
LSF

Safety-net

scheme

Predictive

scheme

Inter-frame

Prediction

Scheme

Selection (1bit)

2nd BC-TCVQ

(30bits)

2

nd

Intra-frame

Prediction

1st BC-TCVQ

(30bits)

1

st

Intra-frame

Prediction

f

z

m

t

r

p

z

ˆ

t

ˆ

r

ˆ

z

t t

ˆ

z

ˆ

f

ˆ

m

image1094.wmf
(

)

n

z

oleObject1316.bin

image1095.wmf
63

,

,

0

K

=

n

oleObject1317.bin

image1096.wmf
(

)

n

d

oleObject1318.bin

image1097.wmf
(

)

n

c

oleObject1319.bin

image1098.wmf
x

H

d

T

=

oleObject1320.bin

image112.wmf
)

(

i

z

k

oleObject1321.bin

image1099.wmf
(

)

n

h

oleObject1322.bin

oleObject1323.bin

image1100.wmf
(

)

(

)

(

)

(

)

(

)

63

,

,

1

*

63

K

=

-

=

-

=

å

=

n

for

n

i

h

i

x

n

h

n

x

n

d

n

i

oleObject1324.bin

oleObject1325.bin

oleObject1326.bin

oleObject1327.bin

image1101.wmf
K

oleObject125.bin

oleObject1328.bin

image1102.wmf
K

oleObject1329.bin

image1103.wmf
k

Q

oleObject1330.bin

oleObject1331.bin

oleObject1332.bin

image1104.wmf
(

)

n

v

i

oleObject1333.bin

image1105.wmf
63

,

,

0

K

=

i

image113.wmf
)

(

i

r

k

oleObject1334.bin

image1106.wmf
i

c

oleObject1335.bin

image1107.wmf
(

)

(

)

n

v

n

d

i

n

i

å

=

=

63

0

c

oleObject1336.bin

oleObject1337.bin

oleObject1338.bin

oleObject1339.bin

image1108.wmf
i

c

oleObject1340.bin

oleObject126.bin

image1109.wmf
i

m

oleObject1341.bin

image1110.wmf
1

,

,

0

-

=

K

i

K

oleObject1342.bin

oleObject1343.bin

image1111.wmf
i

s

oleObject1344.bin

image1112.wmf
1

,

,

0

-

=

K

i

K

oleObject1345.bin

oleObject1346.bin

oleObject127.bin

image1113.wmf
8

=

K

oleObject1347.bin

image1114.wmf
2080

2

/

65

64

=

´

oleObject1348.bin

image1115.wmf
36

2

/

9

8

=

´

oleObject1349.bin

oleObject1350.bin

oleObject1351.bin

image1116.wmf
Q

oleObject1352.bin

image114.wmf
)

(

i

p

k

image1117.wmf
j

w

oleObject1353.bin

image1118.wmf
1

,

,

0

-

=

K

j

K

oleObject1354.bin

oleObject1355.bin

image1119.wmf
(

)

n

h

oleObject1356.bin

image1120.wmf
(

)

(

)

(

)

1

,

,

0

,

63

,

,

0

0

-

=

=

-

=

å

=

K

j

n

for

i

n

h

i

t

s

n

w

n

i

m

j

j

j

K

K

oleObject1357.bin

image1121.wmf
(

)

1

,

,

0

63

0

2

-

=

=

=

å

=

K

j

for

n

w

n

j

j

T

j

j

K

w

w

e

image9.wmf
(

)

(

)

(

)

1

1

1

g

z

A

z

H

z

W

emph

de

=

-

oleObject128.bin

oleObject1358.bin

image1122.wmf
(

)

(

)

1

,

,

0

63

0

-

=

=

=

å

=

K

j

for

n

x

n

w

n

j

j

T

j

K

w

x

r

oleObject1359.bin

image1123.wmf
j

r

oleObject1360.bin

image1124.wmf
j

e

oleObject1361.bin

oleObject1362.bin

image1125.wmf
Q

oleObject1363.bin

image115.wmf
)

(

p

E

werr

image1126.wmf
(

)

n

z

oleObject1364.bin

image1127.wmf
2

1

2

1

2

1

p

p

p

p

s

s

w

w

Ht

Ht

Hc

z

+

=

+

=

=

oleObject1365.bin

image1128.wmf
j

w

oleObject1366.bin

image1129.wmf
(

)

(

)

(

)

(

)

(

)

2

1

2

1

2

1

2

1

2

1

2

1

2

2

2

2

p

T

p

p

p

p

p

p

p

T

p

p

p

T

p

T

T

T

Q

w

w

w

w

w

w

w

x

w

x

z

z

z

x

+

+

+

=

+

+

+

=

=

e

e

r

r

oleObject1367.bin

oleObject1368.bin

oleObject1369.bin

oleObject129.bin

oleObject1370.bin

image1130.wmf
1

p

oleObject1371.bin

image1131.wmf
2

p

oleObject1372.bin

image1132.wmf
Q

oleObject1373.bin

oleObject1374.bin

image1133.wmf
1

p

oleObject1375.bin

image116.wmf
(

)

å

=

-

+

-

+

-

=

1

0

2

'

)

(

)

)

1

(

2

(

)

)

1

(

2

(

)

(

i

p

j

k

end

werr

i

c

i

j

t

i

j

w

p

E

image1134.wmf
2

p

oleObject1376.bin

image1135.wmf
e

w

c

g

g

g

4

.

0

6

.

0

+

=

oleObject1377.bin

image1136.wmf
w

g

oleObject1378.bin

image1137.wmf
(

)

n

x

oleObject1379.bin

image1138.wmf
(

)

n

z

oleObject1380.bin

oleObject130.bin

image1139.wmf
z

z

z

x

T

T

w

g

=

oleObject1381.bin

image1140.wmf
e

g

oleObject1382.bin

oleObject1383.bin

oleObject1384.bin

image1141.wmf
z

z

z

x

T

T

e

g

=

oleObject1385.bin

oleObject1386.bin

oleObject1387.bin

image117.wmf
p

image1142.wmf
(

)

n

c

oleObject1388.bin

image1143.wmf
63

,

,

0

K

=

n

oleObject1389.bin

image1144.wmf
(

)

c

dB

c

g

g

log

20

=

oleObject1390.bin

image1145.wmf
min

G

oleObject1391.bin

image1146.wmf
max

G

oleObject1392.bin

oleObject131.bin

image1147.wmf
(

)

L

min

max

G

-

G

=

d

oleObject1393.bin

image1148.wmf
L

oleObject1394.bin

image1149.wmf
k

oleObject1395.bin

image1150.wmf
ú

ú

û

ú

ê

ê

ë

ê

+

G

-

=

5

.

0

min

d

dB

c

g

k

oleObject1396.bin

image1151.wmf
min

ˆ

G

+

´

=

d

k

g

dB

c

oleObject1397.bin

image118.wmf
j

P

image1152.wmf
20

ˆ

10

ˆ

dB

c

g

c

g

=

oleObject1398.bin

image1153.wmf
128

=

L

oleObject1399.bin

image1154.wmf
71875

.

1

=

d

oleObject1400.bin

image1155.wmf
30

min

-

=

G

oleObject1401.bin

image1156.wmf
190

max

=

G

oleObject1402.bin

oleObject132.bin

image1157.wmf
c

g

ˆ

oleObject1403.bin

oleObject1404.bin

image1158.wmf
c

g

ˆ

oleObject1405.bin

image1159.wmf
2

16

,

2

2

,

e

e

s

s

n

=

oleObject1406.bin

image1160.wmf
2

2

,

e

s

oleObject1407.bin

image1161.wmf
2

16

,

e

s

image119.wmf
j

oleObject1408.bin

image1162.wmf
(

)

ú

û

ú

ê

ë

ê

-

=

32

1

.

ˆ

n

m

n

oleObject1409.bin

image1163.wmf
m

oleObject1410.bin

image1164.wmf
2

=

m

oleObject1411.bin

image1165.wmf
5

.

0

=

m

oleObject1412.bin

image1166.wmf
(

)

n

v

oleObject9.bin

oleObject133.bin

oleObject1413.bin

image1167.png
Pre-emphasized

Input signal Wiz)
+
W(z) _Y
Q-input » - >@
Alz)
e ,
==
Algebraic % e(n) , F(z)W(z) z(n)) _ @
codebook E i ()
Tor
+
Gaussian noise c2(n) F(z)W(z) 22(n) _
generator WW‘ > A) G2 >

Target signal

x(n)

Updated
target signal
x2(n)

image1168.wmf
(

)

z

F

oleObject1414.bin

image1169.wmf
(

)

(

)

)

7

.

0

1

7

.

0

(

1

1

-

-

+

+

×

=

z

z

z

F

z

F

oleObject1415.bin

image1170.wmf
(

)

(

)

(

)

(

)

(

)

2

1

0

ˆ

ˆ

h

h

z

A

z

A

z

F

z

F

=

oleObject1416.bin

image1171.wmf
(

)

0

F

oleObject1417.bin

oleObject134.bin

image1172.wmf
64

=

T

oleObject1418.bin

image1173.wmf
1

b

oleObject1419.bin

image1174.wmf
75

.

0

1

=

h

oleObject1420.bin

image1175.wmf
9

.

0

2

=

h

oleObject1421.bin

image1176.wmf
(

)

z

F

oleObject1422.bin

oleObject135.bin

image1177.wmf
(

)

T

z

z

b

a

z

F

-

-

-

×

+

×

-

=

85

.

0

1

)

(

1

(

1

1

g

b

oleObject1423.bin

image1178.wmf
64

=

T

oleObject1424.bin

image1179.wmf
5

.

0

=

a

oleObject1425.bin

image1180.wmf
25

.

0

=

b

oleObject1426.bin

image1181.wmf
g

oleObject1427.bin

image120.wmf
j

image1182.wmf
(

)

(

)

(

)

2

1

)

1

(

ˆ

ˆ

h

h

z

A

z

A

z

F

=

oleObject1428.bin

image1183.wmf
å

=

-

-

=

63

1

2

)

1

(

)

1

(

)

1

(

)

(

)

(

)

(

)

1

(

n

n

f

n

f

n

f

g

oleObject1429.bin

image1184.wmf
1

b

oleObject1430.bin

image1185.wmf
[

]

[

]

[

]

1

1

1

1

25

.

0

25

.

0

-

-

-

+

+

=

c

v

v

E

E

E

b

oleObject1431.bin

oleObject1432.bin

oleObject1433.bin

oleObject136.bin

image1186.wmf
å

=

=

2

0

)

(

)

(

2

i

n

rand

n

c

oleObject1434.bin

image1187.wmf
)

(

2

n

c

oleObject1435.bin

oleObject1436.bin

image1188.wmf
c

g

oleObject1437.bin

image1189.wmf
c

g

oleObject1438.bin

image1190.wmf
2

c

g

image121.wmf
p

j

c

oleObject1439.bin

image1191.wmf
(

)

(

)

(

)

(

)

å

å

=

-

=

=

63

0

1

0

.

.

n

N

n

c

n

z

n

z

n

z

n

x

g

oleObject1440.bin

image1192.wmf
(

)

n

z

oleObject1441.bin

oleObject1442.bin

oleObject1443.bin

oleObject1444.bin

image1193.wmf
c

E

oleObject1445.bin

oleObject137.bin

image1194.wmf
(

)

÷

÷

ø

ö

ç

ç

è

æ

=

å

=

63

0

2

64

1

log

10

n

c

n

c

E

oleObject1446.bin

image1195.wmf
(

)

c

dB

c

g

g

log

20

=

oleObject1447.bin

oleObject1448.bin

image1196.wmf
ú

ú

û

ú

ê

ê

ë

ê

+

+

+

=

5

.

0

9

.

1

30

c

dB

c

E

g

k

oleObject1449.bin

image1197.wmf
30

9

.

1

ˆ

-

´

=

k

g

dB

c

oleObject1450.bin

image1198.wmf
20

)

ˆ

(

10

ˆ

c

dB

c

E

g

c

g

-

=

oleObject138.bin

oleObject1451.bin

image1199.wmf
(

)

(

)

ind

book

i

book

r

k

ind

k

E

E

k

E

E

k

=

-

=

=

ˆ

min

15

0

oleObject1452.bin

image1200.wmf
(

)

15

,

,

0

,

K

=

k

k

E

book

oleObject1453.bin

image1201.wmf
ind

k

oleObject1454.bin

image1202.wmf
(

)

c

i

E

E

c

g

-

=

¢

ˆ

05

.

0

10

oleObject1455.bin

oleObject1456.bin

image122.wmf
)

(

i

w

end

image1203.wmf
c

g

¢

oleObject1457.bin

image1204.wmf
c

c

g

g

¢

=

g

oleObject1458.bin

oleObject1459.bin

oleObject1460.bin

image1205.wmf
ú

û

ú

ê

ë

ê

+

+

=

5

.

0

25

.

1

20

g

k

oleObject1461.bin

image1206.wmf
i

c

dB

c

E

E

k

g

ˆ

20

25

.

1

ˆ

+

-

-

´

=

oleObject1462.bin

oleObject139.bin

image1207.wmf
20

ˆ

10

ˆ

dB

c

g

c

g

=

oleObject1463.bin

image1208.wmf
å

å

=

=

×

+

×

-

×

63

0

2

2

63

0

2

ˆ

))

(

2

ˆ

)

(

ˆ

(

)

(

min

2

n

c

c

n

g

n

z

g

n

z

g

n

x

C

c

oleObject1464.bin

image1209.wmf
C

oleObject1465.bin

image1210.wmf
2

k

oleObject1466.bin

image1211.wmf
å

å

=

=

×

×

+

=

63

0

2

63

0

2

2

)

(

2

)

(

ˆ

)

25

.

0

2

25

.

0

(

ˆ

n

n

c

c

n

c

n

c

g

k

g

oleObject1467.bin

image10.wmf
(

)

1

1

g

z

A

image123.wmf
)]

1

2

/

(

),...,

1

(

),

0

(

[

'

-

=

M

t

t

t

t

t

k

t

k

t

k

k

image1212.emf

image1213.wmf
hf

F

oleObject1468.bin

image1214.wmf
hf

F

oleObject1469.bin

image1215.wmf
)

(

k

y

oleObject1470.bin

image1216.wmf
)

(

n

x

oleObject1471.bin

image1217.wmf
L

oleObject140.bin

oleObject1472.bin

image1218.wmf
1

,...,

0

,

2

1

2

1

cos

)

(

)

(

1

0

-

=

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

=

å

-

=

L

k

L

k

n

n

x

k

y

L

n

p

oleObject1473.bin

image1219.wmf
256

=

L

oleObject1474.bin

image1220.wmf
)

(

n

x

oleObject1475.bin

image1221.wmf
)

(

n

r

oleObject1476.bin

image1222.wmf
)

(

n

u

oleObject141.bin

oleObject1477.bin

image1223.wmf
)

(

k

y

oleObject1478.bin

image1224.wmf
)

(

k

f

r

oleObject1479.bin

image1225.wmf
)

(

k

f

u

oleObject1480.bin

image1226.wmf
{

}

{

}

1

2

/

,

,

1

,

0

,

)

(

Im

)

2

1

(

)

(

Re

)

2

(

-

=

ï

î

ï

í

ì

-

=

-

-

=

L

q

q

Z

q

L

y

q

Z

q

y

K

oleObject1481.bin

image1227.wmf
(

)

q

Z

image124.wmf
)

(

i

t

k

oleObject1482.bin

image1228.wmf
1

2

/

,

,

1

,

0

,

)

(

)

(

1

2

/

0

2

/

1

2

4

1

2

4

3

8

-

=

ï

þ

ï

ý

ü

ï

î

ï

í

ì

×

×

=

å

-

=

+

+

-

L

q

W

W

p

z

W

W

q

Z

L

p

pq

L

p

L

q

L

L

K

oleObject1483.bin

image1229.wmf
)

2

1

(

)

2

(

)

(

p

L

jx

p

x

p

z

-

-

+

=

oleObject1484.bin

image1230.wmf
1

2

/

,

,

1

,

0

-

=

L

p

K

oleObject1485.bin

image1231.wmf
)

N

2

sin(

)

N

2

cos(

e

N

2

j

p

p

p

j

W

N

-

=

=

-

oleObject1486.bin

image1232.wmf
2

/

L

oleObject142.bin

oleObject1487.bin

image1233.wmf
)

(

p

z

oleObject1488.bin

image1234.wmf
2

/

L

oleObject1489.bin

image1235.wmf
)

(

p

z

oleObject1490.bin

image1236.wmf
(

)

1

2

/

,

,

0

)

(

1

2

/

0

2

/

-

=

=

å

-

=

L

k

W

p

z

k

r

L

k

pk

L

L

oleObject1491.bin

image1237.wmf
160

320

2

/

or

L

=

image125.wmf
)

(

)

(

k

0

z

0

t

k

=

oleObject1492.bin

image1238.wmf
Q

P

L

´

=

2

oleObject1493.bin

image1239.wmf
)

160

2

/

(

32

)

320

2

/

(

64

=

=

=

L

or

L

P

oleObject1494.bin

image1240.wmf
5

=

Q

oleObject1495.bin

image1241.wmf
(

)

1

,

,

0

,

1

,

,

0

2

/

mod

)

,

(

2

1

2

2

1

1

2

1

-

=

-

=

×

+

×

=

Q

n

P

n

L

n

K

n

K

n

n

I

L

L

oleObject1496.bin

image1242.wmf
1

K

oleObject143.bin

oleObject1497.bin

image1243.wmf
2

K

oleObject1498.bin

image1244.wmf
0

)

2

/

(

mod

)

(

2

1

=

×

L

K

K

oleObject1499.bin

image1245.wmf
)

32

(

96

)

64

(

256

,

65

2

1

=

=

=

=

P

or

P

K

K

oleObject1500.bin

image1246.wmf
I

oleObject1501.bin

image1247.wmf
P

image126.wmf
)

(

~

)

(

)

(

i

z

i

z

i

t

k

k

k

-

=

oleObject1502.bin

image1248.wmf
Q

oleObject1503.bin

image1249.wmf
P

oleObject1504.bin

image1250.wmf
)

(

p

z

oleObject1505.bin

image1251.wmf
Q

oleObject1506.bin

image1252.wmf
I

oleObject144.bin

oleObject1507.bin

image1253.wmf
1

,...,

0

-

=

Q

i

oleObject1508.bin

image1254.wmf
P

oleObject1509.bin

image1255.wmf
I

oleObject1510.bin

image1256.wmf
P

oleObject1511.bin

image1257.wmf
P

image127.wmf
i

oleObject1512.bin

image1258.wmf
s

'

P

i

×

oleObject1513.bin

image1259.wmf
I

oleObject1514.bin

image1260.wmf
P

oleObject1515.bin

image1261.wmf
1

c

oleObject1516.bin

image1262.wmf
1

c

oleObject10.bin

oleObject145.bin

oleObject1517.bin

image1263.wmf
1

mod

))

mod

)

/

((

(

2

1

1

=

×

P

P

Q

K

c

oleObject1518.bin

image1264.wmf
(

)

1

,

,

0

))

(

(

_

1

-

=

+

=

Q

i

iP

I

z

P

DFT

k

w

c

L

oleObject1519.bin

image1265.wmf
1

,...,

0

-

=

Q

i

oleObject1520.bin

oleObject1521.bin

oleObject1522.bin

image1266.wmf
]

[

Pi

I

oleObject146.bin

oleObject1523.bin

image1267.wmf
5

1

=

c

oleObject1524.bin

image1268.wmf
]

[

4

3

2

1

0

z

z

z

z

z

Z

=

oleObject1525.bin

image1269.wmf
]

[

3

1

4

2

0

z

z

z

z

z

Z

=

oleObject1526.bin

image1270.wmf
Q

oleObject1527.bin

image1271.wmf
(

)

k

w

image128.wmf
)

(

ˆ

)

(

~

i

1

-

i

z

i

z

k

k

A

=

oleObject1528.bin

oleObject1529.bin

image1272.wmf
I

oleObject1530.bin

image1273.wmf
1

,...,

0

-

=

P

i

oleObject1531.bin

image1274.wmf
Q

oleObject1532.bin

image1275.wmf
I

oleObject1533.bin

oleObject147.bin

image1276.wmf
Q

oleObject1534.bin

image1277.wmf
Q

oleObject1535.bin

image1278.wmf
I

oleObject1536.bin

oleObject1537.bin

image1279.wmf
Q

oleObject1538.bin

image1280.wmf
2

c

oleObject148.bin

oleObject1539.bin

oleObject1540.bin

image1281.wmf
1

mod

))

mod

)

/

((

(

2

2

2

=

×

Q

Q

P

K

c

oleObject1541.bin

image1282.wmf
(

)

1

,

,

0

))

(

(

_

2

c

-

=

+

=

P

i

i

I

w

Q

DFT

k

r

L

oleObject1542.bin

image1283.wmf
1

,...,

0

-

=

P

i

oleObject1543.bin

oleObject1544.bin

oleObject1545.bin

oleObject149.bin

image1284.wmf
]

[

i

I

oleObject1546.bin

image1285.wmf
P

oleObject1547.bin

image1286.wmf
)

32

(

2

)

64

(

4

2

=

=

=

P

or

P

c

oleObject1548.bin

oleObject1549.bin

image1287.wmf
av

D

oleObject1550.bin

image1288.wmf
lt

D

image129.wmf
)

(

~

i

z

k

oleObject1551.bin

image1289.wmf
î

í

ì

+

>

+

=

otherwise

D

D

D

D

when

D

D

D

av

lt

lt

av

av

lt

lt

,

4

.

0

6

.

0

,

8

.

0

2

.

0

oleObject1552.bin

image1290.wmf
lt

D

oleObject1553.bin

image1291.wmf
D

i

oleObject1554.bin

image1292.wmf
D

lev

i

N

-

=

15

oleObject1555.bin

image1293.wmf
lev

N

oleObject150.bin

oleObject1556.bin

image1294.wmf
lev

N

oleObject1557.bin

image1295.wmf
lev

N

oleObject1558.bin

image1296.wmf
)

(

k

f

r

oleObject1559.bin

image1297.wmf
)

(

k

f

u

oleObject1560.bin

image1298.wmf
}

32

,

16

,

16

,

16

,

16

,

16

,

16

,

16

,

16

,

16

,

16

,

16

,

16

,

16

,

8

,

8

{

)

(

=

i

B

b

image130.wmf
)

(

i

z

k

oleObject1561.bin

image1299.wmf
}

224

,

208

,

192

,

176

,

160

,

144

,

128

,

112

,

96

,

80

,

64

,

48

,

32

,

16

,

8

,

0

{

)

(

=

i

C

Bb

oleObject1562.bin

image1300.wmf
f

L

oleObject1563.bin

image1301.wmf
{

}

6375

,

5575

,

5175

,

4775

,

4375

,

3975

,

3575

,

3175

,

2775

,

2375

,

1975

,

1575

,

1175

,

775

,

375

,

175

)

(

=

i

L

f

oleObject1564.bin

image1302.wmf
)

(

)

(

)

(

)

(

)

(

'

'

)

(

)

(

)

(

i

S

i

S

i

f

i

f

i

C

u

r

b

Bb

Bb

f

f

i

B

i

C

i

C

j

u

r

c

å

+

=

=

oleObject1565.bin

image1303.wmf
å

+

=

=

)

(

)

(

)

(

'

)

(

)

(

)

(

i

B

i

C

i

C

j

r

r

f

b

Bb

Bb

r

i

f

i

f

i

S

oleObject151.bin

oleObject1566.bin

image1304.wmf
å

+

=

=

)

(

)

(

)

(

'

)

(

)

(

)

(

i

B

i

C

i

C

j

u

u

f

b

Bb

Bb

u

i

f

i

f

i

S

oleObject1567.bin

image1305.wmf
(

)

î

í

ì

<

£

-

-

×

+

+

×

+

×

×

=

-

×

+

×

×

=

12

1

),

5

.

0

))

1

(

)

1

(

)

(

,

5

.

0

(min(

2

0

),

5

.

0

))

1

(

)

0

(

,

5

.

0

(min(

2

2

i

for

i

C

i

C

i

C

i

for

C

C

i

C

c

c

c

c

c

c

b

b

a

d

a

oleObject1568.bin

image1306.wmf
95

.

0

=

a

oleObject1569.bin

image1307.wmf
(

)

a

d

-

=

1

oleObject1570.bin

image1308.wmf
2

/

d

b

=

oleObject11.bin

image131.wmf
)

1

(

ˆ

-

i

z

k

oleObject1571.bin

image1309.wmf
f

L

oleObject1572.bin

oleObject1573.bin

image1310.wmf
2

c

C

oleObject1574.bin

image1311.wmf
(

)

12

0

,

)

2

/

(

)

(

min

2

min

<

£

-

=

i

for

F

C

i

L

i

s

c

f

oleObject1575.bin

image1312.wmf
)

(

min

1

i

L

f

f

tc

=

oleObject1576.bin

oleObject152.bin

image1313.wmf
12800

=

s

F

oleObject1577.bin

image1314.wmf
2

c

C

oleObject1578.bin

image1315.wmf
1

tc

f

oleObject1579.bin

image1316.wmf
2

c

C

oleObject1580.bin

image1317.wmf
1

tc

f

oleObject1581.bin

image132.wmf
)

1

(

-

i

z

k

image1318.wmf
)

(

8

i

L

f

oleObject1582.bin

image1319.wmf
2

norm

C

oleObject1583.bin

image1320.wmf
2

~

norm

C

oleObject1584.bin

image1321.wmf
plt

G

oleObject1585.bin

image1322.wmf
tc

f

oleObject1586.bin

oleObject153.bin

image1323.wmf
)

(

'

k

f

u

oleObject1587.bin

oleObject1588.bin

image1324.wmf
)

(

k

f

d

oleObject1589.bin

image1325.wmf
b

B

oleObject1590.bin

image1326.wmf
bd

G

oleObject1591.bin

image1327.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

ï

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

ï

ï

í

ì

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

<

£

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

<

£

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

=

å

å

å

+

=

=

+

=

=

+

=

=

15

,

2

log

15

2

,

log

2

0

,

0

.

2

log

10

10

10

i

for

k

f

i

for

k

f

i

for

k

f

i

G

i

B

i

C

k

i

C

k

d

i

B

i

C

k

i

C

k

d

i

B

i

C

k

i

C

k

d

bd

b

Bb

Bb

b

Bb

Bb

b

Bb

Bb

image133.wmf
i

A

oleObject1592.bin

image1328.wmf
Bb

C

oleObject1593.bin

image1329.wmf
b

B

oleObject1594.bin

image1330.wmf
bd

G

ˆ

oleObject1595.bin

oleObject1596.bin

oleObject1597.bin

oleObject1598.bin

oleObject154.bin

oleObject1599.bin

image1331.wmf
)

(

ˆ

k

f

d

oleObject1600.bin

image1332.wmf
fsd

S

oleObject1601.bin

image1333.wmf
fsd

F

oleObject1602.bin

image1334.wmf
(

)

4

.

0

10

14

-

-

=

lev

fsd

N

S

oleObject1603.bin

image1335.wmf
(

)

16

*

14

112

lev

fsd

N

F

-

+

=

image134.wmf
´

oleObject1604.bin

image1336.wmf
)

(

ˆ

k

f

d

oleObject1605.bin

image1337.wmf
)

(

ˆ

k

f

ds

oleObject1606.bin

image1338.wmf
lev

N

oleObject1607.bin

image1339.wmf
)

(

ˆ

k

f

dsn

oleObject1608.bin

image1340.wmf
2

bd

G

oleObject155.bin

oleObject1609.bin

image1341.wmf
(

)

i

G

a

oleObject1610.bin

image1342.wmf
(

)

(

)

(

)

(

)

i

G

i

G

a

db

db

i

G

2

ˆ

10

-

=

oleObject1611.bin

image1343.wmf
)

(

ˆ

k

f

dsn

oleObject1612.bin

image1344.wmf
)

(

ˆ

k

f

ds

oleObject1613.bin

image1345.wmf
(

)

i

f

u

"

image135.wmf
1

11

01

]

[

-

=

i

i

i

R

R

A

oleObject1614.bin

image1346.wmf
(

)

i

f

u

"

2

oleObject1615.bin

image1347.wmf
(

)

(

)

(

)

16

0

),

(

)

(

)

(

ˆ

'

"

<

£

+

=

×

+

=

k

k

B

k

C

i

a

dsn

u

u

b

Bb

k

G

i

f

i

f

i

f

oleObject1616.bin

image1348.wmf
(

)

(

)

(

)

16

0

),

(

)

(

2

)

(

ˆ

'

"

<

£

+

=

×

+

=

k

k

B

k

C

i

a

ds

u

u

b

Bb

k

G

i

f

i

f

i

f

oleObject1617.bin

image1349.wmf
bit

high

I

_

oleObject1618.bin

oleObject1619.bin

oleObject156.bin

oleObject1620.bin

oleObject1621.bin

oleObject1622.bin

image1350.wmf
7

1

=

Tr

oleObject1623.bin

oleObject1624.bin

image1351.wmf
extr

N

oleObject1625.bin

image1352.wmf
lev

N

oleObject1626.bin

image11.wmf
L

oleObject157.bin

image1353.wmf
2

£

extr

N

oleObject1627.bin

image1354.wmf
extr

bit

high

N

I

+

_

oleObject1628.bin

image1355.wmf
extr

R

oleObject1629.bin

image1356.wmf
4

5

_

-

+

+

×

extr

bit

high

extr

N

I

N

oleObject1630.bin

image1357.wmf
extr

R

oleObject1631.bin

oleObject158.bin

image1358.wmf
bin

last

I

_

oleObject1632.bin

image1359.wmf
)

(

_

bit

high

Bb

I

C

¢

oleObject1633.bin

image1360.wmf
)

(

_

bit

high

Bb

I

C

¢

oleObject1634.bin

image1361.wmf
bin

last

I

_

oleObject1635.bin

image1362.wmf
8

2

=

Tr

oleObject1636.bin

image136.wmf
)]

1

(

)

(

[

01

-

=

i

i

t

i

z

z

R

image1363.wmf
BWE

F

oleObject1637.bin

image1364.wmf
BWE

F

oleObject1638.bin

image1365.wmf
bin

last

I

_

oleObject1639.bin

image1366.wmf
ï

î

ï

í

ì

=

=

otherwise

I

F

if

I

I

bin

last

BWE

bin

last

bin

last

)

15

,

max(

1

)

10

,

max(

_

_

_

oleObject1640.bin

image1367.wmf
1

=

BWE

F

oleObject1641.bin

image1368.wmf
)

(

_

bin

last

Bb

I

C

oleObject1642.bin

image1369.wmf
)

(

_

bin

last

Bb

I

C

oleObject1643.bin

image1370.wmf
(

)

(

)

1

16

255

0

159

"

)

255

(

ˆ

_

2

-

×

-

<

£

-

=

-

bin

last

u

d

I

k

k

f

k

f

oleObject1644.bin

image1371.wmf
(

)

1

16

255

0

)

255

(

ˆ

_

-

×

-

<

£

-

bin

last

d

I

k

k

f

oleObject1645.bin

image1372.wmf
(

)

1

16

255

0

)

255

(

"

_

2

-

×

-

<

£

-

bin

last

u

I

k

k

f

oleObject1646.bin

image137.wmf
ë

û

)

1

(

)

1

(

11

-

-

=

i

i

t

i

z

z

R

oleObject1647.bin

image1373.wmf
0

=

BWE

F

oleObject1648.bin

image1374.wmf
(

)

n

u

ˆ

oleObject1649.bin

image1375.wmf
(

)

i

f

u

"

oleObject1650.bin

image1376.wmf
(

)

n

u

2

ˆ

oleObject1651.bin

image1377.wmf
(

)

i

f

u

"

2

oleObject1652.bin

image1378.wmf
(

)

n

u

ˆ

oleObject1653.bin

oleObject1654.bin

oleObject1655.bin

oleObject161.bin

image138.wmf
)

(

~

)

(

ˆ

)

(

ˆ

i

z

i

t

i

z

k

k

k

+

=

oleObject162.bin

oleObject163.bin

oleObject12.bin

oleObject164.bin

image139.wmf
)

(

i

t

k

oleObject165.bin

oleObject166.bin

image140.wmf
i

A

oleObject167.bin

image141.wmf
1

A

oleObject168.bin

image142.wmf
ú

û

ù

ê

ë

é

-

-

0.305544

0.524298

0.808759

0.452324

oleObject169.bin

image12.wmf
(

)

(

)

(

)

1

,

,

0

,

1

)

(

1

1

16

1

-

=

-

+

-

+

=

å

=

L

n

n

s

i

n

s

a

n

s

n

s

h

pre

i

i

i

pre

h

K

b

g

image143.wmf
2

A

oleObject170.bin

image144.wmf
ú

û

ù

ê

ë

é

-

0.421115

0.013208

0.606028

0.009663

oleObject171.bin

image145.wmf
3

A

oleObject172.bin

image146.wmf
ú

û

ù

ê

ë

é

0.580317

0.080963

0.673495

0.144877

oleObject173.bin

image147.wmf
4

A

oleObject174.bin

oleObject13.bin

image148.wmf
ú

û

ù

ê

ë

é

0.584520

0.215958

0.633144

0.208225

oleObject175.bin

image149.wmf
5

A

oleObject176.bin

image150.wmf
ú

û

ù

ê

ë

é

0.416693

0.076879

0.767842

0.050822

oleObject177.bin

image151.wmf
6

A

oleObject178.bin

image152.wmf
ú

û

ù

ê

ë

é

-

0.296984

0.006786

0.550614

0.005058

oleObject179.bin

image13.emf
1 st analysis window 2nd analysis window

current frame previous frame next frame

1st analysis window 2nd analysis window

current frame previous frame next frame

Relative positions of the spectral analysis windows

Relative positions and length of the LP analysis windows

image153.wmf
7

A

oleObject180.bin

image154.wmf
ú

û

ù

ê

ë

é

-

-

0.576228

0.162706

0.611144

0.023860

oleObject181.bin

image155.wmf
)

(

i

r

k

oleObject182.bin

image156.wmf
)

(

p

E

werr

oleObject183.bin

image157.wmf
)

(

~

)

(

ˆ

)

(

ˆ

i

r

i

t

i

r

k

k

k

+

=

oleObject184.bin

image14.emf
Normalization

(0~(K-1))

Find magnitude weighting

for each normalized LSF

Combine

weighting function

LSF

W(n)

Find frequency weighting

for each normalized LSF

W

1

(n) W

2

(n)

Spectral

analysis

Info.

IHM

IHM2

Windowing

Time to frequency

mapping

Compute magnitude

per freq. bin

Input signal

Spectral analysis

Coding mode & Input

bandwidth info.

LP Analysis

W

f

(n)

oleObject185.bin

image158.wmf
i

A

oleObject186.bin

oleObject187.bin

image159.wmf
ú

û

ù

ê

ë

é

-

-

217490

.

0

422648

.

0

676331

.

0

292479

.

0

oleObject188.bin

oleObject189.bin

image160.wmf
ú

û

ù

ê

ë

é

0.287286

0.087301

1

0.500476

0.048957

oleObject190.bin

oleObject191.bin

image15.wmf
K

image161.wmf
ú

û

ù

ê

ë

é

0.420907

0.106762

0.502784

0.199481

oleObject192.bin

oleObject193.bin

image162.wmf
ú

û

ù

ê

ë

é

0.396496

0.214255

0.440504

0.240459

oleObject194.bin

oleObject195.bin

image163.wmf
ú

û

ù

ê

ë

é

0.306771

0.158690

0.494850

0.193161

oleObject196.bin

oleObject197.bin

image164.wmf
ú

û

ù

ê

ë

é

0.148231

0.065526

0.370662

0.093435

oleObject14.bin

oleObject198.bin

oleObject199.bin

image165.wmf
ú

û

ù

ê

ë

é

-

0.187298

0.024246

0.336906

0.037417

oleObject200.bin

image166.emf
LSF

Safety-net

scheme

Predictive

scheme

Inter-frame

Prediction

Scheme

Selection (1bit)

2nd BC-TCVQ

(30bits)

4th SVQ

(9bits)

3rd SVQ

(9bits)

1st BC-TCVQ

(30bits)

1st Intra-frame

Prediction

2

nd

Intra-frame

Prediction

z

t

t

ˆ

z

ˆ

z

ˆ

m

m

f

f

ˆ

z

r

r

ˆ

t

t

ˆ

p

2

z

2

ˆ

z

1

ˆ

z

2

r

1

ˆ

r

2

ˆ

r

image167.wmf
r

oleObject201.bin

image168.wmf
p

oleObject202.bin

image169.wmf
z

image16.wmf
p

oleObject203.bin

image170.wmf
2

r

oleObject204.bin

image171.wmf
1

ˆ

r

oleObject205.bin

image172.wmf
r

oleObject206.bin

image173.wmf
2

r

oleObject207.bin

oleObject208.bin

oleObject15.bin

image174.wmf
2

ˆ

r

oleObject209.bin

image175.wmf
r

ˆ

oleObject210.bin

image176.wmf
2

ˆ

r

oleObject211.bin

image177.wmf
1

ˆ

r

oleObject212.bin

image178.wmf
z

ˆ

oleObject213.bin

image17.wmf
K

oleObject214.bin

image179.wmf
r

ˆ

oleObject215.bin

oleObject216.bin

image180.wmf
2

z

oleObject217.bin

image181.wmf
1

ˆ

z

oleObject218.bin

oleObject219.bin

image182.wmf
2

ˆ

z

oleObject16.bin

oleObject220.bin

oleObject221.bin

oleObject222.bin

oleObject223.bin

image183.wmf
2

ˆ

z

oleObject224.bin

oleObject225.bin

oleObject226.bin

image184.wmf
1

ˆ

z

oleObject227.bin

oleObject17.bin

image185.wmf
))

(

cos(

)

(

k

k

q

w

=

oleObject228.bin

image186.wmf
)

(

)

(

)

(

k

q

k

W

k

q

mid

wmid

=

oleObject229.bin

image187.wmf
)

(

k

q

mid

oleObject230.bin

image188.wmf
)

(

k

W

oleObject231.bin

image189.wmf
[

]

[

]

å

-

=

-

+

-

-

=

1

0

2

]

1

[

)

(

)

(

)

(

))

(

1

(

)

(

M

k

wend

mid

wend

mid

wmid

mid

k

q

k

f

k

q

k

f

k

q

E

oleObject232.bin

image18.wmf
)

(

1

n

W

image190.wmf
)

(

k

q

wend

oleObject233.bin

image191.wmf
mid

f

oleObject234.bin

image192.wmf
[

]

[

]

å

-

=

-

+

-

-

=

1

0

2

]

1

[

)

(

)

(

)

(

))

(

1

(

)

(

)

(

M

k

end

mid

end

mid

mid

f

mid

k

q

k

f

k

q

k

f

k

q

k

w

E

oleObject235.bin

image193.emf
adaptive codebook

W(z)

pre-emphasized

input signal

W(z)

ˆ

() Az

target signal

0-input

x(n)

W(z)

ˆ

() Az

g

p

F(z)W(z)

ˆ

() Az

g

c

algebraic

codebook

k

d

(past excitation)

v(n)

0-state

0-state

x

11

(n)

c(n)

Σ

+

–

Σ

+

–

Σ

+

–

updated

target signal

y(n)

z(n)

x

1,w

(n)

image194.wmf
(

)

(

)

(

)

63

,

,

0

,

ˆ

16

1

K

=

-

+

=

å

=

n

i

n

s

a

n

s

n

r

i

pre

i

pre

oleObject237.bin

oleObject18.bin

image195.wmf
(

)

n

s

pre

oleObject238.bin

image196.wmf
i

a

ˆ

oleObject239.bin

image197.wmf
)

(

n

r

image198.wmf
att

image199.wmf
cnt

burstho

flr

att

6

1

1

+

=

image19.wmf
(

)

2

)

(

)

(

1

+

-

=

Min

n

w

n

W

f

image200.wmf
cnt

burstho

image201.wmf
ZE

HO_HIST_SI

image202.wmf
6

.

0

=

flr

image203.wmf
active

latest

R

_

image204.wmf
flr

oleObject19.bin

image205.wmf
20

=

G_UPD

MIN_ACT_CN

image206.wmf
att

image207.wmf
flr

image208.wmf
flr

image209.wmf
2

.

7

_

£

active

latest

R

image20.wmf
)

(

n

w

f

image210.wmf
0

.

8

2

.

7

_

£

<

active

latest

R

image211.wmf
6

.

9

0

.

8

_

£

<

active

latest

R

image212.wmf
2

.

13

6

.

9

_

£

<

active

latest

R

image213.wmf
4

.

16

2

.

13

_

£

<

active

latest

R

image214.wmf
(

)

(

)

(

)

(

)

(

)

z

A

z

H

z

A

z

H

z

W

emph

de

ˆ

1

-

=

g

oleObject20.bin

oleObject258.bin

image215.wmf
(

)

n

r

oleObject259.bin

image216.wmf
(

)

(

)

z

A

z

H

ˆ

1

=

oleObject260.bin

image217.wmf
(

)

(

)

(

)

z

H

z

A

z

W

emph

de

-

=

1

g

oleObject261.bin

oleObject262.bin

image218.wmf
(

)

n

x

oleObject263.bin

image21.wmf
(

)

)

(

log

10

)

(

max

n

E

n

w

f

=

image219.wmf
(

)

n

h

oleObject264.bin

image220.wmf
(

)

(

)

(

)

(

)

(

)

z

A

z

H

z

A

z

H

z

W

emph

de

ˆ

1

-

=

g

oleObject265.bin

oleObject266.bin

image221.wmf
(

)

z

H

oleObject267.bin

image222.wmf
(

)

(

)

z

H

z

W

oleObject268.bin

image223.wmf
(

)

z

A

ˆ

oleObject21.bin

oleObject269.bin

image224.wmf
i

a

ˆ

oleObject270.bin

oleObject271.bin

image225.wmf
(

)

1

g

z

A

oleObject272.bin

image226.wmf
(

)

z

A

ˆ

1

oleObject273.bin

image227.wmf
(

)

z

H

emph

de

-

oleObject274.bin

image22.wmf
M

image228.wmf
(

)

n

v

oleObject275.bin

image229.wmf
CL

T

oleObject276.bin

image230.wmf
p

g

oleObject277.bin

image231.wmf
[

]

0

d

oleObject278.bin

image232.wmf
[

]

0

d

oleObject279.bin

oleObject22.bin

image233.wmf
[

]

1

d

oleObject280.bin

image234.wmf
[

]

1

d

oleObject281.bin

image235.wmf
I

T

oleObject282.bin

image236.wmf
I

T

oleObject283.bin

image237.wmf
[

]

ë

û

p

CL

I

T

T

=

oleObject284.bin

image23.wmf
)

(

max

n

E

image238.wmf
2

1

³

oleObject285.bin

oleObject286.bin

oleObject287.bin

oleObject288.bin

oleObject289.bin

image239.wmf
2

1

³

oleObject290.bin

oleObject291.bin

oleObject292.bin

oleObject23.bin

oleObject293.bin

image240.wmf
(

)

(

)

(

)

(

)

å

å

=

=

=

63

0

63

0

n

k

k

n

k

CL

n

y

n

y

n

y

n

x

C

oleObject294.bin

image241.wmf
(

)

n

x

oleObject295.bin

image242.wmf
(

)

n

y

k

oleObject296.bin

oleObject297.bin

image243.wmf
(

)

(

)

(

)

(

)

63

,

,

0

,

1

1

K

=

-

+

-

=

-

n

n

h

k

u

n

y

n

y

k

k

oleObject298.bin

image24.wmf
)

(

2

n

W

image244.wmf
(

)

n

u

oleObject299.bin

image245.wmf
(

)

63

,

,

17

231

K

+

-

=

n

oleObject300.bin

image246.wmf
(

)

n

u

oleObject301.bin

image247.wmf
63

,

,

0

K

=

n

oleObject302.bin

image248.wmf
(

)

n

r

oleObject303.bin

oleObject24.bin

image249.wmf
(

)

n

u

oleObject304.bin

image250.wmf
63

,

,

0

K

=

n

oleObject305.bin

image251.wmf
17

±

oleObject306.bin

image252.wmf
(

)

n

v

¢

oleObject307.bin

image253.wmf
(

)

n

u

k

oleObject308.bin

image25.wmf
(

)

ï

ï

ï

î

ï

ï

ï

í

ì

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

×

+

=

.

16

]

159

,

6

[

]

127

,

6

[

)

(

,

1

121

6

)

(

1

],

5

,

0

[

)

(

,

2

12

)

(

sin

5

.

0

)

(

2

kHz

WB

for

and

WB

for

n

f

for

n

f

n

f

for

n

f

n

W

n

n

n

n

p

image254.wmf
[

]

i

fr

d

oleObject309.bin

image255.wmf
3

,

2

,

1

,

0

=

i

oleObject310.bin

image256.wmf
(

)

2

1

-

-

×

+

×

+

=

z

a

z

b

a

z

b

LPF

oleObject311.bin

image257.wmf
(

)

(

)

(

)

63

,

,

0

,

1

1

1

K

=

+

¢

+

=

å

-

=

n

i

n

v

i

b

n

v

i

LPF

oleObject312.bin

image258.wmf
{

}

18

.

0

,

64

.

0

,

18

.

0

=

LPF

b

oleObject313.bin

oleObject25.bin

image259.wmf
12800

=

celp

sr

oleObject314.bin

image260.wmf
{

}

21

.

0

,

48

.

0

,

21

.

0

=

LPF

b

oleObject315.bin

image261.wmf
)

(

n

v

oleObject316.bin

image262.wmf
)

(

'

)

(

n

v

n

v

=

oleObject317.bin

image263.wmf
)

(

n

x

oleObject318.bin

image26.wmf
(

)

ï

ï

ï

ï

î

ï

ï

ï

ï

í

ì

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

=

÷

÷

ø

ö

ç

ç

è

æ

×

+

=

.

16

]

159

,

21

[

]

127

,

21

[

)

(

,

1

107

20

)

(

3

1

],

20

,

6

[

)

(

,

0

.

1

],

5

,

0

[

)

(

,

2

12

)

(

sin

5

.

0

)

(

2

kHz

WB

for

and

WB

for

n

f

for

n

f

n

f

for

n

f

for

n

f

n

W

n

n

n

n

n

p

image264.wmf
(

)

(

)

(

)

(

)

2

.

1

0

,

63

0

63

0

£

£

=

å

å

=

=

p

n

n

p

g

by

d

constraine

n

y

n

y

n

y

n

x

g

oleObject319.bin

image265.wmf
(

)

(

)

(

)

n

h

n

v

n

y

*

=

oleObject320.bin

oleObject321.bin

image266.wmf
(

)

n

v

oleObject322.bin

image267.wmf
p

g

oleObject323.bin

image268.wmf
(

)

(

)

(

)

(

)

)

8

.

0

,

min(

63

0

63

0

å

å

=

=

=

n

n

p

p

n

y

n

y

n

y

n

x

g

g

oleObject26.bin

oleObject324.bin

image269.wmf
(

)

z

F

oleObject325.bin

image270.wmf
(

)

T

z

-

-

85

.

0

1

1

oleObject326.bin

image271.wmf
(

)

1

1

1

-

-

z

b

oleObject327.bin

image272.wmf
(

)

(

)

T

z

z

z

F

-

-

-

-

=

85

.

0

1

1

1

1

0

b

oleObject328.bin

image273.wmf
[

]

é

ù

i

fr

d

image27.emf
(a)

(b)

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Weighting Function

Normalized LSF

Weighting

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Weighting Function

Normalized LSF

Weighting

oleObject329.bin

image274.wmf
1

b

oleObject330.bin

image275.wmf
[

]

[

]

[

]

1

1

1

1

28

.

0

28

.

0

-

-

-

+

+

=

c

v

v

E

E

E

b

oleObject331.bin

image276.wmf
[

]

[

]

[

]

1

1

1

1

5

.

0

-

-

-

+

=

c

v

v

E

E

E

b

oleObject332.bin

image277.wmf
[

]

1

-

v

E

oleObject333.bin

image278.wmf
[

]

1

-

c

E

image28.wmf
)

(

n

W

f

oleObject334.bin

oleObject335.bin

image279.wmf
(

)

(

)

(

)

(

)

(

)

2

1

0

ˆ

ˆ

h

h

z

A

z

A

z

F

z

F

=

oleObject336.bin

image280.wmf
75

.

0

1

=

h

oleObject337.bin

image281.wmf
9

.

0

2

=

h

oleObject338.bin

image282.wmf
12800

=

celp

sr

oleObject339.bin

oleObject27.bin

image283.wmf
8

.

0

1

=

h

oleObject340.bin

image284.wmf
92

.

0

2

=

h

oleObject341.bin

image285.wmf
16000

=

celp

sr

oleObject342.bin

image286.wmf
(

)

z

F

oleObject343.bin

image287.wmf
(

)

n

h

oleObject344.bin

image29.wmf
)

(

n

W

f

oleObject345.bin

image288.wmf
(

)

(

)

(

)

n

f

n

h

n

h

*

¬

oleObject346.bin

image289.wmf
(

)

n

f

oleObject347.bin

image290.wmf
M

s

p

I

2

×

+

=

oleObject348.bin

image291.wmf
p

oleObject349.bin

image292.wmf
s

oleObject28.bin

oleObject350.bin

image293.wmf
5

=

M

oleObject351.bin

image294.wmf
c

oleObject352.bin

image295.wmf
L

oleObject353.bin

image296.wmf
c

oleObject354.bin

image297.wmf
p

x

=

1

|

|

image30.wmf
)

(

)

(

)

(

2

1

n

W

n

W

n

W

f

×

=

oleObject355.bin

image298.wmf
c

oleObject356.bin

image299.wmf
p

oleObject357.bin

image300.wmf
c

oleObject358.bin

image301.wmf
[

]

2

1

,

c

c

c

=

oleObject359.bin

image302.wmf
1

L

oleObject29.bin

oleObject360.bin

image303.wmf
1

2

L

L

L

-

=

oleObject361.bin

image304.wmf
1

p

oleObject362.bin

image305.wmf
1

2

p

p

p

-

=

oleObject363.bin

image306.wmf
c

oleObject364.bin

image307.wmf
(

)

(

)

(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

>

=

>

=

>

>

-

=

å

=

.

0

1

,

0

1

,

2

1

,

1

,

0

,

,

,

,

2

1

1

1

0

1

L

L

f

p

p

f

L

p

L

p

p

f

L

p

f

L

p

f

p

p

image31.wmf
f

W

oleObject365.bin

image308.wmf
p

oleObject366.bin

image309.wmf
L

oleObject367.bin

image310.wmf
1

c

oleObject368.bin

image311.wmf
2

c

oleObject369.bin

image312.wmf
1

p

oleObject30.bin

oleObject370.bin

image313.wmf
1

2

p

p

-

=

p

oleObject371.bin

image314.wmf
1

p

oleObject372.bin

image315.wmf
1

c

oleObject373.bin

image316.wmf
(

)

(

)

).

,

(

,

,

1

1

1

1

1

0

2

1

1

1

L

L

p

p

f

L

p

f

c

c

s

p

-

-

=

å

-

=

p

oleObject374.bin

image317.wmf
(

)

(

)

2

1

,

c

c

s

c

s

³

image32.wmf
n

n

n

n

IHM

lsf

lsf

lsf

lsf

n

W

-

+

-

=

+

-

1

1

1

1

)

(

oleObject375.bin

image318.wmf
(

)

(

)

(

)

(

)

(

)

,

,

,

2

1

1

1

2

1

c

s

L

p

f

c

s

c

c

s

c

s

+

+

=

oleObject376.bin

image319.wmf
(

)

(

)

(

)

î

í

ì

<

=

³

=

=

.

0

1

,

1

,

1

0

1

,

1

,

0

c

L

c

L

c

s

oleObject377.bin

image320.wmf
1

:

1

=

p

oleObject378.bin

image321.wmf
1

1

³

L

oleObject379.bin

image322.wmf
1

2

³

L

oleObject31.bin

oleObject380.bin

image323.wmf
(

)

2

1

,

c

c

s

oleObject381.bin

image324.wmf
1

p

oleObject382.bin

image325.wmf
(

)

(

)

2

1

,

c

c

s

c

s

<

oleObject383.bin

image326.wmf
1

1

1

-

=

p

p

oleObject384.bin

image327.wmf
1

:

1

1

+

=

p

p

image33.wmf
n

lsf

oleObject385.bin

image328.wmf
(

)

2

c

s

oleObject386.bin

image329.wmf
(

)

1

c

s

oleObject387.bin

image330.wmf
(

)

(

)

(

)

.

,

,

1

1

2

1

L

p

f

c

c

s

c

s

-

oleObject388.bin

image331.wmf
c

oleObject389.bin

image332.wmf
1

=

k

L

oleObject32.bin

oleObject390.bin

image333.wmf
(

)

(

)

(

)

î

í

ì

=

-

=

+

=

.

1

for

,

0

for

,

1

k

k

k

k

k

c

s

c

s

c

p

p

oleObject391.bin

image334.wmf
(

)

L

p

f

,

oleObject392.bin

image335.wmf
(

)

c

s

oleObject393.bin

image336.wmf
)

3

(

=

Q

Q

oleObject394.bin

image34.wmf
p

image337.wmf
M

oleObject395.bin

image338.wmf
Q

oleObject396.bin

image339.wmf
N

num

pos

=

_

oleObject397.bin

image340.wmf
)}

1

(

),...,

1

(

),

0

(

{

)

(

-

=

N

p

p

p

N

P

oleObject398.bin

image341.wmf
N

oleObject399.bin

oleObject33.bin

image342.wmf
)

(

i

p

oleObject400.bin

image343.wmf
)}

1

(

),...,

1

(

),

0

(

{

)

(

-

=

N

su

su

su

N

SU

oleObject401.bin

image344.wmf
Q

N

su

su

su

=

-

+

+

+

)

1

(

)

1

(

)

0

(

L

oleObject402.bin

oleObject403.bin

image345.wmf
)

(

i

su

oleObject404.bin

image346.wmf
)

(

i

p

image35.wmf
0

0

=

lsf

oleObject405.bin

image347.wmf
)}

1

(

),...,

1

(

),

0

(

{

)

(

-

=

N

s

s

s

N

S

oleObject406.bin

image348.wmf
)

(

i

s

oleObject407.bin

image349.wmf
)

(

i

p

oleObject408.bin

image350.wmf
)

(

1

N

I

oleObject409.bin

image351.wmf
N

Q

=

oleObject34.bin

oleObject410.bin

image352.wmf
)

(

N

P

oleObject411.bin

image353.wmf
N

Q

>

oleObject412.bin

image354.wmf
)

(

N

SU

oleObject413.bin

image355.wmf
)

(

N

P

oleObject414.bin

image356.wmf
)

(

2

N

I

image36.wmf
p

=

M

lsf

oleObject415.bin

image357.wmf
N

M

C

N

I

<

£

)

(

0

2

oleObject416.bin

oleObject417.bin

oleObject418.bin

oleObject419.bin

image358.wmf
)}

1

(

),...,

1

(

),

0

(

{

)

(

-

=

N

p

p

p

N

P

oleObject420.bin

image359.wmf
)

(

N

P

oleObject421.bin

oleObject35.bin

image360.wmf
)

1

(

)

1

(

)

0

(

-

<

<

<

N

p

p

p

L

oleObject422.bin

image361.wmf
N

oleObject423.bin

image362.wmf
M

oleObject424.bin

image363.wmf
)

(

2

N

I

oleObject425.bin

image364.wmf
15

1)

-

(

<

<

(1)

<

(0)

0

,

)

(

I

0

,

]

[

)

(

2

1

1

)

(

1

)

1

(

)

0

(

2

<

£

<

£

-

+

-

=

å

-

=

-

-

-

-

-

-

-

N

p

p

p

C

N

C

C

C

C

N

I

N

M

N

n

n

N

n

p

M

n

N

n

p

M

N

p

M

N

M

L

oleObject426.bin

image37.wmf
)

(

)

(

)

(

2

n

W

n

W

n

W

IHM

IHM

IHM

×

=

image365.wmf
)

(

n

p

oleObject427.bin

image366.wmf
]

1

,

0

[

-

Î

N

n

oleObject428.bin

image367.wmf
]

,

0

[

)

0

(

N

M

p

-

Î

oleObject429.bin

image368.wmf
]

,

1

)

1

(

[

)

(

n

N

M

n

p

n

p

+

-

+

-

Î

oleObject430.bin

oleObject431.bin

image369.wmf
16

=

M

oleObject36.bin

oleObject432.bin

image370.wmf
3

0

£

<

N

oleObject433.bin

image371.wmf
1

)

2

(

16

1

)

1

(

15

2

)

1

(

16

2

)

0

(

15

3

)

0

(

16

3

16

2

)

(

p

p

p

p

p

C

C

C

C

C

C

N

I

-

-

-

-

-

-

+

-

+

-

=

oleObject434.bin

image372.wmf
)

(

3

N

I

oleObject435.bin

image373.wmf
)

(

3

N

I

oleObject436.bin

image374.wmf
)

(

N

SU

image38.wmf
f

W

oleObject437.bin

image375.wmf
)

(

N

SU

oleObject438.bin

image376.wmf
)

(

3

N

I

oleObject439.bin

oleObject440.bin

image377.wmf
N

oleObject441.bin

image378.wmf
Q

oleObject442.bin

oleObject37.bin

image379.wmf
N

oleObject443.bin

image380.wmf
N

Q

-

oleObject444.bin

oleObject445.bin

oleObject446.bin

image381.wmf
N

oleObject447.bin

oleObject448.bin

oleObject449.bin

image39.wmf
IHM

W

image382.wmf
Q

oleObject450.bin

oleObject451.bin

oleObject452.bin

image383.png
8

9101112131415 \‘

91011 12131_415 \
| A

8

9101112131415 /‘

8

91011121314 15

Map

Track Length:4 position
encodepulse: 2 pulse

oleObject453.bin

image384.wmf
N

Q

-

oleObject454.bin

image385.wmf
N

oleObject455.bin

oleObject38.bin

oleObject456.bin

image386.wmf
å

-

=

-

-

-

-

-

-

-

-

-

+

-

=

1

Δ

1

Δ

)

h

(

Δ

)

1

h

(

Δ

)

0

(

Δ

]

[

)

(

3

N

h

h

N

q

h

PPT

h

N

q

h

PPT

N

q

PPT

N

PPT

C

C

C

C

N

I

oleObject457.bin

image387.wmf
1

,

Δ

-

=

-

=

Q

PPT

N

Q

N

oleObject458.bin

image388.wmf
)

(

h

q

oleObject459.bin

image389.wmf
]

1

Δ

,

0

[

-

Î

N

h

oleObject460.bin

image390.wmf
]

1

,

0

[

)

(

-

Î

N

h

q

image40.wmf
2

IHM

W

oleObject461.bin

image391.wmf
)

1

Δ

(

...

)

1

(

)

0

(

-

£

£

£

N

q

q

q

oleObject462.bin

image392.wmf
)

(

4

N

I

oleObject463.bin

oleObject464.bin

image393.wmf
)

(

i

s

oleObject465.bin

image394.wmf
0

)

(

=

i

s

oleObject466.bin

oleObject39.bin

image395.wmf
1

)

(

=

i

s

oleObject467.bin

image396.wmf
I

oleObject468.bin

image397.wmf
)

(

1

N

I

oleObject469.bin

image398.wmf
)

(

2

N

I

oleObject470.bin

oleObject471.bin

image399.wmf
)

(

4

N

I

image41.wmf
ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

-

-

-

=

)

1

(

)

1

(

)

1

(

1

)

1

(

)

1

(

)

1

(

1

)

0

(

)

0

(

)

0

(

1

2

2

2

M

W

M

W

M

W

W

W

W

W

W

W

E

f

IHM

IHM

f

IHM

IHM

f

IHM

IHM

M

M

M

M

oleObject472.bin

image400.wmf
I

oleObject473.bin

image401.wmf
]

1

,

0

[

,

1

),

(

2

)

(

4

23

1

-

Î

£

£

+

´

+

=

W

I

M

N

N

I

I

N

I

I

N

oleObject474.bin

image402.wmf
)

(

)

(

2

3

23

N

I

C

N

I

I

N

M

+

´

=

oleObject475.bin

image403.wmf
W

oleObject476.bin

image404.wmf
I

oleObject40.bin

oleObject477.bin

oleObject478.bin

image405.wmf
1

Ind

oleObject479.bin

image406.wmf
2

Ind

oleObject480.bin

image407.wmf
]

1

,

0

[

1

1

-

Î

W

Ind

oleObject481.bin

image408.wmf
]

1

,

0

[

2

2

-

Î

W

Ind

oleObject482.bin

image1.wmf
(

)

(

)

(

)

2

1

g

g

z

A

z

A

z

W

=

image42.wmf
P

E

W

×

=

image409.wmf
x

Joint_inde

oleObject483.bin

image410.wmf
2

2

1

*

Ind

W

Ind

x

Joint_inde

+

=

oleObject484.bin

image411.wmf
x

Joint_inde

oleObject485.bin

image412.wmf
THR

oleObject486.bin

image413.wmf
x

Joint_inde

oleObject487.bin

oleObject41.bin

image414.wmf
THR

oleObject488.bin

oleObject489.bin

oleObject490.bin

oleObject491.bin

oleObject492.bin

oleObject493.bin

image415.wmf
x

Joint_inde

oleObject494.bin

image416.wmf
x

Joint_inde

image43.wmf
x

oleObject495.bin

image417.wmf
THR

oleObject496.bin

oleObject497.bin

image418.wmf
THR

x

Joint_inde

x

Joint_inde

+

=

oleObject498.bin

oleObject499.bin

image419.wmf
t

Ind

oleObject500.bin

image420.wmf
t

SLF

oleObject42.bin

oleObject501.bin

oleObject502.bin

image421.wmf
0

t

Ind

oleObject503.bin

image422.wmf
1

t

Ind

oleObject504.bin

oleObject505.bin

image423.wmf
t

SLF

oleObject506.bin

oleObject507.bin

image44.wmf
x

oleObject508.bin

oleObject509.bin

oleObject510.bin

image424.wmf
t

Ind

oleObject511.bin

oleObject512.bin

image425.wmf
t

t

SLF

Ind

£

1

oleObject513.bin

image426.wmf
1

0

t

t

t

t

Ind

SLF

Ind

Ind

+

´

£

oleObject514.bin

oleObject43.bin

image427.wmf
)

/

(

Int

0

t

t

t

SLF

Ind

Ind

=

oleObject515.bin

image428.wmf
()

Int

oleObject516.bin

image429.wmf
t

t

t

SLF

Ind

Ind

%

1

=

oleObject517.bin

image430.wmf
%

oleObject518.bin

oleObject519.bin

image431.wmf
t

K

t

SLF

2

=

oleObject44.bin

oleObject520.bin

image432.wmf
)

2

/

(

Int

max

t

K

t

t

Ind

SLF

=

oleObject521.bin

image433.png
Section 2N -2

Section 2" -1

codebook space :
sections number :

sections space :

N
Mm=2"
SLF= N/20

codebook space : N

sections number :

sections space :

M =N2" —»
SLF=2"

Section 0

Section 1

Section 2

Section N/2 N-1

Section N/2"

Section 2

oleObject522.bin

oleObject523.bin

oleObject524.bin

image434.wmf
t

hi

oleObject525.bin

image435.wmf
low

track

t

_

image45.wmf
'

x

oleObject526.bin

oleObject527.bin

oleObject528.bin

image436.wmf
SLPt

hi

oleObject529.bin

image437.wmf
SLPt

hi

oleObject530.bin

image438.wmf
t

h

oleObject531.bin

image439.wmf
t

h

oleObject45.bin

oleObject532.bin

oleObject533.bin

image440.wmf
t

index

final

_

oleObject534.bin

image441.wmf
t

bits

oleObject535.bin

image442.wmf
t

bits

Bit

Hi

_

_

oleObject536.bin

image443.wmf
t

range

Bit

Hi

_

_

oleObject537.bin

oleObject46.bin

image444.wmf
t

bits

back

re

_

-

oleObject538.bin

oleObject539.bin

image445.wmf
t

track

oleObject540.bin

oleObject541.bin

oleObject542.bin

oleObject543.bin

image446.wmf
)

_

_

(

2

t

t

bits

Bit

Hi

bits

-

oleObject544.bin

