
Crisp Telecom Limited

Re: Performance Evaluation of the TUAK algorithm in support

of the GSMA and ETSI SAGE standardisation group

Date: 31.10.2014

Crisp Telecom Ltd.

Tel: +44 7767 891161
Email contact@crisptele.com
Website www.crisptele.com

Dear Sirs,

 Please find attached a report from a brief practical study on the TUAK algorithm, requested by
the GSMA. The report should be considered as a follow-on extension to an earlier study carried out
via Royal Holloway University of London at the request of ETSI SAGE. The purpose of the
extension study was to first measure the performance/feasibility of the new TUAK 3G
authentication algorithm when deployed on an additional and less advanced chip platform than used
in the original study. The second goal was to capture power leakage traces from the original test
cards and attempt to determine any notable characteristics that might aid/encourage an attacker to
develop a side-channel attack, and eventually necessitate countermeasures.

The GSMA/ETSI SAGE technical contact for this work was Steve Babbage (Vodafone).

Best regards

Professor Keith Mayes, PhD. BSc, CEng, FIET, A.Inst.ISP
Director
Crisp Telecom Limited

V1.0 1 of 21

mailto:Keith.Mayes@CrispTele.com
http://www.crisptele.com/

Crisp Telecom Limited

 1 Introduction
The ETSI SAGE group have proposed a new algorithm called TUAK to act as an alternative to the
well-used and standardised MILENAGE algorithm for mutual authentication and key generation in
mobile communications systems. The initial motivation for this arose from M2M systems where it
was thought necessary and prudent to have an alternative and openly reviewed algorithm as a back-
up and/or alternative to MILENAGE. The strength of TUAK (which has a KECCAK core) is based
on a different “problem” to that in MILENAGE, so an attack breakthrough is unlikely to
compromise both algorithms. This is described in more detail within the report from the initial study
(Tuak report V1.0.pdf). The original study was required to assess the feasibility of implementing
TUAK on native and platform (MULTOS) based Infineon smart cards, and resulted in the following
answers to the study questions.

Table 1: Recap on conclusions from the original study

Question Answer Comment

a Is it possible to load the
algorithm onto an existing
deployed or stocked smart
card platform?

Yes In principle, but the card would need to know whether to run this algorithm
or say MILENAGE.

b If so, will the algorithm run
with acceptable
performance?

No On MULTOS it is too slow – really needs a x10 speed up.
(Java card results would be interesting; normally slower than MULTOS,
however might do better at the shifts and bitwise operations in KECCAK).

c Will a new SIM require a
crypto-coprocessor for
adequate performance?

No Software implementation is fine for performance.

d Will a new SIM need to
have a high performance
processor (e.g. 32-bit type)?

No The 16-bit cards tested have speed to spare; the algorithm might even be
quick enough on older and smaller CPUs.

e Will a new SIM require
specialist low-level
software support for the
algorithm?

Yes The algorithm should be developed and made available as an API/primitive
for card platforms (e.g. JAVA or MULTOS).

f Will the algorithm benefit
from security protection?

Maybe This is processor/platform specific. The SLE78 hardware should provide
quite a lot of protection. The SLE77 will provide some hardware protection,
but will need help from the software implementation.
A low-end chip might offer no security protection to the algorithm software.
A secure platform like MULTOS should offer some added attack protection
although this may be difficult to quantify.
Developers should be careful not to include bit-level timing dependencies in
the algorithm software.
There is spare time to add dummy functions if required.

The GSMA contracted Crisp Telecom Limited (Crisp) to carry out a brief extension study including
further work on performance evaluation and to consider protection against side-channel attack.

V1.0 2 of 21

Crisp Telecom Limited

 1.1 Interpreting the Requirements
The GSMA requirements were interpreted as follows based on dialogue with Steve Babbage (SAGE
Chairman).

Performance work: The goal was to port the test code to a smart card from an alternative
manufacturer (not Infineon). Furthermore the card was required to be more resource limited than
the original test cards, which were considered rather high-end. Fortunately Crisp had access to a
hardware emulator for the Samsung S3CCE9E4/8, which is an older and more limited device than
either of the original test cards. This enabled very precise/controlled performance testing.

Side-Channel Protection: Within such a short study there was a limit to what could be attempted
in the area of side-channel protection; however a fundamental interest was to determine whether
leakage could be captured that had any identifiable structure that could assist an attacker. For
example, if it was possible to identify a particular KECCAK round then a desired attack point might
be precisely identified. Ideally we would also like an indication of whether there is data/key
dependency in the leakage. The practical experiments were carried out on the Infineon cards, as the
Samsung emulator is not representative for leakage and the Samsung chip is intended for ROM
based code so it is not possible to create individual test-cards

V1.0 3 of 21

Crisp Telecom Limited

 2 The Performance Test Setup
The Samsung development environment/emulator was intended for the CalmRISC16 family of
smart card chips. The system permitted native code development/testing and had a “paddle” for
insertion into contact-card readers. The core of the application code and command set were similar
to the original study and tests were invoked using the MUTIL script tool.

 2.1 The Smart Card Chips
The target processors supported by the emulation equipment are the Samsung S3CC9E4 and
S3CC9E8. The only differ in that the former has 4k + 256 bytes of EEPROM whereas the latter has
8kbytes. The general features are summarised in the table below.

Table 2 S3CC9E8 Features

S3CC9E8

Harvard Y

RISC instruction set Y

16-bit CPU Y

Operating Frequency (external clock) 1MHz-5MHz

ROM 96k

EEPROM 8k

RAM 2k

Internal RC Oscillator asynchronous with external clock Y

DES/T-DES Y

16 -bit RNG seed generator Y

Serial port T=0 and 1 Y

Hardware EEPROM write inhibit Y

Abnormal Voltage/frequency sensor Y

Voltage range 2.7-5.5v

16 bit timer with 8bit pre-scaler and 20bitwatchdog timer Y

4 interrupt sources and vectors including FIQ, IRQ, SWI Y

General purpose 16-bit registers 16

6-bit extension registers 6

Program counter 22 bits

Status register 16 bit

Saved registers for interrupts 7

1-word instructions 16 bit

2-word instructions 32 bit

Basic Instructions/cycle 1

Program Address Space 4M

Data Address Space 4M

V1.0 4 of 21

Crisp Telecom Limited

The chips have what might be described as “traditional” hardware security defences. To defend
against tampering and side-channel attack, the chip has the typical range of environmental security
detectors and a randomising clock option that makes leakage trace averaging more difficult. There
are also bus scrambling options and ways to disguise the core crypto operations within dummy
operations. The clock frequency can also be manually controlled, but this is intended for
performance and power efficiency rather than security.

 2.2 Software Development
The starting point for the software development was the C code created during the original study.
The non-optimised version was used, as in the Infineon test-cards; so a fair comparison could be
made. For native mode development a notable amount of code/development is needed simply to
handle resets, memory management/access, serial I/O and the APDU Command interface, so parts
of this were ported from another legacy/dummy project. In fact more of this project code was
retained than necessary e.g. there were additional functions and crypto handling software. The
reason for this was that it was thought unlikely that TUAK would be the only function on a smart
card, and so by retaining some dummy code (that consumed resource) the test case was a little more
realistic. The new card required additional functionality to manually control the internal CPU clock
speed as this appears to be automatically handled in the Infineon devices. The default starting
pointing for all operation on the new card was the standard (medium) clock speed which is “safe”
for all memory accesses, whereas the fast speed cannot be used with the EEPROM.

 2.3 Testing
As in all previous TUAK tests, the Samsung code was functionally tested using the six test data sets
published in 3GPP TS 35.232 V12.0.1. In order to make real card testing easier (by simplifying the
test scripts) the test data sets were included within the card application. This added an extra data
storage requirement (that would not be used in a real application), but declaring it to be a
ROM_VAR meant that it was stored in the relatively plentiful code space (ROM). Performance
testing used the same method as the original study, with the MUTIL script tool handling commands
and responses via a connected Gemalto reader. Commands were run with a x255 iteration option
and an average taken to improve accuracy.

V1.0 5 of 21

Crisp Telecom Limited

 3 Performance and Memory Usage Results
In this section we initially present the results from the latest experiments, and then show alongside
the original study results. The native card performance of the Samsung chip was measured on the
emulator (for the various bit-size compile targets in the source code) and the results are shown
below. The “Fast Clock” column is the most realistic in terms of performance, with the “Standard
Clock” column representing a naïve implementation. The final part of this section summarises the
application memory resource requirements

Table 3: S3CC9E4/8 Results(ms)

V1.0 6 of 21

Crisp Telecom Limited

For convenience and comparison these results are presented alongside the original Infineon chip
results. Note that the SLE78 results are not shown as they were virtually identical to those of the
SLE77.

Table 4: Comparative chip performance

V1.0 7 of 21

Crisp Telecom Limited

 3.1 Memory Usage
The test application on the smart card was a combination of a legacy application plus the TUAK
implementation. In order to determine the precise requirements of TUAK alone, the application was
built normally and then with all the TUAK functionality and data commented out of the source
code. The findings are shown in the table below.

Table 5: TUAK Memory Usage

V1.0 8 of 21

Crisp Telecom Limited

 4 Analysis of Performance and Memory Results
To consider the results from the experiments, it is first necessary to recap on the parameter sizes
(bits) inherent in the standardised test-sets, which are summarised in Table 6

Table 6: Test Data Set Parameter Sizes

Test Set K MAC RES CK IK KECCAK
Iterations

1 128 64 32 128 128 1

2 256 128 64 128 128 1

3 256 256 64 128 256 1

4 128 128 128 128 128 1

5 256 64 256 256 128 1

6 256 256 256 256 256 2

Note that the common/fixed parameters sizes (bits) for the TUAK algorithm are:
• RAND = 128
• SQN = 48
• AK = 48
• AMF = 16

Note also that “KECCAK Iterations” is an algorithm usage parameter and is not the same as using
the APDU command parameter (P2) to run a function multiple times; the latter always using the
same input data.

Considering the standard clock column from Table 3 first and the test data sets 1-5, we can see that
the execution time for each function type is very similar, which is because the KECCAK core is the
dominant function. Test data set 6 is about twice as long because two iterations of KECCAK are
specified in the test data. The optimum compile bit-size is 16-bit, which is not surprising as the
compiler should do the best job of mapping a 16-bit build onto a 16-bit processor. The figures in the
fast clock column follow the same patterns, but are half the duration. Basically the standard clock is
used until we are about to run KECCAK and then we switch to the faster clock. KECCAK is
manipulating a buffer held in RAM so access to EEPROM (not possible with fast clock) is
unnecessary.

 4.1 Memory and Performance Target
Within the original study we proposed adapting the performance target originally used for
MILENAGE, to a more appropriate and modern target...

…..“The functions f1—f5 and f1* shall be designed so that they can be implemented on
a mid-range microprocessor IC card (typically 16-bit CPU), occupying no more than
8kbytes non-volatile-memory (NVM), reserving no more than 300bytes of RAM and
producing AK, XMAC-A, RES, CK and IK in less than 500 ms total execution time.”....

V1.0 9 of 21

Crisp Telecom Limited

 4.1.1 Memory Target

Referring back to Table 5 we see that the S3CC9E8 implantation used 274 bytes of RAM and
7696 bytes of ROM as its NVM. Fitting quite nicely within the memory requirements. In fact
less NVM would be needed as most of the constant data contribution (780 bytes) is due to the
test data sets, which would not be present in a real application. We did not need to use any of
the EEPROM, leaving it entirely for the legacy application.

 4.1.2 Performance Target

Considering the performance of the S3CC9E8 chip we see all functions in test data sets 1-5
completing in just less than 80ms, so if we ran all three in sequence we would take 240ms. We
could even run test data set 6 and stay within target, although this test is probably intended as
an algorithm “work-out”, and would unlikely be used in practice.

 4.2 Comparison
If we consider Figure 1 we can make a comparison of the Infineon and Samsung chip performance
when running TUAK (test data sets 1-5). The difference is no great surprise as the SLE77 is a much
newer chip than the S3CC9E4/8. On internal clock-speed alone, a performance factor of 3:1 would
have been expected. For both chip types the16-bit build is the most efficient.

V1.0 10 of 21

Figure 1: Comparison of Native Mode Execution Times

Crisp Telecom Limited

 4.3 Security Overheads
The native code used in the tests is intended for functionality and performance testing, and so it is
not defensively implemented. Some defences (sensors, randomisation, bus masking etc.) are
provided by the chip hardware, however in a deployed product these will normally be supplemented
by software measures. The SLE77 has a lot of spare capacity to add security; in fact it could slow its
operation by almost 10:1 and still be within the performance target. By contrast the S3CC9E4/8 has
a 2:1 margin. This is not at all bad, but some extra headroom might be desirable. This should be
possible as the code running in both chips is non-optimised. In the original study, significant
performance gains were achieved on the MULTOS platform from expanding macros, unrolling
loops and using pointers in place of arrays. Similar techniques could yield performance benefits for
the S3CC9E4/8, providing faster core operation and/or allowing more leeway for performance
degradation due to added software security measures.

V1.0 11 of 21

Crisp Telecom Limited

 5 Side Channel Leakage
The limited time scale and scope of this study did not permit very detailed consideration of attack
resistant security aspects, however it was possible to carry out some side-channel leakage
experiments and make some interesting observations from the collected data.

 5.1 Leakage Signal Capture

The experiments collected leakage information by means of power analysis. A break-out PCB board
was used to sit between a card reader and the card under test. A small resistor was inserted in the
ground line of the power supply and leakage (current variation) was measured as the voltage
developed across the resistor. The time varying voltage was captured using a digital storage
oscilloscope, triggered from the smart card I/O line. The oscilloscope/probe combination had a
200MHz bandwidth and sampling was possible at rates of up to 1GS/s.
The oscilloscope used was restricted to 1Mpts/channel storage and so it was not possible to capture
a complete run of KECCAK at an optimal sample rate and so three different types of trace were
collected for each general test, to provide visualisation and precision.

• Full algorithm (usually 50Ms/s = 2ms/div = 20ms total)
• Start of algorithm (usually 200Ms/s = 0.5ms/div = 5ms total)
• Fine (start of) algorithm (usually 500Ms/s = 0.2ms/div = 2ms total)

The traces for consideration were actually the average of 50 iterations of the same command, and as
well as the sample values, a scope screen shot for each test and trace type was captured.

The file name convention for the captured data was

Processor_Command_Compilebits_Testnumber_Tracetype (full/start/fine).filetype (txt/bmp)

As an example, the full trace samples file for the SLE77 processor, running command f1_f1s for the
8 bit built on test data set '1' would be “SLE77_f1_f1s_8b_t1_start.txt”. The “.txt” files contain the
samples and the “.bmp” files are the scope screen-shots.

Note1: Unless specifically stated the test card was not reset between algorithm runs. This can be
significant for some types of security chip as freshness/mask values are sometimes generated at
reset to disguise processed data. However, as the investigation relates to SIM cards in M2M devices
it is thought that they will be rarely (if at all) reset after first power-on.

Note2: It is unknown if the test chip hardware is automatically applying any randomisation to code
execution time, although it seems unlikely given the improvement in Signal to Noise (SNR) from
trace averaging.

V1.0 12 of 21

Crisp Telecom Limited

 5.2 Captured Configurations

The table below shows the tests that were carried out, resulting in captured waveform data. Due to
project time constraints a complete set was only captured for the 8-bit SLE variant. The similarities
between the 8-bit traces of the different commands showed that it was effective to focus on just one
command (f5s), which was then used for the other processor/compile options. Note that f5s is
convenient as its output size is not dependent on the test data set.

Table 7: Traces Collected

V1.0 13 of 21

Crisp Telecom Limited

 6 Analysis of Leakage Results
The first goal of the analysis was to try and determine the KECCAK rounds from the leakage traces,
as knowing this is often a prerequisite for attackers i.e. they may wish to target particular rounds.
The second goal was to try to find evidence of potential data dependence in the leakage.

 6.1 Finding the Repetitive Round Structure
The first step to try and find the round structure was to crudely capture the entire run of the
command/algorithm; from command to response. We know that KECCAK dominates the response
time and that it has 24 rounds. We could have chosen any of the functions, however f5s is
convenient as it depends on just RAND and K; and has a constant output size regardless of the test
data set selected. We initially focussed on the 8-bit build as this was expected to show most leakage.

Figure 2 shows the screen shot from sle77_f5s_8b_t1_all. The upper yellow waveform is the I/O
line used for triggering. The raw leakage information is the middle waveform and the lower trace is
an average waveform computed over 50 traces. Examining the lower trace one can see a repeating
pattern of pulse shapes. There are 24 in total which matches the number of rounds in KECCAK.
This characteristic pattern is in fact present for all the datasets – as would be expected. To check this
in a little more detail we can refer to the start section of the algorithm shown in in Figure 3.

V1.0 14 of 21

Figure 2: sle77_f5s_8b_t1_all screen-shot

Crisp Telecom Limited

The repetitive structure is clearer in this waveform and there is a pattern that repeats twice every
three time markers (1.5ms span). This gives an individual period of roughly 750us. If this is a
KECCAK round then the algorithm would complete in 24x750us = 18ms. If we then refer back to
Table 4 we see that the command response time (which is dominated by the algorithm) takes
18.11ms, suggesting that we are indeed looking at the round cycle. The waveforms presented so far
have been for the 8-bit build so the next step is to compare with the 16 and 32-bit builds.

V1.0 15 of 21

Figure 4: sle77_f5s_16b_t1_start

Figure 3: sle77_f5s_8b_t1_start

Crisp Telecom Limited

Regarding Figures 3-5, we see that although the timing of the waveforms differs a little due to
performance aspects, the repetitive round structure is still clearly visible regardless of whether the
build target is 8, 16 or 32 bits.. As a final comparison we can use traces captured from the SLE78
chip, which would be expected to have more inherent leakage protection within the chip hardware.

V1.0 16 of 21

Figure 5: sle77_f5s_32b_t1_start

Figure 6: sle78_f5s_32b_t1_start

Crisp Telecom Limited

Considering the SLE78 waveforms in Figure 6 we note that a single trace is noisier than the SLE77
equivalent shown in Figure 5. Furthermore, whilst there is some detectable structure within the
averaged trace of the SLE78 it is far less obvious than for the SLE77, suggesting that the former is
better at impeding statistical averaging of power leakage traces. An important point to note is that in
all cases when using the SLE77, waveform averaging makes significant improvement to the SNR.
This suggests that the chip is not automatically adding any randomisation (at least at the scale
observed) to the processor timing.

 6.2 Finding Data Dependent Leakage

Finding a round and precise precision within a round could be used for active attacks such as fault
insertion. However, for a passive attack to be useful there needs to be some data dependence to the
captured power traces. The investigation of leakage at the precise bit processing level can be a very
time-consuming activity, and beyond the scope of this study, however there are some waveform
level experiments that we can conduct to seek clues about leakage. To investigate this we used the
f5s function because its “input data” is just the RAND and the secret key. To maximise the chances
of detecting leakage we wanted test data sets where there was a significant difference to the data
and so we first chose test data sets 3 and 5. Both have 256-bit keys and the key and RAND values
are different. For these experiments we averaged a 100 traces. We began with a control experiment
where we captured and compared two 100-trace averages from running test data set 3.

Referring to Figure 7, the central waveform (B) is the current average of 100 runs of the algorithm
using test data set 3. A previous average over 100 runs with the same test data set was stored in
memory M1 (and M2). The green waveform (D) is the difference of the two averages M1 and B.
The small amplitude and lack of significant structure in the difference, suggests that the averaged
waveforms were very similar, differing only by some residual noise. This also reinforces the
suspicion that there is no significant random timing variation from the hardware.

V1.0 17 of 21

Figure 7: sle77_f5s difference of averages of sample sets both using test-set 3

Crisp Telecom Limited

For the next test we captured a 100 run average for test data set 5 and stored in memory M3.
However, it was not useful to directly compute the difference with the earlier trace (stored in M2)
as can be explained via Figure 8.

In Figure 8 the orange and blue traces are the two test data set averages, which clearly have a time
offset. This is a little surprising as we are just using different internal test data sets, however it is
conceivable that fetching the test data from slightly different memory locations incurs some extra
processing and clock cycles. We believe (not 100% certain) that the internal CPU clock was 30MHz
and so the waveform offset was likely to be a multiple of the period (about 33ns). Delaying the
average waveform (blue trace) from test data set 3 by 366ns created the green trace which aligns (in
time) reasonably well with the average waveform (orange trace) from test data set 5.

For the next test we computed the difference of the delayed average of test data set 3 with the
original average of test data set 5.

V1.0 18 of 21

Figure 8: sle77_f5s waveform offset

Crisp Telecom Limited

Referring to Figure 9, the upper trace is the difference of the averages, which seems to have lost the
large scale indication of KECCAK round power consumption, suggesting that the waveforms were
reasonably well aligned before the difference operation. This is confirmed in the lower traces which
show the delayed test data set 3 average, overlaid with the test data set 5 average, with the sharpest
spikes appearing in synch. Most interesting is the slight variation in the height of the spikes (and
variations elsewhere) that might be attributable to the differences in the input data (RAND and key).
Future work could investigate this more thoroughly with added statistical data and finer precision.

 6.3 Checking for Reset Effects
In the preceding tests, simple averaging of trace sequences seemed to work quite well with improvements to
SNR. However we avoided resetting the chip between tests in case it triggered masking/freshness
countermeasure techniques that are supported in some devices. Therefore as a final test in this sequence
we captured a 100 run average for test data set 5, reset the chip and then captured another average
set. The pre and post reset averages where then compared as shown in Figure 10.

V1.0 19 of 21

Figure 9: SLE77 difference between aligned test data waveforms

Crisp Telecom Limited

Referring to the lower difference trace (green) in Figure 10 we can see a fairly quiet start to the
waveform suggesting that the waveforms are reasonably aligned in time. However, the following
algorithm section has notable structure and amplitude in the difference trace, suggesting that the
chip hardware may change mask and/or freshness values on reset.

V1.0 20 of 21

Figure 10: Comparing averages separated by a reset

Crisp Telecom Limited

 7 Conclusions and Future Work
The main conclusion from the performance and memory usage aspects of the study is that it seems
quite feasible to run the TUAK algorithm on older and more resource limited smart cards (from
another manufacturer), whilst still meeting SIM performance requirements. The implementation
also stays within the memory usage requirements that were proposed during the original study.

The conclusions from the very brief investigation into side-channel leakage should be treated with
caution as there was not enough time to adequately repeat and verify tests. With this caveat in mind
we observed from the limited experiments that the KECCAK round structure could be detected
from power analysis on the selected test cards and it is not unreasonable to suggest that this finding
could also apply to other chip/card types. Furthermore, the tests hint at data dependence within the
leakage. Therefore, with the possible exception of cards using chips like the SLE78 that claim
innovative hardware defences against side-channel and fault attacks, it is likely that smart
card/chips will require some software assistance to inhibit leakage when TUAK is run. Modern high
performance cards such as the SLE77/78 family have a lot of spare resource to achieve this whereas
older and/or mid-range chips like the S3CC9E4/8 are closer to the performance limits. However, it
should be noted that the code used for the performance tests was in no way speed optimised and the
optimisation techniques used in the original study for MULTOS cards (in-line code, unrolling loops,
removing macros, using pointers etc.) could make the core algorithm faster prior to the addition of
software security measures.

An added observation is that masking/freshness techniques that only change on chip reset are of
limited use in an M2M scenario as the SIM will rarely be reset (if ever) in normal use.

This brief study has revealed some interesting preliminary findings; however there are a number of
additional tasks that would logically follow-on from this work, as summarised below;

• Performance
◦ Find the speed optimised implementation for the S3CC9E4/8

• Power analysis
◦ Perform more extensive side-channel leakage analysis
◦ Carry out a detailed characterisation of the sub-round leakage structure of

TUAK/KECCAK (i.e. Theta, Pi+Rho, Chi and Iota)
◦ Attempt to identify key bits from the leakage
◦ Define software countermeasures

End of report

V1.0 21 of 21

	 1 Introduction
	 1.1 Interpreting the Requirements

	 2 The Performance Test Setup
	 2.1 The Smart Card Chips
	 2.2 Software Development
	 2.3 Testing

	 3 Performance and Memory Usage Results
	 3.1 Memory Usage

	 4 Analysis of Performance and Memory Results
	 4.1 Memory and Performance Target
	 4.1.1 Memory Target
	 4.1.2 Performance Target

	 4.2 Comparison
	 4.3 Security Overheads

	 5 Side Channel Leakage
	 5.1 Leakage Signal Capture
	 5.2 Captured Configurations

	 6 Analysis of Leakage Results
	 6.1 Finding the Repetitive Round Structure
	 6.2 Finding Data Dependent Leakage
	 6.3 Checking for Reset Effects

	 7 Conclusions and Future Work

