[image: image12.wmf]

TD <>
 GSM 06.10 V8.0.1 (2000-05)
European Standard (Telecommunications series)

Digital cellular telecommunications system (Phase 2+);

Full rate speech;

Transcoding

(GSM 06.10 version 8.0.1 Release 1998)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

<

symbol 60 \f "Wingdings" \s 16<

symbol 60 \f "Wingdings" \s 16<

symbol 60 \f "Wingdings" \s 16<

symbol 60 \f "Wingdings" \s 16<
Reference

DEN/SMG-110610Q6 (8wc0300o.PDF)

Keywords

Digital cellular telecommunications system, Global System for Mobile communications (GSM)

ETSI

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Internet

secretariat@etsi.fr

Individual copies of this ETSI deliverable
can be downloaded from

http://www.etsi.org

If you find errors in the present document, send your comment to: editor@etsi.fr

Important notice

This ETSI deliverable may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference should be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.

All rights reserved.

Contents

6Intellectual Property Rights

Foreword
6
1
Scope
8
1.1
References
8
1.1.1
Abbreviations
9
1.2
Outline description
9
1.3
Functional description of audio parts
9
1.4
PCM Format conversion
10
1.5
Principles of the RPE‑LTP encoder
10
1.6
Principles of the RPE‑LTP decoder
11
1.7
Sequence and subjective importance of encoded parameters
11
2
Transmission characteristics
14
2.1
Performance characteristics of the analogue/digital interfaces
14
2.2
Transcoder delay
14
3
Functional description of the RPE‑LTP codec
14
3.1
Functional description of the RPE‑LTP encoder
14
3.1.1
Offset compensation
15
3.1.2
Pre‑emphasis
15
3.1.3
Segmentation
15
3.1.4
Autocorrelation
15
3.1.5
Schur Recursion
16
3.1.6
Transformation of reflection coefficients to Log.‑Area Ratios
16
3.1.7
Quantization and coding of Log.‑Area Ratios
16
3.1.8
Decoding of the quantized Log.‑Area Ratios
17
3.1.9
Interpolation of Log.‑Area Ratios
17
3.1.10
Transformation of Log.‑Area Ratios into reflection coefficients
17
3.1.11
Short term analysis filtering
17
3.1.12
Sub‑segmentation
18
3.1.13
Calculation of the LTP parameters
18
3.1.14
Coding/Decoding of the LTP lags
18
3.1.15
Coding/Decoding of the LTP gains
18
3.1.16
Long term analysis filtering
19
3.1.17
Long term synthesis filtering
19
3.1.18
Weighting Filter
19
3.1.19
Adaptive sample rate decimation by RPE grid selection
20
3.1.20
APCM quantization of the selected RPE sequence
20
3.1.21
APCM inverse quantization
21
3.1.22
RPE grid positioning
22
3.2
Decoder
22
3.2.1
RPE decoding section
22
3.2.2
Long Term Prediction section
22
3.2.3
Short term synthesis filtering section
22
3.2.4
Post‑processing
22
4
Codec homing
26
4.1
Functional description
26
4.2
Definitions
26
4.3
Encoder homing
27
4.4
Decoder homing
27
4.5
Encoder home state
28
4.6
Decoder home state
28
5
Computational details of the RPE‑LTP codec
28
5.1
Data representation and arithmetic operations
28
5.2
Fixed point implementation of the RPE‑LTP coder
30
5.2.0
Scaling of the input variable
31
5.2.1
Downscaling of the input signal
31
5.2.2
Offset compensation
31
5.2.3
Pre‑emphasis
31
5.2.4
Autocorrelation
32
5.2.5
Computation of the reflection coefficients
32
5.2.6
Transformation of reflection coefficients to Log.‑Area Ratios
33
5.2.7
Quantization and coding of the Log.‑Area Ratios
34
5.2.8
Decoding of the coded Log.‑Area Ratios
34
5.2.9
Computation of the quantized reflection coefficients
34
5.2.9.1
Interpolation of the LARpp[1..8] to get the LARp[1..8]
34
5.2.9.2
Computation of the rp[1..8] from the interpolated LARp[1..8]
35
5.2.10
Short term analysis filtering
35
5.2.11
Calculation of the LTP parameters
36
5.2.12
Long term analysis filtering
37
5.2.13
Weighting filter
37
5.2.14
RPE grid selection
38
5.2.15
APCM quantization of the selected RPE sequence
38
5.2.16
APCM inverse quantization
39
5.2.17
RPE grid positioning
39
5.2.18
Update of the reconstructed short term residual signal dp[‑120..‑1]
40
5.3
Fixed point implementation of the RPE‑LTP decoder
40
5.3.1
RPE decoding section
40
5.3.2
Long term synthesis filtering
40
5.3.3
Computation of the decoded reflection coefficients
41
5.3.4
Short term synthesis filtering section
41
5.3.5
De‑emphasis filtering
42
5.3.6
Upscaling of the output signal
42
5.3.7
Truncation of the output variable
42
5.4
Tables used in the fixed point implementation of the RPE‑LTP coder and decoder
43
6
Digital test sequences
44
6.1
Input and output signals
44
6.2
Configuration for the application of the test sequences
44
6.2.1
Configuration 1 (encoder only)
45
6.2.2
Configuration 2 (decoder only)
45
6.3
Test sequences
46
6.3.1
Test sequences for configuration 1
46
6.3.2
Test sequences for configuration 2
46
6.3.3
Additional Test sequences for Codec Homing
50
6.3.3.1
Codec homing frames
50
6.3.3.2
Sequence for an extensive test of the decoder homing
50
6.3.3.3
Sequences for finding the 20 ms framing of the GSM full rate speech encoder
50
6.3.3.4
Formats and sizes of the synchronization sequences
51
Annex A (informative):
Codec performance
53
A.1
Performance of the RPE‑LTP
53
A.1.1
Introduction
53
A.1.2
Speech performance
53
A.1.2.1
Single encoding
53
A.1.2.2
Speech performance when interconnected with coding systems on an analogue basis
54
A.1.2.2.1
Performance with 32 kbit/s ADPCM (G.721, superseded by G.726)
54
A.1.2.2.2
Performance with another RPE‑LTP codec
54
A.1.2.2.3
Performance with encoding other than RPE‑LTP and 32 kbit/s ADPCM (G.721, superseded by G.726)
54
A.1.3
Non‑speech performance
55
A.1.3.1
Performance with single sine waves
55
A.1.3.2
Performance with DTMF tones
55
A.1.3.3
Performance with information tones
55
A.1.3.4
Performance with voice‑band data
55
A.1.4
Delay
55
A.1.5
Bibliography
57
A.2
Subjective relevance of the speech coder output bits
57
A.3
Format for test sequence distribution
59
A.3.1
Type of files provided
59
A.3.2
File format description
60
Annex B (informative):
Test sequence disks
62
Annex C (informative):
Change Request History
63
History
64

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This European Standard (Telecommunications series) has been produced by the Special Mobile Group (SMG).

The present document specifies the full rate speech transcoding within the digital cellular telecommunications system.

NOTE:
The present document is a reproduction of recommendation T/L/03/11 "13 kbit/s Regular Pulse Excitation ‑ Long Term Prediction ‑ Linear Predictive Coder for use in the digital cellular telecommunications system".

Archive 8wc03i1c.ZIP which accompanies the present document, contains test sequences, as described in clause 6 and annex A.3.

The archive contains the following:

Disk1.zip
Annex B: Test sequences for the GSM Full Rate speech codec; Test sequences SEQ01.xxx to SEQ05.xxx. (Disk1.zip contains LHA compressed files.)

Disk2.zip
Annex B: Test sequences for the GSM Full Rate speech codec with homing frames; Test sequences SEQ01H.* to SEQ02H.*.

Disk3.zip
Annex B: Test sequences for the GSM Full Rate speech codec with homing frames; Test sequences SEQ03H.* to SYNC159.COD.

Disk4.zip
Annex B: 8 bit A-law test sequences for the GSM Full Rate speech codec with and without homing frames (Disk4.zip contains self-extracting files).

Disk5.zip
Annex B: 8 bit (-law test sequences for the GSM Full Rate speech codec with and without homing frames (Disk5.zip contains self-extracting files).

The contents of the present document is subject to continuing work within SMG and may change following formal SMG approval. Should SMG modify the contents of the present document it will be re-released with an identifying change of release date and an increase in version number as follows:

Version 7.x.y

where:

7
indicates Release 1998 of GSM Phase 2+

x
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

y
the third digit is incremented when editorial only changes have been incorporated in the specification.

National transposition dates

Date of adoption of this EN:
3 December 1999

Date of latest announcement of this EN (doa):
31 March 2000

Date of latest publication of new National Standard
or endorsement of this EN (dop/e):

30 September 2000

Date of withdrawal of any conflicting National Standard (dow):
30 September 2000

1
Scope

The transcoding procedure specified in the present document is applicable for the full‑rate Traffic Channel (TCH) in the digital cellular telecommunications system. The use of this transcoding scheme for other applications has not been considered.

In GSM 06.01, a reference configuration for the speech transmission chain of the digital cellular telecommunications system is shown. According to this reference configuration, the speech encoder takes its input as a 13 bit uniform PCM signal either from the audio part of the mobile station or on the network side, from the PSTN via an 8 bit/A‑ or (-law (PCS 1900) to 13 bit uniform PCM conversion. The encoded speech at the output of the speech encoder is delivered to a channel encoder unit which is specified in GSM 05.03. In the receive direction, the inverse operations take place.

The present document describes the detailed mapping between input blocks of 160 speech samples in 13 bit uniform PCM format to encoded blocks of 260 bits and from encoded blocks of 260 bits to output blocks of 160 reconstructed speech samples. The sampling rate is 8000 sample/s leading to an average bit rate for the encoded bit stream of 13 kbit/s. The coding scheme is the so‑called Regular Pulse Excitation ‑ Long Term prediction ‑ Linear Predictive Coder, here‑after referred to as RPE‑LTP.

The present document also specifies the conversion between A‑ and (-law (PCS 1900) PCM and 13 bit uniform PCM. Performance requirements for the audio input and output parts are included only to the extent that they affect the transcoder performance. The present document also describes the codec down to the bit level, thus enabling the verification of compliance to the present document to a high degree of confidence by use of a set of digital test sequences. These test sequences are described and are contained in archive 8wc03i0o.ZIP which accompanies the present document.

1.1
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

· A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

· For this Release 1998 document, references to GSM documents are for Release 1998 versions (version 7.x.y).

[1]
GSM 01.04: "Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms".

[2]
GSM 05.03: "Digital cellular telecommunications system (Phase 2+); Channel coding".

[3]
GSM 06.01: "Digital cellular telecommunications system (Phase 2+); Full rate speech; Processing functions".

[4]
GSM 11.10: "Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) conformity specification".

[5]
ETS 300 085: "Integrated Services Digital Network (ISDN); 3,1kHz telephony teleservice; Attachment requirements for handset terminals (Candidate NET 33)".

[6]
ITU‑T Recommendation G.711: "Pulse code modulation (PCM) of voice frequencies".

[7]
ITU‑T Recommendation G.712: "Transmission performance characteristics of pulse code modulation".

[8]
ITU‑T Recommendation G.726: "40, 32, 24, 16 kbit/s adaptive differential pulse code modulation (ADPCM)".

[9]
ITU‑T Recommendation Q.35: "Technical characteristics of tones for the telephone service".

[10]
ITU‑T Recommendation V.21: "300 bits per second duplex modem standardized for use in the general switched telephone network".

[11]
ITU‑T Recommendation V.23: "600/1 200‑band modem standardized for use in the general switched telephone network".

[12]
GSM 06.32: "Digital cellular telecommunications system (Phase 2+); Voice Activity Detector (VAD)".

1.1.1
Abbreviations

Abbreviations used in the present document are listed in GSM 01.04.

1.2
Outline description

The present document is structured as follows:

Subclause 1.3 contains a functional description of the audio parts including the A/D and D/A functions. Subclause 1.4 describes the conversion between 13 bit uniform and 8 bit A‑law samples. Subclauses 1.5 and 1.6 present a simplified description of the principles of the RPE‑LTP encoding and decoding process respectively. In subclause 1.7, the sequence and subjective importance of encoded parameters are given.

Clause 2 deals with the transmission characteristics of the audio parts that are relevant for the performance of the RPE‑LTP codec.

Some transmission characteristics of the RPE‑LTP codec are also specified in clause 2. Clause 3 presents the functional description of the RPE‑LTP coding and decoding procedures, whereas clause 4 describes the computational details of the algorithm. Procedures for the verification of the correct functioning of the RPE‑LTP are described in clause 5.

Performance and network aspects of the RPE‑LTP codec are contained in annex A.

1.3
Functional description of audio parts

The analogue‑to‑digital and digital‑to‑analogue conversion will in principle comprise the following elements:

1)
Analogue to uniform digital:

‑
microphone;

‑
input level adjustment device;

‑
input anti‑aliasing filter;

‑
sample‑hold device sampling at 8 kHz;

‑
analogue‑to‑uniform digital conversion to 13 bits representation.

The uniform format shall be represented in two's complement.

2)
Uniform digital to analogue:

‑
conversion from 13 bit /8 kHz uniform PCM to analogue;

‑
a hold device;

‑
reconstruction filter including x/sin x correction;

‑
output level adjustment device;

‑
earphone or loudspeaker.

In the terminal equipment, the A/D function may be achieved either:

‑
by direct conversion to 13 bit uniform PCM format;

‑
or by conversion to 8 bit/A‑ or (-law (PCS 1900) companded format, based on a standard A‑ or (-law (PCS 1900) codec/filter according to ITU‑T Recommendation G.711/714, followed by the 8‑bit to 13‑bit conversion according to the procedure specified in subclause 1.4.

For the D/A operation, the inverse operations take place.

In the latter case it should be noted that the specifications in ITU‑T recommendation G.714 (superseded by G.712) are concerned with PCM equipment located in the central parts of the network. When used in the terminal equipment, this specification does not on its own ensure sufficient out‑of‑band attenuation.

The specification of out‑of‑band signals is defined in section 2 between the acoustic signal and the digital interface to take into account that the filtering in the terminal can be achieved both by electronic and acoustical design.

1.4
PCM Format conversion

The conversion between 8 bit A‑ or (-law (PCS 1900) companded format and the 13‑bit uniform format shall be as defined in ITU‑T Recommendation G.721 (superseded by G.726), subclause 4.2.1, sub‑block EXPAND and subclause 4.2.7, sub‑block COMPRESS. The parameter LAW = 1 should be used for A-law and LAW=0 should be used for (-law (PCS 1900).

1.5
Principles of the RPE‑LTP encoder

A simplified block diagram of the RPE‑LTP encoder is shown in figure 1.1. In this diagram the coding and quantization functions are not shown explicitly.

The input speech frame, consisting of 160 signal samples (uniform 13 bit PCM samples), is first pre‑processed to produce an offset‑free signal, which is then subjected to a first order pre‑emphasis filter. The 160 samples obtained are then analysed to determine the coefficients for the short term analysis filter (LPC analysis). These parameters are then used for the filtering of the same 160 samples. The result is 160 samples of the short term residual signal. The filter parameters, termed reflection coefficients, are transformed to log.area ratios, LARs, before transmission.

For the following operations, the speech frame is divided into 4 sub‑frames with 40 samples of the short term residual signal in each. Each sub‑frame is processed blockwise by the subsequent functional elements.

Before the processing of each sub‑block of 40 short term residual samples, the parameters of the long term analysis filter, the LTP lag and the LTP gain, are estimated and updated in the LTP analysis block, on the basis of the current sub‑block of the present and a stored sequence of the 120 previous reconstructed short term residual samples.

A block of 40 long term residual signal samples is obtained by subtracting 40 estimates of the short term residual signal from the short term residual signal itself. The resulting block of 40 long term residual samples is fed to the Regular Pulse Excitation analysis which performs the basic compression function of the algorithm.

As a result of the RPE‑analysis, the block of 40 input long term residual samples are represented by one of 4 candidate sub‑sequences of 13 pulses each. The subsequence selected is identified by the RPE grid position (M). The 13 RPE pulses are encoded using Adaptive Pulse Code Modulation (APCM) with estimation of the sub‑block amplitude which is transmitted to the decoder as side information.

The RPE parameters are also fed to a local RPE decoding and reconstruction module which produces a block of 40 samples of the quantized version of the long term residual signal.

By adding these 40 quantized samples of the long term residual to the previous block of short term residual signal estimates, a reconstructed version of the current short term residual signal is obtained.

The block of reconstructed short term residual signal samples is then fed to the long term analysis filter which produces the new block of 40 short term residual signal estimates to be used for the next sub‑block thereby completing the feedback loop.

1.6
Principles of the RPE‑LTP decoder

The simplified block diagram of the RPE‑LTP decoder is shown in fig 1.2. The decoder includes the same structure as the feed‑back loop of the encoder. In error‑free transmission, the output of this stage will be the reconstructed short term residual samples. These samples are then applied to the short term synthesis filter followed by the de‑emphasis filter resulting in the reconstructed speech signal samples.

1.7
Sequence and subjective importance of encoded parameters

As indicated in fig 1.1 the three different groups of data are produced by the encoder are:

‑
the short term filter parameters;

‑
the Long Term Prediction (LTP) parameters;

‑
the RPE parameters.

The encoder will produce this information in a unique sequence and format, and the decoder shall receive the same information in the same way. In table 1.1, the sequence of output bits b1 to b260 and the bit allocation for each parameter is shown.

The different parameters of the encoded speech and their individual bits have unequal importance with respect to subjective quality. Before being submitted to the channel encoding function the bits have to be rearranged in the sequence of importance as given in GSM 05.03. The ranking has been determined by subjective testing and the procedure used is described in annex A, subclause A.2.

Table 1.1: Encoder output parameters in order of occurrence and
bit allocation within the speech frame of 260 bits/20 ms

==

Parameter Parameter Parameter Var. Number Bit no.

 number name name of bits (LSB-MSB)

==

==

 1 LAR 1 6 b1 - b6

 2 LAR 2 6 b7 - b12

FILTER 3 Log. Area LAR 3 5 b13 - b17

 4 ratios LAR 4 5 b18 - b22

PARAMETERS 5 1 - 8 LAR 5 4 b23 - b26

 6 LAR 6 4 b27 - b30

 7 LAR 7 3 b31 - b33

 8 LAR 8 3 b34 - b36

==

Sub-frame no.1

==

LTP 9 LTP lag N1 7 b37 - b43

PARAMETERS 10 LTP gain b1 2 b44 - b45

--

 11 RPE grid position M1 2 b46 - b47

RPE 12 Block amplitude Xmax1 6 b48 - b53

PARAMETERS 13 RPE-pulse no.1 x1(0) 3 b54 - b56

 14 RPE-pulse no.2 x1(1) 3 b57 - b59

 25 RPE-pulse no.13 x1(12) 3 b90 - b92

==

Sub-frame no.2

==

LTP 26 LTP lag N2 7 b93 - b99

PARAMETERS 27 LTP gain b2 2 b100- b101

--

 28 RPE grid position M2 2 b102- b103

RPE 29 Block amplitude Xmax2 6 b104- b109

PARAMETERS 30 RPE-pulse no.1 x2(0) 3 b110- b112

 31 RPE-pulse no.2 x2(1) 3 b113- b115

 42 RPE-pulse no.13 x2(12) 3 b146- b148

==

Table 1.1: Encoder output parameters in order of occurrence and
bit allocation within the speech frame of 260 bits/20 ms

Sub-frame no.3

==

LTP 43 LTP lag N3 7 b149- b155

PARAMETERS 44 LTP gain b3 2 b156- b157

--

 45 RPE grid position M3 2 b158- b159

RPE 46 Block amplitude Xmax3 6 b160- b165

PARAMETERS 47 RPE-pulse no.1 x3(0) 3 b166- b168

 48 RPE-pulse no.2 x3(1) 3 b169- b171

 59 RPE-pulse no.13 x3(12) 3 b202- b204

==

Sub-frame no.4

==

LTP 60 LTP lag N4 7 b205- b211

PARAMETERS 61 LTP gain b4 2 b212- b213

--

 62 RPE grid position M4 2 b214- b215

RPE 63 Block amplitude Xmax4 6 b216- b221

PARAMETERS 64 RPE-pulse no.1 x4(0) 3 b222- b224

 65 RPE-pulse no.2 x4(1) 3 b225- b227

 76 RPE-pulse no.13 x4(12) 3 b258- b260

==

[image: image2.wmf]Input

Pre-

processing

signal

Short term

analysis

filter

Short term

LPC

analysis

+

RPE grid

selection

and coding

(1)

(2)

LTP

analysis

Long term

analysis

filter

+

RPE grid

decoding and

positioning

(4)

(5)

(3)

-

LTP parameters

(9 bits/5 ms)

Reflection

coefficients coded as

Log. - Area Ratios

(36 bits/20 ms)

RPE parameters

(47 bits/5 ms)

To

radio

subsystem

(1) Short term residual

(2) Long term residual (40 samples)

(3) Short term residual estimate (40 samples)

(4) Reconstructed short term residual (40 samples)

(5) Quantized long term residual (40 samples)

Figure 1.1: Simplified block diagram of the RPE ‑ LTP encoder
[image: image3.wmf]RPE grid

decoding and

positioning

Reflection coefficients coded

as Log. - Area Ratios

(36 bits/20 ms)

RPE

parameters

(47 bits/5 ms)

From

radio

subsystem

LTP

parameters

(9 bits/5 ms)

+

Short term

synthesis

filter

Long term

synthesis

filter

Post-

processing

Output

signal

Figure 1.2: Simplified block diagram of the RPE ‑ LTP decoder

2
Transmission characteristics

This clause specifies the necessary performance characteristics of the audio parts for proper functioning of the speech transcoder. Some transmission performance characteristics of the RPE‑LTP transcoder are also given to assist the designer of the speech transcoder function. The information given here is redundant and the detailed specifications are contained in recommendation GSM 11.10.

The performance characteristics are referred to the 13 bit uniform PCM interface.

NOTE:
To simplify the verification of the specifications, the performance limits may be referred to an A‑ or (-law (PCS 1900) measurement interface according to ITU‑T Recommendation G.711. In this way, standard measuring equipments for PCM systems can be utilized for measurements. The relationship between the 13 bit format and the A‑ or (-law (PCS 1900) companded shall follow the procedures defined in subclause 1.4.

2.1
Performance characteristics of the analogue/digital interfaces

Concerning 1) discrimination against out‑of‑band signals (sending) and 2) spurious out‑of‑band signals (receiving), the same requirements as defined in ETSI standard TE 04‑15 (digital telephone, candidate NET33) apply.

2.2
Transcoder delay

Consider a back to back configuration where the parameters generated by the encoder are delivered to the speech decoder as soon as they are available.

The transcoder delay is defined as the time interval between the instant a speech frame of 160 samples has been received at the encoder input and the instant the corresponding 160 reconstructed speech samples have been out‑put by the speech decoder at an 8 kHz sample rate.

The theoretical minimum delay which can be achieved is 20 ms. The requirement is that the transcoder delay should be less than 30 ms.

3
Functional description of the RPE‑LTP codec

The block diagram of the RPE‑LTP‑coder is shown in figure 3.1. The individual blocks are described in the following subclauses.

3.1
Functional description of the RPE‑LTP encoder

The Pre‑processing section of the RPE‑LTP encoder comprises the following two sub‑blocks:

‑
Offset compensation (3.1.1);

‑
Pre‑emphasis (3.1.2).

The LPC analysis section of the RPE‑LTP encoder comprises the following five sub‑blocks:

‑
Segmentation (3.1.3);

‑
Auto‑Correlation (3.1.4);

‑
Schur Recursion (3.1.5);

‑
Transformation of reflection coefficients to Log.‑Area Ratios (3.1.6);

‑
Quantization and coding of Log.‑Area Ratios (3.1.7).

The Short term analysis filtering section of the RPE‑LTP comprises the following four sub‑blocks:

‑
Decoding of the quantized Log.‑Area Ratios (LARs) (3.1.8);

‑
Interpolation of Log.‑Area Ratios (3.1.9);

‑
Transformation of Log.‑Area Ratios into reflection coefficients (3.1.10);

‑
Short term analysis filtering (3.1.11).

The Long Term Predictor (LTP) section comprises 4 sub‑blocks working on subsegments (3.1.12) of the short term residual samples:

‑
Calculation of LTP parameters (3.1.13);

‑
Coding of the LTP lags (3.1.14) and the LTP gains (3.1.15);

‑
Decoding of the LTP lags (3.1.14) and the LTP gains (3.1.15);

‑
Long term analysis filtering (3.1.16), and Long term synthesis filtering (3.1.17).

The RPE encoding section comprises five different sub‑blocks:

‑
Weighting filter (3.1.18);

‑
Adaptive sample rate decimation by RPE grid selection (3.1.19);

‑
APCM quantization of the selected RPE sequence (3.1.20);

‑
APCM inverse quantization (3.1.21);

‑
RPE grid positioning (3.1.22).

Pre‑processing section
3.1.1
Offset compensation

Prior to the speech encoder an offset compensation, by a notch filter is applied in order to remove the offset of the input signal so to produce the offset‑free signal sof.

 sof(k) = so(k) - so(k‑1) + alpha*sof(k‑1)

(3.1.1)

 alpha = 32735*2‑15

3.1.2
Pre‑emphasis

The signal sof is applied to a first order FIR pre‑emphasis filter leading to the input signal s of the analysis section.

 s(k) = sof(k) - beta*sof(k‑1)

(3.1.2)

 beta= 28180*2‑15

LPC analysis section
3.1.3
Segmentation

The speech signal s(k) is divided into non‑overlapping frames having a length of T0 = 20 ms (160 samples). A new LPC‑analysis of order p=8 is performed for each frame.

3.1.4
Autocorrelation

The first p+1 = 9 values of the Auto‑Correlation function are calculated by:

 159

 ACF(k)= (s(i)s(i-k) ,k = 0,1...,8

(3.2)

 i=k

3.1.5
Schur Recursion

The reflection coefficients are calculated as shown in figure 3.2 using the Schur Recursion algorithm. The term "reflection coefficient" comes from the theory of linear prediction of speech (LPC), where a vocal tract representation consisting of series of uniform cylindrical sections is assumed. Such a representation can be described by the reflection coefficients or the area ratios of connected sections.

3.1.6
Transformation of reflection coefficients to Log.‑Area Ratios

The reflection coefficients r(i), (i=1..8), calculated by the Schur algorithm, are in the range:

 ‑1 <= r(i) <= + 1

Due to the favourable quantization characteristics, the reflection coefficients are converted into Log.‑Area Ratios which are strictly defined as follows:

 1 + r(i)

 Logarea(i) = log10 (----------)

 (3.3)

 1 - r(i)

Since it is the companding characteristic of this transformation that is of importance, the following segmented approximation is used.

 r(i) ; |r(i)| < 0.675

LAR(i) = sign[r(i)]*[2|r(i)|‑0.675] ; 0.675 <= |r(i)| < 0.950

 sign[r(i)]*[8|r(i)|‑6.375] ; 0.950 <= |r(i)| <= 1.000

(3.4)

with the result that instead of having to divide and obtain the logarithm of particular values, it is merely necessary to multiply, add and compare these values.

The following equation (3.5) gives the inverse transformation.

 LAR'(i) ; |LAR'(i)|<0.675

r'(i)=sign[LAR'(i)]*[0.500*|LAR'(i)|

 +0.337500] ; 0.675<=|LAR'(i)|<1.225

 sign[LAR'(i)]*[0.125*|LAR'(i)|

 +0.796875] ; 1.225<=|LAR'(i)|<=1.625

(3.5)

3.1.7
Quantization and coding of Log.‑Area Ratios

The Log.‑Area Ratios LAR(i) have different dynamic ranges and different asymmetric distribution densities. For this reason, the transformed coefficients LAR(i) are limited and quantized differently according to the following equation (3.6), with LARc(i) denoting the quantized and integer coded version of LAR(i).

 LARc(i) = Nint{A(i)*LAR(i) + B(i)}

(3.6)

 with

 Nint{z} = int{z+sign{z}*0.5}

(3.6a)

Function Nint defines the rounding to the nearest integer value, with the coefficients A(i), B(i), and different extreme values of LARc(i) for each coefficient LAR(i) given in table 3.1.

Table 3.1: Quantization of the Log.‑Area Ratios LAR(i)

LAR No i
A(i)
B(i)
 Minimum LARc(i)
 Maximum LARc(i)

1
20.000
0.000
 ‑32
 +31

2
20.000
0.000
 ‑32
 +31

3
20.000
4.000
 ‑16
 +15

4
20.000
‑5.000
 ‑16
 +15

5
13.637
0.184
 ‑ 8
 + 7

6
15.000
‑3.500
 ‑ 8
 + 7

7
8.334
‑0.666
 ‑ 4
 + 3

8
8.824
‑2.235
 ‑ 4
 + 3

Short‑term analysis filtering section
The current frame of the speech signal s is retained in memory until calculation of the LPC parameters LAR(i) is completed. The frame is then read out and fed to the short term analysis filter of order p=8. However, prior to the analysis filtering operation, the filter coefficients are decoded and pre‑processed by interpolation.

3.1.8
Decoding of the quantized Log.‑Area Ratios

In this block the quantized and coded Log.‑Area Ratios (LARc(i)) are decoded according to equation (3.7).

 LAR''(i) = (LARc(i) - B(i))/ A(i)

(3.7)

3.1.9
Interpolation of Log.‑Area Ratios

To avoid spurious transients which may occur if the filter coefficients are changed abruptly, two subsequent sets of Log.‑Area Ratios are interpolated linearly. Within each frame of 160 analysed speech samples the short term analysis filter and the short term synthesis filter operate with four different sets of coefficients derived according to table 3.2.

Table 3.2: Interpolation of LAR parameters (J=actual segment)

k
LAR'J(i) =

 0...12
 0.75*LAR' 'J‑1(i) + 0.25*LAR' 'J(i)

 13...26
 0.50*LAR' 'J‑1(i) + 0.50*LAR' 'J(i)

 27...39
 0.25*LAR' 'J‑1(i) + 0.75*LAR' 'J(i)

 40..159
LAR' 'J(i)

3.1.10
Transformation of Log.‑Area Ratios into reflection coefficients

The reflection coefficients are finally determined using the inverse transformation according to equation (3.5).

3.1.11
Short term analysis filtering

The Short term analysis filter is implemented according to the lattice structure depicted in figure 3.3.

 d0(k) = s(k)

(3.8a)

 u0(k) = s(k)

(3.8b)

 di(k) = di‑1(k) + r'i*ui‑1(k‑1) with i=1,...8

(3.8c)

 ui(k) = ui‑1(k‑1) + r'i*di‑1(k) with i=1,...8

(3.8d)

 d(k) = d8(k)

(3.8e)

Long‑Term Predictor (LTP) section
3.1.12
Sub‑segmentation

Each input frame of the short term residual signal contains 160 samples, corresponding to 20 ms. The long term correlation is evaluated four times per frame, for each 5 ms subsegment. For convenience in the following, we note j=0,...,3 the sub‑segment number, so that the samples pertaining to the j‑th sub‑segment of the residual signal are now denoted by d(kj+k) with j = 0,...,3; kj = k0 + j*40 and k = 0,...,39 where k0 corresponds to the first value of the current frame.

3.1.13
Calculation of the LTP parameters

For each of the four sub‑segments a long term correlation lag Nj, (j=0,...,3), and an associated gain factor bj, (j=0,...,3) are determined. For each sub‑segment, the determination of these parameters is implemented in three steps.

1)
The first step is the evaluation of the cross‑correlation Rj(lambda) of the current sub‑segment of short term residual signal d(kj+i),(i=0,...,39) and the previous samples of the reconstructed short term residual signal d'(kj+i), (i=‑120,...,‑1):

 39 j = 0,...3

 Rj(lambda) = (d(kj+i)*d'(kj+i-lambda); kj = k0 + j*40

 i=0 lambda = 40,...,120

(3.9)

The cross‑correlation is evaluated for lags lambda greater than or equal to 40 and less than or equal to 120, i.e. corresponding to samples outside the current sub‑segment and not delayed by more than two sub‑segments.

2)
The second step is to find the position Nj of the peak of the cross‑correlation function within this interval:

 Rj(Nj) = max { Rj(lambda); lambda = 40..120 };

 j = 0,...,3

(3.10)

3)
The third step is the evaluation of the gain factor bj according to:

 bj = Rj(Nj) / Sj(Nj); j = 0,...,3 (3.11)

 with

 39

 Sj(Nj) = (d'2 (kj+i-Nj); j = 0,...,3

(3.12)

 i=0

It is clear that the last 120 samples of the reconstructed short term residual signal d'(kj+i),(i=‑120,...,‑1) shall be retained until the next sub‑segment so as to allow the evaluation of the relations (3.9),...,(3.12).

3.1.14
Coding/Decoding of the LTP lags

The long term correlation lags Nj,(j=0,...,3) can have values in the range (40,...,120), and so shall be coded using 7 bits with:

 Ncj = Nj; j = 0,...,3

(3.13)

At the receiving end, assuming an error free transmission, the decoding of these values will restore the actual lags:

 Nj' = Ncj; j = 0,...,3

(3.14)

3.1.15
Coding/Decoding of the LTP gains

The long term prediction gains bj,(j=0,...,3) are encoded with 2 bits each, according to the following algorithm:

 if bj <= DLB(i) then bcj = 0; i=0
 if DLB(i‑1) < bj <= DLB(i) then bcj = i; i=1,2

(3.15)
 if DLB(i‑1) < bj then bcj = 3; i=3

where DLB(i),(i=0,...,2) denotes the decision levels of the quantizer, and bcj represents the coded gain value. Decision levels and quantizing levels are given in table 3.3.

Table 3.3: Quantization table for the LTP gain

i
Decision level
Quantizing level

DLB(i)
QLB(i)

0
0.2
0.10

1
0.5
0.35

2
0.8
0.65

3

1.00

The decoding rule is implemented according to:

 bj' = QLB(bcj) ; j = 0,...,3

(3.16)

where QLB(i),(i=0,...,3) denotes the quantizing levels, and bj' represents the decoded gain value (see table 3.3).

3.1.16
Long term analysis filtering

The short term residual signal d(k0+k),(k=0,...,159) is processed by sub‑segments of 40 samples. From each of the four sub‑segments (j=0,...,3) of short term residual samples, denoted here d(kj+k), (k=0,...,39), an estimate d"(kj+k), (k=0,...,39) of the signal is subtracted to give the long term residual signal e(kj+k), (k=0,...,39) (see figure 3.1):

 j = 0,...,3
 e(kj+k) = d(kj+k) - d"(kj+k) ; k = 0,...,39

(3.17)
 kj = k0 + j*40

Prior to this subtraction, the estimated samples d"(kj+k) are computed from the previously reconstructed short term residual samples d', adjusted to the current sub‑segment LTP lag Nj' and weighted with the sub‑segment LTP gain bj':

 j = 0,...,3
 d"(kj+k) = bj'*d'(kj+k-Nj') ; k = 0,...,39

(3.18)
 kj = k0 + j*40

3.1.17
Long term synthesis filtering

The reconstructed long term residual signal e'(k0+k),(k=0,...,159) is processed by sub‑segments of 40 samples. To each sub‑segment, denoted here e'(kj+k), (k=0,...,39), the estimate d"(kj+k), (k=0,...,39) of the signal is added to give the reconstructed short term residual signal d'(kj+k),(k=0,...,39):

 j = 0,...,3
 d'(kj+k) = e'(kj+k) + d"(kj+k) ; k = 0,...,39

(3.19)
 kj = k0 + j*40

RPE encoding section
3.1.18
Weighting Filter

A FIR "block filter" algorithm is applied to each sub‑segment by convolving 40 samples e(k) with the impulse response H(i) ; i=0,...,10 (see table 3.4).

Table 3.4: Impulse response of block filter (weighting filter)

i
5
4 (6)
3 (7)
2 (8)
1 (9)
0 (10)

H(i)*213
8192
5741
2054
0
‑374
‑134

|H(Omega=0)| = 2.779;

The conventional convolution of a sequence having 40 samples with an 11‑tap impulse response would produce 40+11‑1=50 samples. In contrast to this, the "block filter" algorithm produces the 40 central samples of the conventional convolution operation. For notational convenience the block filtered version of each sub‑segment is denoted by x(k), k=0,...,39.

 10
 x(k) = (H(i) * e(k+5-i) with k = 0,...,39

(3.20)
 i=0
NOTE:
 e(k+5‑i) = 0 for k+5‑i<0 and k+5‑i>39.

3.1.19
Adaptive sample rate decimation by RPE grid selection

For the next step, the filtered signal x is down‑sampled by a ratio of 3 resulting in 3 interleaved sequences of lengths 14, 13 and 13, which are split up again into 4 sub‑sequences xm of length 13:

 xm(i) = x(kj+m+3*i) ; i = 0,...,12

(3.21)
 m = 0,...,3

with m denoting the position of the decimation grid. According to the explicit solution of the RPE mean squared error criterion, the optimum candidate sub‑sequence xM is selected which is the one with the maximum energy:

 12
 EM = max (xm2(i) ; m = 0,...,3

(3.22)
 m i=0
The optimum grid position M is coded as Mc with 2 bits.

3.1.20
APCM quantization of the selected RPE sequence

The selected sub‑sequence xM(i) (RPE sequence) is quantized, applying APCM (Adaptive Pulse Code Modulation). For each RPE sequence consisting of a set of 13 samples xM(i) ,the maximum xmax of the absolute values |xM(i)| is selected and quantized logarithmically with 6 bits as xmaxc as given in table 3.5.

Table 3.5: Quantization of the block maximum xmax
xmax
 x'max
xmaxc

xmax
x'max
xmaxc

 0 .. 31
 31
 0

 2048 .. 2303
 2303
 32

 32 .. 63
 63
 1

 2304 .. 2559
 2559
 33

 64 .. 95
 95
 2

 2560 .. 2815
 2815
 34

 96 .. 127
 127
 3

 2816 .. 3071
 3071
 35

 128 .. 159
 159
 4

 3072 .. 3327
 3327
 36

 160 .. 191
 191
 5

 3328 .. 3583
 3583
 37

 192 .. 223
 223
 6

 3584 .. 3839
 3839
 38

 224 .. 255
 255
 7

 3840 .. 4095
 4095
 39

 256 .. 287
 287
 8

 4096 .. 4607
 4607
 40

 288 .. 319
 319
 9

 4608 .. 5119
 5119
 41

 320 .. 351
 351
 10

 5120 .. 5631
 5631
 42

 352 .. 383
 383
 11

 5632 .. 6143
 6143
 43

 384 .. 415
 415
 12

 6144 .. 6655
 6655
 44

 416 .. 447
 447
 13

 6656 .. 7167
 7167
 45

 448 .. 479
 479
 14

 7168 .. 7679
 7679
 46

 480 .. 511
 511
 15

 7680 .. 8191
 8191
 47

 512 .. 575
 575
 16

 8192 .. 9215
 9215
 48

 576 .. 639
 639
 17

 9216 .. 10239
 10239
 49

 640 .. 703
 703
 18

 10240 .. 11263
 11263
 50

 704 .. 767
 767
 19

 11264 .. 12287
 12287
 51

 768 .. 831
 831
 20

 12288 .. 13311
 13311
 52

 832 .. 895
 895
 21

 13312 .. 14335
 14335
 53

 896 .. 959
 959
 22

 14336 .. 15359
 15359
 54

 960 .. 1023
 1023
 23

 15360 .. 16383
 16383
 55

 1024 .. 1151
 1151
 24

 16384 .. 18431
 18431
 56

 1152 .. 1279
 1279
 25

 18432 .. 20479
 20479
 57

 1280 .. 1407
 1407
 26

 20480 .. 22527
 22527
 58

 1408 .. 1535
 1535
 27

 22528 .. 24575
 24575
 59

 1536 .. 1663
 1663
 28

 24576 .. 26623
 26623
 60

 1664 .. 1791
 1791
 29

 26624 .. 28671
 28671
 61

 1792 .. 1919
 1919
 30

 28672 .. 30719
 30719
 62

 1920 .. 2047
 2047
 31

 30720 .. 32767
 32767
 63

For the normalization, the 13 samples are divided by the decoded version x'max of the block maximum. Finally, the normalized samples:

 x'(i) = xM(i)/x'max ; i=0,...,12

(3.23)

are quantized uniformly with three bits to xMc(i) as given in table 3.6.

Table 3.6: Quantization of the normalized RPE‑samples

x'*215
xM'*215
xMc

 (Interval‑limits)

(Channel)

 ‑32768 ... ‑24577
 ‑28672
 0 = 000

 ‑24576 ... ‑16385
 ‑20480
 1 = 001

 ‑16384 ... ‑8193
 ‑12288
 2 = 010

 ‑8192 ... ‑1
 ‑4096
 3 = 011

 0 ... 8191
 4096
 4 = 100

 8192 ... 16383
 12288
 5 = 101

 16384 ... 24575
 20480
 6 = 110

 24576 ... 32767
 28672
 7 = 111

3.1.21
APCM inverse quantization

The xMc(i) are decoded to xM'(i) and denormalized using the decoded value x'maxc leading to the decoded sub‑sequence x'M(i).

3.1.22
RPE grid positioning

The quantized sub‑sequence is upsampled by a ratio of 3 by inserting zero values according to the grid position given with Mc.

3.2
Decoder

The decoder comprises the following 4 sections. Most of the sub‑blocks are also needed in the encoder and have been described already. Only the short term synthesis filter and the de‑emphasis filter are added in the decoder as new sub‑blocks.

‑
RPE decoding section (3.2.1);

‑
Long Term Prediction section (3.2.2);

‑
Short term synthesis filtering section (3.2.3);

‑
Post‑processing (3.2.4).

The complete block diagram for the decoder is shown in figure 3.4. The variables and parameters of the decoder are marked by the index r to distinguish the received values from the encoder values.

3.2.1
RPE decoding section

The input signal of the long term synthesis filter (reconstruction of the long term residual signal) is formed by decoding and denormalizing the RPE‑samples (APCM inverse quantization ‑ 3.1.21) and by placing them in the correct time position (RPE grid positioning ‑ 3.1.22). At this stage, the sampling frequency is increased by a factor of 3 by inserting the appropriate number of intermediate zero‑valued samples.

3.2.2
Long Term Prediction section

The reconstructed long term residual signal er' is applied to the long term synthesis filter (see 3.1.16 and 3.1.17) which produces the reconstructed short term residual signal dr' for the short term synthesizer.

3.2.3
Short term synthesis filtering section

The coefficients of the short term synthesis filter (see figure 3.5) are reconstructed applying the identical procedure to that in the encoder (3.1.8 ‑ 3.1.10). The short term synthesis filter is implemented according to the lattice structure depicted in figure 3.5.

 sr(0)(k) = dr'(k)

(3.24a)
 sr(i)(k) = sr(i‑1)(k) - rr'(9-i) * v8-i(k‑1); i=1,...,8

(3.24b)
 v9-i(k) = v8-i(k‑1) + rr'(9-i) * sr(i)(k); i=1,...,8

(3.24c)
 sr'(k) = sr(8)(k)

(3.24d)
 v0(k) = sr(8)(k)

(3.24e)

3.2.4
Post‑processing

The output of the synthesis filter sr(k) is fed into the IIR‑ de‑emphasis filter leading to the output signal sro.

 sro(k) = sr(k) + beta*sro(k‑1) ; beta= 28180*2‑15

(3.25)
[image: image4.wmf]Offset

compensation

Preemphasis

Auto-

correlation

Segmentation

Log Area

Ratios

Schur

recursion

Quantizer/

coder

s

0

s

0f

s

Preprocessing

ACF

r

LAR

Reflection

coefficients

Inverse

filter A(z)

LAR

decoder

Inter-

polation

s

LAR"

LAR'

r'

LAR

c

LPC analysis

Short term

analysis filtering

LTP

parameter

LTP parameter

decoder

Quantizer/

coder

N

c

X

z

-N

d

d'

b

N

b

c

N'

b'

+

+

d'

d"

Weighting

filter H(z)

e

Long term Prediction

d"

-

RPE grid

selection

APCM

quantizer

M

c

x

m

Inverse

APCM

x

m c

x

maxc

RPE grid

position

x

m

'

e'

signals

parameters to the radio subsystem

RPE encoding

Figure 3.1: Block diagram of the RPE ‑ LTP encoder

[image: image5.wmf]n = 1

ACF = 0 ?

K(9 - i) = ACF(i); i=7, ..., 7

P(j) = ACF(j); j=0, ..., 8

P(0) <

|

 P(1) |

r(n) = | P(1) | / P(0)

P(1) > 0 ?

n = 8 ?

P(0) = P(0) + P(1) * r(n)

m = 1

r(i) = 0; i = n, ..., 8

r(n) = - r(n)

Transformation

r - > LAR

yes

yes

yes

yes

no

no

no

no

P(m) = P(1 + m) + r(n) * K(9 - m)

K(9- m) = K(9 - m) + r(n) * P(1 + m)

END

m = 8 - n ?

m = m + 1

n = n + 1

yes

no

Figure 3.2: LPC analysis using Schur recursion

[image: image6.wmf]T

+

+

T

r

1

r

1

+

r

2

r

2

+

T

+

+

r

8

r

8

u

0

u

1

u

2

u

8

Input

s(k)

d

0

d

1

d

2

d

8

Output

u

8

d(k)

Figure 3.3: Short term analysis filter

[image: image7.wmf]RPE grid

position

Inverse

APCM

e

r

'

x

mr

'

signals

parameters from the radio subsystem

M

cr

x

maxcr

x

mcr

b

cr

LTP

parameter

decoder

N

cr

LAR

cr

LAR

decoder

Interpolation

Reflection

coefficients

Short term

synthesis

filter 1/A(z)

LAR

r

"

LAR

r

'

r

r

'

+

X

b

r

'

z

- N

N

r

'

d

r

"

d

r

'

Deemphasis

s

r

s

r0

RPE

decoding

Long term

Prediction

Short term

synthesis

filtering

Postprocessing

Figure 3.4: Block diagram of the RPE‑LTP decoder

[image: image8.wmf]T

+

+

T

r

1

r

1

+

r

2

r

2

+

T

+

+

r

8

r

8

v

0

v

1

v

2

v

8

Output

s

r

(k)

r

8

Input

d

r

'

-

-

-

r7

r6

r0

s

s

s

s

Figure 3.5: Short term synthesis filter

4
Codec homing

The below described codec homing procedure is introduced to the GSM Full Rate speech codec as an optional feature to simplify bit-exact codec tests. If is free to the manufacturers to implement this feature or not.

4.1
Functional description

The full rate speech codec is described in a bit‑exact arithmetic to ease type approval as well as general testing purposes of the full rate speech codec.

The response of the codec to a predefined input sequence can only be foreseen if the internal state variables of the codec are in a predefined state at the beginning of the experiment. Therefore, the codec has to be put into a so called home state before a bit‑exact test can be performed. This is usually done by a reset (a procedure in which the internal state variables of the codec are set to their defined initial values).

To allow a reset of the codec in remote locations, special homing frames have been defined for the encoder and the decoder, thus enabling a codec homing by inband signalling.

The codec homing procedure is defined in such a way, that in either direction (encoder or decoder) the homing functions are called after processing the homing frame that is input. The output corresponding to the first homing frame is therefore dependent on the codec state when receiving that frame and hence usually not known. The response to any further homing frame in one direction is by definition a homing frame of the other direction. This procedure allows homing of both, the encoder and decoder from either side, if a loop back configuration is implemented, taking proper framing into account.

4.2
Definitions

Encoder-homing-frame: The encoder-homing-frame consists of 160 identical samples, each 13 bits long, with the least significant bit set to "one" and all other bits set to "zero". When written to 16‑bit words with left justification, the samples have a value of 0008 hex. The speech decoder has to produce this frame as a response to the second and any further decoder-homing-frame if at least two decoder-homing-frames were input to the decoder consecutively.

Decoder-homing-frame: The decoder-homing-frame has a fixed set of speech parameters as described in table 4.1 a/b. It is the natural response of the speech encoder to the second and any further encoder-homing-frame if at least two encoder-homing-frames were input to the encoder consecutively.

Table 4.1 a: LAR parameter values for the decoder-homing-frame

LARc[1]
LARc[2]
LARc[3]
LARc[4]
LARc[5]
LARc[6]
LARc[7]
LARc[8]

0x0009
0x0017
0x000F
0x0008
0x0007
0x0003
0x0003
0x0002

Table 4.1 b: Sub-frame parameter values for the decoder-homing-frame

Parameter
Sub-frame 1
Sub-frame 2
Sub-frame 3
Sub-frame 4

 LTP lag
Nc
0x0028
0x0028
0x0028
0x0028

 LTP gain
bc
0x0000
0x0000
0x0000
0x0000

 RPE grid
Mc
0x0000
0x0000
0x0000
0x0000

 block amplitude
xmaxc
0x0000
0x0000
0x0000
0x0000

 RPE pulse 0
xMc[0]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 1
xMc[1]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 2
xMc[2]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 3
xMc[3]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 4
xMc[4]
0x0004
0x0004
0x0004
0x0003

 RPE pulse 5
xMc[5]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 6
xMc[6]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 7
xMc[7]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 8
xMc[8]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 9
xMc[9]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 10
xMc[10]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 11
xMc[11]
0x0004
0x0004
0x0004
0x0004

 RPE pulse 12
xMc[12]
0x0004
0x0004
0x0004
0x0004

4.3
Encoder homing

Whenever the full rate speech encoder receives at its input an encoder-homing-frame exactly aligned with its internal speech frame segmentation, the following events take place:

Step 1:
The speech encoder performs its normal operation including VAD and DTX and produces a speech parameter frame at its output which is in general unknown. If the speech encoder is already in its home state at the beginning of that frame, then the resulting speech parameter frame is identical to the decoder-homing-frame.This is how the decoder-homing-frame was constructed.

Step 2:
After successful completion of that operation, the speech encoder provokes the homing functions for all sub‑modules including VAD and DTX and sets all state variables into their home state. On the reception of the next input frame, the speech encoder will start from its home state.

NOTE:
Applying a sequence of N encoder-homing-frames will cause at least N‑1 decoder-homing-frames at the output of the speech encoder.

4.4
Decoder homing

Whenever the speech decoder receives at its input a decoder-homing-frame (which is not marked as a bad frame), then the following events take place:

Step 1:
The speech decoder performs its normal operation and produces a speech frame at its output which is in general unknown. If the speech decoder is already in its home state at the beginning of that frame, then the resulting speech frame is replaced by the encoder- homing-frame. This would not naturally be the case but is forced by this definition here.

Step 2:
After successful completion of that operation, the speech decoder provokes the homing functions for all sub‑modules including the comfort noise generator and sets all state variables into their home state. On the reception of the next input frame, the speech decoder will start from its home state.

NOTE 1:
Applying a sequence of N decoder-homing-frames will cause at least N‑1 encoder-homing-frames at the output of the speech decoder.

NOTE 2:
By definition, the first frame of each decoder test sequence must differ from the decoder-homing-frame at least in one bit position within the parameters for LARs and first subframe. Therefore, if the decoder is in its home state, it is sufficient to check only these parameters to detect a subsequent decoder-homing-frame. This definition is made to support a delay‑optimized implementation in the TRAU uplink direction.

4.5
Encoder home state

In table 4.2, a listing of all the encoder state variables with their predefined values when in the home state is given.

Table 4.2: Initial values of the encoder state variables

Variable
Initial value

Offset compensation filter memory
z1
 set to 0

Offset compensation filter memory
L_z2
 set to 0

Pre-emphasis filter memory
mp
 set to 0

LARs from previous frame
LARpp(j‑1)[1...8]
all set to 0

Short term analysis filter memory
u[0...7]
all set to 0

LTP delay line
dp[‑120...‑1]
all set to 0

Initial values for variables used by the VAD algorithm are listed in GSM 06.32 [12]. In addition, the state variables of the DTX system have to be brought into their home state. As the DTX system is not specified in a bit-exact way, no common reset table can be given here.

4.6
Decoder home state

In table 4.3, a listing of all the decoder state variables with their predefined values when in the home state is given.

Table 4.3: Initial values of the decoder state variables

Variable
Initial value

LTP lag from previous frame
nrp
set to 40

LTP delay line
drp[‑120...‑1]
all set to 0

LARs from previous frame
LARrpp(j‑1)[1...8]
all set to 0

Short term synthesis filter memory
v[0...8]
all set to 0

De-emphasis filter memory
msr
 set to 0

In addition, the state variables of the bad frame handling (error concealment) module and the comfort noise insertion module have to be brought into their home state. As these modules are not specified in a bit-exact way, no common reset table can be given here.

5
Computational details of the RPE‑LTP codec

5.1
Data representation and arithmetic operations

Only two types of variables are used along the implementation of the RPE‑LTP algorithm in fixed point arithmetic. These two types are:

Integer on 16 bits;

Long integer on 32 bits.

This assumption simplifies the detailed description and allows the maximum reach of precision.

In different places of the recommendation, different scaling factors are used according to different operations. To help the reader in the comparison of corresponding floating point and fixed point values given in section 3 and 4 comments of the format:

 /* var = integer(real_var * scalefactor) */

are used at several points of section 5. var is the rounded fixed point representation of the floating point representation of var (real_var) using the given scaling factor.

In the description, input signal samples, coded parameters and output signal samples are represented by 16 bit words. At the receiving part it shall therefore be ensured that only valid bits (13 bits for samples signal and two to seven bits for coded parameters) are used. In verification tests, the testing system may introduce random bit at non valid places inside these samples (3 LSBs) or parameters (MSBs) to test this function. In the digital test sequences all non valid bits are set to 0.

The following part of this section describes the required set of arithmetic operations to implement the RPE‑LTP algorithm in fixed point.

For arithmetics operations or variables with a long integer type (32 bit) a prefix L_ is used in order to distinguish them from the 16 bit variables or arithmetic operations.

All the names of the variables are identical to those of the functional description of the RPE‑LTP Codec (section 3) but variables like x', x'' are respectively called:

 x' -----> xp

 x''-----> xpp

in order to avoid any confusing notation.

NOTE:
The x', x" variables are examples but are not used within the following description.

The following notations are used in the arithmetic operations:

Square brackets ([..]) are used for arrays and when needed, the starting index and the ending index are put inside the bracket. For example x[0..159] means that x is an array of 160 words of 16 bits with beginning index 0 and ending index 159 and x[k] is an element of the array x[0..159].

All functions' names are underlined. For example add(x, y) means that we perform the addition of x and y.

 << n:
denotes a n‑bit arithmetic shift left operation (zero fill) on variables of type short or long; if n is less than 0, this operation becomes an arithmetic right shift of ‑n;

 >> n:
denotes a n‑bit arithmetic right shift operation (sign extension) on variables of type short or long; if n is less than 0, this operation becomes an arithmetic left shift of ‑n (zero fill);

 a > b:
denotes the "greater than" condition;

 a >= b:
denotes the "greater than or equal" condition;

 a < b:
denotes the "less than" condition;

 a <= b:
denotes the "less than or equal" condition;

 a == b:
denotes the "equal to" condition.

The basic structure of the FOR‑NEXT loop is used in this description for loop computation; the declaration is:

 |== FOR k= start to end:

 | inner computation;

 |== NEXT k:

Also the IF.. ELSE IF structure is used throughout this detailed description. The basic structure is:

 IF (condition1) THEN statement1;

 ELSE IF (condition2) THEN statement2;

 ELSE IF (condition3) THEN statement3;

The word EXIT is used to exit immediately from a procedure.

The following arithmetic operations are defined:

add(var1, var2):
performs the addition (var1+var2) with overflow control and saturation; the result is set at +32767 when overflow occurs or at ‑32768 when underflow occurs.

sub(var1, var2):
performs the subtraction (var1‑var2) with overflow control and saturation; the result is set at +32767 when overflow occurs or at ‑32768 when underflow occurs.

mult(var1, var2):
performs the multiplication of var1 by var2 and gives a 16 bits result which is scaled i.e.

mult(var1,var2) = (var1 times var2) >> 15 and mult(‑32768, ‑32768) = 32767

mult_r(var1, var2):
same as mult but with rounding i.e. mult_r(var1, var2) = ((var1 times var2) + 16384) >> 15 and mult_r(‑32768, ‑32768) = 32767

abs(var1):
absolute value of var1; abs(‑32768) = 32767

div(var1, var2):
div produces a result which is the fractional integer division of var1 by var2; var1 and var2 shall be positive and var2 shall be greater or equal to var1; The result is positive (leading bit equal to 0) and truncated to 16 bits. if var1 == var2 then div(var1, var2) = 32767

L_mult(var1, var2):
L_mult is a 32 bit result for the multiplication of var1 times var2 with a one bit shift left. L_mult(var1, var2) = (var1 times var2) << 1. The condition L_mult (‑32768, ‑32768) does not occur in the algorithm.

L_add(L_var1, L_var2):
32 bits addition of two 32 bits variables (L_var1 + L_var2) with overflow control and saturation; the result is set at 2147483647 when overflow occurs and at ‑2147483648 when underflow occurs.

L_sub(L_var1,L_var2):
32 bits subtraction of two 32 bits variables (L_var1 ‑ L_var2) with overflow control and saturation; the result is set at 2147483647 when overflow occurs and at ‑2147483648 when underflow occurs.

norm(L_var1):
norm produces the number of left shifts needed to normalize the 32 bits variable L_var1 for positive values on the interval with minimum of 1073741824 and maximum of 2147483647 and for negative values on the interval with minimum of ‑2147483648 and maximum of ‑1073741824; in order to normalize the result, the following operation shall be done: L_norm_var1 = L_var1 << norm(L_var1)

L_var2 = var1:
deposit the 16 bits of var1 in the LSB 16 bits of L_var2 with sign extension.

var2 = L_var1:
extract the 16 LSB bits of L_var1 to put in var2.

When a constant is used in an operation on 32 bits, it shall be first sign‑extended on 32 bits.

5.2
Fixed point implementation of the RPE‑LTP coder

The RPE‑LTP coder works on a frame by frame basis. The length of the frame is equal to 160 samples. Some computations are done once per frame (analysis) and some others for each of the four sub‑segments (40 samples).

In the following detailed description, procedure 5.2.0 to 5.2.10 are done once per frame to produce at the output of the coder the LARc[1..8] parameters which are the coded LAR coefficients and also to realize the inverse filtering operation for the entire frame (160 samples of signal d[0..159]). These parts produce at the output of the coder:

 | LARc[1..8] : Coded LAR coefficients
 |--> These parameters are calculated and sent once per frame.
Procedure 5.2.11 to 5.2.18 are to be executed four times per frame. That means once for each sub‑segment RPE‑LTP analysis of 40 samples. These parts produce at the output of the coder:

 | Nc : LTP lag;
 | bc : Coded LTP gain;
 | Mc : RPE grid selection;
 | xmaxc : Coded maximum amplitude of the RPE sequence;
 | xMc[0..12] : Codes of the normalized RPE samples;
 |--> These parameters are calculated and sent four times per frame.

Pre‑processing section
5.2.0
Scaling of the input variable

After A or (-‑law (PCS 1900) to linear conversion (or directly from the A to D converter) the following scaling is assumed for input to the RPE‑LTP algorithm:

 S.v.v.v.v.v.v.v.v.v.v.v.v.x.x.x (2's complement format).
 Where S is the sign bit, v a valid bit, and x a "don't care" bit.
 The original signal is called sop[..];
5.2.1
Downscaling of the input signal

 |== FOR k=0 to 159:

 | so[k] = sop[k] >> 3;

 | so[k] = so[k] << 2;

 |== NEXT k:

5.2.2
Offset compensation

This part implements a high‑pass filter and requires extended arithmetic precision for the recursive part of this filter.

The input of this procedure is the array so[0..159] and the output the array sof[0..159].

 |== FOR k = 0 to 159:
 | Compute the non-recursive part.
 | s1 = sub(so[k], z1);
 | z1 = so[k];
 | Compute the recursive part.
 | L_s2 = s1;
 | L_s2 = L_s2 << 15;
 | Execution of a 31 by 16 bits multiplication.
 | msp = L_z2 >> 15;
 | lsp = L_sub(L_z2, (msp << 15));
 | temp = mult_r(lsp, 32735);
 | L_s2 = L_add(L_s2, temp);
 | L_z2 = L_add(L_mult(msp, 32735) >> 1, L_s2);
 | Compute sof[k] with rounding.
 | sof[k] = L_add(L_z2, 16384) >> 15;
 |== NEXT k:
Keep z1 and L_z2 in memory for the next frame.

Initial value: z1=0; L_z2=0;

5.2.3
Pre‑emphasis

 |== FOR k=0 to 159:
 | s[k] = add(sof[k], mult_r(mp, ‑28180));
 | mp = sof[k];
 |== NEXT k:

Keep mp in memory for the next frame.

Initial value: mp=0;

LPC analysis section
5.2.4
Autocorrelation

The goal is to compute the array L_ACF[k]. The signal s[i] shall be scaled in order to avoid an overflow situation.

Dynamic scaling of the array s[0..159].

 Search for the maximum.

 smax = 0;
 |== FOR k = 0 to 159:
 | temp = abs(s [k]);
 | IF (temp > smax) THEN smax = temp;
 |== NEXT k;
 Computation of the scaling factor.

 IF (smax == 0) THEN scalauto = 0;
 ELSE scalauto = sub(4, norm(smax << 16));
 Scaling of the array s[0..159].

 IF (scalauto > 0) THEN
 | temp = 16384 >> sub(scalauto,1);
 |== FOR k = 0 to 159:
 | s[k] = mult_r(s[k], temp);
 |== NEXT k:
Compute the L_ACF[..].

 |== FOR k=0 to 8:
 | L_ACF[k] = 0;
 |==== FOR i=k to 159:
 | L_temp = L_mult(s[i], s[i-k]);
 | L_ACF[k] = L_add(L_ACF[k], L_temp);
 |==== NEXT i:
 |== NEXT k:
Rescaling of the array s[0..159].

IF (scalauto > 0) THEN
 |== FOR k = 0 to 159:
 | s[k] = s[k] << scalauto;
 |== NEXT k:

5.2.5
Computation of the reflection coefficients

Schur recursion with 16 bits arithmetic.

 IF(L_ACF[0] == 0) THEN
 |== FOR i = 1 to 8:
 | r[i] = 0;
 |== NEXT i:
 | EXIT; /continue with section 5.2.6/
 temp = norm(L_ACF[0]);
 |== FOR k=0 to 8:
 | ACF[k] = (L_ACF[k] << temp) >> 16;
 |== NEXT k:
Initialize array P[..] and K[..] for the recursion.

 |== FOR i=1 to 7:
 | K[9-i] = ACF[i];
 |== NEXT i:
 |== FOR i=0 to 8:
 | P[i] = ACF[i];
 |== NEXT i:
Compute reflection coefficients.

 |== FOR n=1 to 8:
 | IF(P[0] < abs(P[1])) THEN
 | |== FOR i = n to 8:
 | | r[i] = 0;
 | |== NEXT i:
 | | EXIT; /continue with
 | | section 5.2.6/
 | r[n] = div(abs(P[1]), P[0]);
 | IF (P[1] > 0) THEN r[n] = sub(0, r[n]);
 |
 | IF (n == 8) THEN EXIT; /continue with
 section 5.2‑6/
Schur recursion.

 | P[0] = add(P[0], mult_r(P[1], r[n]));
 |==== FOR m=1 to 8-n:
 | P[m] = add(P[m+1], mult_r(K[9-m], r[n]));
 | K[9-m] = add(K[9-m], mult_r(P[m+1], r[n]));
 |==== NEXT m:
 |
 |== NEXT n:
NOTE:
The following lines gives one correct implementation of the div(num, denum) arithmetic operation. Compute div which is the integer division of num by denum: with denum >= num > 0.

 L_num = num;
 L_denum = denum;
 div =0;
 |== FOR k = 0 to 14:
 | div= div << 1;
 | L_num = L_num << 1;
 | IF (L_num >= L_denum) THEN
 | | L_num=L_sub(L_num, L_denum);
 | | div = add(div ,1);
 |== NEXT k:
5.2.6
Transformation of reflection coefficients to Log.‑Area Ratios

The following scaling for r[..] and LAR[..] has been used:

 /* r[..] = integer(real_r[..]*32768.); ‑1. <= real_r <1. */
 /* */
 /* LAR[..] = integer(real_LAR[..]*16384.); */
 /* */
 /* with ‑1.625 <= real_LAR <= 1.625 */
Computation of the LAR[1..8] from the r[1..8].

 |== FOR i = 1 to 8:
 | temp = abs(r[i]);
 | IF (temp < 22118) THEN temp = temp >> 1;
 | ELSE IF (temp < 31130) THEN
 | temp= sub(temp, 11059);
 | ELSE temp = sub(temp, 26112) << 2;
 | LAR[i] = temp;
 | IF (r[i] < 0) THEN LAR[i] = sub(0, LAR[i]);
 |== NEXT i:
5.2.7
Quantization and coding of the Log.‑Area Ratios

This procedure needs four tables; the following equations give the optimum scaling for the constants:

/* A[1..8]= integer(real_A[1..8]*1024); 8 values (see table5.1)*/
/* */
/* B[1..8]= integer(real_B[1..8]*512); 8 values (see table5.1)*/
/* */
/* MAC[1..8]= maximum of the LARc[1..8]; 8 values (see table5.1)*/
/* */
/* MIC[1..8]= minimum of the LARc[1..8]; 8 values (see table5.1)*/
Computation for quantizing and coding the LAR[1..8].

 |== FOR i =1 to 8:
 | temp= mult(A[i], LAR[i]);
 | temp= add(temp, B[i]);
 | temp= add(temp, 256); for rounding
 | LARc[i]= temp >> 9;
 |
 |
Check IF LARc[i] lies between MIN and MAX
 |
 | IF (LARc[i] > MAC[i]) THEN LARc[i] = MAC[i];
 | IF (LARc[i] < MIC[i]) THEN LARc[i] = MIC[i];
 | LARc[i] = sub(LARc[i], MIC[i]); /See note below/
 |== NEXT i:
NOTE:
The equation is used to make all the LARc[i] positive.

Short term analysis filtering section

5.2.8
Decoding of the coded Log.‑Area Ratios

This procedure requires for efficient implementation two tables.

/* INVA[1..8]=integer((32768*8)/(real_A[1..8]); */
/* 8 values (table 5.2) */
/* MIC[1..8]=minimum value of the LARc[1..8]; */
/* 8 values (table 5.1) */
Compute the LARpp[1..8].

 |== FOR i=1 to 8:
 | temp1 = add(LARc[i], MIC[i]) << 10; /See note below/
 | temp2 = B[i] << 1;
 | temp1 = sub(temp1, temp2);
 | temp1 = mult_r(INVA[i], temp1);
 | LARpp[i] = add(temp1, temp1);
 |== NEXT i:
NOTE:
The addition of MIC[i] is used to restore the sign of LARc[i].

5.2.9
Computation of the quantized reflection coefficients

Within each frame of 160 analysed speech samples the short term analysis and synthesis filters operate with four different sets of coefficients, derived from the previous set of decoded LARs(LARpp(j‑1)) and the actual set of decoded LARs (LARpp(j)).

5.2.9.1
Interpolation of the LARpp[1..8] to get the LARp[1..8]

For k_start = 0 to k_end = 12.
|==== FOR i= 1 to 8:
| LARp[i] = add((LARpp(j‑1)[i] >> 2),(LARpp(j)[i] >> 2));
| LARp[i] = add(LARp[i] , (LARpp(j‑1)[i] >> 1));
|==== NEXT i:
For k_start = 13 to k_end = 26.
|==== FOR i= 1 to 8:
| LARp[i] = add((LARpp(j‑1)[i] >> 1),(LARpp(j)[i] >> 1));
|==== NEXT i:
For k_start = 27 to k_end = 39.
|==== FOR i= 1 to 8:
| LARp[i] = add((LARpp(j‑1)[i] >> 2),(LARpp(j)[i] >> 2));
| LARp[i] = add(LARp[i] , (LARpp(j)[i] >> 1));
|==== NEXT i:
For k_start = 40 to k_end = 159.
|==== FOR i= 1 to 8:
| LARp[i] = LARpp(j)[i];
|==== NEXT i:
Initial value: LARpp(j‑1)[1..8]=0;

5.2.9.2
Computation of the rp[1..8] from the interpolated LARp[1..8]

The input of this procedure is the interpolated LARp[1..8] array. The reflection coefficients, rp[i], are used in the analysis filter and in the synthesis filter.

 |== FOR i=1 to 8:
 | temp = abs(LARp[i]);
 | IF (temp < 11059) THEN temp = temp << 1;
 | ELSE IF (temp < 20070) THEN
 | temp = add(temp, 11059);
 | ELSE temp = add((temp >> 2), 26112);
 | rp[i] = temp;
 | IF (LARp[i] < 0) THEN rp[i] = sub(0, rp[i]);
 |== NEXT i:
5.2.10
Short term analysis filtering

This procedure computes the short term residual signal d[..] to be fed to the RPE‑LTP loop from the s[..] signal and from the local rp[..] array (quantized reflection coefficients). As the call of this procedure can be done in many ways (see the interpolation of the LAR coefficient), it is assumed that the computation begins with index k_start (for arrays d[..] and s[..]) and stops with index k_end (k_start and k_end are defined in 5.2.9.1). This procedure also needs to keep the array u[0..7] in memory for each call.

 |== FOR k = k_start to k_end:
 | di = s[k]
 | sav = di;
 |==== FOR i = 1 to 8:
 | temp = add(u[i‑1], mult_r(rp[i], di));
 | di = add(di, mult_r(rp[i], u[i‑1]));
 | u[i‑1] = sav;
 | sav = temp;
 |==== NEXT i:
 | d[k] = di;
 |== NEXT k:
Keep the array u[0..7] in memory.

Initial value: u[0..7]=0;

Long Term Predictor (LTP) section
5.2.11
Calculation of the LTP parameters

This procedure computes the LTP gain (bc) and the LTP lag (Nc) for the long term analysis filter. This is done by calculating a maximum of the cross‑correlation function between the current sub‑segment short term residual signal d[0..39] (output of the short term analysis filter; for simplification the index of this array begins at 0 and ends at 39 for each sub‑segment of the RPE‑LTP analysis) and the previous reconstructed short term residual signal dp[‑120..‑1]. A dynamic scaling shall be performed to avoid overflow.

Search of the optimum scaling of d[0..39].

 dmax = 0;
 |== FOR k = 0 to 39:
 | temp = abs(d[k]);
 | IF (temp > dmax) THEN dmax = temp;
 |== NEXT k:
 temp = 0;
 IF (dmax == 0) THEN scal = 0;
 ELSE temp = norm(dmax << 16);
 IF (temp > 6) THEN scal = 0;
 ELSE scal = sub(6, temp);
Initialization of a working array wt[0..39].

 |== FOR k = 0 to 39:
 | wt[k] = d[k] >> scal;
 |== NEXT k:
Search for the maximum cross‑correlation and coding of the LTP lag.

 L_max = 0;
 Nc = 40; (index for the maximum cross-correlation)
 |== FOR lambda = 40 to 120:
 | L_result = 0;
 |==== FOR k = 0 to 39:
 | L_temp = L_mult(wt[k], dp[k-lambda]);
 | L_result = L_add(L_temp, L_result);
 |==== NEXT k:
 | IF (L_result > L_max) THEN
 | | Nc = lambda;
 | | L_max = L_result ;
 |== NEXT lambda:
Rescaling of L_max.

 L_max = L_max >> (sub(6, scal));
Initialization of a working array wt[0..39].

 |== FOR k = 0 to 39:
 | wt[k] = dp[k-Nc] >> 3;
 |== NEXT k:
Compute the power of the reconstructed short term residual signal dp[..].

 L_power = 0;
 |== FOR k =0 to 39:
 | L_temp = L_mult(wt[k], wt[k]);
 | L_power = L_add(L_temp, L_power);
 |== NEXT k:

Normalization of L_max and L_power.

 IF (L_max <= 0) THEN
 | bc = 0;
 | EXIT; /cont. with 5.2.12/
 IF (L_max >= L_power) THEN
 | bc = 3;
 | EXIT; /cont. with 5.2.12/
 temp = norm(L_power);
 R = (L_max << temp) >> 16;
 S = (L_power << temp) >> 16;

Coding of the LTP gain.

Table 5.3a shall be used to obtain the level DLB[i] for the quantization of the LTP gain b to get the coded version bc.

 |== FOR bc = 0 to 2:
 | IF (R <= mult(S, DLB[bc])) THEN EXIT; /cont. with
 5.2.12/
 |== NEXT bc;
 bc = 3;
Initial value: dp[‑120..‑1]=0;

5.2.12
Long term analysis filtering

In this part, we have to decode the bc parameter to compute the samples of the estimate dpp[0..39]. The decoding of bc needs the use of table 5.3b. The long term residual signal e[0..39] is then calculated to be fed to the RPE encoding section.

Decoding of the coded LTP gain.

 bp = QLB[bc];
Calculating the array e[0..39] and the array dpp[0..39].

 |== FOR k = 0 to 39:
 | dpp[k] = mult_r(bp, dp[k-Nc]);
 | e[k] = sub(d[k], dpp[k]);
 |== NEXT k:
RPE encoding section
5.2.13
Weighting filter

The coefficients of the weighting filter are stored in a table (see table 5.4). The following scaling is used:

 /* H[0..10] = integer(real_H[0..10]*8192); */
Initialization of a temporary working array wt[0..49].

 |== FOR k= 0 to 4:
 | wt[k] = 0;
 |== NEXT k:
 |== FOR k = 5 to 44:
 | wt[k] = e[k‑5];
 |== NEXT k:
 |== FOR k= 45 to 49:
 | wt[k] = 0;
 |== NEXT k:
Compute the signal x[0..39].

 |== FOR k= 0 to 39:
 | L_result = 8192; /rounding of the output
 of the filter/
 |==== FOR i = 0 to 10:
 | L_temp = L_mult(wt[k+i], H[i]);
 | L_result = L_add(L_result, L_temp);
 |==== NEXT i:
 | L_result = L_add(L_result,L_result); /scaling (x2)/
 | L_result = L_add(L_result,L_result); /scaling (x4)/
 | x[k] = L_result >> 16;
 |== NEXT k:
5.2.14
RPE grid selection

The signal x[0..39] is used to select the RPE grid which is represented by Mc.

 EM =0;
 Mc = 0;
 |== FOR m = 0 to 3:
 | L_result = 0;
 |==== FOR i = 0 to 12:
 | temp1 = x[m+(3*i)] >> 2;
 | L_temp = L_mult(temp1, temp1);
 | L_result = L_add(L_temp, L_result);
 |==== NEXT i:
 | IF (L_result > EM) THEN
 | | Mc = m;
 | | EM = L_result;
 |== NEXT m:
Down‑sampling by a factor 3 to get the selected xM[0..12] RPE sequence.

 |== FOR i = 0 to 12:
 | xM[i] = x[Mc +(3*i)];
 |== NEXT i:
5.2.15
APCM quantization of the selected RPE sequence

Find the maximum absolute value xmax of xM[0..12].

 xmax = 0;
 |== FOR i = 0 to 12:
 | temp = abs(xM[i]) ;
 | IF (temp > xmax) THEN xmax = temp;
 |== NEXT i:
Quantizing and coding of xmax to get xmaxc.

 exp = 0;
 temp = xmax >> 9;
 itest = 0;
 |== FOR i = 0 to 5:
 | IF (temp <= 0) THEN itest = 1;
 | temp = temp >> 1;
 | IF (itest == 0) THEN exp = add(exp, 1) ;
 |== NEXT i:
 temp = add(exp, 5) ;
 xmaxc = add((xmax >> temp), (exp << 3)) ;
Quantizing and coding of the xM[0..12] RPE sequence to get the xMc[0..12].

This computation uses the fact that the decoded version of xmaxc can be calculated by using the exponent and the mantissa part of xmaxc (logarithmic table).

So, this method avoids any division and uses only a scaling of the RPE samples by a function of the exponent. A direct multiplication by the inverse of the mantissa (NRFAC[0..7] found in table 5.5) gives the 3 bit coded version xMc[0..12] of the RPE samples.

Compute exponent and mantissa of the decoded version of xmaxc.

 exp = 0 ;
 IF (xmaxc > 15) THEN exp = sub((xmaxc >> 3), 1) ;
 mant = sub(xmaxc , (exp << 3));
Normalize mantissa 0 <= mant <= 7.

 IF (mant == 0) THEN | exp = ‑4;
 | mant = 15;
 ELSE | itest = 0;
 |== FOR i = 0 to 2:
 | IF (mant > 7) THEN itest = 1;
 | IF (itest == 0) THEN mant = add((mant << 1),1);
 | IF (itest == 0) THEN exp = sub(exp, 1);
 |== NEXT i:
 mant = sub(mant, 8);
Direct computation of xMc[0..12] using table 5.5.

 temp1= sub(6, exp); /normalization by the exponent/
 temp2 = NRFAC[mant]; /see table 5.5 (inverse mantissa)/
 |== FOR i = 0 to 12:
 | temp = xM[i] << temp1;
 | temp = mult(temp , temp2);
 | xMc[i] = add((temp >> 12), 4); /See note below/
 |== NEXT I:

NOTE:
This equation is used to make all the xMc[i] positive.

Keep in memory exp and mant for the following inverse APCM quantizer.

5.2.16
APCM inverse quantization

This part is for decoding the RPE sequence of coded xMc[0..12] samples to obtain the xMp[0..12] array. Table 5.6 is used to get the mantissa of xmaxc (FAC[0..7]).

 temp1 = FAC[mant]; see 5.2.15 for mant
 temp2= sub(6, exp); see 5.2.15 for exp
 temp3= 1 << sub(temp2, 1);
 |== FOR i =0 to 12:
 | temp = sub((xMc[i] << 1), 7); /See note below/
 | temp = temp << 12;
 | temp = mult_r(temp1, temp);
 | temp = add(temp, temp3);
 | xMp[i] = temp >> temp2;
 |== NEXT i;
NOTE:
This subtraction is used to restore the sign of xMc[i].

5.2.17
RPE grid positioning

This procedure computes the reconstructed long term residual signal ep[0..39] for the LTP analysis filter. The inputs are the Mc which is the grid position selection and the xMp[0..12] decoded RPE samples which are upsampled by a factor of 3 by inserting zero values.

 |== FOR k = 0 to 39:
 | ep[k] = 0;
 |== NEXT k:
 |== FOR i = 0 to 12:
 | ep[Mc +(3*i)] = xMp[i];
 |== NEXT i:
5.2.18
Update of the reconstructed short term residual signal dp[‑120..‑1]

This procedure adds the reconstructed long term residual signal ep[0..39] to the estimated signal dpp[0..39] from the long term analysis filter to compute the reconstructed short term residual signal dp[‑40..‑1]; also the reconstructed short term residual array dp[‑120..‑41] is updated.

 |== FOR k = 0 to 79:
 | dp[‑120+k] = dp[‑80+k];
 |== NEXT k:
 |== FOR k = 0 to 39:
 | dp[‑40+k] = add(ep[k], dpp[k]);
 |== NEXT k:
Keep the array dp[‑120..‑1] in memory for the next sub‑segment.

Initial value: dp[‑120..‑1]=0;

5.3
Fixed point implementation of the RPE‑LTP decoder

Only the synthesis filter and the de‑emphasis procedure are different from the procedures found in the RPE‑LTP coder. Procedures 5.3.1 and 5.3.2 are executed for each sub‑segment (four times per frame). Procedures 5.3.3, 5.3.4 and 5.3.5 are executed once per frame.

5.3.1
RPE decoding section

Procedures 5.2.15 (only the part to get mant and exp of xmaxc), 5.2.16 and 5.2.17 are used to obtain the reconstructed long term residual signal erp[0..39] signal from the received parameters for each sub‑segment (i.e. Mcr, xmaxcr, xmcr[0..12]).

5.3.2
Long term synthesis filtering

This procedure uses the bcr and Ncr parameter to realize the long term synthesis filtering. The decoding of bcr needs the use of table 5.3b.

‑
Nr is the received and decoded LTP lag.

‑
An array drp[‑120..39] is used in this procedure.

The elements for ‑120 to ‑1 of the array drp are kept in memory for the long term synthesis filter. For each sub‑segment (40 samples), this procedure computes the drp[0..39] to be fed to the synthesis filter.

Check the limits of Nr.

 Nr = Ncr;
 IF (Ncr < 40) THEN Nr = nrp;
 IF (Ncr > 120) THEN Nr = nrp;
 nrp= Nr;

Keep the nrp value for the next sub‑segment.

Initial value: nrp=40;

Decoding of the LTP gain bcr.

 brp = QLB[bcr]
Computation of the reconstructed short term residual signal drp[0..39].

 |== FOR k = 0 to 39:
 | drpp = mult_r(brp, drp[k-Nr]);
 | drp[k] = add(erp[k], drpp);
 |== NEXT k:
Update of the reconstructed short term residual signal drp[‑1..‑120].

 |== FOR k = 0 to 119:
 | drp[‑120+k] = drp[‑80+k];
 |== NEXT k:
Keep the array drp[‑120..‑1] for the next sub‑segment.

Initial value: drp[‑120..‑1]=0;

5.3.3
Computation of the decoded reflection coefficients

This procedure (which is executed once per frame) is the same as the one described in the CODER part. For decoding of the received LARcr[1..8], see procedure 5.2.8. For the interpolation of the decoded Log.‑Area Ratios, see procedure 5.2.9.1 and for the computation of the reflection coefficients rrp[1..8], see procedure 5.2.9.2.

5.3.4
Short term synthesis filtering section

This procedure uses the drp[0..39] signal and produces the sr[0..159] signal which is the output of the short term synthesis filter. For ease of explanation, a temporary array wt[0..159] is used.

Initialization of the array wt[0..159].

 For the first sub‑segment in a frame:

 |== FOR k = 0 to 39:
 | wt[k] = drp[k];
 |== NEXT k:
 For the second sub‑segment in a frame:

 |== FOR k = 0 to 39:
 | wt[40+k] = drp[k];
 |== NEXT k:
 For the third sub‑segment in a frame:

 |== FOR k = 0 to 39:
 | wt[80+k] = drp[k];
 |== NEXT k:
 For the fourth sub‑segment in a frame:

 |== FOR k = 0 to 39:
 | wt[120+k] = drp[k];
 |== NEXT k:
As the call of the short term synthesis filter procedure can be done in many ways (see the interpolation of the LAR coefficient), it is assumed that the computation begins with index k_start (for arrays wt[..] and sr[..]) and stops with index k_end (k_start and k_end are defined in 5.2.9.1). The procedure also needs to keep the array v[0..8] in memory between calls.

 |== FOR k = k_start to k_end:
 | sri = wt[k];
 |==== FOR i = 1 to 8:
 | sri = sub(sri, mult_r(rrp[9-i], v[8-i]));
 | v[9-i] = add(v[8-i], mult_r(rrp[9-i], sri));
 |==== NEXT i:
 | sr[k] = sri;
 | v[0] = sri;
 |== NEXT k:

Keep the array v[0..8] in memory for the next call.

Initial value: v[0..8]=0;

Post‑processing
5.3.5
De‑emphasis filtering

 |== FOR k = 0 to 159:
 | temp = add(sr[k], mult_r(msr, 28180));
 | msr = temp;
 | sro[k] = msr;
 |== NEXT k:
Keep msr in memory for the next frame.

Initial value: msr=0;

5.3.6
Upscaling of the output signal

 |== FOR k = 0 to 159:
 | srop[k] = add(sro[k], sro[k]);
 |== NEXT k:
5.3.7
Truncation of the output variable

 |== FOR k = 0 to 159:
 | srop[k] = srop[k] >> 3;
 | srop[k] = srop[k] << 3;
 |== NEXT k:
 The output format is the following:

 S.v.v.v.v.v.v.v.v.v.v.v.v.0.0.0 (2's complement).
 Where S is the sign bit, v a valid bit.

NOTE:
When a linear to A‑law compression is needed, then the sub‑block COMPRESS of CCITT G721 recommendation shall be used with inputs:

 SR = srop[k] >> 3;
 LAW = 1;

When a linear to (‑law compression is needed, then the sub‑block COMPRESS of CCITT G721 recommendation shall be used with inputs:

SR = srop[k] >> 3;
LAW = 0;

5.4
Tables used in the fixed point implementation of the RPE‑LTP coder and decoder

Table 5.1: Quantization of the Log.‑Area Ratios

i
A[i]
B[i]
MIC[i]
MAC[i]

1
20480
 0
‑32
 31

2
20480
 0
‑32
 31

3
20480
2048
‑16
 15

4
20480
 ‑2560
‑16
 15

5
13964
94
 ‑8
7

6
15360
 ‑1792
 ‑8
7

7
 8534
‑341
 ‑4
3

8
 9036
 ‑1144
 ‑4
3

Table 5.2. Tabulation of 1/A[1..8]

i
 INVA[i]

1
 13107

2
 13107

3
 13107

4
 13107

5
 19223

6
 17476

7
 31454

8
 29708

Table 5.3a: Decision level of the LTP gain quantizer

bc
 DLB[bc]

 0
 6554

 1
16384

 2
26214

 3
32767

Table 5.3b: Quantization levels of the LTP gain quantizer

bc
QLB[bc]

 0
3277

 1
 11469

 2
 21299

 3
 32767

Table 5.4: Coefficients of the weighting filter

i
H[i]

0
 ‑134

1
 ‑374

2
0

3
 2054

4
 5741

5
 8192

6
 5741

7
 2054

8
0

9
 ‑374

 10
 ‑134

Table 5.5: Normalized inverse mantissa used to compute xM/xmax

i
 NRFAC[i]

0
29128

1
26215

2
23832

3
21846

4
20165

5
18725

6
17476

7
16384

Table 5.6: Normalized direct mantissa used to compute xM/xmax

i
FAC[i]

0
18431

1
20479

2
22527

3
24575

4
26623

5
28671

6
30719

7
32767

6
Digital test sequences

This chapter provides information on the digital test sequences that have been designed to help in the verification of implementations of the RPE‑LTP codec. Copies of these sequences are available (see annex A3). As the codec homing procedure (see clause 4) is an optional feature two sets of test vectors are provided, one set without codec homing frames and a second set with codec homing frames. In addition A-law and (-law compressed testsequences are provided ffor each set as a further option for TRAU testing.

6.1
Input and output signals

Table 6.1 defines the input and output signals for the test sequences. The words defined in this table use 16 bits. The left or right justification is indicated in the table. The codewords described in the table correspond to one frame of coder input or decoder output signal; i.e. for 20 ms of input signal the 76 codewords are obtained at the output of the coder and 76 codewords provided at the input of the decoder will yield 20 ms of output signal in the decoder. Three types of files are provided:

· speech encoder input samples, sop[..]

*.INP

· coded parameters (encoded speech data)
*.COD

· speech decoder output samples, srop[..]

*.OUT

6.2
Configuration for the application of the test sequences

Two configurations are appropriate in order to test an implementation of the RPE‑LTP codec. The first is for testing the coder part of the RPE‑LTP algorithm which means that a sop[..] signal (on files: *.INP) is provided at the input of the encoder which responds with frames of coded parameters. The encoder output has to be checked against reference files (files: *.COD). The other configuration is for testing the decoder part of the RPE‑LTP algorithm. In this case, frames of coded parameters (see table 5.1, files: *.COD) are sent to the RPE‑LTP decoder which responds with the srop[..] signal. These samples have to be checked against reference files (files: *.OUT).

6.2.1
Configuration 1 (encoder only)

A reset signal (RS) shall be applied to the RPE‑LTP encoder under test to set all internal variables to the exact states specified in section 5 of this recommendation prior to the start of an input test sequence in order to obtain the correct output values for this test. But please note, this reset signal is only required for a codec implementation without codec homing porcedure. If codec homing is implemented the reset of the internal state variables is done by the means of software. This test shall be done in real-time with a sampling rate of 8 kHz at the input of the encoder under test (see figure 6.1). All the necessary hardware and software should be installed by the user in order to capture in real time the output coded parameters of the RPE‑LTP encoder and to compare them to the dedicated reference file.

Codec homing not implemented:

In the case of a correct hardware implementation undergoing test, all speech encoder output frames must be identical to the corresponding frames in the *.COD file.

Codec homing implemented:

Each *H.INP file includes two homing frames at the start of the test sequence. The function of these is to reset the speech encoder state variables to their initial value. In the case of a correct hardware implementation undergoing test, the first speech encoder output frame is undefined and need not be identical to the first frame in the *H.COD file. All subsequent speech encoder output frames must be identical to the corresponding frames in the *H.COD file.

[image: image9.wmf]v

/

/

8 kHz sampling rate

Coded parameters

2-7 bits

13 bits

RS

comparison

Input:

RPE-LTP

Encoder

under test

Figure 6.1: Configuration 1: RPE‑LTP encoder under test

6.2.2
Configuration 2 (decoder only)

Figure 6.2 shows a RPE‑LTP decoder under test. In the same way as described in the coder part, a reset signal (RS) shall be used before the processing of the first frame of coded parameters. But please note that also for the decoder this reset signal is only required if the codec homing procedure is not implemented. The decoder shall be tested for a continuous output with a sampling rate of 8 kHz. At the input of the decoder, the 76 parameters shall be sent in a time interval of 20 ms.

Codec homing not implemented:

In the case of a correct hardware implementation undergoing testing, all speech decoder output frames must be identical to the corresponding frames in the *.OUT file.

Codec homing implemented:

Each *H.COD file includes two homing frames at the start of the test sequence. The function of these is to reset the speech decoder state variables to their initial value. In the case of a correct hardware implementation undergoing testing, the first speech decoder output frame is undefined and need not be identical to first frame in the *H.OUT file. All subsequent speech decoder output frames must be identical to the corresponding frames in the *H.OUT file.

[image: image10.wmf]v

/

/

8 kHz sampling rate

Coded

parameters

2-7 bits

13 bits

RS

comparison

Input:

RPE-LTP

Decoder

under test

Output signal: srop [k]

Figure 6.2: Configuration 2: RPE‑LTP decoder under test

6.3
Test sequences

The letter `H´ at the end of a file name denotes a test sequences with codec homing frames.

6.3.1
Test sequences for configuration 1

For configuration 1, four different input test sequence are provided:

SRQ01/SEQ01H
Sequence for testing the overflow controls in the encoder;

SEQ02/SEQ02H
Sequence for testing the LPC part of the encoder;

SEQ03/SEQ03H
Sequence for testing the LTP part of the encoder;

SEQ04/SEQ04H
Sequence for testing various critical parts of the algorithm.

Sequence SEQ01/SEQ01H uses a large number of saturated samples. The residual LPC signal reaches very high values, which has two effects on the processing:

‑
occurrence of a large number of overflows in addition/subtraction operations. Table 6.2 describes each overflow point and the number of occurrences for each.

‑
the excitation RPE samples have a large dynamic range and the 64 codewords of the sub‑block maximum are each obtained at least once on output.

Sequence SEQ02/SEQ02H focuses successively on each reflection coefficient calculated in the Schur recursion. Table 6.3 shows which frames deal with which reflection coefficient and its dynamic range. The Log.‑Area codewords output by the coder cover the full range of their possible values except the 2nd LARc that does not reach the value 0 and 63 (min and max). The maximum value (63) is however obtained in sequence 4.

Sequence SEQ03/SEQ03H tests the long term predictor part of the algorithm. It has been generated by exciting a sharply resonant filter with a periodic train of impulses; this produces a pitched signal. Each part corresponding to a given pitch is 128 ms (4 blocks of 256 words) long. The pitch periods have been randomly drawn in the range [2,15] ms and the random order is shown in table 6.4.

Sequence SEQ04/SEQ04H accounts for various remaining non tested points of the algorithm where implementing errors may be suspected. Tables 6.5 and 6.6 summarize the critical points that this sequence has been designed to check (i.e. where the three previous sequences were ineffective). Table 6.5 shows the list of tested points where errors can be detected. Each tested error is described and the frame number corresponding to the first occurrence of a divergence between the exact and the degraded algorithm is also indicated.

Table 6.6 illustrates three paths of the algorithm that are never explored during the processing of the three previous sequences; the table shows which condition leads to each path and the number of associated occurrences in sequence SEQ04/SEQ04H.

Notice finally one point where special care shall be taken:

‑
A small degradation (i.e. +/‑ 1) of DLB[2] (the third decision level of the LTP gain quantizer (see table 5.3a) is unable to provide any noticeable effect on the output of the four sequences described above).

6.3.2
Test sequences for configuration 2

Five different input test sequence are provided for this configuration. Four sequences obtained in configuration 1 at the output of the encoder (coded parameters) are used as input for the decoder under test in configuration 2.

Table 6.7 gives the list of tested overflow points and their occurrence on sequence SEQ01/SEQ01H for this configuration.

Sequence SEQ05/SEQ05H is provided to scan all possible codes for each parameter. This sequence is an artificial sequence and does not correspond to any encoder output. The codewords have been randomly generated and cover the entire range of codewords values. Moreover, the delay value Nr belonging to [40,120] in an error‑free transmission condition, takes in this sequence its value in [0,127]. In this case the decoder behaviour on non‑allowed values of Nr will be tested.

Table 6.1a: Signals used in digital test sequences (*.INP)

Name
Description
Justification

ENCODER INPUT

sop[k]
13 bits: encoder input signal.
left

Table 6.1b: Signals used in digital test sequences (*.COD)

Name
Description
Justification

ENCODER OUTPUT / DECODER INPUT

LARc[1]
 6 bits : 1st Log.-Area Ratio
right

LARc[2]
 6 bits : 2nd Log.-Area Ratio
right

LARc[3]
 5 bits : 3rd Log.-Area Ratio
right

LARc[4]
 5 bits : 4th Log.-Area Ratio
right

LARc[5]
 4 bits : 5th Log.-Area Ratio
right

LARc[6]
 4 bits : 6th Log.-Area Ratio
right

LARc[7]
 3 bits : 7th Log.-Area Ratio
right

LARc[8]
 3 bits : 8th Log.-Area Ratio
right

Sub-frame no 1

Nc
 7 bits : LTP lag
right

bc
 2 bits : LTP gain
right

Mc
 2 bits : RPE grid position
right

xmaxc
 6 bits : Block amplitude
right

xMc[0..12]
 3 bits : RPE pulses index 0 to 12
right

Sub-frame no 2

Nc
 7 bits : LTP lag
right

bc
 2 bits : LTP gain
right

Mc
 2 bits : RPE grid position
right

xmaxc
 6 bits : Block amplitude
right

xMc[0..12]
 3 bits : RPE pulses index 0 to 12
right

Sub-frame no 3

Nc
 7 bits : LTP lag
right

bc
 2 bits : LTP gain
right

Mc
 2 bits : RPE grid position
right

xmaxc
 6 bits : Block amplitude
right

xMc[0..12]
 3 bits : RPE pulses index 0 to 12
right

Sub-frame no 4

Nc
 7 bits : LTP lag
right

bc
 2 bits : LTP gain
right

Mc
 2 bits : RPE grid position
right

xmaxc
 6 bits : Block amplitude
right

xMc[0..12]
 3 bits : RPE pulses index 0 to 12
right

Table 6.1c. Signals used in digital test sequences (*.OUT)

Name
Description
Justification

DECODER OUTPUT

srop[k]
13 bits: decoder output signal. The 3 LSB's of the 16 bits are equal to 0
left

Table 6.2: List of tested overflow points for sequence 1 (coder part)

Overflow point
No of occurrences

Short term analysis filter (5.2.10)

 1st add
1059

 2nd add
134

LTP parameters computation (5.2.11)

 Abs(d[k])
5

Long term analysis filter (5.2.12)

 sub
11

Weighting filter (5.2.13)

 scaling the result (both x2 and x4)
302

APCM quantizer (5.2.15)

 Find max abs of xm: Abs
49

Update of Array dp of the long term analysis filter (5.2.18)

 add
126

Table 6.3

Reflection Coeff.
Frames
Dynamic range

1
1‑135
‑32564,32558

2
136‑311
‑32356,32242

3
316‑423
‑32157,32744

4
424‑524
‑31594,31960

5
525‑633
‑31697,31735

6
634‑738
‑30055,31575

7
739‑839
‑29090,31386

8
840‑944
‑31052,31208

Table 6.3 gives the position of the frames dedicated to the study of each reflection coefficient and dynamic range of the coefficient for sequence 2 in configuration 2.

Table 6.4: Pitch periods of sequence 3 (configuration 1)

86
56
68
120
52
93
20
66
82
115
114
60
42
45
17
64
16

88
83
63
90
73
23
77
100
33
29
106
35
67
57
103
116
30

71
69
81
47
32
97
65
62
111
49
109
25
96
50
54
91
85

99
70
76
46
26
34
104
108
107
22
119
48
58
37
72
110
27

24
36
87
51
59
38
21
44
113
39
61
53
18
40
94
105
55

112
75
98
118
41
80
31
74
28
84
89
79
43
101
95
19
78

117
92
102

Table 6.5: Errors specially detected by sequence 4/Config 1

Error checked :
 No of the

Test point
incorrect / correct
 1st frame

statement / statement
 with error

 Autocorrelation function
k=0 to 158/k=0 to 159
 27

 (5.2.4)

 Computation of the reflect.
if(P[0] <= / if(P[0] <
514

 coefficients (5.2.5)
abs(P[1])) / abs(P[1]))

 Quantization and coding
 A[4] + 1 /A[4]
 21

 of the LARs (5.2.7)
 A[5] - 1 /A[5]
 35

 A[5] + 1 /A[5]
430

 A[6] - 1 /A[6]
427

 A[8] - 1 /A[8]
8

 MAC[2] - 1 / MAC[2]
 24

 MAC[2] + 1 / MAC[2]
516

 Comput. of the rp from the
11058 / 11059
 19

 interp. LARp (5.2.9)
20069 / 20070
 25

 Calc. of the LTP parameters

 ->Search of the opt scaling
 k= 0 to 38 / k= 0 to 39
 32

 (5.2.11)

 ->Coding of the LTP gain
mult_r/ mult
373

 (5.2.11)
 DLB[0] + 1 / DLB[0]
511

 DLB[1] + 1 / DLB[1]
373

 ADPCM inverse quantizer
 FAC[2] + 1 / FAC[2]
422

 (5.2.16)
 FAC[3] - 1 / FAC[3]
179

 FAC[4] + 1 / FAC[4]
 74

 FAC[5] - 1 / FAC[5]
439

 FAC[5] + 1 / FAC[5]
 74

 FAC[6] - 1 / FAC[6]
479

 FAC[6] + 1 / FAC[6]
330

 FAC[7] - 1 / FAC[7]
139

Table 6.6: Paths specially explored by sequence 4/Config 1

Test point
Number of

 occurrences

 Autocorrelation function (5.2.4)
8

 condition smax == 0

 Computation of the reflection coefficients :

 -> condition L_ACF[0] == 0 (5.2.5)
8

 -> condition P[0] < abs(P[1])(5.2.5)
4

Table 6.7: List of tested overflows points for sequence 1 (decoder part)

Overflow Point

 Nb of occurrences

Sequence 1
 Sequence 2
 Sequence 3

Long term synthesis filter

(5.3.2) : add
126
 0
0

Short term synthesis filter :

(5.3.4)

 1st add:
4499
 0
0

 2nd add:
405
 1
0

De-emphasize filter

(5.3.5): add
89
 0
0

Scaling of the output signal

(5.3.6): add
 16691
339
19

6.3.3
Additional Test sequences for Codec Homing

The test sequences decribed below are only required if the codec homing procedure is implemented.

6.3.3.1
Codec homing frames

In addition to the test sequences described above, two homing sequences are provided to assist in codec testing. SEQ06H.INP contains one encoder‑homing‑frame. SEQ06H.COD contains one decoder‑homing‑frame.

6.3.3.2
Sequence for an extensive test of the decoder homing

If the decoder receives a complete decoder-homing-frame (which is not marked as a bad frame), then it is sufficient that the following frame contains only the LARs and the first subframe data of the decoder-homing-frame to cause a decoder reset and the output of the encoder-homing-frame. To check this behaviour the test sequence HOMING01.COD/OUT was produced. As the test sequences SEQ01H...05H the sequence HOMING01 contains 2 complete decoder-homing-frames at the beginning and inside there is a mixture of complete and fractional (incomplete) decoder-homing-frames.

6.3.3.3
Sequences for finding the 20 ms framing of the GSM full rate speech encoder

When testing the decoder, alignment of the test sequences used to the decoder framing is achieved by the air interface (MS test) or can be reached easily on the Abis‑interface (test on network side).

When testing the encoder, usually there is no information available about where the encoder starts its 20 ms segments of speech input to the encoder.

In the following, a procedure is described to find the 20 ms framing of the encoder using special synchronization sequences. This procedure can be used for MS as well as for network side.

Synchronization can be achieved in two steps. First, bit synchronization has to be found. In a second step, frame synchronization can be determined. This procedure takes advantage of the codec homing feature of the full rate codec, which puts the codec in a defined home state after the reception of the first homing frame. On the reception of further homing frames, the output of the codec is predefined which can be use as a trigger reference.

- Bit synchronization
The input to the speech encoder is a series of 13 bit long words (104 kbits/s, 13 bit linear PCM). When starting to test the speech encoder, no knowledge is available of bit synchronization, i.e., where the encoder expects its least significant bits, and where it expects the most significant bits.

The encoder-homing-frame consists of 160 samples, all set to zero with the exception of the least significant bit, which is set to one (0 0000 0000 0001 binary, or 0x0008 hex if written into 16 bit words left justified). If two such encoder-homing-frames are input to the encoder consecutively, the decoder-homing-frame is expected at the output as a reaction of the second encoder-homing-frame.

Since there are only 13 possibilities for bit synchronization, after a maximum of 13 trials bit synchronization can be reached. In each0 trial three consecutive encoder-homing-frames are input to the encoder. If the decoder-homing-frame is not detected at the output, the relative bit position of the three input frames is shifted by one and another trial is performed. As soon as the decoder-homing-frame is detected at the output, bit synchronization is found, and the first step can be terminated.

The reason why three consecutive encoder-homing-frames are needed is that frame synchronization is not known at this stage. To be sure that the encoder reads two complete homing frames, three frames have to be input. Wherever the encoder has its 20 ms segmentation, it will always read at least two complete encoder-homing-frames.

An example of the 13 different frame triplets is given in sequence BITSYNC.INP.
- Frame synchronization
Once bit synchronization is found, frame synchronization can be found by inputting one special frame that delivers 160 different output frames, depending on the 160 different positions that this frame can possibly have with respect to the encoder framing.

This special synchronization frame was found by taking one input frame and shifting it through the positions 0 to 159. The corresponding 160 encoded speech frames were calculated and it was verified that all 160 output frames were different. When shifting the input synchronization frame, the samples at the beginning were set to 0x0008 hex, which corresponds to the samples of the encoder-homing-frame.

Before inputting this special synchronization frame to the encoder, again the encoder has to be reset by one encoder-homing-frame. A second encoder-homing-frame is needed to provoke a decoder-homing-frame at the output that can be used as a trigger reference. Since the framing of the encoder is not known at that stage, three encoder-homing-frames have to precede the special synchronization frame to ensure that the encoder reads at least two homing frames, and at least one decoder-homing-frame is produced at the output, serving as a trigger for recording.

The special synchronization frame preceded by the three encoder-homing-frames are given in SEQSYNC.INP. The corresponding 160 different output frames are given in SYNC000.COD through SYNC159.COD. The three digit number in the filename indicates the number of samples by which the input is retarded with respect to the encoder framing. By a corresponding shift in the opposite direction, alignment with the encoder framing can be attained.

6.3.3.4
Formats and sizes of the synchronization sequences

BIT SYNC.INP:

This sequence consists of 13 frame triplets. It has the format of the speech encoder input test sequences (13 bit left justified with the three least significant bits set to zero).

The size of it is therefore:

SIZE (BITSYNC.INP) = 13 * 3 * 160 * 2 bytes = 12 480 bytes

SEQSYNC.INP:

This sequence consists of 3 encoder reset frames and the special synchronization frame. It has the format of the speech encoder input test sequences (13 bit left justified with the three least significant bits set to zero).

The size of it is therefore:

SIZE (SEQSYNC.INP) = 4 * 160 * 2 bytes = 1 280 bytes

SYNCXXX.COD:

These sequences consists of 1 encoder output frame each. They have the format of the speech encoder output test sequences (16 bit words right justified).

The size of them is therefore:

SIZE (SYNCXXX.COD) = 76 * 2 bytes = 152 bytes

Optional 8 bit Test Sequences

In addition to the test sequences with and without homing as described above, two complete sets of test sequences with A-law and (-law compressed are provided. These sequences allow the test of TRAU equipment by means of the A-Interface. On the A-Interface speech data is available as a 64 kbps PCM data stream of compressed samples with 8 bits each.

The usage of these 8 bit test sequences is exactly the same as described above for the 13 bit linear test sequences except that the A-Interface is used instead of feeding/taking them directly into/from the speech codec. Therefore bit synchronization is not necessary, too.

Provided are the encoder input sequences _x.INP, the encoder output sequences _x.COD and the decoder output sequences _x.OUT.

The _x.INP sequences are used at the encoder input and result in the _x.COD sequences at the encoder output.

The linear decoder input sequences .COD (without -x in their names) have to be used to force the 8 bit compressed decoder output sequences -x.OUT.

The format of the _x.INP and _x.OUT sequences is such that 160 samples of a speech frame are contained in one byte each. This results in a file size of half the size of the 13 bit linear test sequences

The format of the *.cod files remains unchanged.

Annex A (informative):
Codec performance

A.1
Performance of the RPE‑LTP

A.1.1
Introduction

The purpose of this annex is to give a broad outline of the performance of the RPE‑LTP codec with other parts of the digital network. Some general guidance is also offered on non‑voice services.

A.1.2
Speech performance

Planning rules for digital processes are defined in terms of quantizing distortion units (qdu) which can be realized from the following formula (reference 1) using the assumption that the formula accuracy represents the determination of qdus from QN measurements:

 QN = 37 ‑ 15 log10(n) ,where n is the qdu (A1.1)

By definition 1 qdu is the quantization distortion arising from one commercial PCM codec.

NOTE:
The subjective testing methodology to determine QN for the RPE‑LTP codec was consistent with current ITU‑T methods (reference 2).

A.1.2.1
Single encoding

Under error‑free transmission conditions the perceived quality of the RPE‑LTP codec (see figure A.1.1) is lower than both codecs conforming to recommendations ITU‑T G.711 and ITU‑T G.721 (superseded by G.726). Table A.1.1 indicates the relative performance of the codec and can be compared with codecs conforming to recommendations ITU‑T G.711 and ITU‑T G.721 (superseded by G.726).

The performance of the RPE‑LTP codec has been found to be substantially unaffected down to a carrier to interference (C/I) ratio of 10 dB, but may be considered to have acceptable performance down to 7 dB. Smaller C/I ratios produce unacceptable degradation of speech performance and should be avoided.

NOTE 1:
It should be noted that there are doubts as to whether the simulations which generated the error pattern properly represent real operating conditions. The C/I values quoted should therefore only be considered as parameters of this simulation. They may not correspond to real radio interference conditions. Results from early GSM validation hardware show that the C/I values which give the performance quoted may be several dBs higher. Some error statistics of the simulations are shown in table A.1.2.

NOTE 2:
The real condition C/I = 10 dB is believed to correspond to about 90 % coverage.

Table A.1.1: Relative levels of speech performance under error‑free conditions

Codec
QN (dB)
 qdu

G.711
37
1

(64 kbit/s, A- or (-law (PCS 1900) PCM)

G.721 (superseded by G.726)

(32 kbit/s, ADPCM)
29
3.5 (*)

RPE-LTP
23‑25
7‑8 (*)

(*) Commercial A- or (-law (PCS 1900) PCM input and output circuitry included.

NOTE:
The qdu value for the RPE‑LTP codec is a conservative estimate. At present there are no specific CCITT rules for determining qdus for encoding below 32 kbit/s.

Table A1.2: Bit error statistics for C/I test conditions

Simulated C/I ratio:
 10 dB
7 dB
4 dB

Total number of errors in class I (182 bits

protected by a 1/2 rate code)
0.016%
0.61%
4.1%

Total number of errors in class II (78 bits

unprotected)
 4.5%
 8.3%
13.0%

Number of "frame erasure"

indications by CRC
 1
 15
 95

Number of "frame erasures"

not detected by CRC
1
 14
 76

NOTE:
The total number of frames was 750. CRC means Cyclic Redundancy Check.

A.1.2.2
Speech performance when interconnected with coding systems on an analogue basis

A.1.2.2.1
Performance with 32 kbit/s ADPCM (G.721, superseded by G.726)

The speech performance of the RPE‑LTP codec when interconnected with encoding at 32 kbit/s (see figure A.1.3 and A.1.4) decreases in accordance with the formula in section A.1.2, and appears to obey the law of additivity when qdus have been determined for the individual codecs.

A.1.2.2.2
Performance with another RPE‑LTP codec

The speech performance of the RPE‑LTP codec when interconnected with another codec of the same type (see figure A1.2) is lower than that of A1.2.2.1. It again appears to obey the law of additivity when qdus have been determined for the individual codecs.

A.1.2.2.3
Performance with encoding other than RPE‑LTP and 32 kbit/s ADPCM (G.721, superseded by G.726)

No information is available on this point, so great care shall be exercised when interconnection is made to codecs with encoding different from that of A.1.2.2.1 and A.1.2.2.2.

A.1.3
Non‑speech performance

It should be noted that the RPE‑LTP speech codec is an adaptive system which has been optimized for speech inputs. Great care shall be taken when making measurements with non‑speech signals because the normal assumptions of time invariance and linearity cannot be made.

A.1.3.1
Performance with single sine waves

Detailed experiments have shown that the RPE‑LTP codec will pass sine waves with segmental signal to noise ratios generally in excess of 20 dB in the frequency range of 100 ‑ 2000 Hz. However, in some cases reproduction above 2000 Hz is not as good.

It should be noted that sine waves above 1300 Hz may be reproduced with significant fluctuations in amplitude and frequency due to the adaptive sub‑sampling technique employed. This results in irregularities in the measured frequency response.

A typical frequency response measured with A‑law PCM input circuitry is shown in figure A.1.5. If 13 bit linear PCM input circuitry is used, the irregularity is less.

A.1.3.2
Performance with DTMF tones

It has been shown that the RPE‑LTP codec transfers DTMF signals of 80 ms duration. However, questions like minimum allowable signal duration, pause duration and the behaviour in the presence of transmission errors have not been investigated.

A.1.3.3
Performance with information tones

Experiments have shown that network originated signalling tones, conforming to recommendation ITU‑T Q.35, are easily recognizable when passed through the RPE‑LTP codec.

A.1.3.4
Performance with voice‑band data

Tests have shown that voice‑band data transmission does not work satisfactorily with 1200 bit/s modems according to recommendation ITU‑T V.23. Voice‑band data according to recommendation ITU‑T V.21 (300 bit/s) will not be subject to any significant degradation.

This behaviour has been tested for one RPE‑LTP link (encoder‑decoder). The effect of transmission errors has not been tested.

A.1.4
Delay

The theoretical minimum delay of the RPE‑LTP codec is 20 ms. However, practical realizations may have an additional processing time in the order of 3 ‑ 8 ms.

Figure A.1.1: One ‑ transcoding scheme (A-law)

Figure A.1.2: Two ‑ transcodings scheme (A-law)

Figure A.1.3: Mixed transcodings ‑ scheme 1 (A-law)

Figure A 1.4: Mixed transcodings ‑ scheme 2 (A-law)

[image: image11.png]
Figure A.1.5: Frequency response for RPE‑LTP codec
(with commercial A‑law PCM input and output circuitry)

A.1.5
Bibliography

1)
ITU‑T: "Subjective performance assessment of digital processes using the Modulated Noise Reference Unit (MNRU)", annex C, Supplement no 14, Red book, volume V, 1985.

2)
ITU‑T: "Subjective performance assessment of digital processes using the Modulated Noise Reference Unit (MNRU)", annex A, Supplement no 14, Red book, volume V, 1985.

3)
ITU‑T: "Technical characteristics of tones for the telephone service", recommendation Q.35, Red book, volume VI.1, 1985.

A.2
Subjective relevance of the speech coder output bits

Since no valid objective quality criterion for speech signals is available, the only way to build up such a relevance table is to perform listening tests. The procedure described below was used to obtain the relevance classification given in table A.2.1 of the recommendation.

To classify a single bit, say bit i of parameter k, a short speech signal (2 sec) was encoded, then this bit was inverted in each frame (the other bits were left unchanged) and the resulting bit stream was fed into the speech decoder. The listeners had to compare the quality of the signal with the quality of six reference signals with different levels of distortion. Repeating this procedure for all bits would result in a subdivision of the 260 bits into six relevance classes. It can be observed that many of the bits have the same physical meaning and it can be expected that bits with the same meaning have the same relevance (e.g. the MSB's of the RPE samples). Relying on this assumption, only one of the equivalent parameters was considered. Since there are 13 parameters with different physical meaning with 56 bits in total, the number of tests is reduced from 260 to 56.

The reference signals were the same speech signal distorted by inverting one of the six bits of LAR coefficient number one. This resulted in an adequate quantization of distortion levels ranging from "not intelligible" (MSB inverted) to "negligible distortion" (LSB inverted).

The test was carried out using three listeners and one female speaker. Since the three listeners came to rather similar results, no more listeners were considered to be required. Averaging the three outcomes led to the relevance table given in table A.2.1, where the order of all bits between two successive bits of the first parameter (LAR 1) are arbitrarily chosen.

Table A.2.1a: Subjective importance of encoded bits
(the parameter and bit numbers refer to table 1.1)

Importance
Parameter
Parameter
Bit number

class
name
number

1
Log.area ratio 1
1
b6

Block amplitude
12,29,46,63
b53,b109,b165,b221

Log.area ratio 1
1
b5

2
Log.area ratio 2
2
b12

Log.area ratio 3
3
b17

Log.area ratio 1
1
b4

Log.area ratio 2
2
b11

Log.area ratio 3
3
b16

Log.area ratio 4
4
b22

LTP lag
9,26,43,60
b43,b99,b155,b211

3
Block amplitude
12,29,46,63
b52,b108,b164,b220

Log.area ratio 2,5,6
2,5,6
b10,b26,b30

LTP lag
9,26,43,60
b42,b98,b154,b210

LTP lag
9,26,43,60
b41,b97,b153,b209

LTP lag
9,26,43,60
b40,b96,b152,b208

LTP lag
9,26,43,60
b39,b95,b151,b207

Block amplitude
12,29,46,63
b51,b107,b163,b219

Log.area ratio 1
1
b3

Log.area ratio 4
4
b21

Log.area ratio 7
7
b33

4
LTP lag
9,26,43,60
b38,b94,b150,b206

Log.area ratio 5,6
5,6
b25,b29

LTP gain
10,27,44,61
b45,b101,b157,b213

LTP lag
9,26,43,60
b37,b93,b149,b205

Grid position
11,28,45,62
b47,b103,b159,b215

Table A.2.1b: Subjective importance of encoded bits
(the parameter and bit numbers refer to table 1.1)

Importance
Parameter
Parameter
Bit number

class
name
number

Log.area ratio 1
1
b2

Log.area ratio 2,3,8,4
2,3,8,4
b9,b15,b36,b20

Log.area ratio 5,7
5,7
b24,b32

LTP gain
10,27,44,61
b44,b100,b156,b212

Block amplitude
12,29,46,63
b50,b106,b162,b218

RPE pulses
13..25
b56,b59,..,b92

RPE pulses
30..42
b112,b115,..,b148

RPE pulses
47..59
b168,b171,..,b204

5
RPE pulses
64..76
b224,b227,..,b260

Grid position
11,28,45,62
b46,b102,b158,b214

Block amplitude
12,29,46,63
b49,b105,b161,b217

RPE pulses
13..25
b55,b58,..,b91

RPE pulses
30..42
b111,b114,..,b147

RPE pulses
47..59
b167,b170,..,b203

RPE pulses
64..67
b223,b226,b229,b232

RPE pulses
68..76
b235,b238,..,b259

Log.area ratio 1
1
b1

Log.area ratio 2,3,6
2,3,6
b8,b14,b28

Log.area ratio 7
7
b31

Log.area ratio 8
8
b35

Log.area ratio 8,3
8,3
b34,b13

Log.area ratio 4
4
b19

6
Log.area ratio 4,5
4,5
b18,b23

Block amplitude
12,29,46,63
b48,b104,b160,b216

RPE pulses
13..25
b54,b57,..,b90

RPE pulses
30..42
b110,b113,..,b146

RPE pulses
47..59
b166,b169,..,b202

RPE pulses
64..76
b222,b225,..,b258

Log.area ratio 2,6
2,6
b7,b27

A.3
Format for test sequence distribution

A.3.1
Type of files provided

Three types of files are provided:

‑
Files for input of the encoder:

*.INP;

‑
Files for input of decoder or comparison with encoder output:
*.COD;

‑
Files for comparison with the decoder output:

*.OUT;

Five disks are provided containing all the digital test sequences. Disk1.zip contains all test sequences that are required for a codec implementation without codec homing while disk2.zip and disk3.zip contain the test sequences required for a codec implementation with codec homing. Disk4.zip and disk5.zip contain the 8 bit test sequences with A-law and (‑law compression, respectively.

Disk1.zip contains the SEQ01.INP, SEQ01.COD, SEQ01.OUT, SEQ02.INP, SEQ02.COD, SEQ02.OUT, SEQ03.INP, SEQ03.COD, SEQ03.OUT, SEQ04.INP, SEQ04.COD, SEQ04.OUT, SEQ05.COD, SEQ05.OUT files. Disk2.zip contains the SEQ01H.INP, SEQ01H.COD, SEQ01H.OUT, SEQ02H.INP, SEQ02H.COD, SEQ02H.OUT files.

Disk3.zip contains the SEQ03H.INP, SEQ03H.COD, SEQ03H.OUT, SEQ04H.INP, SEQ04H.COD, SEQ04H.OUT, SEQ05H.COD, SEQ05H.OUT, SEQ06H.INP, SEQ06H.COD, HOMING01.COD, HOMING01.OUT, BITSYNC.INP, SEQSYNC.INP and SYNC000...159.COD files.

Disk4.zip contains the A-law compressed 8 bit test sequences with and without homing. All the files of disk1- 3.zip except for BITSYNC.INP, which is not necessary for TRAU testing, are on disk4.zip. The extension _A is added to the filenames in order to indicate A-law. The files HOMING01, SEQSYC and SYNC000... are renamed to HOM01_A, SEQSYN_A and SYN000_A, respectively.

Disk5.zip contains the (-law compressed 8 bit test sequences with and without homing similar to disk4.zip. The _u in the filenames stands for (-law.

Table A.3.1a/b gives the contents of the five disks and also the size in bytes and the number of frames for each test sequence file.

A.3.2
File format description

All the files with the linear 13 bit test sequences are written in binary using 16 bit words. This means that input samples (sop[k], on files: *.INP), output samples (srop[k], on files: *.OUT) and coded parameters (on files: *.COD) use 2 bytes each. Hence the sizes of the files are directly related to the number of processed frames.

For files with linear 13 bit sequences and .INP or .OUT extension type:

Size (in bytes) = No of frames * 160 * 2;

All files _x.INP and _x.OUT with the compressed 8 bit test sequences are written in binary using 1 byte per sample.

For files with compressed 8 bit sequences and _x.INP or _x.OUT type:

Size (in bytes) = No of frames * 160 * ;

For all files with .COD extension type:

Size (in bytes) = No of frames * 76 * 2;

Table A.3.1 shows the size of all the 13 bit linear files written in direct binary format. The size of the files containing the optional 8 bit test sequences with type _x.INP and _x.OUT is half the size shown in the table (disk4.zip and disk5.zip).

Table A.3.1a: Contents of disk1.zip (test sequences without codec homing frames and file sizes)

Disk No.
Purpose of Sequence
Name of Sequence
No. Of Frames
Size in Bytes
Justification

1/5
Codec test sequence
SEQ01.INP
584
186 880
Left

1/5
Codec test sequence
SEQ01.COD
584
88 768
Right

1/5
Codec test sequence
SEQ01.OUT
584
186 880
Left

1/5
Codec test sequence
SEQ02.INP
947
303 040
Left

1/5
Codec test sequence
SEQ02.COD
947
143 944
Right

1/5
Codec test sequence
SEQ02.OUT
947
303 040
Left

1/5
Codec test sequence
SEQ03.INP
673
215 360
Left

1/5
Codec test sequence
SEQ03.COD
673
102 296
Right

1/5
Codec test sequence
SEQ03.OUT
673
215 360
Left

1/5
Codec test sequence
SEQ04.INP
520
166 400
Left

1/5
Codec test sequence
SEQ04.COD
520
79 040
Right

1/5
Codec test sequence
SEQ04.OUT
520
166 400
Left

1/5
Decoder test sequence
SEQ05.COD
64
9 728
Right

1/5
Decoder test sequence
SEQ05.OUT
64
20 480
Left

Table A.3.1b: Contents of disk2.zip and disk3.zip (test sequences with codec homing frames and file sizes)

Disk No.
Purpose of Sequence
Name of Sequence
No. Of Frames
Size in Bytes
Justification

2/5
Codec test sequence
SEQ01H.INP
586
187 520
Left

2/5
Codec test sequence
SEQ01H.COD
586
89 072
Right

2/5
Codec test sequence
SEQ01H.OUT
586
187 520
Left

2/5
Codec test sequence
SEQ02H.INP
949
303 680
Left

2/5
Codec test sequence
SEQ02H.COD
949
144 248
Right

2/5
Codec test sequence
SEQ02H.OUT
949
303 680
Left

3/5
Codec test sequence
SEQ03H.INP
675
216 000
Left

3/5
Codec test sequence
SEQ03H.COD
675
102 600
Right

3/5
Codec test sequence
SEQ03H.OUT
675
216 000
Left

3/5
Codec test sequence
SEQ04H.INP
522
167 040
Left

3/5
Codec test sequence
SEQ04H.COD
522
79 344
Right

3/5
Codec test sequence
SEQ04H.OUT
522
167 040
Left

3/5
Decoder test sequence
SEQ05H.COD
66
10 032
Right

3/5
Decoder test sequence
SEQ05H.OUT
66
21 120
Left

3/5
Encoder-homing-frame
SEQ06H.INP
1
320
Left

3/5
Decoder-homing-frame
SEQ06H.COD
1
152
Right

3/5
Decoder homing test
HOMING01.COD
100
15 200
Right

3/5
Decoder homing test
HOMING01.OUT
100
32 000
Left

3/5
Bit Synchronization
BITSYNC.INP
39
1 2480
Left

3/5
Frame Synchronization (input)
SEQSYNC.INP
4
1 280
Left

3/5

3/5

3/5

"
"
3/5
Frame Synchronization (output)
SYNC000.COD

SYNC001.COD

SYNC002.COD

"

"

"

SYNC159.COD
1

1

1

"

"

"

1
152

152

152

"

"

"

152
Right

Right

Right

"

"

"

Right

Annex B (informative):
Test sequence disks

Provided in archive 8wc03i0o.ZIP which accompanies the present document.

Annex C (informative):
Change Request History

Change history

SMG No.
TDoc. No.
CR. No.
Section affected
New version
Subject/Comments

SMG#07

4.0.2
ETSI Publication

SMG#20

5.0.1
Release 1996 version

SMG#23
97-737

97-741
A002

A003

5.1.1
UAP61 comments

Introduction of Homing and 8 bit Test Sequences for Full Rate Speech Transcoding

SMG#27

6.0.0
Release 1997 version

SMG#28
P-99-138
A004
whole document
7.0.0
Addition of mu-law (PCS 1900)

7.0.1
Update to Version 7.0.1 for OAP

7.0.2
Update to Version 7.0.2 for Publication

7.0.3
Inclusion of associated zip files

7.0.4
Inclusion of present text

8.0.0
Release 99 version

8.0.1
Inclusion of present text file

History

Document history

V7.0.1
July 1999
One-step Approval Procedure
OAP 9952: 1999-07-28 to 1999-11-26

V7.0.2
December 1999
Publication

[image: image12.wmf]_980944628

_980944982.doc
���

Postprocessing

filtering

synthesis

Short term

Prediction

Long term

decoding

RPE

r0

s

r

s

Deemphasis

'

r

d

"

r

d

'

r

N

- N

z

'

r

b

X

+

'

r

r

'

r

LAR

"

r

LAR

filter 1/A(z)

synthesis

Short term

coefficients

Reflection

Interpolation

decoder

LAR

cr

LAR

cr

N

decoder

parameter

LTP

cr

b

mcr

x

maxcr

x

cr

M

parameters from the radio subsystem

signals

'

mr

x

'

r

e

APCM

Inverse

position

RPE grid

_980951431

_1001833466.doc
������

_980951393

_980944832.doc
���

no

yes

n = n + 1

m = m + 1

m = 8 - n ?

END

K(9- m) = K(9 - m) + r(n) * P(1 + m)

P(m) = P(1 + m) + r(n) * K(9 - m)

no

no

no

no

yes

yes

yes

yes

r - > LAR

Transformation

r(n) = - r(n)

r(i) = 0; i = n, ..., 8

m = 1

P(0) = P(0) + P(1) * r(n)

n = 8 ?

P(1) > 0 ?

r(n) = | P(1) | / P(0)

 P(1) |

|

P(0) <

P(j) = ACF(j); j=0, ..., 8

K(9 - i) = ACF(i); i=7, ..., 7

ACF = 0 ?

n = 1

_923729819

_980944573

_923729817

_923729818

_923729816

