3GPP TS 26.258 V0.2.0 (2023-08)
14
Release 18

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TS 26.258 V0.2.0 (2023-08)

	[bookmark: spectype2]Technical Specification

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Codec for Immersive Voice and Audio Services;
C code (floating-point)
[bookmark: specRelease](Release 18)

		

	

	
[bookmark: _MON_1710316168]

	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
https://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	4
1	Scope	6
2	References	6
3	Definitions of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	7
4	C code structure	7
4.1	Contents of the C source code	8
4.2	Program execution	8
5	File Formats	8
5.1	Audio Input/output file format	8
5.2	Rate switching profile (encoder input)	11
5.3	Bandwidth switching profile (encoder input)	11
5.4	Channel-aware configuration file (encoder input and decoder output)	11
5.5	Object based audio metadata file (encoder/renderer input and decoder output)	11
5.6	Metadata-assisted spatial audio (MASA) metadata file (encoder/renderer input and decoder output)	12
5.7	Parameter bitstream file (encoder output / decoder input)	12
5.7.1	ITU-T G.192 compliant format	12
5.8	VoIP parameter bitstream file (decoder input)	12
5.9	JBM trace file (decoder output)	13
5.10	HRTF filter file (decoder/renderer input)	13
5.11	Head rotation trajectory file (decoder/renderer input)	14
5.12	Reference rotation/vector file (decoder/renderer input)	15
5.12.1	Reference Rotation format	15
5.12.2	Reference Vector format	15
5.13	External orientation file (decoder/renderer input)	16
5.14	Renderer config file (decoder/renderer input)	17
5.14.1	Binary renderer config metadata format	17
5.14.2	Text renderer config metadata format	17
5.15	Scene description file (renderer input)	19
Annex A (normative): Metadata-assisted spatial audio (MASA) format	22
A.1	General	22
A.2	MASA format metadata structure	22
A.3	MASA format time-frequency resolution	24
A.4	MASA descriptive metadata parameters	25
A.5	MASA spatial metadata parameters	30
Annex B (normative): Binary renderer config metadata format	33
B.1	Definition of binary renderer config metadata format	33
B.2	Support Elements Look-up Tables	39
Annex C (informative): Change history	46

[bookmark: foreword][bookmark: _Toc143608857]Foreword
[bookmark: spectype3]This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall	indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should	indicates a recommendation to do something
should not	indicates a recommendation not to do something
may	indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can	indicates that something is possible
cannot	indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will	indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not	indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: scope][bookmark: _Toc143608858]
1	Scope
[bookmark: references]Attached to this document is an electronic copy of the floating-point C code for the Immersive Voice and Audio Services (IVAS) Codec. This C code is the unique alternative reference specification besides the fixed-point C code for the IVAS Codec (3GPP TS 26.251) for a standard compliant implementation of the IVAS Codec (3GPP TS 26.253), Rendering (3GPP TS 26.254), Error Concealment of Lost Packets (3GPP TS 26.255) and Jitter Buffer Management (JBM) (3GPP TS 26.256).
[bookmark: _Hlk21593723]The bit-exact fixed-point C code in 3GPP TS 26.251 is the preferred implementation for all applications, but the floating-point codec may be used instead of the fixed-point codec when the implementation platform is better suited for a floating-point implementation.
Requirements for any implementation of the IVAS codec to be standard compliant are specified in 3GPP TS 26.252 (Test sequences).
[bookmark: _Toc143608859]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[bookmark: definitions][2]	3GPP TS 26.253: "Codec for Immersive Voice and Audio Services - Detailed Algorithmic Description incl. RTP payload format and SDP parameter definitions".
[3]	3GPP TS 26.254: "Codec for Immersive Voice and Audio Services - Rendering".
[4]	3GPP TS 26.255: "Codec for Immersive Voice and Audio Services - Error concealment of lost packets".
[5]	3GPP TS 26.256: "Codec for Immersive Voice and Audio Services - Jitter Buffer Management".
[6]	3GPP TS 26.252: "Codec for Immersive Voice and Audio Services – Test Sequences".
[7]	IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications".
[8]	Recommendation ITU-T G.191 (03/23): "Software tools for speech and audio coding standardization".
[9]	Recommendation ITU-T G.192: "A common digital parallel interface for speech standardization activities".
[10]	ISO/IEC 23008-3:2015: “High efficiency coding and media delivery in heterogeneous environments — Part 3: 3D audio”
[11]	ISO/IEC 23091-3:2018: “Coding-independent code points — Part 3: Audio“

[bookmark: _Toc143608860]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc143608861]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
bslbf: Bit string, left bit first. Bit strings are written as a string of 1s and 0s within single quote marks, for example '1000 0001'. Blanks within a bit string are for ease of reading and have no significance.
uimsbf: Unsigned integer, most significant bit first.
vlclbf: Variable length code, left bit first, where “left” refers to the order in which the variable length codes are written.
[bookmark: _Toc143608862]3.2	Symbols
Void.
[bookmark: _Toc143608863]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
EVS	Enhanced Voice Services
FB	Fullband
FEC	Frame Erasure Concealment
IVAS	Immersive Voice and Audio Services
JBM	Jitter Buffer Management
LFE	Low Frequency Enhancement
MASA	Metadata-Assisted Spatial Audio
NB	Narrowband
SID	Silence Insertion Descriptor
SWB	Super Wideband
WB	Wideband
[bookmark: EDM_endabb_]WMOPS	Weighted Millions of Operations Per Second

[bookmark: clause4][bookmark: _Toc143608864]4	C code structure
This clause gives an overview of the structure of the floating-point C code and provides an overview of the contents and organization of the C code attached to the present document.
The C code has been verified on the following platforms:
-	IBM PC compatible computers with Windows 10 operating systems and Microsoft Visual C++ 2017 compiler, 32-bit.
C was selected as the programming language because portability was desirable.
[bookmark: _Toc143608865]4.1	Contents of the C source code
The C code is organized as listed in Table 1:
Table 1: Source code directory structure
	Directory
	Description

	readme.txt
	information on how to compile and use

	Makefile
	UNIX style encoder Makefile

	Workspace_msvc/
	Directory for the MSVC 2017 (or newer) project files

	apps/
	Source code files used solely for the encoder/decoder/renderer applications; these applications make use of the libraries built from lib_com, lib_dec, lib_enc, lib_rend, and lib_util

	lib_com/
	Source code files used both in encoder and decoder

	lib_dec/
	Source code files used solely in the decoder

	lib_enc/
	Source code files used solely in the encoder

	lib_rend/
	Source code files used solely in the renderer

	lib_util/
	Source code files solely for utility functions used by the applications

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. The ROM data is contained in files named "rom_*" and “ivas_rom_*” with suffix "c".
Makefiles are provided for the platforms in which the C code has been verified (listed above). Once the software is installed, this directory will have a compiled version of the encoder (named IVAS_cod), the decoder (named IVAS_dec) and the renderer (named IVAS_rend).
[bookmark: _Toc143608866]4.2	Program execution
The codec for Immersive Voice and Audio Services is implemented in three programs:
-	IVAS_cod: encoder;
-	IVAS_dec: decoder;
- 	IVAS_rend: renderer.
The programs should be called like:
-	IVAS_cod [encoder options] <input file> <bitstream file>;
-	IVAS_dec [decoder options] <bitstream file> <output file>;
- 	IVAS_rend [renderer options] -i <input file> -if <input format> -o <output file> -of <output format>.
The input and output files contain 16-bit linear encoded PCM samples and the bitstream file contains encoded data.
The encoder, decoder, and renderer options will be explained by running the programs without any input arguments. See the file readme.txt for more information on how to run the IVAS_enc, IVAS_dec and IVAS_rend programs.
[bookmark: _Toc143608867]5	File Formats
This clause describes the file formats used by the encoder and decoder programs. The test sequences defined in [6] also use the file formats described here.
[bookmark: _Toc26263326][bookmark: _Toc143608868]5.1	Audio Input/output file format
For the input files read by the encoder/renderer and output files written by the decoder/renderer the following formats are supported:
-	Headerless format: 16-bit integer words per each data sample. The byte order in each word depends on the host architecture (e.g. LSB first on PCs, etc.).
-	WAVE format: 16-bit little-endian integer words per each data sample.
Both the encoder and the decoder program process complete frames corresponding to multiples of 20 ms.
The encoder will pad the last frame to integer multiples of 20ms frames, i.e. n speech frames will be produced from an input file with a length between [(n-1)*20ms+1 sample; n*20ms]. The files produced by the decoder will always have a length of n*20ms.
Input/output audio shall follow configurations as specified in Table 2. Ambisonics components follow the ACN ordering where for real-valued spherical harmonics components of order and degree , where .
[bookmark: tab_AudioTrackConfig]Table 2: Audio track configurations
	Audio format (designator)
	Number of tracks
	Index

	Configuration
(incl. ordering)
	Azimuth Range
	Elevation Range

	Mono (M)
	1
	1
	M
	-
	-

	Stereo (ST)
	2
	1,2
	L, R
	-
	-

	Binaural (BIN)
	2
	1,2
	L, R
	-
	-

	Multi-channel 5.1 (MC51)
	6
	1
	CH_A+030_E+00
	+30
	0

	
	
	2
	CH_A-030_E+00
	-30
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+110_E+00
	+100 … +120
	0 … +15

	
	
	6
	CH_A-110_E+00
	-100 … -120
	0 ... +15

	Multi-channel 7.1 (MC71)
	8
	1
	CH_A+030_E+00
	+30 ... +45
	0

	
	
	2
	CH_A-030_E+00
	-30 … -45
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+110_E+00
	+85 … +110
	0

	
	
	6
	CH_A-110_E+00
	-85 … -110
	0

	
	
	7
	CH_A+135_E+00
	+120 … +150
	0

	
	
	8
	CH_A-135_E+00
	-120 … -150
	0

	Multi-channel 5.1+4 (MC514)
	10
	1
	CH_A+030_E+00
	+30
	0

	
	
	2
	CH_A-030_E+00
	-30
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+110_E+00
	+100 … +120
	0 … +15

	
	
	6
	CH_A-110_E+00
	-100 … -120
	0 … +15

	
	
	7
	CH_A+030_E+35
	+30 … +45
	+30 … +55

	
	
	8
	CH_A-030_E+35
	-30 … -45
	+30 … +55

	
	
	9
	CH_A+110_E+35
	+100 … +135
	+30 … +55

	
	
	10
	CH_A-110_E+35
	-100 … -135
	+30 … +55

	Multi-channel 7.1+4 (MC714)
	12
	1
	CH_A+030_E+00
	+30 … +45
	0

	
	
	2
	CH_A-030_E+00
	-30 … -45
	0

	
	
	3
	CH_A+000_E+00
	0
	0

	
	
	4
	LFE
	-
	-

	
	
	5
	CH_A+135_E+00
	+120 … +150
	0

	
	
	6
	CH_A-135_E+00
	-120 … -150
	0

	
	
	7
	CH_A+090_E+00
	+85 … +110
	0

	
	
	8
	CH_A-090_E+00
	-85 … -110
	0

	
	
	9
	CH_A+030_E+35
	+30 … +45
	+30 … +55

	
	
	10
	CH_A-030_E+35
	-30 … -45
	+30 … +55

	
	
	11
	CH_A+135_E+35
	+100 … +150
	+30 … +55

	
	
	12
	CH_A-135_E+35
	-100 … -150
	+30 … +55

	FOA (SBA1)
	4
	1…4
	Ambisonics components with 0,1,2,3
	-
	-

	HOA*
(SBA)
	
	1…
	Ambisonics components with 0,1, 2,… -1
	-
	-

	Mono objects (OBA)
	1…4
	1…4
	Object(s) with ID 1…4
	-
	-

	Metadata-assisted spatial audio, mono (MASA1)
	1
	1
	M
	-
	-

	Metadata-assisted spatial audio, stereo (MASA2)
	2
	1,2
	L, R
	-
	-

	Combined mono MASA and OBA
	2...5
	1..4
2...5
	Object(s) with ID 1…4
M MASA

	-
-
	-
-

	Combined stereo MASA and OBA

	3...6
	1..4
5,6
	Object(s) with ID 1…4
L, R MASA

	-
-
	-
-

	Combined
HOA*
(SBA)
and OBA
	

	1…
	Object(s) with ID 1…4
Ambisonics components with 0,1, 2,… -1
	-
	-

* = Ambisonics order
For Ambisonics, SN3D normalization is assumed.
[bookmark: _Toc26263327][bookmark: _Toc143608869]5.2	Rate switching profile (encoder input)
The encoder program can optionally read in a rate switching profile file which specifies the encoding bitrate for each frame of the input data. The rate switching profile is a binary file, generated by 'gen-rate-profile' tool, which is part of STL 2023, as contained in ITU-T G.191 [8]. The rate switching profile contains 32-bit integer words where each word represents the encoding bitrate for each particular frame. The rate switching profile is recycled if it contains less entries than the total number of frames in the input file.
[bookmark: _Toc143608870][bookmark: _Toc26263328]5.3	Bandwidth switching profile (encoder input)
The encoder program can optionally read in a bandwidth switching profile, which specifies the encoding bandwidth for each frame of speech processed. The file is a text file where each line contains "nb_frames B". B specifies the signal bandwidth that is one of the supported bandwidths. For IVAS operation modes, WB, SWB or FB are supported. For EVS operation modes, NB, WB, SWB and FB are supported. "nb_frames" is an integer number of frames and specifies the duration of activation of the accompanied signal bandwidth B.
[bookmark: _Toc143608871]5.4	Channel-aware configuration file (encoder input and decoder output)
For the EVS operation modes, the encoder program can optionally read in a configuration file which specifies the values of FEC indicator p and FEC offset o, where FEC indicator, p: LO or HI, and FEC offset, o: 2, 3, 5, or 7 in number of frames. Each line of the configuration file contains the values of p and o separated by a space.
The channel-aware configuration file is meant to simulate channel feedback from a receiver to a sender, i.e. the decoder would generate FEC indication and FEC offset values for receiver feedback that correspond to the current transmission channel characteristics, thereby allowing optimization of the transmission by the encoder which applies the FEC offset and FEC indication when in the channel-aware mode.
[bookmark: _Toc143608872]5.5	Object based audio metadata file (encoder/renderer input and decoder output)
For object based audio input, the encoder/renderer can optionally read corresponding metadata files describing the object characteristics. The metadata files for object based audio (per audio object) are files consisting of comma-separated values (CSV). Each line corresponds to 20ms audio at the renderer and consists of:
-	Azimuth (floating-point, range [-180°;180°[; mandatory)
-	Elevation (floating-point, range [-90°;90°]; mandatory)
-	Radius (floating-point, range [0; 15.75]; optional; default: 1.0)
-	Spread (floating-point, range [0; 360]; optional; default: 0.0)
-	Gain (floating-point, range [0;1]; optional; default: 1.0)
-	Yaw (floating-point, range [-180; 180], positive indicates left; optional; default: 0.0)
-	Pitch (floating-point, range [-90; 90], positive indicates up; optional; default: 0.0)
-	Non-diegetic (floating-point, range [0; 1]; optional; default: 0; if Flag is set to 1, panning gain is specified by azimuth Value between [-90,90], 90 left, -90 right, 0 center)
The columns are in the following order:
Azimuth,Elevation,Radius,Spread,Gain,Yaw,Pitch,Non-diegetic
The metadata reader accepts 1-8 values specified per line. If a value is not specified, the default value is assumed.
[bookmark: _Toc143608873]5.6	Metadata-assisted spatial audio (MASA) metadata file (encoder/renderer input and decoder output)
For MASA audio input, the encoder/renderer reads MASA metadata files. For bitstreams containing MASA audio, the decoder can optionally write MASA metadata files. The Syntax of the MASA metadata files is specified in Annex A.
[bookmark: _Toc143608874]5.7	Parameter bitstream file (encoder output / decoder input)
The files produced by the speech/audio encoder/expected by the speech decoder contain an arbitrary number of frames in the following available formats.
[bookmark: _Toc26263329][bookmark: _Toc143608875]5.7.1	ITU-T G.192 compliant format

	SYNC_WORD
	DATA_LENGTH
	B1
	B2
	…
	Bnn

The encoder/decoder support parameter bitstream files according to ITU-T G.192 [9]: Each box corresponds to one Word16 value in the bitstream file, for a total of 2+nn words or 4+2nn bytes per frame, where nn is the number of encoded bits in the frame. Each encoded bit is represented as follows: Bit 0 = 0x007f, Bit 1 = 0x0081. The fields have the following meaning:
- SYNC_WORD: Word to ensure correct frame synchronization between the encoder and the decoder. It is also used to indicate the occurrences of bad frames.
In the encoder output: (0x6b21)
In the decoder input:	Good frames	(0x6b21), 	Bad frames	(0x6b20)
- DATA_LENGTH: Length of the speech data. Codec mode and frame type is extracted in the decoder using this parameter

[bookmark: _Toc26263331][bookmark: _Toc143608876]5.8	VoIP parameter bitstream file (decoder input)

	Packet size
	Arrival time
	RTP header
	G.192 format (see 5.7.1)

The fields have the following size and meaning:
-	Packet size: 32-bit unsigned integer (= 12 + 2 + DATA_LENGTH).
-	Arrival time: 32-bit unsigned integer in ms.
-	RTP header: 96 bits (see RFC 3550 [7]), including RTP timestamp and SSRC.

[bookmark: _Toc26263334][bookmark: _Toc143608877]5.9	JBM trace file (decoder output)
The decoder can generate a JBM trace file with the –Tracefile switch as a by-product of the decoder operation in case of JBM operation (which is triggered with the –VOIP switch on the decoder side).
The trace file is a CSV file with semi-colon as separator. The trace file starts with one header line that contains the column names in the following order:
rtpSeqNo;rtpTs;rcvTime;playtime;active

For each played out speech frame one entry is written to the trace file. The interval of the playtime values is usually 20ms, but may differ, depending on the JBM operation. Each entry is a line in the trace file that contains values as specified in Table 3.
Table 3: JBM trace file entry format
	Name
	Unit
	Description

	rtpSeqNo
	1
	RTP sequence number of played out speech frame. -1 if no corresponding RTP packet for the speech frame exists.

	rtpTs
	ms
	RTP time stamp of played out speech frame. -1 if no corresponding RTP packet for the speech frame exists

	rcvTime
	ms
	Absolute reception time of the RTP packet that corresponds to the speech frame. -1 if no corresponding RTP packet for the speech frame exists.

	playtime
	ms
	Absolute play time (i.e. the time at which the PCM data is made available by the decoder). Can be floating-point value.

	active
	0 or 1
	Binary entry, which is set to 1 for active speech frames (i.e. frames that are neither SID nor NO_DATA)

[bookmark: _Toc143608878]5.10	HRTF filter file (decoder/renderer input)
HR filters for the binaural rendering may be provided to the decoder by using dynamic loading of external binary file.

The decoder program should be called with option -hrtf <binary_file>. This option can be used with the output configurations BINAURAL, BINAURAL_ROOM_IR and BINAURAL_ROOM_REVERB.

A binary file has a specific container format with a header and a sequence of entries.

The header of a binary file is defined as follows:

	Offset
	Format
	Length
(in bytes)
	Description

	0
	string
	8
	File identifier: “IVASHRTF”

	8
	integer
	4
	Size of file in bytes (header of file included)

	12
	integer
	2
	Number of entries (HR filters)

	14
	integer
	4
	Max size of raw data (HR filter in binary format)

Every entry contains a header followed by the related raw data which is the binary representation of the HR filter.

The header of each entry is defined as follows :

	Offset
	Format
	Length
(in bytes)
	Description

	0
	integer
	4
	Renderer type

The renderer type is defined according to the enumeration RENDERER_TYPE among the following values:
- RENDERER_BINAURAL_FASTCONV
- RENDERER_BINAURAL_FASTCONV_ROOM
- RENDERER_BINAURAL_PARAMETRIC_ROOM
- RENDERER_BINAURAL_OBJECTS_TD
- RENDERER_BINAURAL_MIXER_CONV
- RENDERER_BINAURAL_MIXER_CONV_ROOM

	4
	integer
	4
	Input audio configuration

The input audio configuration is defined according to the enumeration BINAURAL_INPUT_AUDIO_CONFIG among the following values:
- BINAURAL_INPUT_AUDIO_CONFIG_COMBINED
- BINAURAL_INPUT_AUDIO_CONFIG_HOA3
- BINAURAL_INPUT_AUDIO_CONFIG_HOA2
- BINAURAL_INPUT_AUDIO_CONFIG_FOA
- BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED

	8
	integer
	4
	Sampling frequency (16000, 32000, 48000)

	12
	integer
	4
	Raw data size in bytes

The format of the raw data depends on the rendering and the HR filters are represented in floating point.

Note :
-	With renderer type RENDERER_BINAURAL_PARAMETRIC_ROOM, the HR filters contain always one set of data which is independent of input audio configuration (set as BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED) and sampling rate (48 kHz always). This provides full data for use in the parametric binaural renderer in all situations including renderer type RENDERER_BINAURAL_PARAMETRIC.
-	The HR filters for the renderer types RENDERER_BINAURAL_FASTCONV and RENDERER_BINAURAL_FASTCONV_ROOM are fully defined at 48kHz.
-	For the renderer type RENDERER_BINAURAL_OBJECTS_TD the input audio configuration is always BINAURAL_INPUT_AUDIO_CONFIG_UNDEFINED.

[bookmark: _Toc143608879]5.11	Head rotation trajectory file (decoder/renderer input)
In the reference implementation of the codec, input data representing the current rotation of the listeners head can be provided to the decoder in an ASCII formatted file comprising four columns separated by commas. These columns contain floating-point numbers representing either a quaternion or a Euler angle. The distinction between these two input formats is made by a magic number in the first column. If this value is set to -3.0, it is assumed that the remaining three columns contain three Euler angles. Otherwise, all four columns are interpreted as a Quaternion. The input is expected to have one line for each subframe of 5 ms.
In the case of Quaternion-based input, the columns are the w, x, y, z components of a unit quaternion. Proper normalization to 1 shall be maintained in the input. The coordinate system is defined such that the x-axis points from the left to the right ear, the y axis points into the direction of view, and the z axis point from bottom to top. The origin is in the center of the head. For example, an approximate 90-degree rotation around the horizontal (z) axis would be represented by the following input line:
0.707107,0.000000,0.000000,0.707107
.
In the case of Euler-angle input, the first column contains the magic number -3.0, and the next three columns are the Euler angles yaw, pitch, and roll. The rotations are applied in the order yaw-pitch-roll. The yaw angle rotates around the z axis. The pitch angle rotates around the new y axis. The roll angle rotates around the new x axis. The equivalent of the example line above is then:
-3.0,90.000035,0.000000,0.000000

[bookmark: _Toc143608880]5.12	Reference rotation/vector file (decoder/renderer input)
The external reference orientation of the orientation tracking feature can either be provided as a rotation (Quaternion or Euler angles) or as a pair of 3-dimensional positions (listener position and acoustic reference position).
[bookmark: _Toc143608881]5.12.1	Reference Rotation format
The format is identical to the format used for Head rotation trajectory file (see clause 5.11). When the rotation applied is the identity operator, the reference position is in front of the listener. Example values:
The Quaternion value “1, 0, 0, 0” places the acoustic reference in front of the listener, e.g. an object with azimuth 0 and elevation 0, would get rendered in front of the listener.
The Quaternion value “0.71, 0, 0, 0.71" (see the example in clause 5.11) places the acoustic reference 90 degrees to the right of the listener, e.g. an object with azimuth 0 and elevation 0, would get rendered 90 degrees to the right of the listener:
[bookmark: _Toc143608882]5.12.2	Reference Vector format
The Reference Vector file format describes a pair of x/y/z positions, one for the listener and one for the acoustic reference. The acoustic reference direction is defined by the vector from the listener towards the acoustic reference position.
The reference vector file is a CSV file with comma as separator. Each line shall contain a listener and an acoustic reference position in the following order:
xlistener, ylistener, zlistener, xreference, yreference, zreference
Table 4: Reference Vector entry format
	Name
	Unit
	Description

	xlistener
	m
	x axis position of the listener.

	ylistener
	m
	y axis position of the listener.

	zlistener
	m
	z axis position of the listener.

	xreference
	m
	x axis position of the acoustic reference.

	yreference
	m
	y axis position of the acoustic reference.

	zreference
	m
	z axis position of the acoustic reference.

Example values:
The value “0, 0, 0, 1, 0, 0” places the acoustic reference in front of the listener, e.g., an object with azimuth 0 and elevation 0, would get rendered in front of the listener.
The value “0, 0, 0, -1, 0, 0” places the acoustic reference behind the listener, e.g., an object with azimuth 0 and elevation 0, would get rendered behind the listener.
The value “0, 0, 0, 1, 1, 0” places the acoustic reference 45 degrees to the right of the listener, e.g., an object with azimuth 0 and elevation 0, would get rendered 45 degrees to the right of the listener.

[bookmark: _Toc143608883]5.13	External orientation file (decoder/renderer input)
The external orientation file provides orientation information for any non-listener dependent orientations. The orientations shall be given as floating-point quaternions to the decoder/renderer in (w, x, y, z) order. Additional information may be given as HeadRotIndicator, ExtOriIndicator, ExtIntrpFlag and ExtIntrpNFrames. These options are presented in Table 5. Each entry line represents a sub-frame entry, where the sub-frame resolution is 5ms (i.e., 4 sub-frames result in a 20-ms frame).
Quaternion_W, Quaternion_X, Quaternion_Y and Quaternion_Z represent the external orientation in quaternions. The quaternion input follows the same convention as in the case of head rotations (subclause 5.11), The quaternion components shall always be present in the entry line of an external orientation file.HeadRotIndicator indicates how the head rotation is handled in the decoder/renderer. Permissive values are 0, 1, and 2. Value 0 disables the head rotation for the current sub-frame. Value 1 enables the head rotation for the current sub-frame. Value 2 freezes the head rotation value to the current head rotation. Subsequent entries with HeadRotIndicator=2 use the same head rotation as in the first entry with HeadRotIndicator=2. If HeadRotIndicator is not present in the external orientation file, a default value of 1 is used, i.e., head-tracking is applied by default according to subclause 5.11.
ExtOriIndicator indicates how the external orientation is handled in the decoder/renderer. Permissive values are 0, 1, and 2. Value 0 disables the external orientation for the current sub-frame. Value 1 enables the external orientation for the current sub-frame. Value 2 freezes the external orientation value to the current external orientation. Subsequent entries with ExtOriIndicator =2 use the same external orientation as in the first entry with ExtOriIndicator =2. If ExtOriIndicator is not present in the external orientation file, a default value of 1 is used.
ExtIntrpFlag is used to enable (value 1) or disable (value 0) interpolation for external orientations. The interpolation process interpolates to the target external orientation from the current external orientation. The target external orientation is the external orientation entry with ExtIntrpFlag=1 included in the entry. The target orientation is reached in N number of frames, where N is determined by ExtIntrpNFrames entry. If the value of ExtIntrpNFrames exceeds the maximum value of 500, the processing uses the value of 500 as the frame count for the external orientation interpolation. If ExtIntrpFlag is not present in the external orientation file, a default value of 0 is used. If ExtIntrpNFrames is not present in the external orientation file, a default value of 0 is used.
The external orientation file is an ASCII formatted file comprising input values separated by commas (i.e., a CSV file). Each line shall contain the orientation for a sub-frame in (w, x, y, z) order. Each line may also have additional entries in the following order:
Quaternion_W, Quaternion_X, Quaternion_Y, Quaternion_Z, HeadRotIndicator
OR
Quaternion_W, Quaternion_X, Quaternion_Y, Quaternion_Z, HeadRotIndicator, ExtOriIndicator
OR
Quaternion_W, Quaternion_X, Quaternion_Y, Quaternion_Z, HeadRotIndicator, ExtOriIndicator, ExtIntrpFlag
OR
Quaternion_W, Quaternion_X, Quaternion_Y, Quaternion_Z, HeadRotIndicator, ExtOriIndicator, ExtIntrpFlag, ExtIntrpNFrames
The order of the entries shall not change, and the optional entries shall not be included without first including the previous entries. For example, ExtOriIndicator shall not be contained in an entry line without first containing HeadRotIndicator.
The decoder/renderer operation is activated using option -exof <external_orientation_file>.
Table 5: External orientation entry format
	Name
	Format
	Description
	Default value
	Permissive values

	Quaternion_W
	float
	Quaternion basis element W
	-
	-1.0 ... 1.0

	Quaternion_X
	float
	Quaternion basis element X
	-
	-1.0 ... 1.0

	Quaternion_Y
	float
	Quaternion basis element Y
	-
	-1.0 ... 1.0

	Quaternion_Z
	float
	Quaternion basis element Z
	-
	-1.0 ... 1.0

	HeadRotIndicator
	float
	Indication how to handle head rotations (optional)
	1
	0, 1, 2

	ExtOriIndicator
	float
	Indication how to handle external orientations (optional)
	1
	0, 1, 2

	ExtIntrpFlag
	float
	Flag to enable/disable external orientation interpolation (optional)
	0
	0, 1

	ExtIntrpNFrames
	float
	Number of frames to the external orientation interpolation target (optional)
	0
	0 – 500

Example usage:
The value “0.7, 0.7, 0, 0” applies the corresponding external orientation in the processing.
The value “0.7, 0.7, 0, 0, 0, 1” applies only the corresponding external orientation in the processing and disables the head rotation.
The value “0.7, 0.7, 0, 0, 1, 1, 1, 20” interpolates to the corresponding external orientation from the current external orientation in the span of 20 processing frames. For example, if the current external orientation is identity (1, 0, 0, 0), the external orientation is interpolated from identity to the target input orientation (0.7, 0.7, 0, 0) and the target input orientation is reached after 20 processing frames have passed.
The value “0.7, 0.7, 0, 0, 2, 1” applies the corresponding external orientation in the processing and freezes the head orientation. For example, if the current head rotation is (0.7, -0.7, 0, 0), and the next external orientation entry is “0.65, 0.75, 0, 0, 2, 1”, the next processing sub-frame uses the frozen head orientation value (0.7, -0.7, 0, 0).

[bookmark: _Toc143608884]5.14	Renderer config file (decoder/renderer input)
The renderer configuration file provides metadata for controlling the rendering process. This metadata includes acoustics environment parameters and source directivity. The data can be provided using binary bitstream or a text file. The binary bitstream format is intended to be used while providing rendering configuration remotely, e.g., associated with audio content as distributed by a content provider. The text format is intended to be used locally on the UE. The binary configuration bitstream is provided from a file. A path to the binary bitstream file is provided in the text configuration file.
[bookmark: _Toc143608885]5.14.1	Binary renderer config metadata format
The syntax of the binary renderer config metadata format is specified in Annex B.
[bookmark: _Toc143608886]5.14.2	Text renderer config metadata format
The text based renderer configuration file contains the following syntax elements:
[general]	header of general metadata
binaryConfig = path;	path to the binary configuration file
[roomAcoustics]	header of room acoustic metadata group
frequencyGridCount = N;	number of frequency grids
acousticEnvironmentCount = N;	number of acoustic environments
[frequencyGrid:N] 	header of a frequency grid, where N is a zero-based, sequential grid index
method = individualFrequencies | startHopAmount | defaultBanding;
specifies frequency grid representation method
nrBands = N;	number of frequency bands, applicable for individual frequencies and start-hop-amount representation methods
frequencies = [...];	center frequencies for individualFrequencies representation method, a comma separated list of N numeric values (ints or floats)
startFrequency = value;	starting frequency for start-hop-amount representation method
frequencyHop = value;	frequency hop for start-hop-amount representation method. Center frequencies for a grid are computed as fcn = fcn-1 * hop
defaultGrid = N;	default grid identifier. The available default grids are as in Annex B.1, Table B.4.
defaultGridOffset = N;	it is possible to use a subset of a default grid by specifying an offset - index of the first center frequency of the default grid and
defaultGridNrBands = N;	number of bands from the default grid to be used
[acousticEnvironment:N]	header of an acoustic environment element, where N is a zero-based grid index (does not have to be sequential)
frequencyGridIndex = N;	index of the frequency grid (see above) used for frequency dependent parameters
preDelay = value;	a delay at which DSR (diffuse to source ratios) were measured
rt60 = [...];	RT60 values per frequency band
dsr = [...];	diffuse to source sound energy ratio per frequency band
earlyReflectionsSize = [x, y, z];	shoebox model room size in x, y, z dimension in meters
absorptionCoeffs = [x1, x2, y1, y2, z1, z2];
early reflections absorption coefficients per wall
listenerOrigin = [x, y, z];	early reflections listener origin (optional) as offset from the room center
lowComplexity = TRUE | FALSE;	early reflection low-complexity mode flag (FALSE by default)
[directivitySetting]	header of the directivity data group
directivityCount = N;	number of directivity components
[directivityPattern:N]	header of a directivity pattern element, where N is a zero-based element index
directivity = [ia, oa, og];	directivity data: ia – inner angle, oa – outer angle, og – outer gain.
	
The config file format supports comments starting with a hash sign #. It also supports splitting data into multiple lines, useful in case of larger arrays.
[bookmark: _Toc143608887]5.15	Scene description file (renderer input)
The renderer can render scenes consisting of one or multiple sources. The scenes can be described using a scene description file (textfile) which is defined according to Table 6:
Table 6 : Scene Description File Syntax
	Line no.
	Type
	Description

	1
	string
	Path to a “multitrack” audio file. This shall be a single multichannel wav/pcm
file that contains all input audio. For example, channels 1-4 can be an FOA scene,
channel 5 – an object and channels 6-11 – a 5.1 channel bed.
The path given shall be relative to the location of the config file.
This path has lower priority than the one given on the command line: it is
ignored if the –inputAudio argument to the renderer executable is specified.

	2
	integer
	Contains number of inputs. An input may either be an Ambisonics scene, an
object or a channel bed. This does not correspond the total number of channels in the input audio file.
The renderer simultaneously supports:
- 1 Ambisonics input
- 1 Channel-based input
- 1 MASA input
- Up to 4 audio objects (ISM) inputs

	Following lines
	
	Definition of each of the inputs. Inputs may be listed in any order. They are not required to be listed in the same order as in the audio file.
Ambisonics:
	Line no. (relative to each input)
	Type
	Description

	1
	string
	SBA

	2
	integer
	Index of the first channel of this input in the multitrack file (1-indexed) Ambisonics order

Channel-based:
	Line no. (relative to each input)
	Type
	Description

	1
	string
	MC

	2
	integer
	Index of the first channel of this input in the multitrack file (1-indexed)

	3
	string
	Name of speaker layout (X_Y_Z or CICPx format)

MASA:
	Line no. (relative to each input)
	Type
	Description

	1
	string
	MASA

	2
	integer
	Index of the first channel of this input in the multitrack file (1-indexed)

	3
	integer
	Number of transport channels

	4
	string
	Path to MASA metadata file, see clause 5.6. The path shall be relative to config file location.

Audio Objects, Option 1:
	Line no. (relative to each input)
	Type
	Description

	1
	string
	ISM

	2
	integer
	Index of this input's audio in the multitrack file (1-indexed)

	3
	string
	Path to Object based audio metadata file, see clause 5.5. The path shall be relative to config file location.

or
Audio Objects, Option 2:
	Line no. (relative to each input)
	Type
	Description

	1
	string
	ISM

	2
	integer
	Number N of positions defined, followed by N lines in form:

	Following N lines:
	integer, float, (…)
	Number of frames for which the defined position is kept, object position according to values defined in Object based audio metadata file, see 5.5.

Each input definition may be followed by a list of optional properties in the following format:
<property_key>:<property_value>
Each key-value pair shall be placed on a separate line.
The following key-value pairs are supported:
	Key
	Type
	Description

	gain_dB
	float
	Applied gain to input in dB

	lfe_matrix
	string
	CSV file containing a LFE panning matrix. File containing a containing a matrix of dimensions [num_input_lfe x num_output_channels]
with elements specifying linear routing gain.
If specified, overrides the output LFE position option and the default behavior which attempts to map input to output LFE channel(s)

	lfe_gain_dB
	float
	Applied gain to input LFE in dB. Applicable only to formats containing an LFE.

	lfe_azi
	float
	Azimuth defining LFE position on sphere; alternative to lfe_matrics.

	lfe_ele
	float
	Elevation defining LFE position on sphere; alternative to lfe_matrics.

Example configuration:
The following example defines a scene with 4 inputs:
-	ISM with trajectory defined in a separate file. Channel 12 in the input file. Apply a gain of 0.5 dB.
-	Ambisonics, order 1. Channels 1-4 in the input audio file. Apply -6 dB of gain.
-	CICP6 channel bed. Channels 5-10 in the input audio file.
-	ISM with 2 defined positions (-90,0) and (90,0). Channel 11 in the input file. The object will start at position (-90,0) and stay there for 5 frames, then move to (90,0) and stay there for 5 frames. This trajectory is looped ver the duration of the input audio file.
	./input_audio.wav
4
ISM
12
path/to/IVAS_ISM_metadata.csv
gain_dB:0.5
SBA
1
1
gain_dB:-6
MC
5
5_1
ISM
11
2
5,-90,0
5,90,0

[bookmark: startOfAnnexes][bookmark: _Toc143608888]
Annex A (normative):
Metadata-assisted spatial audio (MASA) format
[bookmark: _Toc143608889]A.1	General
This Annex describes the Metadata-assisted spatial audio (MASA) format. The MASA format consists of audio signals and metadata. The audio signals for MASA can be mono or stereo. The metadata shall be provided according to a structure defined here, and it comprises descriptive metadata and spatial metadata, as defined in the following clauses.
[bookmark: _Toc143608890]A.2	MASA format metadata structure
MASA format input to IVAS encoder follows the 20-ms frame size. For each 20-ms audio frame, one corresponding metadata frame is provided. Each metadata frame is structured as illustrated in Figure A.1. The descriptive metadata common for the whole frame is written first. This is followed by the spatial metadata, which consists of four spatial metadata subframes, each corresponding to 5 ms of audio. The structure of the spatial metadata subframes depends on the number of direction parameters in the frame. There are two options for the structure, illustrated in Figure A.2 and Figure A.3 for one direction and two directions, respectively.

Descriptive common metadata
(Table A.1)
Subframe 1
Spatial metadata
(Figure A.2 & A.3)
Subframe 2
Spatial metadata
(Figure A.2 & A.3)
Subframe 3
Spatial metadata
(Figure A.2 & A.3)
Subframe 4
Spatial metadata
(Figure A.2 & A.3)
Spatial metadata
MASA metadata frame

Figure A.1: Metadata structure for one MASA input signal frame
Direction 1
Spatial metadata
(Table A.2a)
Common
Spatial metadata
(Table A.2b)

Figure A.2: MASA spatial metadata structure for one subframe with one direction
Direction 1
Spatial metadata
(Table A.2a)
Direction 2
Spatial metadata
(Table A.2a)
Common
Spatial metadata
(Table A.2b)

Figure A.3: MASA spatial metadata structure for one subframe with two directions
Table A.1 presents the MASA descriptive common metadata parameters in order of writing. The definitions and use of the descriptive metadata parameters are described in clause A.4.

Table A.2a and Table A.2b present the MASA spatial metadata parameters dependent and independent of the number of directions, respectively. The definitions and use of the spatial metadata parameters are described in clause A.5.

Table A.1: MASA format descriptive common metadata parameters
	Field
	Bits
	Description

	Format descriptor
	64
	Defines the MASA format for IVAS. Eight 8-bit ASCII characters:
01001001, 01010110, 01000001, 01010011,
01001101, 01000001, 01010011, 01000001
Values stored as 8 consecutive 8-bit unsigned integers.

	Channel audio format
	16
	Combined following fields stored in two bytes.
Value stored as a single 16-bit unsigned integer.

	Number of directions
	(1)
	Number of directions described by the spatial metadata.
Each direction is associated with a set of direction dependent spatial metadata.
Range of values: [1, 2]

	Number of channels
	(1)
	Number of transport channels in the format.
Range of values: [1, 2]

	Source format
	(2)
	Describes the original format from which MASA was created.

	(Variable description)
	(12)
	Further description fields based on the values of ‘Number of channels’ and ‘Source format’ fields.
When all bits are not used, zero padding is applied.

Table A.2a: MASA format spatial metadata parameters (dependent of number of directions)
	Field
	Bits
	Description

	Direction index
	16
	Direction of arrival of the sound at a time-frequency parameter interval. Spherical representation at about 1-degree accuracy.
Range of values: “covers all directions at about 1° accuracy”
Values stored as 16-bit unsigned integers.

	Direct-to-total energy ratio
	8
	Energy ratio for the direction index (i.e., time-frequency subframe).
Calculated as energy in direction / total energy.
Range of values: [0.0, 1.0]
Values stored as 8-bit unsigned integers with uniform spacing of mapped values.

	Spread coherence
	8
	Spread of energy for the direction index (i.e., time-frequency subframe).
Defines the direction to be reproduced as a point source or coherently around the direction.
Range of values: [0.0, 1.0]
Values stored as 8-bit unsigned integers with uniform spacing of mapped values.

Table A.2b: MASA format spatial metadata parameters (independent of number of directions)
	Field
	Bits
	Description

	Diffuse-to-total energy ratio
	8
	Energy ratio of non-directional sound over surrounding directions.
Calculated as energy of non-directional sound / total energy.
Range of values: [0.0, 1.0]
(Parameter is independent of number of directions provided.)
Values stored as 8-bit unsigned integers with uniform spacing of mapped values.

	Surround coherence
	8
	Coherence of the non-directional sound over the surrounding directions.
Range of values: [0.0, 1.0]
(Parameter is independent of number of directions provided.)
Values stored as 8-bit unsigned integers with uniform spacing of mapped values.

	Remainder-to-total energy ratio
	8
	Energy ratio of the remainder (such as microphone noise) sound energy to fulfil requirement that sum of energy ratios is 1.
Calculated as energy of remainder sound / total energy.
Range of values: [0.0, 1.0]
(Parameter is independent of number of directions provided.)
Values stored as 8-bit unsigned integers with uniform spacing of mapped values.

[bookmark: _Toc143608891]A.3	MASA format time-frequency resolution
The MASA spatial metadata parameters describe the spatial characteristics of the captured spatial sound scene. The parametric representation is based on frequency bands. A certain spatial characteristic thus relates to a frequency band, and a neighbouring frequency band can exhibit a different characteristic. For MASA format, 24 frequency bands are used. Table A.3 presents these frequency bands.
The metadata frame corresponding to 20-ms frame of audio is divided into four subframes of 5 ms each, which allows for higher temporal resolution of the spatial characteristics than offered by the frame size. The parametric representation in each frame therefore consists of 24 frequency bands in 4 time slots giving a total of 96 time-frequency tiles.
When a frame describes the scene using one spatial direction, there are 96 instances of each of the spatial metadata parameters corresponding with the 96 time-frequency tiles. When a frame describes the scene using two spatial directions, there are two values per time-frequency tile for some of the spatial metadata parameters. In this case, there are 192 instances of those spatial metadata parameters in one metadata frame.

Table A.3. MASA spatial metadata frequency bands
	Band
	LF (Hz)
	HF (Hz)
	BW (Hz)

	1
	0
	400
	400

	2
	400
	800
	400

	3
	800
	1200
	400

	4
	1200
	1600
	400

	5
	1600
	2000
	400

	6
	2000
	2400
	400

	7
	2400
	2800
	400

	8
	2800
	3200
	400

	9
	3200
	3600
	400

	10
	3600
	4000
	400

	11
	4000
	4400
	400

	12
	4400
	4800
	400

	13
	4800
	5200
	400

	14
	5200
	5600
	400

	15
	5600
	6000
	400

	16
	6000
	6400
	400

	17
	6400
	6800
	400

	18
	6800
	7200
	400

	19
	7200
	7600
	400

	20
	7600
	8000
	400

	21
	8000
	10000
	2000

	22
	10000
	12000
	2000

	23
	12000
	16000
	4000

	24
	16000
	24000
	8000

[bookmark: _Toc143608892]A.4	MASA descriptive metadata parameters
The MASA descriptive metadata is provided once per frame. It includes information for correctly reading the metadata frame and information relating to creation of the current MASA format signal and its transport audio signals that can be used to assist encoding or rendering of the spatial audio.
The parameter fields of Table A.1 as defined as follows:
Format descriptor (64 bits)
The unique format descriptor code is provided at the beginning of every MASA format metadata frame. It specifies MASA format for the IVAS codec.
	Required bit value
	Decoded value
	Additional description

	01001001, 01010110, 01000001, 01010011, 01001101, 01000001, 01010011, 01000001
	“IVASMASA”
	Unique format descriptor

Channel audio format (16 bits as specified below)
Two bytes providing the following individual fields:
-	Number of directions
-	Number of channels
-	Source format
and a variable 12-bit description configured based on ‘Number of channels’ and ‘Source format’.

Number of directions (1 bit)
This parameter field indicates how many directions are described in current MASA format frame. Size of the metadata associated with the current frame depends on the number of directions.
	Bit value
	Decoded value
	Additional description

	0
	1 direction
	-

	1
	2 directions
	-

Number of channels (1 bit)
This parameter field indicates how many transport channels are used for the MASA format. This parameter is required by the codec or renderer in some form to read the correct number of channels. Some additional channel format descriptors further depend on the number of channels.
	Bit value
	Decoded value
	Additional description

	0
	1 channel
	-

	1
	2 channels
	-

Source format (2 bits)
This parameter field describes the format of source signals that were used to form the MASA format input file/stream. This parameter provides additional information that can benefit encoding, decoding, and/or rendering. First bit value (00) is the default value.
	Bit value
	Decoded value
	Additional description

	00
	Default/Other
	Audio originates from unknown format(s) including mixed sources

	01
	Microphone grid
	Audio originates from various (irregular) microphone grids (e.g., smartphones or other UEs)

	10
	Channel-based
	Audio originates from premixed channel-based audio (e.g., 5.1)

	11
	Ambisonics
	Audio originates from Ambisonics format

Variable description (12 bits including zero padding)
Based on the values of the ‘Number of channels’ bit and ‘Source format’ bits, the variable description is configured to provide up to three additional fields to further describe the source format or transport channels. This information can guide, e.g., metadata encoding and rendering. The following presents the possible field combinations and their definitions.
Source format == 00 (Default/Other)
If number of channels is 1 (bit value 0), no additional metadata is specified. Instead, 12-bit zero padding is applied.
If number of channels is 2 (bit value 1), following additional fields are configured in order:
-	Transport definition field (3 bits). This field describes the configuration of the two transport channels. The possible bit values and corresponding configurations are provided in Table A.4.
-	Channel angle field (3 bits). This field describes symmetric angle positions for transport signals with directivity patterns. In this notation, 0° corresponds to the front. The bit values and corresponding configuration are defined in Table A.5.
-	Channel distance field (6 bits). The bit values and corresponding configuration are defined in Table A.6.

Table A.4: Transport definition field for Source formats: Default/Other and Microphone grid
	Bit value
	Decoded value
	Additional description

	000
	Unknown/Other
	Default

	001
	Omni
	-

	010
	Subcardioid
	-

	011
	Cardioid
	-

	100
	Supercardioid
	-

	101
	Hypercardioid
	-

	110
	Dipole
	-

	111
	Binaural
	-

Table A.5: Channel angles for directive patterns for Source formats: Default/Other and Microphone grid
	Bit value
	Decoded value
	Additional description

	000
	Unspecified
	Default

	001
	±90 deg.
	-

	010
	±70 deg.
	XY stereo

	011
	±55 deg.
	XY stereo, ORTF stereo

	100
	±45 deg.
	NOS stereo, XY stereo, Blumlein pair

	101
	±30 deg.
	-

	110
	±0 deg.
	AB stereo. Needs spacing for stereo image.

	111
	Reserved
	-

Note: If Transport definition value is “Unknown”, “Omni”, or “Binaural”, value 000 is used.
The channel distance parameter is defined with a few predefined values and the distance values between 0.01 m and 1 m are calculated as an equal multiplicative interval such that there are 60 values from 0.01 m to 1 m. The equation for this is given as:

where is the decoded distance value and is the bit value as an integer value, i.e., . The result is in meters.
Table A.6: Channel distance for Source formats: Default/Other and Microphone grid
	Bit value
	Decoded value
	Additional description

	000000
	Unspecified
	Distance is not specified, or it is unknown

	000001
	0 m / coincident
	No distance between microphones, i.e., they are coincident

	000010
	< 0.01 m
	Distances smaller than 0.01 m

	000011
	0.01 m
	(Distances formed with equation above)

	…
	…
	(Distances formed with equation above)

	111110
	1 m
	(Distances formed with equation above)

	111111
	> 1 m
	Distances larger than 1 m

Source format == 01 (Microphone grid)
If number of channels is 1 (bit value 0), no additional metadata is specified. Instead, 12-bit zero padding is applied.
If number of channels is 2 (bit value 1), following additional fields are configured in order:
-	Transport definition field (3 bits). This field describes the configuration of the two transport channels. The possible bit values and corresponding configurations are provided in Table A.4.
-	Channel angle field (3 bits). This field describes symmetric angle positions for transport signals with directivity patterns. In this notation, 0° corresponds to the front. The bit values and corresponding configuration are defined in Table A.5.
-	Channel distance field (6 bits). The bit values and corresponding configuration are defined in Table A.6.
The field definitions used for Microphone grid source format and Default/Other source format are the same. Differentiation is based on Source format parameter itself.

Source format == 10 (Channel-based)
For premixed content, the original channel layout can be provided. In addition to common CICP layouts relevant for IVAS, two generic options (3D and 2D) are available. The description of the bit values is provided in Table A.7. The transport signals with this source format are assumed to be a mono (1 channels) or left-right stereo (2 channels) downmix of the multi-channel signals, and thus the number of channels can be 1 or 2 (bit values 0 or 1).
In addition to the 3-bit Channel layout field, 9 bits of zero padding is applied to complete the 12-bit variable description.
Table A.7: Channel layout field for the channel-based source format
	Bit value
	Decoded value
	Additional description

	000
	Unknown/Other
	Unknown layout or other (3D) layout. Default option.

	001
	Other planar
	Other 2D layout

	010
	2.0
	CICP2 positions, ITU order

	011
	5.1
	CICP6 positions, ITU order

	100
	5.1+2
	CICP14 positions azimuth, 35° elevation, ITU order

	101
	5.1+4
	CICP16 positions azimuth, 35° elevation, ITU order

	110
	7.1
	CICP12 positions, ITU order

	111
	7.1+4
	CICP19 positions azimuth, 35° elevation, ITU order

Note 1: ITU channel order is given in ISO/IEC 23008-3:2015 [10], Table 95.
Note 2: Azimuth positions are given in ISO/IEC 23091-3:2018 [11], Table 3.

Source format == 11 (Ambisonics)
If number of channels is 1 (bit value 0), no additional metadata is specified. Instead, 12-bit zero padding is applied.
If number of channels is 2 (bit value 1), following two additional fields are configured in order:
-	Transport definition field (3 bits). This describes the configuration of the two transport channels. The possible bit values and corresponding configurations are provided in Table A.4. However, bit values 001 (omni) and 111 (binaural) are not allowed and are interpreted as bit value 000.
-	Channel angle field (3 bits). Describes symmetric angle positions for transports signals with directive patterns. In this notation, 0° corresponds to the front. This is defined in Table A.5.
-	In addition, 6 bits of zero padding is applied to complete the 12-bit variable description.
For Ambisonics-based transport signals, transport channels are considered coincident, and there is therefore no ‘Channel distance’ field specified.
[bookmark: _Toc143608893]A.5	MASA spatial metadata parameters
The MASA spatial metadata describes the spatial audio characteristics corresponding to the one or two transport audio signals. Thus, the spatial audio scene can be rendered for listening based on the combination of the transport audio signals and the spatial metadata.
The MASA spatial metadata is provided once per subframe in each frame following the time-frequency resolution presented in clause A.3. Spatial metadata for each subframe contains one or two first sets of parameters depending on the number of directions (as defined by the corresponding metadata field in descriptive metadata, clause A.4) and one second set of parameters that does not depend on the number of directions. As shown in Figure A.2 and Figure A.3, the parameters corresponding to Table A.2a are written first in the stream, followed by the parameters corresponding to Table A.2b.
The definitions and use of the MASA spatial metadata parameters are described in order in the following.

Direction index: Spatial direction(s)
Spatial directions represent the directional energy flows in the sound scene. Each spatial direction together with corresponding direct-to-total energy ratio describes how much of the total energy for each time-frequency tile is coming from that specific direction. In general, this parameter can also be thought of as the direction of arrival (DOA).
There can be one or two spatial directions for each time-frequency tile in the input metadata. Each spatial direction is represented using a 16-bit direction index. This is an efficient representation of directions as points of a spherical grid with an accuracy of about 1 degree in any arbitrary direction.
The direction indexing corresponds to the function for transforming the audio direction angular values (azimuth ϕ and elevation θ) into an index, and the inverse function for transforming the index into the audio direction angular values.
Each pair of values containing the elevation and the azimuth is first quantized on a spatial spherical grid of points and the index of the corresponding point is constructed. The structure of the spherical grid is defined first, followed by the quantization function and lastly the index formation followed by the corresponding de-indexing function.
The spherical grid is defined as a succession of horizontal circles of points. The circles are distributed on the sphere, and they correspond to several elevation values. The indexing functions make the connection between the angles (elevation and azimuth) corresponding to each of these points on the grid and a 16-bit index.
The spherical grid is on a sphere of unitary radius that is defined by the following elements:
-	The elevation values are equidistant between -90 and +90 degrees; the value 0 is represented and corresponds to the circle situated on the equator. The values are symmetrical with respect to the origin. The number of positive elevation values is
-	For each elevation value there are several equally spaced azimuth values. One point on the grid is given by the elevation and the azimuth value. The number n(i) of azimuth values is calculated as follows:
-	on the equator of the spherical grid () is it set to

-	there is one point at each of the poles (degrees)

-	the function calculating the number of points on the grid for other elevation indices, uses the following definition:
with and

where is the uniform quantization step for , is a rounding function to the nearest even integer (above for , closest for) The term gives the cumulative cardinality (i.e., cumulative number of points in the spherical grid) in a spherical zone going from the first non-zero elevation value to the -th elevation value. This cumulative cardinality is derived from the relative area on the spherical surface, assuming a (near) uniform point distribution of the remaining number of points (let alone the equator and poles).
-	The azimuth values start from the front direction and are in trigonometrical order from 0 to .
-	The quantized azimuth values for odd values of are equally spaced and start at 0.
-	The quantized azimuth values for even values of are equally spaced and start at .
-	There is a same number of quantized azimuth values for same absolute value elevation codewords.

The quantization in the spherical grid is done as follows:
-	The elevation value is quantized in the uniform scalar quantizer to the two closest values
-	The azimuth value is quantized in the azimuth scalar quantizers corresponding to the elevation values
-	The distance on the sphere is calculated between the input elevation azimuth pair and each of the quantized pairs

-	The pair with lower distance is chosen as the quantized direction.
The resulting quantized direction index is obtained by enumerating the points on the spherical grid by starting with the points for null elevation first, then the points corresponding to the smallest positive elevation codeword, the points corresponding to the first negative elevation codeword, followed by the points on the following positive elevation codeword and so on.

Direct-to-total energy ratio(s)
Direct-to-total energy ratios work together with spatial directions as described above. Each direct-to-total energy ratio corresponds to a specific spatial direction and describes how much of the energy comes from that specific spatial direction compared to the total energy.

Spread coherence
Spread coherence is a parameter that describes the directional energy flow further. It represents situations where coherent directional sound energy is coming from multiple directions at the same time. This is represented with a single spread coherence parameter that describes how the sound should be synthesized.
In synthesis, this parameter should be used such that value 0 means that the sound is synthesized to single direction as directed by the spatial direction, value 0.5 means that the sound is synthesized to the spatial direction and two surrounding directions as coherent, and 1 means that the sound is synthesized to two surrounding directions around the spatial direction.

Diffuse-to-total energy
Diffuse-to-total energy ratio represents non-directional energy flow in the sound scene. This is a complement to the direct-to-total energy ratios and in an ideal capture with no undesired signal (or synthesized sound scene), the diffuse-to-total ratio value is always

Surround coherence
Surround coherence is a parameter that describes the non-directional energy flow. It represents how much of the non-directional energy should be presented as coherent reproduction instead of decorrelated reproduction.

Remainder-to-total energy ratio
Remainder-to-total represents all the energy that does not “belong” to the captured sound scene based on the used model. This includes possible microphone noise and other capture artefacts that have not been removed from the signal in pre-processing. This means that by considering the direct-to-total energy ratio, the diffuse-to-total energy ratio, and the remainder-to-total energy we end up with a complete energy ratio model of

when there is any remainder energy present. Otherwise, the energy ratio equation defined for diffuse-to-total energy ratio can be followed.

[bookmark: _Toc143608894]Annex B (normative):
Binary renderer config metadata format
[bookmark: _Toc143608895]B.1	Definition of binary renderer config metadata format
The binary renderer config metadata format consists of acoustic environment and directivity payload components (payloadRendConfig, see Table B.1). The acoustic environment component (payloadAcEnv, see Table B.2) metadata syntax consists of a frequency grids element (payloadFreqGrid) containing single or multiple frequency grids, and a single or multiple acoustic environments. An acoustic environment contains a late reverb element (payloadLateReverb), and optionally a shoebox model element for early reflections synthesis (payloadEarlyReflections). This construction allows for dynamic switching between acoustic environments by selecting an environment using its identifier (revAcEnvID). This facilitates multiple use cases, such as scenes with multiple, fully independent rooms, dynamic scene changes, or user selectable acoustics environments. The payload syntax of the payloadAcEnv() and its elements are shown in the tables below. Locally atomic data components are marked bold with their respective size in bits and mnemonic format, and their descriptions are provided below the payload element tables. The complex payload elements are provided in subsequent tables.

Table B.1: Syntax of payloadRendConfig
	Syntax
	Bits
	Mnemonic

	payloadRendConfig() {
	
	

		if (hasAcEnv) {
	1
	bslbf

			payloadAcEnv();
	
	

		}
	if (hasDirectivity) {
		payloadDirectivity();
	}
	
1
	
bslbf

	}
	
	

Table Table B.2: Syntax of payloadAcEnv
	Syntax
	Bits
	Mnemonic

	payloadAcEnv() {
	
	

			payloadFreqGrid();
	
	

			revNrElements = GetCountOrIndex();
	
	

			for (e = 0; e < revNrElements; e++) {
	
	

				revAcEnvID[e] = GetCountOrIndex ();
	
	

				payloadLateReverb();
	
	

				if (hasEarlyReflections) {
	1
	bslbf

					payloadEarlyReflections();
	
	

				}
	
	

			}
	
	

	}
	
	

The payloadFreqGrid() element provides representation of frequency grids. There are three possible frequency grid representations possible for efficient representation: individual frequencies, start-hop-amount, and preset grid selection.
Table B.3: Syntax of payloadFreqGrid()
	Syntax
	Bits
	Mnemonic

	payloadFreqGrid () {
	
	

		fgdNrGrids = GetCountOrIndex();
	
	

		for (g = 0; g < fgdNrGrids; g++) {
	
	

			fgdMethod;
	2
	uimsbf

			if (fgdMethod == 'Individual frequencies') {
	
	

				fgdNrBands[g] = GetCountOrIndex();
	
	

				for (b = 0; b < fgdNrBands[g]; b++) {
	
	

					fgdCenterFreq[g][b] = GetFrequency();
	
	

				}
	
	

			}
	
	

			else if (fgdMethod == 'Start-Hop-Amount') {
	
	

				fgdNrBands[g] = GetCountOrIndex();
	
	

				fgdCenterFreq[g][0] = GetFrequency();
	
	

				frequencyHop = LUT(frequencyHopCode);
	var
	vlclbf

				for (b = 1; b < fgdNrBands[g]; b++) {
	
	

					fgdCenterFreq[g][b] = fgdCenterFreq[g][b - 1] * frequencyHop;
	
	

				}
	
	

			}
	
	

			else if (fgdMethod == 'Default banding') {
	
	

				fgdDefaultGrid;
	4
	uimsbf

				if (fgdIsSubGrid) {
	1
	bslbf

					fgdDefaultGridOffset;
	3
	uimsbf

					fgdDefaultGridNrBands;
	6
	uimsbf

				}
	
	

			}
	
	

		}
	
	

	}
	
	

fgdMethod	Indicates the method with which the frequency grid is coded.
	Bits
	Meaning

	0b00
	Individual frequencies

	0b01
	Start-Hop-Amount

	0b10
	Default banding

	0b11
	Reserved

LUT()		Executes query on look-up table corresponding to the field whose name is provided as argument. The look-up tables used by the support elements are listed in Annex B.2.
frequencyHopCode	Indicates the hop-factor for the frequency banding.
	Bits
	Meaning

	0b0010
	2(1/12)

	0b0011
	2(1/6)

	0b0000
	2(1/4)

	0b01
	2(1/3)

	0b0001
	2(1/2)

	0b11
	21

	0b10
	22

fgdDefaultGrid	Field indicating which default grid to use as frequency banding.
The preset frequency grids consist of common, perceptually relevant grids.
Table B.4: fgdDefaultGrid code table
	Bits
	fgdCenterFreq[g] in Hz
	fgdNrBands[g]
	Description

	0b0000
	{31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000}
	10
	Octave – ISO

	0b0001
	{25, 50, 100, 200, 400, 800, 1600, 3150, 6300, 12500}
	10
	Octave alternative

	0b0010
	{20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315,
400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150,
4000, 5000, 6300, 8000, 10000, 12500, 16000, 20000}
	31
	1/3 octave – ISO

	0b0011
	{25, 100, 400, 1600, 6300}
	5
	2 Octave – ISO

	0b0100
	{125, 250, 500, 1000, 2000, 4000}
	6
	Octave subset

	0b0101
	{25, 250, 2500}
	3
	

	0b0110
	{27, 56, 89, 126, 168, 214, 265, 323, 387, 459, 539, 628, 727,
839, 963, 1101,1256, 1429, 1621, 1836, 2077, 2345, 2644,
2978, 3351, 3767, 4232, 4750, 5329, 5975, 6697, 7502, 8401,
9405, 10525, 11775, 13171, 14729, 16468, 18410, 20577}
	41
	1 ERB scale

	0b0111
	{27, 89, 168, 265, 387, 539, 727, 963, 1256, 1621, 2077, 2644,
3351, 4232, 5329, 6697, 8401, 10525, 13171, 16468, 20577}
	21
	2 ERB scale

	0b1000
	{50, 150, 250, 350, 450, 570, 700, 840, 1000, 1170, 1370,
1600, 1850, 2150, 2150, 2500, 2900, 3400, 4000, 4800,
5800, 7000, 8500, 10500, 13500}
	25
	Bark scale

	0b1001
	Reserved
	
	

	0b1010
	Reserved
	
	

	0b1011
	Reserved
	
	

	0b1100
	Reserved
	
	

	0b1101
	Reserved
	
	

	0b1110
	Reserved
	
	

	0b1111
	Reserved
	
	

fgdIsSubGrid	Flag indicating whether further data is present indicating a subset of the default grids.
fgdDefaultGridOffset	Indicates the (0-based) index of the first relevant frequency of the default grid that is used.
fgdDefaultGridNrBands	Indicates the number of bands used from the default grid.
fgdNrBands[g] = fgdDefaultGridNrBands + 1.
The payloadLateReverb() element contains late reverb control parameters. The RT60 and DSR parameters are provided per frequency band. These frequency bands are provided in a frequency grid as selected with revFreqGridIdx[e], which refers to an index in the frequency grid array.
Table B.5: Syntax of payloadLateReverb
	Syntax
	Bits
	Mnemonic

	payloadLateReverb() {
	
	

		revFreqGridIdx[e] = GetCountOrIndex();
	
	

		revPredelay[e] = GetDuration();
	
	

		for (b = 0; b < fgdNrBands[revFreqGridIdx[e]]; b++) {
	
	

			revRT60[e][b] = GetDuration();
	
	

		}
	
	

		for (b = 0; b < fgdNrBands[revFreqGridIdx[e]]; b++) {
	
	

			revDSR[e][b] = LUT(dsrCode);
	var
	vlclbf

		}
	
	

	}
	
	

dsrCode 	Code indicating the DSR value (see Table B.21).
The payloadEarlyReflections() element contains early reflections control parameters. These parameters include room dimensions, wall absorption coefficients, and optionally a listener origin. The absorption coefficients are provided per frequency band. Please note, that early reflections element uses a separate frequency grid index, since early reflections typically require lower frequency resolution than late reverb synthesis. The listener origin determines the initial listener position in a room. Eventually, the listener position can be dynamically updated. Every acoustic environment can have an individual listener origin specified.
Table B.6: Syntax of payloadEarlyReflections
	Syntax
	Bits
	Mnemonic

	payloadEarlyReflections() {
	
	

		for (n = 0; n < 3; n++) {
	
	

			erSize[e][n] = GetDistance(true);
	
	

		}
	
	

		for (n = 0; n < 6; n++) {
	
	

			erAbsCoeff[e][n] = LUT(absorptionCode);
	var
	vlclbf

		}
	
	

		If (hasListenerOrigin) {
	1
	bslfb

			sign.x = isPositiveX ? 1 : -1;
	1
	bslfb

			sign.y = isPositiveY ? 1 : -1;
	1
	bslfb

			erListenerOrigin[e].x = sign.x * GetDistance(true);
	
	

			erListenerOrigin[e].y = sign.y * GetDistance(true);
	
	

			erListenerOrigin[e].z = GetDistance(true);
	
	

		}
	
	

		lowComplexity;
	1
	bslfb

	}
	
	

absorptionCode	Code indicating absorption coefficients (see Table B.22).
hasListenerOrigin	Indicates whether listener origin is provided. If yes, listener origin x and y coordinates are provided relative to the room center and z coordinate indicates height above the floor level.
isPositiveX, isPositiveY	Flags indicating listener origin (x, y dimensions) offset sign.
lowComplexity	Flag activating low complexity mode that favors efficient early reflection rendering over spatial accuracy.

The GetCountOrIndex() element is a basis element for providing an integer value.
Table B.7: Syntax of GetCountOrIndex
	Syntax
	Bits
	Mnemonic

	number = GetCountOrIndex() {
	
	

		number = LUT(countOrIndexLoCode);
	var
	vlclbf

		if (isLargerNumber) {
	1
	bslbf

			numberHi = LUT(countOrIndexHiCode);
	var
	vlclbf

			number = number + numberHi * 64;
	
	

		}
	
	

		return number;
	
	

	}
	
	

countOrIndexLoCode	Code indicating the lower bits of a count or index value (see Table B.10).
isLargerNumber	Flag indicating whether more bits are sent to indicate a larger number.
countOrIndexHiCode	Code indicating the higher bits of a count or index value (see Table B.11).

The GetDuration() element provides means of time duration representation. Tenths of seconds are used as a leading unit as they provide the most efficient representation.
Table B.8: Syntax of GetDuration
	Syntax
	Bits
	Mnemonic

	duration = GetDuration() {
	
	

		deciSeconds = LUT(deciSecondsCode);
	var
	vlclbf

		duration = deciSeconds;
	
	

		if (addMilliseconds) {
	1
	bslbf

			miliSeconds = LUT(milliSecondsCode);
	var
	vlclbf

			duration = duration + miliSeconds;
	
	

			if (addMicroseconds) {
	1
	bslbf

				microseconds = LUT(microsecondsCode);
	var
	vlclbf

				duration = duration + microseconds;
	
	

			}
	
	

		}
	
	

		if (addSeconds) {
	
	

			seconds = LUT(secondsCode);
	var
	vlclbf

			duration = duration + seconds;
	
	

		}
	
	

		return duration;
	
	

	}
	
	

deciSecondsCode	Code for indicating decimal seconds duration offset (see Table B.12).
addMilliseconds	Flag indicating whether milliseconds duration offset is transmitted next.
milliSecondsCode	Code for indicating milliseconds duration offset (see Table B.13).
addMicroseconds	Flag indicating whether microseconds duration offset is transmitted next.
microsecondsCode	Code for indicating number of microseconds duration offset (see Table B.14).
addSeconds	Flag indicating whether seconds duration offset is transmitted next.
secondsCode	Code for indicating seconds duration offset (see Table B.15).

The GetDistance() element provides means of length representation. Please note, that for unconstrained acoustic environments, the isSmallScene flag shall be set to false.
Table B.8: Syntax of GetDistance
	Syntax
	Bits
	Mnemonic

	distance = GetDistance(isSmallScene) {
	
	

		meters = LUT(metersCode);
	var
	vlclbf

		distance = meters;
	
	

		if (isSmallScene == false) {
	
	

			if (addHectometers) {
	1
	bslbf

				hectometers = LUT(hectometersCode);
	var
	vlclbf

				distance = distance + hectometers * 100;
	
	

				while (addKilometers) {
	1
	bslbf

					kilometers = LUT(kilometersCode);
	var
	vlclbf

					distance = distance + kilometers * 1000;
	
	

				}
	
	

			}
	
	

		}
	
	

		if (addCentimeters) {
	1
	bslbf

			centimeters = LUT(centimetersCode);
	var
	vlclbf

			distance = distance + centimeters / 100;
	
	

		return distance;
	
	

	}
	
	

metersCode	Code that indicates a distance in meters (see Table B.16).
addHectometers	Flag that indicates whether hectometers data is available for longer distance values.
hectometersCode	Code that indicates a distance in hectometers (see Table B.17).
addKilometers	Flag that indicates whether kilometers data is available for very long distances.
kilometersCode	Code that indicates a distance in kilometers (see Table B.18).
centimetersCode	Code that indicates a distance in centimeters (see Table B.19).

The GetFrequency() elements provides means of frequency representation. The basic frequency look-up-table provides coarse one-third octave representation, whereas in case moreAccuracy flag is set to true, frequency can be refined further.
Table B.9: Syntax of GetFrequency
	Syntax
	Bits
	Mnemonic

	frequency = GetFrequency() {
	
	

		frequency = LUT(frequencyCode);
	var
	vlclbf

		if (moreAccuracy) {
	1
	bslbf

			frequency = frequency * 2^((frequencyRefine + 1) / 51);
	4
	uimsbf

		return frequency;
	
	

	}
	
	

frequencyCode	Code that indicates a center frequency in Hz of a one-third octave band (see Table B.20)
moreAccuracy	Flag that indicates whether data for a more accurate frequency is transmitted.
frequencyRefine	Field that indicates a value for refining the frequency value.
[bookmark: _Toc143608896]B.2	Support Elements Look-up Tables
This clause contains the look-up tables used in the binary renderer config metadata.
Table B.10: countOrIndexLoCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	0111
	0
	001010
	13
	111101
	26
	1101000
	39
	1011011
	52

	100
	1
	001001
	14
	111100
	27
	1100111
	40
	1011010
	53

	01100
	2
	001000
	15
	111011
	28
	1100110
	41
	1011001
	54

	01101
	3
	000111
	16
	111010
	29
	1100101
	42
	1011000
	55

	01010
	4
	000110
	17
	111001
	30
	1100100
	43
	1010111
	56

	01011
	5
	000101
	18
	111000
	31
	1100011
	44
	1010110
	57

	01000
	6
	000100
	19
	1101111
	32
	1100010
	45
	1010101
	58

	01001
	7
	000011
	20
	1101110
	33
	1100001
	46
	1010100
	59

	001111
	8
	000010
	21
	1101101
	34
	1100000
	47
	1010011
	60

	001110
	9
	000001
	22
	1101100
	35
	1011111
	48
	1010010
	61

	001101
	10
	000000
	23
	1101011
	36
	1011110
	49
	1010001
	62

	001100
	11
	111111
	24
	1101010
	37
	1011101
	50
	1010000
	63

	001011
	12
	111110
	25
	1101001
	38
	1011100
	51
	
	

Table B.11: countOrIndexHiCode look-up table
	Code
	Value

	001
	1

	000
	2

	110
	3

	101
	4

	100
	5

	0111
	6

	0101
	7

	1111
	8

	1110
	9

	01101
	10

	01001
	11

	01000
	12

	011001
	13

	0110001
	14

	0110000
	15

Table B.12: deciSecondsCode look-up table
	Code
	Value

	110
	0

	100
	0.1

	101
	0.2

	0110
	0.3

	0111
	0.4

	111
	0.5

	0100
	0.6

	0101
	0.7

	0010
	0.8

	0011
	0.9

	000
	1

Table B.13: millisecondsCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	1111010
	0
	10010
	0.02
	10000
	0.04
	10110
	0.06
	10100
	0.08

	1111011
	0.001
	0101001
	0.021
	0111111
	0.041
	0001101
	0.061
	0010011
	0.081

	1111000
	0.002
	0101110
	0.022
	0111100
	0.042
	0000010
	0.062
	0010000
	0.082

	1111001
	0.003
	0101111
	0.023
	0111101
	0.043
	0000011
	0.063
	0010001
	0.083

	1111110
	0.004
	0101100
	0.024
	0110010
	0.044
	0000000
	0.064
	0010110
	0.084

	1111111
	0.005
	0101101
	0.025
	0110011
	0.045
	0000001
	0.065
	0010111
	0.085

	1111100
	0.006
	0100010
	0.026
	0110000
	0.046
	0000110
	0.066
	0010100
	0.086

	1111101
	0.007
	0100011
	0.027
	0110001
	0.047
	0000111
	0.067
	0010101
	0.087

	1110010
	0.008
	0100000
	0.028
	0110110
	0.048
	0000100
	0.068
	1101010
	0.088

	1110011
	0.009
	0100001
	0.029
	0110111
	0.049
	0000101
	0.069
	1101011
	0.089

	11001
	0.01
	10011
	0.03
	10001
	0.05
	10111
	0.07
	10101
	0.09

	1110000
	0.011
	0100110
	0.031
	0110100
	0.051
	0011010
	0.071
	1101000
	0.091

	1110001
	0.012
	0100111
	0.032
	0110101
	0.052
	0011011
	0.072
	1101001
	0.092

	1110110
	0.013
	0100100
	0.033
	0001010
	0.053
	0011000
	0.073
	1101110
	0.093

	1110111
	0.014
	0100101
	0.034
	0001011
	0.054
	0011001
	0.074
	1101111
	0.094

	1110100
	0.015
	0111010
	0.035
	0001000
	0.055
	0011110
	0.075
	1101100
	0.095

	1110101
	0.016
	0111011
	0.036
	0001001
	0.056
	0011111
	0.076
	1101101
	0.096

	0101010
	0.017
	0111000
	0.037
	0001110
	0.057
	0011100
	0.077
	1100010
	0.097

	0101011
	0.018
	0111001
	0.038
	0001111
	0.058
	0011101
	0.078
	1100011
	0.098

	0101000
	0.019
	0111110
	0.039
	0001100
	0.059
	0010010
	0.079
	110000
	0.099

Table B.14: microsecondsCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	110111100
	0.00001
	110110110
	0.00021
	110011100
	0.00041
	110101010
	0.00061
	110100000
	0.00081

	10010
	0.00002
	001000
	0.00022
	000110
	0.00042
	011100
	0.00062
	111010
	0.00082

	110111101
	0.00003
	110110111
	0.00023
	110011101
	0.00043
	110101011
	0.00063
	110100001
	0.00083

	10011
	0.00004
	001001
	0.00024
	000111
	0.00044
	011101
	0.00064
	111011
	0.00084

	1101111110
	0.00005
	110110100
	0.00025
	110010010
	0.00045
	110101000
	0.00065
	110100110
	0.00085

	10000
	0.00006
	001110
	0.00026
	000100
	0.00046
	010010
	0.00066
	111000
	0.00086

	1101111111
	0.00007
	110110101
	0.00027
	110010011
	0.00047
	110101001
	0.00067
	110100111
	0.00087

	10001
	0.00008
	001111
	0.00028
	000101
	0.00048
	010011
	0.00068
	111001
	0.00088

	1101111100
	0.00009
	110011010
	0.00029
	110010000
	0.00049
	110101110
	0.00069
	110100100
	0.00089

	10110
	0.00010
	001100
	0.00030
	011010
	0.00050
	010000
	0.00070
	111110
	0.00090

	1101111101
	0.00011
	110011011
	0.00031
	110010001
	0.00051
	110101111
	0.00071
	110100101
	0.00091

	10111
	0.00012
	001101
	0.00032
	011011
	0.00052
	010001
	0.00072
	111111
	0.00092

	110110010
	0.00013
	110011000
	0.00033
	110010110
	0.00053
	110101100
	0.00073
	110111010
	0.00093

	10100
	0.00014
	000010
	0.00034
	011000
	0.00054
	010110
	0.00074
	111100
	0.00094

	110110011
	0.00015
	110011001
	0.00035
	110010111
	0.00055
	110101101
	0.00075
	110111011
	0.00095

	10101
	0.00016
	000011
	0.00036
	011001
	0.00056
	010111
	0.00076
	111101
	0.00096

	110110000
	0.00017
	110011110
	0.00037
	110010100
	0.00057
	110100010
	0.00077
	110111000
	0.00097

	001010
	0.00018
	000000
	0.00038
	011110
	0.00058
	010100
	0.00078
	11000
	0.00098

	110110001
	0.00019
	110011111
	0.00039
	110010101
	0.00059
	110100011
	0.00079
	110111001
	0.00099

	001011
	0.00020
	000001
	0.00040
	011111
	0.00060
	010101
	0.00080
	
	

Table B.15: secondsCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	0011
	1
	1011
	7
	01011
	13
	10101
	19
	101001
	25

	0001
	2
	1001
	8
	01001
	14
	011111
	20
	0101001
	26

	0000
	3
	1000
	9
	01000
	15
	011110
	21
	0101000
	27

	1111
	4
	01110
	10
	00101
	16
	010101
	22
	1010001
	28

	1101
	5
	01101
	11
	11101
	17
	001001
	23
	10100001
	29

	1100
	6
	01100
	12
	11100
	18
	001000
	24
	10100000
	30

Table B.16: metersCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	111101
	0
	000001
	20
	010101
	40
	10011110
	60
	11100010
	80

	110010
	1
	000110
	21
	101010
	41
	10011111
	61
	11100011
	81

	110011
	2
	000111
	22
	101011
	42
	10011100
	62
	11100000
	82

	110000
	3
	000100
	23
	101000
	43
	10011101
	63
	11100001
	83

	110001
	4
	000101
	24
	101001
	44
	10010010
	64
	11100110
	84

	110110
	5
	011010
	25
	101110
	45
	10010011
	65
	11100111
	85

	110111
	6
	011011
	26
	101111
	46
	10010000
	66
	11100100
	86

	110100
	7
	011000
	27
	101100
	47
	10010001
	67
	11100101
	87

	110101
	8
	011001
	28
	101101
	48
	10010110
	68
	11111010
	88

	001010
	9
	011110
	29
	10000
	49
	10010111
	69
	11111011
	89

	001011
	10
	011111
	30
	1000100
	50
	10010100
	70
	11111000
	90

	001000
	11
	011100
	31
	1000101
	51
	10010101
	71
	11111001
	91

	001001
	12
	011101
	32
	10001110
	52
	11101010
	72
	11111110
	92

	001110
	13
	010010
	33
	10001111
	53
	11101011
	73
	11111111
	93

	001111
	14
	010011
	34
	10001100
	54
	11101000
	74
	11111100
	94

	001100
	15
	010000
	35
	10001101
	55
	11101001
	75
	11111101
	95

	001101
	16
	010001
	36
	10011010
	56
	11101110
	76
	11110010
	96

	000010
	17
	010110
	37
	10011011
	57
	11101111
	77
	11110011
	97

	000011
	18
	010111
	38
	10011000
	58
	11101100
	78
	11110000
	98

	000000
	19
	010100
	39
	10011001
	59
	11101101
	79
	11110001
	99

Table B.17: hectometersCode look-up table
	Code
	Value

	000
	0

	001
	1

	110
	2

	111
	3

	100
	4

	101
	5

	0110
	6

	0111
	7

	0100
	8

	0101
	9

Table B.18: kilometersCode table
	Code
	Value

	10
	1

	011
	2

	001
	3

	000
	4

	111
	5

	0101
	6

	0100
	7

	1101
	8

	11001
	9

	11000
	10

Table B.19: centimetersCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	110010
	0
	0100110
	20
	0001010
	40
	0011110
	60
	100010
	80

	110011
	1
	0100111
	21
	0001011
	41
	0011111
	61
	100011
	81

	110000
	2
	0100100
	22
	0001000
	42
	0011100
	62
	100000
	82

	110001
	3
	0100101
	23
	0001001
	43
	0011101
	63
	100001
	83

	110110
	4
	0111010
	24
	0001110
	44
	0010010
	64
	100110
	84

	110111
	5
	0111011
	25
	0001111
	45
	0010011
	65
	100111
	85

	110100
	6
	0111000
	26
	0001100
	46
	0010000
	66
	100100
	86

	110101
	7
	0111001
	27
	0001101
	47
	0010001
	67
	100101
	87

	0101010
	8
	0111110
	28
	0000010
	48
	0010110
	68
	1111010
	88

	0101011
	9
	0111111
	29
	0000011
	49
	0010111
	69
	1111011
	89

	0101000
	10
	0111100
	30
	0000000
	50
	0010100
	70
	1111000
	90

	0101001
	11
	0111101
	31
	0000001
	51
	0010101
	71
	1111001
	91

	0101110
	12
	0110010
	32
	0000110
	52
	101010
	72
	1111110
	92

	0101111
	13
	0110011
	33
	0000111
	53
	101011
	73
	1111111
	93

	0101100
	14
	0110000
	34
	0000100
	54
	101000
	74
	1111100
	94

	0101101
	15
	0110001
	35
	0000101
	55
	101001
	75
	1111101
	95

	0100010
	16
	0110110
	36
	0011010
	56
	101110
	76
	111010
	96

	0100011
	17
	0110111
	37
	0011011
	57
	101111
	77
	111011
	97

	0100000
	18
	0110100
	38
	0011000
	58
	101100
	78
	111000
	98

	0100001
	19
	0110101
	39
	0011001
	59
	101101
	79
	111001
	99

Table B.20: frequencyCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	100011
	16
	011010
	80
	011111
	400
	1101
	2000
	010100
	10000

	001110
	20
	011011
	100
	1111
	500
	010000
	2500
	010101
	12500

	001111
	25
	0001
	125
	011100
	630
	010001
	3150
	0010
	16000

	1001
	31.5
	011000
	160
	011101
	800
	1010
	4000
	10000
	20000

	001100
	40
	011001
	200
	1100
	1000
	010110
	5000
	10001010
	25000

	001101
	50
	1110
	250
	010010
	1250
	010111
	6300
	10001011
	31500

	0000
	63
	011110
	315
	010011
	1600
	1011
	8000
	1000100
	40000

Table B.21: dsrCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	10001100
	-150
	011111010
	-120
	011000100
	-90
	110100
	-60
	010110
	-30

	10001101
	-149
	011111011
	-119
	011000101
	-89
	110101
	-59
	011010010
	-29

	100011110
	-148
	011111000
	-118
	011011010
	-88
	001010
	-58
	011010011
	-28

	100011111
	-147
	011111001
	-117
	011011011
	-87
	001011
	-57
	011010000
	-27

	100011100
	-146
	011111110
	-116
	011011000
	-86
	001000
	-56
	011010001
	-26

	100011101
	-145
	011111111
	-115
	011011001
	-85
	001001
	-55
	011010110
	-25

	10000010
	-144
	011111100
	-114
	011011110
	-84
	001110
	-54
	011010111
	-24

	10000011
	-143
	011111101
	-113
	011011111
	-83
	001111
	-53
	011010100
	-23

	10000000
	-142
	011110010
	-112
	011011100
	-82
	001100
	-52
	011010101
	-22

	10000001
	-141
	011110011
	-111
	011011101
	-81
	001101
	-51
	010111010
	-21

	10000110
	-140
	011110000
	-110
	010100
	-80
	000010
	-50
	010111011
	-20

	10000111
	-139
	011110001
	-109
	010101
	-79
	000011
	-49
	010111000
	-19

	10000100
	-138
	011110110
	-108
	100110
	-78
	000000
	-48
	010111001
	-18

	10000101
	-137
	011110111
	-107
	100111
	-77
	000001
	-47
	010111110
	-17

	011101010
	-136
	011110100
	-106
	100100
	-76
	000110
	-46
	010111111
	-16

	011101011
	-135
	011110101
	-105
	100101
	-75
	000111
	-45
	010111100
	-15

	011101000
	-134
	011001010
	-104
	111010
	-74
	000100
	-44
	010111101
	-14

	011101001
	-133
	011001011
	-103
	111011
	-73
	000101
	-43
	10001010
	-13

	011101110
	-132
	011001000
	-102
	111000
	-72
	101010
	-42
	10001011
	-12

	011101111
	-131
	011001001
	-101
	111001
	-71
	101011
	-41
	10001000
	-11

	011101100
	-130
	011001110
	-100
	111110
	-70
	101000
	-40
	10001001
	-10

	011101101
	-129
	011001111
	-99
	111111
	-69
	101001
	-39
	
	

	011100010
	-128
	011001100
	-98
	111100
	-68
	101110
	-38
	
	

	011100011
	-127
	011001101
	-97
	111101
	-67
	101111
	-37
	
	

	011100000
	-126
	011000010
	-96
	110010
	-66
	101100
	-36
	
	

	011100001
	-125
	011000011
	-95
	110011
	-65
	101101
	-35
	
	

	011100110
	-124
	011000000
	-94
	110000
	-64
	010010
	-34
	
	

	011100111
	-123
	011000001
	-93
	110001
	-63
	010011
	-33
	
	

	011100100
	-122
	011000110
	-92
	110110
	-62
	010000
	-32
	
	

	011100101
	-121
	011000111
	-91
	110111
	-61
	010001
	-31
	
	

Table B.22: absorptionCode look-up table
	Code
	Value

	110
	0

	100
	0.1

	101
	0.2

	0110
	0.3

	0111
	0.4

	111
	0.5

	0100
	0.6

	0101
	0.7

	0010
	0.8

	0011
	0.9

	000
	1

Table B.23: Syntax of payloadDirectivity
	Syntax
	Bits
	Mnemonic

	payloadDirectivity() {
	
	

		directivityCount = GetCountOrIndex ();
	var
	vlclbf

		for (i = 0; i < directivityCount; i++) {
	
	

			directivityIndex = GetCountOrIndex ();
	var
	vlclbf

			ia[directivityIndex] = getAngle();
	
	

			oa[directivityIndex] = getAngle();
	
	

			og[directivityIndex] = getOuterGain();
	
	

		}
	
	

	}
	
	

Table B.24: Syntax of GetAngle
	Syntax
	Bits
	Mnemonic

	angle = GetAngle() {
	
	

		angle = angleCode * 20.0;
	5
	bslbf

		return angle;
	
	

		}
	
	

Table B.25: Syntax of GetOuterGain
	Syntax
	Bits
	Mnemonic

	outerGain = GetAngle() {
	
	

		log_gain = -90.0 + outerGainCode * 3.0;
	5
	bslbf

		outerGain = 10^(log_gain/20);
	
	

		return outerGain;
	
	

		}
	
	

Table B.26: angleCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	00000
	0
	00101
	5
	01010
	10
	01111
	15

	00001
	1
	00110
	6
	01011
	11
	10000
	16

	00010
	2
	00111
	7
	01100
	12
	10001
	17

	00011
	3
	01000
	8
	01101
	13
	10010
	18

	00100
	4
	01001
	9
	01110
	14
	
	

Table B.27: outerGainCode look-up table
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value
	Code
	Value

	00000
	0
	00110
	6
	01100
	12
	10010
	18
	11000
	24
	11110
	30

	00001
	1
	00111
	7
	01101
	13
	10011
	19
	11001
	25
	
	

	00010
	2
	01000
	8
	01110
	14
	10100
	20
	11010
	26
	
	

	00011
	3
	01001
	9
	01111
	15
	10101
	21
	11011
	27
	
	

	00100
	4
	01010
	10
	10000
	16
	10110
	22
	11100
	28
	
	

	00101
	5
	01011
	11
	10001
	17
	10111
	23
	11101
	29
	
	

[bookmark: _Toc143608897]
Annex C (informative):
Change history

	[bookmark: historyclause]Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	
	
	
	
	
	
	
	

	08-2023
	SA4#124 Telco
	SA4a230091
	
	
	
	Presented to Audio SWG for information
	0.0.1

	08-2023
	SA4#125
	S4-231246
	
	
	
	Presented to SA4#125 as part of IVAS codec selection deliverables
	0.1.0

	08-2023
	SA4#125
	S4-231439
	
	
	
	Version agreed during SA4#125 for presentation to SA#101 for approval
	0.2.0

3GPP
image2.emf

oleObject2.bin
[image: image1.png]=

A GLOBAL INITIATIVE

image1.emf

oleObject1.bin
[image: image1.png]~

5G

